WorldWideScience

Sample records for glycerinated muscle fibers

  1. Qualitative characteristics of meat from young bulls fed different levels of crude glycerin.

    Science.gov (United States)

    Carvalho, J R R; Chizzotti, M L; Ramos, E M; Machado Neto, O R; Lanna, D P D; Lopes, L S; Teixeira, P D; Ladeira, M M

    2014-02-01

    The objective was to evaluate the fatty acid profile and qualitative characteristics of meat from young bulls fed crude glycerin. Forty-four animals with an initial live weight of 368 ± 4 kg were used in a completely randomized design, with four treatments: no glycerin or addition of 6, 12 or 18% glycerin. The animals were slaughtered with 519.5 ± 14.9 kg of live weight. The meat characteristics assessed were chemical composition, shear force, fatty acid concentration, color and lipid oxidation. The addition of glycerin increased the content of ether extract (P<0.05) in the muscle. A linear increase was observed (P<0.05) in the oleic acid contents (C18:1 cis 9). The saturated fatty acid (SFA) contents linearly decreased in the muscle as a function of glycerin addition. The lightness (L*) and yellowness (b*) indices increased with the use of crude glycerin (P<0.05). The crude glycerin increased the intramuscular fat and oleic acid content in the longissimus dorsi muscle. © 2013.

  2. Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards

    Directory of Open Access Journals (Sweden)

    Anand Ramesh Sanadi

    2008-12-01

    Full Text Available A new technique was developed to make highly loaded (up to 95% formaldehyde free natural fiber boards. The purpose of the paper is to report a broad study on 85% kenaf boards using linear thermoplastic polymers as the binder in preparing the boards to determine if these materials have potential in commercial applications by comparing them to other commercial materials. In these materials, linear thermoplastic polymer chains act as an adhesive and the product resembles a typical wood based panel (e.g., phenol formaldehyde fiber board. The process involved the use of small amount of glycerine in the fiber to enhance processibility in a thermo-kinetic mixer followed by hot pressing. In this paper, we report the properties of 85% by weight kenaf fiber boards using polypropylene as the adhesive. A maleated polypropylene was used to improve the adhesion and stress transfer between the adhesive and kenaf fiber. The addition of 2% by weight of glycerine based on the dry weight of kenaf fiber resulted in the best properties of the boards. Differential scanning calorimetric studies suggested that the glycerine had a little effect on the percent crystallinity of the matrix. Dynamic mechanical tests of the 85% boards showed some differences compared to conventional 60% by weight kenaf-PP composites. The 85% kenaf boards had a flexural strength of 75 MPa and a flexural modulus of 6.8 GPa with a specific gravity of 1.24. These properties are comparable to standard formaldehyde free high density hardboards with flexural strengths of 48.3 MPa and flexural modulus of 5.5 GPa, and a specific gravity of 1.28. This paper gives a broad overview of an initial study of these new materials.

  3. Crude glycerin in diets for feedlot Nellore cattle

    Directory of Open Access Journals (Sweden)

    Eric Haydt Castello Branco van Cleef

    2014-02-01

    Full Text Available Two studies were conducted to evaluate the effects of crude glycerin on feed intake, performance, carcass characteristics, and total digestibility of Nellore bulls. In experiment 1, cattle (n = 30 were fed a control diet without crude glycerin and diets containing 7.5, 15, 22.5, and 30% crude glycerin, for 103 d. Animals were harvested and data of carcass characteristics were collected. In experiment 2, a digestibility trial was performed using indigestible acid detergent fiber (iADF as internal marker, and five rumen-cannulated steers. Both experiments were conducted as a randomized complete block design and data were analyzed using mixed procedures. In experiment 1 no differences were observed among treatments on dry matter intake, and performance variables. Regarding carcass characteristics, no effect was observed, except for carcass fat estimates, which were greater in treatments with crude glycerin. In experiment 2, crude glycerin promoted a decrease in digestibility of fibrous fractions NDF and HEM, and increased digestibility of crude protein by 6%. Although it caused negative effect on digestibility of fibrous fraction of diets, crude glycerin can be a good energy source for Nellore bulls, since no losses are observed on performance and carcass characteristics when animals are fed up to 30% of this by-product.

  4. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Aerobic stability, chemical composition and ruminal degradability of sugarcane silage with glycerin from biodiesel

    Directory of Open Access Journals (Sweden)

    Marco Antonio Bensimon Gomes

    2015-06-01

    Full Text Available The experiment was performed with the objective of studying the ensiled sugarcane silage with 0, 5, 10, 15 and 20% of glycerin in experimental PVC silos. The aerobic stability was assessed by measuring the pH and the temperature of the silage at 0, 24, 48, 72, 96 and 120h. The chemical composition, the levels of non-fiber carbohydrates (NFC and the total digestible nutrients (TDN were evaluated. The in vitro digestibility of dry matter (IVDDM and the in vitro digestibility of the cell wall (IVDCW in the silages were evaluated. In three fistulated cattle the in situ degradability of dry matter (DM and the disappearance percentage of the neutral detergent fiber (NDF in samples incubated at 0, 2, 6, 12, 24, 48, 72 and 96h were analyzed. The experimental design was completely randomized and the statistical analyzes were done using Bayesian inference. Increases were observed in DM, TDN, mineral matter, NFC and reductions in NDF, acid detergent fiber, crude protein and ether extract as the inclusion of glycerin was higher. IVDDM increased (P <0.05 in silage with 15 and 20% of glycerin in relation to those with 0, 5 and 10%. The IVDCW at levels of 10, 15 and 20% of glycerin was higher (P <0.05 compared to the other treatments. Increases were observed in the soluble portion (a, a reduction in the insoluble fraction (b, and an increase in the degradability fraction constant (c of the silages with 5, 10, 15 and 20% of glycerin (P <0.05 compared to the control. Glycerin improved aerobic stability while maintaining a low pH and temperature during the observation period at levels of 15 and 20% of glycerin against the silage with 0, 5 and 10%. These results indicate glycerin as a promising additive for sugarcane silage, being able to enhance energy density and improve the aerobic stability of the ensiled matter when its inclusion is from 10 to 20%.

  7. Glycerin in cattle feed: intake, digestibility, and ruminal and blood parameters

    Directory of Open Access Journals (Sweden)

    Vanessa Ruiz Fávaro

    2015-06-01

    Full Text Available This study aimed to evaluate the effects of glycerin supplements in the diet of beef cattle by assessing intake, apparent nutrient digestibility, ruminal pH, ruminal ammonia concentrations, and blood parameters. The study was conducted at the São Paulo State University (UNESP, Jaboticabal campus using five crossbred cattle in an experiment employing a 5 x 5 Latin square design. Cattle diet treatments included zero, 50, 100, 150, and 200 g kg-1 dry matter of glycerin. Feed, leftover feed, and faeces were collected to determine intake and digestibility. Samples of ruminal liquid were collected at –1, 0, 1, 2, 4, 6 and 8 h after feeding to determine pH and ruminal ammonia. Blood was collected four hours after the morning feeding from the coccygeal vein. Replacing maize with glycerin resulted in lower concentrations of ether extract and non-fibre carbohydrates in the diets, leading to a linear decrease in the intake of these nutrients (P<0.05. The digestibility of neutral detergent fibre and non-fibre carbohydrates also decreased linearly with increasing dietary glycerin concentrations (P<0.05. The results for ruminal fermentation parameters showed a linear decrease (P<0.05 in the ruminal concentration of N-NH3 with increasing dietary levels of glycerin; however, ruminal pH was not affected (P<0.05. Serum concentrations of urea, triglycerides, cholesterol, and plasma glucose concentrations were within normal ranges based on the literature. The inclusion of glycerin in the cattle diet altered rumen fermentation, reducing the concentration of N-NH 3, the digestibility of neutral detergent fiber and non-fiber carbohydrates.

  8. "The blood pressure and dermal sensitivity effects of Nylon hollow fiber releasing Glycerin Trinitrate in vivo "

    Directory of Open Access Journals (Sweden)

    "Ostad SN

    2002-09-01

    Full Text Available In order to improve patient's compliance in taking glycerine trinitrate (GTN nylon hollow fiber which has been successfully used for release of chlorhexidine diacetate and levonorgestrel was employed to make nylon hollow fiber releasing GTN. Hollow nylon fibres of external diameter 0.63 mm, 75 mm long with an internal capacity of 16 μl, were filled with GTN (190 mg/ml in 70% ethanol (v/v or vehicle alone and the ends were heat-sealed. The fibers were then immersed in 10 ml of 0.9% (w/v saline in a separating funnel. The GTN release pattern from fiber, the effect of the product on blood pressure and its potential dermal toxicity were assessed. The release of GTN from the fibres was approximately 2.7 μg/min when the fibres contained 16 mg of drug. The results showed that the amount of GTN within the single fibre was enough to reduce blood pressure significantly, while it did not show significant dermal toxicity. It is concluded that GTN fiber, if used as monofilament, is not an alternative method for GTN delivery.

  9. Fluorescent modification and orientation of myosin sulfhydryl 2 in skeletal muscle fibers

    International Nuclear Information System (INIS)

    Ajtai, K.; Burghardt, T.P.

    1989-01-01

    The authors describe a protocol for the selective covalent labeling of the sulfhydryl 2 (SH2) on the myosin cross-bridge in glycerinated muscle fibers using the sulfhydryl-selective label 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole (IANBD). The protocol promotes the specificity of IANBD by using the ability to protect sulfhydryl 1 (SH1) from modification by binding the cross-bridge to the actin filament and using cross-bridge-bound MgADP to promote the accessibility of SH2. They determined the specificity of the probe using fluorescence gel scanning of fiber-extracted proteins to isolate the probe on myosin subfragment 1 (S1), limited proteolysis of the purified S1 to isolate the probe on the 20-kilodalton fragment of S1, and titration of the free SH1's on purified S1 using the radiolabeled SH1-specific reagent [ 14 C]iodoacetamide or enzymatic activity measurements. They characterized the angular distribution of the IANBD on cross-bridges in fibers when the fibers are in rigor, in relaxation, in the presence of MgADP, and in isometric contraction using wavelength-dependent fluorescence polarization. They find that the SH2 probe distinguishes the different states of the fiber such that rigor and MgADP are ordered and maintain a similar orientation throughout the excitation wavelength domain. The relaxed cross-bridge is ordered and has an orientation that is distinct from the orientation of the cross-bridge in rigor and MgADP over the entire wavelength domain. The active isometric cross-bridge is also oriented differently from the other states, suggesting the presence of a predominant actin-bound cross-bridge state that precedes the power stroke during muscle contraction

  10. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses.

    Science.gov (United States)

    Kawai, Minako; Minami, Yoshio; Sayama, Yukiko; Kuwano, Atsutoshi; Hiraga, Atsushi; Miyata, Hirofumi

    2009-10-01

    We examine the muscle fiber population and metabolic properties of skeletal muscles from the whole body in Thoroughbred horses. Postmortem samples were taken from 46 sites in six Thoroughbred horses aged between 3 and 6 years. Fiber type population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform and metabolic enzyme activities were determined spectrophotometrically. Histochemical analysis demonstrated that most of the muscles had a high percentage of Type IIa fibers. In terms of the muscle characteristic in several parts of the horse body, the forelimb muscles had a higher percentage of Type IIa fiber and a significantly lower percentage of Type IIx fiber than the hindlimb muscles. The muscle fiber type populations in the thoracic and trunk portion were similar to those in the hindlimb portion. Biochemical analysis indicated high succinate dehydrogenase activity in respiratory-related muscle and high phosphofructokinase activity in hindlimbs. We suggested that the higher percentage of Type IIa fibers in Thoroughbred racehorses is attributed to training effects. To consider further the physiological significance of each part of the body, data for the recruitment pattern of each muscle fiber type during exercise are needed. The muscle fiber properties in this study combined with the recruitment data would provide fundamental information for physiological and pathological studies in Thoroughbred horses.

  11. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  12. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  13. The physical properties of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    In this chapter of book authors describe physical properties of glycerin. The pure glycerin presents syrup-vivid insipid transparent solution odorless and sweet on taste. The glycerin is very hygroscopic and can absorb from air till 40% moisture against its mass

  14. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  15. Effects of dietary inclusion of high concentrations of crude glycerin on meat quality and fatty acid profile of feedlot fed Nellore bulls.

    Directory of Open Access Journals (Sweden)

    Eric H C B van Cleef

    Full Text Available Crude glycerin, the main by-product of biodiesel production, can replace dietary energy sources, such as corn. The objective of this study was to evaluate the inclusion of up to 30% of crude glycerin in dry matter (DM of the total diets, and its effects on meat quality parameters of feedlot Nellore bulls. Thirty animals (227.7 ± 23.8 kg body weight; 18 months old were housed in individual pens and fed 5 experimental diets, containing 0, 7.5, 15, 22.5 or 30% crude glycerin (DM basis. After 103 d (21 d adaptation animals were slaughtered and the Longissimus muscle was collected. The characteristics assessed were chemical composition, fatty acid profile, cholesterol, shear force, pH, color, water-holding capacity, cooking loss and sensory properties. The increasing inclusion of crude glycerin in the diets did not affect the chemical composition of the Longissimus muscle (P > 0.10. A quadratic effect was observed when levels of crude glycerin were increased, on the concentration of pentadecanoic, palmitoleic and eicosenoic fatty acids in meat (P < 0.05, and on the activity of the delta-9 desaturase 16 and delta-9 desaturase 18 enzymes (P < 0.05. The addition of crude glycerin increased the gamma linolenic fatty acid concentration (P < 0.01, and altered the monounsaturated fatty acids in Longissimus muscle of animals (Pquad. < 0.05. Crude glycerin decreased cholesterol content in meat (P < 0.05, and promoted higher flavor score and greasy intensity perception of the meat (P < 0.01. The inclusion of up to 30% crude glycerin in Nellore cattle bulls`diets (DM basis improves meat cholesterol and sensory attributes, such as flavor, without affecting significantly the physical traits, the main fatty acid concentrations and the chemical composition.

  16. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  17. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  18. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  19. Ingestive Behavior of Heifers Supplemented with Glycerin in Substitution of Corn on Pasture

    Directory of Open Access Journals (Sweden)

    L. M. A. M. Facuri

    2014-11-01

    Full Text Available The objective was to evaluate the ingestive behavior of crossbred heifers finished on a Brachiaria brizantha cv. Marandu pasture receiving four levels of glycerin in their supplementation. Thirty-six crossbred heifers with average initial weight of 264.83±3.83 kg and 20 months of age were distributed into a completely randomized design with four treatments and nine replications: control (0%, 4.82%, 10.12%, and 15.56% glycerin in the dry matter. The grazing time reduced linearly (p0.05. The number of rumination periods reduced linearly (p0.05 whereas the feed efficiency of neutral detergent fiber reduced linearly (p<0.05. Addition of glycerin in substitution of corn in supplements for animals managed on pastures does not influenced feed intake, but reduces the grazing time and increases the idle time. The supplementation also improves feed and rumination efficiencies.

  20. Preferential type II muscle fiber damage from plyometric exercise.

    Science.gov (United States)

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  1. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  2. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  3. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle...... between muscle fiber diameter, muscle fiber type distribution, or capillary density and degree of neuropathy or muscle strength for either patient group. Muscle fiber diameter and the proportion of Type II fibers were greater for T1D patients than both T2D patients and controls. The T2D patients had fewer...

  4. Persistent muscle fiber regeneration in long term denervation. Past, present, future

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES. Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb. Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest

  5. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  6. Ingestive behavior of grazing heifers receiving crude glycerin supplementation during the dry-rainy season transition

    Directory of Open Access Journals (Sweden)

    Vitor Visintin Silva de Almeida

    2014-09-01

    Full Text Available The search to find food alternatives for corn and feeding alternatives that reduce the cost of production has been constant. The use of oleaginous grains to produce ethanol and biodiesel has produced an excess of byproducts, especially biodiesel which produces crude glycerin. The objective of this study was to evaluate the effect of including crude glycerin on the ingestive behavior of crossbred heifers supplemented with pasture. Thirty-six crossbred heifers with an initial mean weight of 301.5 ± 31 kg were distributed in a completely randomized design with four treatments and nine replicates per treatment. The animals were kept in a Brachiaria brizantha (Hochst. ex A. Rich. Stapf 'Marandu' pasture in a rotational-grazing system. The treatments tested were 0.0%, 3.33%, 6.66%, and 9.99% crude glycerin included in total DM to replace corn (Tea mays L. Including crude glycerin reduced the time for grazing and eating at the trough and increased idle time. Rumination was quadratically influenced. Eating time (min kg-1 DM and neutral detergent fiber [NDF] was reduced, while rumination time (min kg-1 DM and NDF was quadratically affected by adding glycerin. The variables, time spent per ruminated bolus and the number of chews per day, were not affected. The number of boluses per day showed a quadratic effect. The number of grazing, idle, ruminating, and eating at the trough periods were not affected by including crude glycerin; means were 15.1, 24.9, and 13.3 and 3.71 periods d-1, respectively. Feed and rumination efficiency (kg h-1 DM and NDF increased when crude glycerin was included in the diet. Including crude glycerin promotes feed and rumination efficiency in grazing heifers.

  7. Ingestive Behavior of Heifers Supplemented with Glycerin in Substitution of Corn on Brachiaria brizantha Pasture.

    Science.gov (United States)

    Facuri, L M A M; Silva, R R; da Silva, F F; de Carvalho, G G P; Sampaio, C B; Mendes, F B L; Lisboa, M M; Barroso, D S; Carvalho, V M; Pereira, M M S

    2014-11-01

    The objective was to evaluate the ingestive behavior of crossbred heifers finished on a Brachiaria brizantha cv. Marandu pasture receiving four levels of glycerin in their supplementation. Thirty-six crossbred heifers with average initial weight of 264.83±3.83 kg and 20 months of age were distributed into a completely randomized design with four treatments and nine replications: control (0%), 4.82%, 10.12%, and 15.56% glycerin in the dry matter. The grazing time reduced linearly (p0.05). The number of rumination periods reduced linearly (p0.05) whereas the feed efficiency of neutral detergent fiber reduced linearly (p<0.05). Addition of glycerin in substitution of corn in supplements for animals managed on pastures does not influenced feed intake, but reduces the grazing time and increases the idle time. The supplementation also improves feed and rumination efficiencies.

  8. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  9. Glycerin and essential oils in the diet of Nellore bulls finished in feedlot: animal performance and apparent digestibility

    Directory of Open Access Journals (Sweden)

    Lorrayny Galoro da Silva

    2014-05-01

    Full Text Available Current research studied the effect of partial replacing corn by glycerin and essential oils addition in the diet of Nellore bulls finished in feedlot on feed intake, animal performance and three markers were assessed to estimate apparent digestibility. Thirty bulls with average weight 400 ± 34.1 kg and 22 ± 2 months old were housed in collective pens (10 x 20 m2 for 63 days. The bulls were randomly assigned to 3 diets (10 bulls per treatment: CON – Control (without glycerin or Essential® oils; GLY – Glycerin (15% on dry matter - DM; and GEO – Glycerin (15% on DM and Essential® oils (3 g animal day-1. Three different markers were used to estimate apparent digestibility in the diets: indigestible dry matter –iDM; indigestible neutral detergent fiber – iNDF; and purified lignin – LIPE®. Feed efficiency and animal performance were not affected by the corn partial replacing by glycerin. No effects were found in partial corn replacing by glycerin and Essential® oils addition in the diets on the fecal output, crude protein and ether extract digestibility among the diets. The DM and OM apparent digestibility were higher for bulls fed with glycerin and Essential® oils. The CHO digestibility was higher for CON diet. The markers iDM, iNDF and LIPE® were similarly to estimate apparent digestibility to all nutrients in the diets.

  10. Glycerin-Based Hydrogel for Infection Control.

    Science.gov (United States)

    Stout, Edward I; McKessor, Angie

    2012-02-01

    Infection is a major problem in the health and wellbeing of patients in hospitals, nursing homes, and other medical facilities as well as the homecare patients and the general public. According to Scientia Advisors, wound care costs the healthcare system over $7 billion in 2009. After adding the cost associated with potential complications such as infections, extended physician care, and lengthy hospital stays, the annual wound care expenditures well exceeded over $20 billion. 1 There are 20 million reported cases of diabetes per year and more every day. Because of the fact that leg ulcers are the number one health problem of men coupled with the rise in drug resistance of infections, the importance of providing the professional and the public with relatively simple and affordable wound care is of extreme importance. Often the wounds can become chronic wounds, which then result in long-term nursing expense in time and supplies or, worse yet, can result in expensive amputations ranging from $5000 to $40,000 per patient. There are many dressing options now available for treating wounds with components such as glycerin, honey, salt, and many other natural products, with some dressings being more appropriate than others. In 1988, a patented glycerin-based dressing was introduced to the market, called Elasto-Gel™. 2. Elasto-Gel™ is a glycerin-based gel sheet (65%) combined with a hydrophilic polymer that causes the sheet to absorb the exudate from the wound and simultaneously release the glycerin from the gel, which adds many benefits to the wound for excellent healing outcomes. The gel sheet is 1/8th of an inch thick with a four-way stretch backing. It has the ability to absorb 3-4 times its own weight of fluids. The dressing will not dry out or allow the exudate to dry out, thus keeping the dressing from becoming bonded to the wound or the surrounding tissue. It does not have adhesive properties and, therefore, will not cause damage to the wound bed or periwound

  11. Muscle fiber type proportion and size is not altered in mcardle disease.

    Science.gov (United States)

    Henning, Franclo; Cunninghame, Carol Anne; Martín, Miguel Angel; Rubio, Juan Carlos; Arenas, Joaquín; Lucia, Alejandro; HernáNdez-Laín, Aurelio; Kohn, Tertius Abraham

    2017-06-01

    McArdle disease is a metabolic myopathy that presents with exercise intolerance and episodic rhabdomyolysis. Excessive muscle recruitment has also been shown to be present during strenuous exercise, suggesting decreased power output. These findings could potentially be explained by either impaired contractility, decreased fiber size, or altered fiber type proportion. However, there is a paucity of data on the morphological features seen on muscle histology. We examined muscle biopsies of patients with McArdle disease from a Spanish cohort and compared the findings with healthy controls. We found no significant difference in the fiber type proportion or mean fiber size between McArdle patients and controls in the biceps brachii or vastus lateralis muscles. No alterations in muscle fiber type proportion or size were found on muscle histology of patients with McArdle disease. Future research should focus on assessment of muscle fiber contractility to investigate the functional impairment. Muscle Nerve 55: 916-918, 2017. © 2016 Wiley Periodicals, Inc.

  12. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  13. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Dalgas, Ulrik; Overgaard, Kristian

    2016-01-01

    by ATPase histochemistry. Enzymatic concentrations of citrate synthase (CS) and 3-Hydroxyacyl-coenzymeA-dehydrogenase (HAD) were determined using freeze-dried muscle tissue. Findings were correlated with clinical outcomes. RESULTS: In the paretic muscles the mean fiber area was smaller (P=0.......0004), and a lower proportion of type 1 fibers (P=0.0016) and a higher proportion of type 2X fibers (P=0.0002) were observed. The paretic muscle had lower CS (P=0.013) and HAD concentrations (P=0.037). Mean fiber area correlated with muscle strength (r=0.43, P=0.041), and CS concentration correlated with aerobic...

  14. Effects of Streptomycin Administration on Increases in Skeletal Muscle Fiber Permeability and Size Following Eccentric Muscle Contractions.

    Science.gov (United States)

    Hayao, Keishi; Tamaki, Hiroyuki; Nakagawa, Kouki; Tamakoshi, Keigo; Takahashi, Hideaki; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2018-06-01

    The purpose of this study was to investigate the preventive effect of streptomycin (Str) administration on changes in membrane permeability and the histomorphological characteristics of damaged muscle fibers following eccentric contraction (ECC ). Eighteen 7-week-old male Fischer 344 rats were randomly assigned to three groups: control (Cont), ECC, and ECC with Str (ECC + Str). The tibialis anterior (TA) muscles in both ECC groups were stimulated electrically and exhibited ECC. Evans blue dye (EBD), a marker of muscle fiber damage associated with increased membrane permeability, was injected 24 hr before TA muscle sampling. The number of EBD-positive fibers, muscle fiber cross-sectional area (CSA), and roundness were determined via histomorphological analysis. The ECC intervention resulted in an increased fraction of EBD-positive fibers, a larger CSA, and decreased roundness. The fraction of EBD-positive fibers was 79% lower in the ECC + Str group than in the ECC group. However, there was no difference in the CSA and roundness of the EBD-positive fibers between the two ECC groups. These results suggest that Str administration can reduce the number of myofibers that increase membrane permeability following ECC, but does not ameliorate the extent of fiber swelling in extant EBD-positive fibers. Anat Rec, 301:1096-1102, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  16. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  17. Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Charlotte; Keller, Pernille

    2003-01-01

    individuals. The IL-6 immunostainings of skeletal muscle cells were homogeneous and without difference between muscle fiber types. The IL-6 mRNA peaked immediately after the exercise, and, in accordance, the IL-6 protein expression within muscle cells was most pronounced around 3 h post-exercise. However......, the finding that plasma IL-6 concentration peaked in the end of exercise indicates a high turnover of muscle-derived IL-6. In conclusion, the finding of marked IL-6 protein expression exclusively within skeletal muscle fibers following exercise demonstrates that skeletal muscle fibers of all types...

  18. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  19. Analysis of glycerin waste in A-Area sanitary treatment facility material

    International Nuclear Information System (INIS)

    1995-01-01

    TNX has a large supply of 55 gallon drums containing pure glycerin and glycerin with additives. The glycerin drums were procured to simulate the glass stream in a pilot-scale melter process at TNX. Since the glycerin was not used for this process, TNX is looking at disposing the material in a sanitary waste treatment facility onsite. The effect of adding the contents of the drums to sewage bacteria was tested. A drum of pure glycerin and a drum of glycerin mixed with lithium chloride were tested. The test consisted of mixing sanitary sludge material with the glycerin material. The purpose of the test was to determine if the glycerin impacted the aerobic bacterial population. The bacterial densities were determined by taking samples from the sludge/glycerin mixtures and using aerobic plate count methods. The total organic carbon (TOC) levels were measured before and after testing. The results indicate that the cell density of the aerobic bacteria increased with the addition of glycerin and the glycerin mixture and the TOC removal rate was different for all tests. Disposal of glycerin in the wastewater treatment facilities should pose no problems. Additional testing and analysis of the mixed samples should be done before its disposal in a waste water treatment facility

  20. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P contraction-stimulated glucose uptake. Copyright © 2015 the American Physiological Society.

  1. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  2. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    Directory of Open Access Journals (Sweden)

    Siacia Broos

    Full Text Available To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men.A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0, maximal unloading velocity (V0 and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity.No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001. P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001 but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype.The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  3. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  4. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly

    DEFF Research Database (Denmark)

    Aagaard, Per; Magnusson, Peter S; Larsson, Benny

    2007-01-01

    compared with U, and S also demonstrated greater type II fiber CSA than did U and E. The proportion of type I fibers was greater in E compared with U and S. CONCLUSIONS: Muscle fiber size and mechanical muscle performance, particularly RFD, were consistently elevated in aged individuals exposed to chronic...

  5. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  7. MOTOR UNIT TERRITORIES AND FIBER TYPES IN RABBIT MASSETER MUSCLE

    NARCIS (Netherlands)

    WEIJS, WA; JUCH, PJW; KWA, SHS; KORFAGE, JAM

    1993-01-01

    The myosin heavy chain (MHC) content and spatial distribution of the fibers of 11 motor units (MUs) of the rabbit masseter muscle were determined. The fibers of single MUs were visualized in whole-muscle serial sections by a negative periodic acid/Schiff reaction for glycogen after they had been

  8. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each

  9. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris

    Directory of Open Access Journals (Sweden)

    Colby eMoore

    2014-06-01

    Full Text Available Northern elephant seals (Mirounga angustirostris (NES are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb concentrations in the longissimus dorsi (LD muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults may provide a protection against ischemia reperfusion (IR injury in vasoconstricted peripheral skeletal muscle.

  10. Anterior cruciate ligament tear induces a sustained loss of muscle fiber force production.

    Science.gov (United States)

    Gumucio, Jonathan P; Sugg, Kristoffer B; Enselman, Elizabeth R Sibilsky; Konja, Alexis C; Eckhardt, Logan R; Bedi, Asheesh; Mendias, Christopher L

    2018-01-18

    Patients with anterior cruciate ligament (ACL) tears have persistent quadriceps strength deficits that are thought to be due to altered neurophysiological function. Our goal was to determine the changes in muscle fiber contractility independent of the ability of motor neurons to activate fibers. We obtained quadriceps biopsies of patients undergoing ACL reconstruction, and additional biopsies 1, 2, and 6 months after surgery. Muscles fiber contractility was assessed in vitro, along with whole muscle strength testing. Compared with controls, patients had a 30% reduction in normalized muscle fiber force at the time of surgery. One month later, the force deficit was 41%, and at 6 months the deficit was 23%. Whole muscle strength testing demonstrated similar trends. While neurophysiological dysfunction contributes to whole muscle weakness, there is also a reduction in the force generating capacity of individual muscle cells independent of alpha motor neuron activation. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  11. Evaluation of Dietary Glycerin Inclusion During Different Broiler Rearing Phases

    Directory of Open Access Journals (Sweden)

    LW Freitas

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of the dietary addition of different levels of glycerin on the performance, litter moisture, pododermatitis incidence, and carcass and parts yield of broilers. In total, 1,610 broilers were reared in 35 pens with 46 birds each. A completely randomized experimental design, with five treatments with seven replicates was applied. The experimental treatments were: T1: control diet; T2: dietary inclusion of 5% glycerin from 1-42 days of age; T3: dietary inclusion of 10% glycerin from 1-42 days of age; T4: dietary inclusion of 5% glycerin from 7-42 days of age; T5: dietary inclusion of 10% glycerin from 7-42 days of age. The diets containing glycerin fed since the pre-starter period improved broiler weight gain and feed conversion ratio, but did not influence feed intake or livability. At the end of the experiment, the production efficiency index of the broilers fed 10% glycerin during the entire rearing period was significantly reduced compared with the other treatments. Litter moisture in the pens of broilers fed 10% glycerin during the entire rearing period was higher compared to the other treatments since day 21.Diets containing 10% glycerin, both for the entire rearing period (1-42 days or only after the pre-starter phase (7-42 days, influenced broiler performance and incidence of severe pododermatitis, reducing the production efficiency indexes at 42 days. Glycerin may be added up to 5% in broiler´s diets with no effect on performance, litter moisture and carcass yield, indicating that this co-product of the biodiesel industry can be used as an alternative feedstuff for broilers.

  12. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  13. Other glycerin reactions

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    At the dehydration of glycerin under at the action of water-take substances (KHSO 4 , HBO 3 , waterless MgSO 4 ) forms acrolein. Acrolein at the careful oxidation change into acrylic acid, which is monomer for synthesis of polymer materials

  14. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  15. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    Science.gov (United States)

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  16. Mono-fermentation of glycerine - Fermentation of a substrate in a dominant amount. Final report; Monovergaerung von Glycerin - Vergaerung von einem Substrat in dominierender Menge. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Erb, D.; Bueeler, E.; Spicher, M.

    2008-02-15

    The present study investigated the feasibility of a mono fermentation of the glycerine-fraction from biodiesel production. Part of the experiments took place in a single-stage, continuous system with 700 l usable volume. The maximum yield of biogas of the glycerine-fraction is 1100 l/l of glycerine, or 870 l/kg of glycerine, in continuous operation. The average methane content is 70 %. The adaptation rate of the biomass at the substrate of glycerine-fraction is high. Two or three days after starting the feed 100 % degradation rates will be achieved. The single-stage, continuous fermentation of the glycerine-fraction at 40 {sup o}C runs only stable at very low organic loading rate (0.65 kg oDM/(d m{sup 3})) and is therefore not currently economical. At higher organic loading rates (1.5 to 3.0 kg oDM/(d m{sup 3})) the adapted biomass collapsed after about 20 days due to massive instability of the process. A two-stage system with separate hydrolysis stage could probably allow a stable fermentation as search for literature has shown. Fed-batch experiments in the laboratory of the University of Waedenswil, Switzerland (ZHAW) demonstrated that the glycerine-fraction from biodiesel production is slightly better degradable than pure glycerine. The process dysfunctions arise because of the inhibition of intermediates resulting from the degradation of glycerine. At higher concentrations of 1.2-propanediol and 2.3-butanediol the degradation was incomplete. Further inhibitors can not be excluded. The failed stability of the process is not due to the lack of main nutrients or trace elements. (author)

  17. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  18. Dynamics of glycerine and water transport across human skin from binary mixtures.

    Science.gov (United States)

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  19. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  1. Severe insulin-resistant diabetes mellitus in patients with congenital muscle fiber type disproportion myopathy

    DEFF Research Database (Denmark)

    Vestergaard, H; Klein, H H; Hansen, T

    1995-01-01

    Congenital muscle fiber type disproportion myopathy (CFTDM) is a chronic, nonprogressive muscle disorder characterized by universal muscle hypotrophy and growth retardation. Histomorphometric examination of muscle shows a preponderance of smaller than normal type 1 fibers and overall fiber size....... Insulin receptor function and glycogen synthase (GS) activity and expression were examined in biopsies of vastus lateralis muscle. Despite a 45-90-fold increase in both fasting and postprandial serum insulin levels, both CFTDM patients had diabetes mellitus. Clamp studies revealed that the oldest boy had...

  2. Oxygen diffusion coefficient in isolated chicken red and white skeletal muscle fibers in ontogenesis.

    Science.gov (United States)

    Baranov, V I; Belichenko, V M; Shoshenko, C A

    2000-09-01

    Oxygen diffusion from medium to cultured isolated muscle fibers from red gastrocnemius muscle (deep part) (RGM) and white pectoralis muscle (WPM) of embryonic and postnatal chickens (about 6 months) was explored. The intracellular effective O(2) diffusion coefficient (D(i)) in muscle fiber was calculated from a model of a cylindrical fiber with a uniform distribution of an oxygen sink based on these experimentally measured parameters: critical tension of O(2) (PO(2)) on the surface of a fiber, specific rate of O(2) consumption by a weight unit of muscle fibers (;VO(2)), and average diameter of muscle fibers. The results document the rapid hypertrophic growth of RGM fibers when compared to WPM fibers in the second half of the embryonic period and the higher values of;VO(2) and critical PO(2) during the ontogenetic period under study. The oxygen D(i) in RGM fibers of embryos and 1-day chickens was two to three times higher than observed for WPM fibers. For senior chickens, the oxygen D(i) value in RGM and WPM fibers does not differ. The D(i) of O(2) in both RGM and WPM fibers increased from 1.4-2.7 x 10(-8) to 90-95 x 10(-8) cm(2)/s with an ontogenetic increase in fiber diameter from 7. 5 to 67.0 microm. At all stages the oxygen D(i) values in RGM and WPM fibers are significantly lower than the O(2) diffusion coefficient in water: for 11-day embryos they are 889 and 1714 times lower and for adult individuals 25 and 27 times lower, respectively. Why oxygen D(i) values in RGM and WPM fibers are so low and why they are gradually increasing during the course of hypertrophic ontogenetic growth are still unclear. Copyright 2000 Academic Press.

  3. From cross-linking to plasticization - characterization of Glycerin/HTPB blends

    Energy Technology Data Exchange (ETDEWEB)

    Kohga, Makoto [Department of Applied Chemistry, National Defense Academy, Hashirimizu, Yokosuka, Kanagawa (Japan)

    2009-10-15

    Usually, a plasticizer is a relatively low-viscosity liquid ingredient that is added to improve the mechanical properties and the processing properties of a propellant, such as a lower viscosity for casting or a longer pot life of the mixed, but uncured propellant. The effects of many plasticizers on the performance of the composite propellant have been studied in detail. Glycerin is a triol, a low viscosity material, and inexpensive. It seems that the processing properties and the mechanical properties of the HTPB binder would be improved by the addition of glycerin. The curing behavior, the mechanical properties, and the thermal decomposition of a glycerin/HTPB blend have been investigated in this study. The viscosity of the glycerin/HTPB blend and the increasing ratio of the viscosity versus the elapsed time are lower than those of only HTPB. The mechanical properties are improved by the addition of glycerin, even for a low quantity of glycerin. The thermal decomposition behavior of the blend occurs at lower temperatures when compared to that of HTPB. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  5. Early changes in extrafusal and intrafusal muscle fibers following heterochronous isotransplantation

    Czech Academy of Sciences Publication Activity Database

    Jirmanová, Isa; Soukup, Tomáš

    2001-01-01

    Roč. 102, č. 5 (2001), s. 473-484 ISSN 0001-6322 R&D Projects: GA ČR GA304/00/1653 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscle transplantation * degeneration and regeneration of muscle fibers * extrafusal and intrafusal fibers Subject RIV: FH - Neurology Impact factor: 2.165, year: 2001

  6. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    Science.gov (United States)

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  8. Theory of the tensile actuation of fiber reinforced coiled muscles

    Science.gov (United States)

    Lamuta, C.; Messelot, S.; Tawfick, S.

    2018-05-01

    There is a strong need for compact artificial muscles capable of applying large contractile strokes and lift heavy weights. Coiled fibers recently emerged as attractive candidates for these purposes, owing to their simple construction and the possibility of their thermal, electrical and chemical actuation. An intuitive theoretical understanding of the mechanics of actuation of these muscles is essential for the enhancement of their performance and can pave the way for the development of new applications and technologies. In this paper, a complete theoretical model for the tensile actuation of fiber reinforced artificial muscles is presented and experimentally validated. The model demonstrates that all muscles made from the same material have a universal behavior, which can be described by a single master curve. It enables the systematic design and understanding of coiled muscles for specific performance owing to a comprehensive mathematical correlation among the geometry, materials properties, and actuation. Carbon fibers (CF)/polydimethylsiloxane coiled muscles are demonstrated as simple to fabricate yet powerful muscles owing to the availability of high strength CF. In addition to showing excellent agreement with the theoretical models, they can be actuated by joule heating or chemical swelling, lift up to 12 600 times their own weight, support up to 60 MPa of mechanical stress, provide tensile strokes higher than 25%, and a specific work up to 758 J kg‑1, the latter is more than 18 times higher than that of natural muscles.

  9. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  10. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  11. Histological evaluation of bovine tunica albuginea as biomaterial conserved in 98% glycerin and in 0.625% glutaraldehyde

    Directory of Open Access Journals (Sweden)

    Leticia Leal Oliveira

    2015-12-01

    Full Text Available ABSTRACT. Oliveira L.L., Barata J.S., Silva A.V.P., Caravalho E.C.Q., Nunes L.C. & Abílio E.J. [Histological evaluation of bovine tunica albuginea as biomaterial conserved in 98% glycerin and in 0.625% glutaraldehyde.] Avaliação histológica da túnica albugínea bovina como biomaterial conservada em glicerina a 98% e em glutaraldeído a 0,625%. Revista Brasileira de Medicina Veterinária, 37(4:309-315, 2015. Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo, Alto Universitário s/n, Guararema, Alegre, ES 29500-000, Brasil. E-mail: leticialealolive@hotmail.com Biomaterials have long been studied in reconstructive surgery, both natural and synthetic origin. It can be used as support to host tissue cells development and an efficient bed of stem cells for tissue engineering and regeneration of tissues and organs. The aim of this study was to evaluate the tunica albuginea as biomaterial preserved in glycerin 98% and glutaraldehyde 0.625% and analyze its integrity for use in grafting therapy by microscopic examinations. Tunica albuginea were obtained from healthy adults crossbred cattle from slaughterhouse, tunicas albugineas were preserved in 98% glycerin and 0.625% glutaraldehyde for a period of 30 days at least. Tunica albuginea was fixed in 10% formalin, histologically processed and stained by hematoxylin-eosin, Masson’s trichrome and red picrosisrius polarization. Macroscopically there was a difference in the texture and color of tunica albuginea and in glutaraldehyde group were more firm and thick. Microscopic evaluation revealed that both the glycerin and the glutaraldehyde can be used as conservation medium in function of preserving the basic architecture tissue of the tunica albuginea, however, the glycerin was more efficient preservation of cellular structures. Histochemical techniques have highlighted the collagen and elastic fibers present in tunicas albugineas and highlight the predominance of type I

  12. Age-related effect of cell death on fiber morphology and number in tongue muscle.

    Science.gov (United States)

    Kletzien, Heidi; Hare, Allison J; Leverson, Glen; Connor, Nadine P

    2018-01-01

    Multiple pathways may exist for age-related tongue muscle degeneration. Cell death is one mechanism contributing to muscle atrophy and decreased function. We hypothesized with aging, apoptosis, and apoptotic regulators would be increased, and muscle fiber size and number would be reduced in extrinsic tongue muscles. Cell death indices, expression of caspase-3 and Bcl-2, and measures of muscle morphology and number were determined in extrinsic tongue muscles of young and old rats. Significant increases in cell death, caspase-3, and Bcl-2 were observed in all extrinsic tongue muscles along with reductions in muscle fiber number in old rats. We demonstrated that apoptosis indices increase with age in lingual muscles and that alterations in apoptotic regulators may be associated with age-related degeneration in muscle fiber size and number. These observed apoptotic processes may be detrimental to muscle function, and may contribute to degradation of cranial functions with age. Muscle Nerve 57: E29-E37, 2018. © 2017 Wiley Periodicals, Inc.

  13. Development of medial pterygoid muscle fibers in rabbits fed with a liquid diet.

    Science.gov (United States)

    Kuroki, Kozue; Morita, Takumi; Takasu, Hiroki; Saito, Keisuke; Fujiwara, Takuya; Hiraba, Katsunari; Goto, Shigemi

    2017-08-01

    This study aimed to investigate the influence of decreased functional load on the medial pterygoid muscle during mastication in rabbits fed with a liquid-diet. Medial pterygoid muscles from 54 rabbits (solid- and liquid-diet groups, n=48; unweaned group, n=6) were histochemically examined at 4, 9, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Significant increases in the diameters of all fiber types were seen up to 33 weeks of age in the solid-diet group; however, no significant increase was noted in fiber types I and IC, from 4 to 33 weeks of age, in the liquid-diet group. The proportion of slow fibers increased up to 12 weeks followed by an increase in the number of fast fibers in the solid-diet group, whereas in the liquid-diet group, the number of slow fiber declined after weaning. Liquid-diet consumption caused muscle fiber atrophy and an increase in the number of fast fibers during early developmental stages after weaning. Furthermore, the growth pattern of the medial pterygoid muscle in the liquid-diet group was different from that in the solid-diet group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape

    Science.gov (United States)

    Taylor, Andrea B.; Vinyard, Christopher J.

    2009-01-01

    Cebus apella is renowned for its dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between the tufted capuchin (C. apella; n = 12 ) and two “untufted” capuchins (C. capuchinus, n = 3; C. albifrons, n = 5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that C. apella exhibits architectural properties of their jaw muscles that facilitate relatively large forces, including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P0). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter, whole masseter, and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P0. As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in C. apella primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear

  15. Artificial muscles made of chiral two-way shape memory polymer fibers

    Science.gov (United States)

    Yang, Qianxi; Fan, Jizhou; Li, Guoqiang

    2016-10-01

    In this work, we demonstrate the unusual improvement of the tensile actuation of hierarchically chiral structured artificial muscle made of two-way shape memory polymer (2W-SMP) fiber. Experimental results show that the chemically cross-linked poly(ethylene-co-vinyl acetate) 2W-SMP fibers possess an average negative coefficient of thermal expansion (NCTE) that is at least one order higher than that of the polyethylene fiber used previously. As expected, the increase in axial thermal contraction of the precursor fiber leads to an increase in the recovered torque ( 4.4 Nmm ) of the chiral fiber and eventually in the tensile actuation of the twisted-then-coiled artificial muscle ( 67.81 ±1.82 % ). A mechanical model based on Castigliano's second theorem is proposed, and the calculated result is consistent with the experimental result (64.17% tensile stroke). The model proves the significance of the NCTE and the recovered torque on tensile actuation of the artificial muscle and can be used as a guidance for the future design.

  16. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  17. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...... other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  18. Fresh muscle fiber fragments on a scaffold in rats-a new concept in urogynecology?

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene F

    2011-01-01

    To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair.......To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair....

  19. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Brandauer, Josef; Schjerling, Peter

    2013-01-01

    muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps...... muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP-containing vesicles and protein by 62% (P

  20. Physico - chemical characterization of gamma irradiated PVP-honey-glycerine hydrogel

    International Nuclear Information System (INIS)

    Darmawan Darwis; Lely Hardiningsih; Farah Nurlidar

    2010-01-01

    Research to investigate physico-chemical characterizatics of hydrogel wound dressing containing 6% (b/v) of honey and various concentrations of glycerine from 0-5% (b/v) has been done. Nine series of hydrogel formulas with various composition of PVP hydrogel were irradiated using gamma rays at a dose of 25 kGy. The results showed that addition of honey 6% and glycerine up to 5% lead to the formation of hydrogel with following properties: sterile, transparence, browning color, improved flexibility, conformability to skin and resistance against mould. The PVP-honey-glycerine hydrogel also showed lower water favor evaporation at 37 o C and higher water absorption properties compared to basic formula (without additional of honey and glycerine). (author)

  1. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  2. Design and analysis of adaptive honeycomb structure with pneumatic muscle fibers

    Science.gov (United States)

    Yin, Weilong; Tian, Dongkui; Chen, Yijin

    2012-04-01

    The adaptive honeycomb structure actuated by pneumatic muscle fibers is proposed in this paper. The FE model of adaptive honeycomb structure is developed by use of ANSYS software. The elastics modulus of the developed pneumatic muscle fibers is experimentally determined and their output force is tested. The results show that the contraction ratio of the pneumatic muscle fibers with inner diameter of 2mm could reach up to 26.8% and the force could reach to a value of 27N when the applied pressure is 0.4MPa and the contraction ratio is zero. When the adaptive honeycomb has a certain load and an effective output displacement, the applied force must be greater than a certain value. The adaptive honeycomb must be consumed extra energy when the output displacement and force are produced.

  3. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    Science.gov (United States)

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  4. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  5. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    Science.gov (United States)

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  6. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    Science.gov (United States)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  7. Human muscle fiber type-specific insulin signaling: Impact of obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth; Pedersen, Andreas J T; Birk, Jesper Bratz

    2015-01-01

    Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber-type specific expression/regulation of insulin signaling elements and....../or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared to type II fibers have higher protein levels of the insulin receptor, GLUT4......, hexokinase II, glycogen synthase (GS), pyruvate dehydrogenase (PDH-E1α) and a lower protein content of Akt2, TBC1D4 and TBC1D1. In type I fibers compared to type II fibers, the phosphorylation-response to insulin was similar (TBC1D4, TBC1D1 and GS) or decreased (Akt and PDH-E1α). Phosphorylation...

  8. Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects

    DEFF Research Database (Denmark)

    Duez, Lene; Qerama, Erisela; Fuglsang-Frederiksen, Anders

    2010-01-01

    We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized...... and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010....... that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs...

  9. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  10. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    International Nuclear Information System (INIS)

    Gaitan, D.F.; Atchley, A.A.; Lewia, S.D.; Carlson, J.T.; Maruyama, X.K.; Moran, M.; Sweider, D.

    1996-01-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures. copyright 1996 The American Physical Society

  11. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  12. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    Science.gov (United States)

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.

  13. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  14. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects

    International Nuclear Information System (INIS)

    Tengan, Celia H.; Kiyomoto, Beatriz H.; Godinho, Rosely O.; Gamba, Juliana; Neves, Afonso C.; Schmidt, Beny; Oliveira, Acary S.B.; Gabbai, Alberto A.

    2007-01-01

    NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle

  15. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  16. The chemistry of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    This book dedicated to chemistry of polyatomic alcohols, in particular, to glycerin and its numerous derivatives. These compounds are very widespread in the natural objects and carry out several functions in alive organism. Big part of these matters are arrange in industry production of base organic synthesis

  17. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  18. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  19. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    Science.gov (United States)

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer-related muscle wasting was not associated with increases in plasma MG or CK in this study.

  20. Differences in muscle fiber size and associated energetic costs in phylogenetically paired tropical and temperate birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-01-01

    Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.

  1. Glycerin levels while maintaining the electrolyte balance in finishing pig diets

    Directory of Open Access Journals (Sweden)

    Rafaeli Gonçalves Leite

    Full Text Available ABSTRACT The objective of this study was to evaluate performance and carcass and meat characteristics of finishing pigs fed diets with different levels of glycerin, while maintaining the electrolyte balance. Forty barrows with an initial weight of 97.76±13.44 kg were distributed, in a randomized block design, into four treatments with five replicates. Treatments consisted of diets containing 0, 5, 10, and 15% glycerin. Inclusions of salt and sodium bicarbonate were adjusted to balance the sodium content and maintain the same electrolyte balance of the diets as a function of glycerin inclusions. In vivo backfat thickness, daily feed intake, daily weight gain, and feed conversion were measured. After the animals were slaughtered, pH and temperature were measured 45 min and 24 h postmortem, and backfat thickness, loin-eye area, drip loss, and colorimetry were determined. Glycerin inclusion levels did not influence the performance of barrows. Hot carcass weight, dressing percentage, and lightness had higher values when pigs were fed diets containing 2.32, 2.43, and 2.61% glycerin, respectively. The other carcass and meat characteristics were not influenced. Glycerin can be used in finishing pig diets without compromising results of performance or carcass and meat characteristics up to the inclusion level of 15%.

  2. Digestibility of diets with glycerin for Nellore heifers in feedlot

    Directory of Open Access Journals (Sweden)

    Marisa Xavier Manço

    2012-12-01

    new bromatologics analyses were made. The dry matter, organic matter, fat, starch, crude protein and ADF do not suffered any alteration. The digestibility’s coefficients of dry matter and organic matter are similar, so the embers do not changed the digestion of the three diets. The neutral detergent fiber (NDF had a reduction of its digestibility from 62,47 to 52,14% for (reduction of 16,5%. The hemicellulose (HEM suffered reduction of 12,56%, from 71,14 to 62,20%, both percentages when diet G0 and G20 are compared D’AUREA (2010 obtains similar data using NDFi. The growing utilization of sunflower meal that contains lignified fibers may have contributed to these results. The inclusion until 10% of “blond glycerin” in the dry matter of a diet does not affect the digestibility's coefficients at these conditions. With 20% of inclusion it had a reduction at it’s the digestibility of NDF and HEM. The glycerin can be utilized on diets as a part of the concentrate, been the energy part of diets to Nellore heifers.

  3. 40 CFR 417.50 - Applicability; description of the glycerine distillation subcategory.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... production of finished glycerine of various grades (e.g., USP) through concentration from crude glycerine by...

  4. Soil microbial activity and hairy beggarticks’ germination after application of crude glycerin

    Directory of Open Access Journals (Sweden)

    Matheus Ramos Caixeta

    Full Text Available ABSTRACT Biodiesel stands out as an alternative for petroleum-based products, but its production generates a large amount of by-products. This study was carried out at the Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Machado, with the objective of evaluating the impacts of the disposal of crude glycerin on agricultural soil and its microbial activity as well as in plant development. An experiment with a completely randomized design, five treatments, and five replicates was developed in the laboratory to analyze microbial activity. Soil samples of 100 g were incubated for 36 days with concentrations of crude glycerin, namely: 0; 48.7; 146.1; 292.2 L ha-1. Besides these four treatments, flasks without soil and glycerin have composed one more treatment. During this period, the CO2 volume released in each sample was evaluated 11 times. Another experiment was developed in the laboratory with hairy beggarticks’ achenes to evaluate crude glycerin effects on plant development. A randomized complete block design was used in a 4x2 factorial scheme, with five replicates, the same glycerin concentrations, and two glycerin sources (laboratory and biodiesel plant-unit. Crude glycerin stimulated soil microbial activity for doses of up to 143.83 L ha-1, being a positive indicative for future studies on its application to agricultural soils. Glycerin applications reduced the hairy beggarticks’ root protrusion, even at the lowest doses. Residues have Na+ contents that limit their application in agricultural soils.

  5. Morphometric analysis of somatotropic cells of the adenohypophysis and muscle fibers of the psoas muscle in the process of aging in humans.

    Science.gov (United States)

    Antić, Vladimir M; Stefanović, Natalija; Jovanović, Ivan; Antić, Milorad; Milić, Miroslav; Krstić, Miljan; Kundalić, Braca; Milošević, Verica

    2015-07-01

    The aim of this research was to quantify changes of the adenohypophyseal somatotropes and types 1 and 2 muscle fibers with aging, as well as to establish mutual interactions and correlations with age. Material was samples of hypophysis and psoas major muscle of 27 cadavers of both genders, aged from 30 to 90 years. Adenohypophyseal and psoas major tissue sections were immunohistochemically processed and stained by anti-human growth hormone and anti-fast myosin antibodies, respectively. Morphometric analysis was performed by ImageJ. Results of morphometric analysis showed a significant increase in the somatotrope area, and significant decrease in somatotrope volume density and nucleocytoplasmic ratio with age. Cross-sectional areas of types 1 and 2, and volume density of type 2 muscle fibers decreased significantly with age. One Way ANOVA showed that the latter cited changes in the somatotropes and types 1 and 2 muscle fibers mostly become significant after the age of 70. Significant positive correlation was observed between the area of the somatotropes and volume density of type 2 muscle fibers. A significant negative correlation was detected between the nucleocytoplasmic ratio of the somatotropes and cross-sectional areas of types 1 and 2 muscle fibers. So, it can be concluded that after the age of 70, there is significant loss of the anterior pituitary's somatotropes associated with hypertrophy and possible functional decline of the remained cells. Age-related changes in the somatotropes are correlated with the simultaneous atrophy of type 1, as well as with the atrophy and loss of type 2 muscle fibers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.......Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity...

  7. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer

    Directory of Open Access Journals (Sweden)

    Tai Phillip WL

    2011-07-01

    Full Text Available Abstract Background Hundreds of genes, including muscle creatine kinase (MCK, are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. Results Modulatory region 1 (MR1 is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE containing a paired E-box/myocyte enhancer factor 2 (MEF2 regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively, but is not required for expression in fast-twitch muscle fibers (types IIb and IId. Conclusions In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

  8. Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1999-01-01

    Caveolae are abundant in skeletal muscle and their coat contains a specific isoform of caveolin, caveolin-3. It has been suggested that during muscle development, caveolin-3 is associated with the T-tubules, but that in adult muscle it is found on the plasma membrane only. We have studied...... the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface...

  9. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  10. Superpixel-based segmentation of muscle fibers in multi-channel microscopy.

    Science.gov (United States)

    Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa

    2016-12-05

    Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.

  11. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats

    Science.gov (United States)

    Purrello, Francesco

    2018-01-01

    Background: The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Methods: Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. Results: The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers (p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. Conclusions: High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers. PMID:29462978

  12. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  13. Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

    Directory of Open Access Journals (Sweden)

    Zhi-Qin Yang

    2015-06-01

    Full Text Available The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range. The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TT-CT (p0.05. Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

  14. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  15. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  16. Chronic intrinsic transient tracheal occlusion elicits diaphragmatic muscle fiber remodeling in conscious rodents.

    Directory of Open Access Journals (Sweden)

    Barbara K Smith

    Full Text Available BACKGROUND: Although the prevalence of inspiratory muscle strength training has increased in clinical medicine, its effect on diaphragm fiber remodeling is not well-understood and no relevant animal respiratory muscle strength training-rehabilitation experimental models exist. We tested the postulate that intrinsic transient tracheal occlusion (ITTO conditioning in conscious animals would provide a novel experimental model of respiratory muscle strength training, and used significant increases in diaphragmatic fiber cross-sectional area (CSA as the primary outcome measure. We hypothesized that ITTO would increase costal diaphragm fiber CSA and further hypothesized a greater duration and magnitude of occlusions would amplify remodeling. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats underwent surgical placement of a tracheal cuff and were randomly assigned to receive daily either 10-minute sessions of ITTO, extended-duration, 20-minute ITTO (ITTO-20, partial obstruction with 50% of cuff inflation pressure (ITTO-PAR or observation (SHAM over two weeks. After the interventions, fiber morphology, myosin heavy chain composition and CSA were examined in the crural and ventral, medial, and dorsal costal regions. In the medial costal diaphragm, with ITTO, type IIx/b fibers were 26% larger in the medial costal diaphragm (p<0.01 and 24% larger in the crural diaphragm (p<0.05. No significant changes in fiber composition or morphology were detected. ITTO-20 sessions also yielded significant increases in medial costal fiber cross-sectional area, but the effects were not greater than those elicited by 10-minute sessions. On the other hand, ITTO-PAR resulted in partial airway obstruction and did not generate fiber hypertrophy. CONCLUSIONS/SIGNIFICANCE: The results suggest that the magnitude of the load was more influential in altering fiber cross-sectional area than extended-duration conditioning sessions. The results also indicated that ITTO was

  17. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, L.L.; Tufekovic, G.; Zebis, M.K.

    2005-01-01

    of resistance training combined with timed ingestion of isoenergetic protein vs carbohydrate supplementation on muscle fiber hypertrophy and mechanical muscle performance. Supplementation was administered before and immediately after each training bout and, in addition, in the morning on nontraining days...

  18. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.

    Science.gov (United States)

    Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A

    2017-06-01

    Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.

  19. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  20. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis.

    Science.gov (United States)

    Zhang, Jing; Liu, Yu Lan

    2017-01-01

    Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The simple ethers of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.

    1998-01-01

    From glycerin derivatives the considerable interest is present simple ethers because many of them are biological active and found wide practical using as an effect drugs, inters for thin organic synthesis, vehicle for injections, regulators of plants growth, reagents, components for perfumery-cosmetic goods and etc

  2. Glycerine Treated Nanofibrillated Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Esra Erbas Kiziltas

    2016-01-01

    Full Text Available Glycerine treated nanofibrillated cellulose (GNFC was prepared by mixing aqueous nanofibrillated cellulose (NFC suspensions with glycerine. Styrene maleic anhydride (SMA copolymer composites with different loadings of GNFC were prepared by melt compounding followed by injection molding. The incorporation of GNFC increased tensile and flexural modulus of elasticity of the composites. Thermogravimetric analysis showed that as GNFC loading increased, the thermal stability of the composites decreased marginally. The incorporation of GNFC into the SMA copolymer matrix resulted in higher elastic modulus (G′ and shear viscosities than the neat SMA copolymer, especially at low frequencies. The orientation of rigid GNFC particles in the composites induced a strong shear thinning behavior with an increase in GNFC loading. The decrease in the slope of elastic modulus with increasing GNFC loading suggested that the microstructural changes of the polymer matrix can be attributed to the incorporation of GNFC. Scanning electron microscopy (SEM images of fracture surfaces show areas of GNFC agglomerates in the SMA matrix.

  3. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    Science.gov (United States)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  4. A new vehicle for herbicide application using crude glycerin, a by ...

    African Journals Online (AJOL)

    This work aimed to develop oil-in-water (O/W) emulsions using crude glycerin treated with ... The crude glycerin was used to develop five stable emulsions with promising ..... Biodiesel and renewable diesel: A comparison. Progr. Energy Combust. Sci. ... Production, consumption, prices, characterization and new trends in.

  5. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Biscocho, N

    2006-01-01

    Skeletal muscle fibers contain hundreds to thousands of nuclei which lie immediately under the plasmalemma and are spaced out along the fiber, except for a small cluster of specialized nuclei at the neuromuscular junction. How the nuclei attain their positions along the fiber is not understood...

  6. Muscle Fiber Characteristics, Satellite Cells and Soccer Performance in Young Athletes

    Directory of Open Access Journals (Sweden)

    Thomas I. Metaxas, Athanasios Mandroukas, Efstratios Vamvakoudis, Kostas Kotoglou, Björn Ekblom, Konstantinos Mandroukas

    2014-09-01

    Full Text Available This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13, 11.2 ± 0.4yrs, Group B (n=10, 13.1 ± 0.5yrs and Group C (n = 9, 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01, while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05. Groups B and C had higher cross-sectional area (CSA values in all fiber types than in Group A (0.05 < p < 0.001. The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min-1 than Group A (0.05 < p < 0.001. It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age.

  7. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited

  8. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  9. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  10. The Mutagenic Potential Caused by the Emissions from Combustion of Crude Glycerin and Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Daniel Terruggi Mazak

    2015-04-01

    Full Text Available This study evaluated the use of crude glycerin as an alternative of energy generation to replace the traditional fuels. The Tradescantia stamen hair mutation assay (Trad-SH was applied to study the mutagenic effects caused by the emissions generated in the direct combustion of diesel oil and glycerin in a flame tube furnace. Tradescantia inflorescences were exposed to gaseous emissions from the combustion tests in a fumigation chamber for 30-40 min. The analysis of variance and the Tukey test were applied to compare the differences between six test groups (intoxicated with emissions from glycerin and diesel oil combustion and a control group. Only one glycerin group showed statistical differences (0.05, possibly due to the complexity of the burning process and impurities, besides the acrolein present in its emissions. The high heating value (HHV of crude glycerin (25.5 MJ/kg was lower than diesel oil (45.19 MJ/kg, but it was comparable to other fuels. Although the use of glycerin as a biofuel could be an important aspect to be considered, the results showed that the glycerin had a substantial mutagenic potential similar to that of diesel oil.

  11. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    Science.gov (United States)

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  12. Meat quality of suckling lambs supplemented with contents of crude glycerin in creep feeding

    Directory of Open Access Journals (Sweden)

    Ana Carolina Ribeiro Sanquetta de Pellegrin

    2014-10-01

    Full Text Available The objective of this research was to evaluate the effect of crude glycerin in the supplement provided in creep feeding on the physico-chemical and sensory characteristics of meat from suckling lambs kept in pasture ryegrass. Thirty two suckling lambs, sixteen male and sixteen female, were distributed into 4 diets with different concentrations of crude glycerin: 0, 10, 20 and 30% crude glycerin, in the replacement of corn, in the isoproteic supplement (18% CP provided daily in amounts equivalent to 2% of body weight. The experimental design was randomized blocks, with each variable data submitted to analysis of variance at 5% significance and the significant results subjected to regression analysis. There was no effect (P>0,05 of contents of crude glycerin on the chemical composition and cholesterol content of lamb meat. On the other hand, there was increased linearly (P>0,05 pH and cooking losses by the use of crude glycerin. No influence (P>0,05 of crude glycerin concentration on the texture profile analysis (TPA, sensorial analysis by triangular test and even when was evaluated attributes color, tenderness and juiciness of lamb meat. Up to 30% of crude glycerin in the supplement provided in creep feeding for suckling lambs grazing ryegrass do not compromise the physical-chemical and sensorial quality of the lamb meat.

  13. Redundancy or heterogeneity in the electric activity of the biceps brachii muscle? Added value of PCA-processed multi-channel EMG muscle activation estimates in a parallel-fibered muscle

    NARCIS (Netherlands)

    Staudenmann, D.; Stegeman, D.F.; van Dieen, J.H.

    2013-01-01

    Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial

  14. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  15. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  16. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.

    Science.gov (United States)

    Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J

    2013-07-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.

  17. A new vehicle for herbicide application using crude glycerin, a by ...

    African Journals Online (AJOL)

    The supply of glycerin derived from the pre-purification of biodiesel has increased considerably in Brazil, making it necessary to identify economic and environmentally friendly applications for this byproduct. This work aimed to develop oil-in-water (O/W) emulsions using crude glycerin treated with H3PO4 for use as a ...

  18. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse....

  19. Co-digestion of swine excreta associated with increasing levels of crude glycerin

    Directory of Open Access Journals (Sweden)

    Marco Antonio Previdelli Orrico Junior

    2016-03-01

    Full Text Available ABSTRACT The objective of this research was to evaluate the performance of anaerobic co-digestion of swine excreta associated with increasing doses of crude glycerin and different hydraulic retention times (HRT. A completely randomized design was adopted in a 3 × 4 factorial arrangement composed of three HRT (10, 17, and 24 days and four crude glycerin doses (0, 5, 10, and 15 g/100 g of total solids [TS], with four replications per treatment. The assessed parameters were: biogas production potential, reductions of volatile solids (VS, chemical oxygen demand (COD, and most probable number of total and thermotolerant coliforms. The biogas production per added VS presented quadratic effect at 17 and 24 days of HRT, with ideal doses of 5.5 and 5.9 g of crude glycerin/100 g TS, respectively. There was no difference among glycerin doses at 10-day HRT for VS reductions; however, at HRT of 17 and 24 days, there were differences, with greater reduction of 61.1% for 5 g of crude glycerin/100 g TS at 24-day HRT. The COD reduction values showed an effect among retention times, in which the 24-day HRT provided the best results. Reductions in coliforms were greater than 99%, with no difference among treatments. Addition of 5 to 6 g of crude glycerin/100 g TS with a 24-day HRT is more effective in biogas production and reduction of VS, COD, and coliforms from co-digestion of swine excreta.

  20. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    Science.gov (United States)

    Chen, Yijin; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2011-08-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure.

  1. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    International Nuclear Information System (INIS)

    Chen, Yijin; Yin, Weilong; Leng, Jinsong; Liu, Yanju

    2011-01-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure

  2. Glycerin enemas and suppositories in premature infants: a meta-analysis.

    Science.gov (United States)

    Livingston, Michael H; Shawyer, Anna C; Rosenbaum, Peter L; Williams, Connie; Jones, Sarah A; Walton, J Mark

    2015-06-01

    Premature infants are often given glycerin enemas or suppositories to facilitate meconium evacuation and transition to enteral feeding. The purpose of this study was to assess the available evidence for this treatment strategy. We conducted a systematic search of Medline, Embase, Central, and trial registries for randomized controlled trials of premature infants treated with glycerin enemas or suppositories. Data were extracted in duplicate and meta-analyzed using a random effects model. We identified 185 premature infants treated prophylactically with glycerin enemas in one trial (n = 81) and suppositories in two other trials (n = 104). All infants were less than 32 weeks gestation and had no congenital malformations. Treatment was associated with earlier initiation of stooling in one trial (2 vs 4 days, P = .02) and a trend towards earlier meconium evacuation in another (6.5 vs 9 days, P = .11). Meta-analysis demonstrated no effect on transition to enteral feeding (0.7 days faster, P = .43) or mortality (P = 0.50). There were no reports of rectal bleeding or perforation but there was a trend towards increased risk of necrotizing enterocolitis with glycerin enemas or suppositories (risk ratio = 2.72, P = .13). These three trials are underpowered and affected by one or more major methodological issues. As a result, the quality of evidence is low to very low. Three other trials are underway. The evidence for the use glycerin enemas or suppositories in premature infants in inconclusive. Meta-analyzed data suggest that treatment may be associated with increased risk of necrotizing enterocolitis. Careful monitoring of ongoing trials is required. Copyright © 2015 by the American Academy of Pediatrics.

  3. Growth performance, carcass characteristics and meat quality of finishing bulls fed crude glycerin-supplemented diets

    Directory of Open Access Journals (Sweden)

    Mônica Chaves Françozo

    2013-04-01

    Full Text Available This study was conducted to evaluate the performance, carcass characteristics and chemical composition of Longissimusmuscle (LM of the bulls. Twenty-four Nellore bulls were used in a complete randomised design. The bulls were randomly assigned to one of the three diets containing 0, 5 or 12% glycerin. Final BW and ADG were similar (P>0.05 between the bulls fed with 5 or 12% of glycerin but were higher (P0.05 by glycerin level. Hot carcass weight increased (P0.05 the conformation, colour, texture, marbling and pH. There was difference (P>0.05 for moisture, ashes and crude protein among glycerin levels. Bulls fed 12% glycerin present the highest (P<0.03 total lipids on LM. The percentage of saturated fatty acids (SFA, monounsaturated acids (MUFA, polyunsaturated acids (PUFA, n-6 and n-3 fatty acids and PUFA/SFA and n-6:n-3 ratios of the LM were similar among the diets. In conclusion, glycerin level did not affect the animal performance and carcass characteristics of Nellore bulls finished in feedlot.

  4. Semipurified glycerins on starting piglets feeding‏ (15-30 kg - doi: 10.4025/actascianimsci.v35i2.17264

    Directory of Open Access Journals (Sweden)

    Clodoaldo de Lima Costa Filho

    2013-03-01

    Full Text Available The nutritional value and the performance of piglets fed on diets with semipurified glycerin (SPGV and mixed (SPGM vegetable oil was determined and evaluated. Thirty-two crossbred piglets, allotted in a completely randomized block design, were used in the digestibility trial. Two types of glycerin (SPGV and SPGM and three levels of diet (4, 8 and 12% were studied. The experimental unit consisted of one piglet. Glycerins’ metabolizable energy (ME was estimated by regression of ME (kcal kg-1 intake associated with glycerin vs. glycerin intake (kg. ME as-feed-basis rates were 3,373 for SPGV and 2,932 for SPGM, or rather, the glycerins are highly available energy source for piglets. In the performance trial, 90 piglets were allotted in a completely randomized blocks design in a 2 x 4 + 1 factorial scheme, two glycerins, four levels (3, 6, 9 and 12%, five replicates (pens and two piglets per pen. A control diet with no glycerin (0% was additionally formulated. Since no effect of glycerin inclusion on pig performance occurred, it was feasible to use up to 12% of both types of glycerin on piglets feeding.    

  5. Crude glycerin in the supplement for beef cattle on pasture

    OpenAIRE

    San Vito, Elias [UNESP

    2015-01-01

    Four experiments were conducted during the dry and rainy season, in order to assess the increasing concentrations of crude glycerin (80% glycerol) in the supplement of young Nellore grazing tropical grass, on intake, digestibility, ruminal fermentation, rumen microorganism profile, performance, methane emission, and carcass and meat quality traits. The treatment consist of supplements with increasing concentrations (0, 70, 140, 210, and 280 g/kg DM basis of supplement) of crude glycerin, fed ...

  6. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  7. Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal.

    Directory of Open Access Journals (Sweden)

    Sarah R Pigozzo

    Full Text Available Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed "revertant fibers" positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of "revertant" myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle.

  8. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.

    Science.gov (United States)

    Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F

    2018-04-30

    To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.

  9. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  10. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo.

    Science.gov (United States)

    Lauritzen, Hans P M M; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T; Hirshman, Michael F; Galbo, Henrik; Goodyear, Laurie J

    2013-09-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP-containing vesicles and protein by 62% (P contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6-positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines.

  11. Distinct Fiber Type Signature in Mouse Muscles Expressing a Mutant Lamin A Responsible for Congenital Muscular Dystrophy in a Patient

    Directory of Open Access Journals (Sweden)

    Alice Barateau

    2017-04-01

    Full Text Available Specific mutations in LMNA, which encodes nuclear intermediate filament proteins lamins A/C, affect skeletal muscle tissues. Early-onset LMNA myopathies reveal different alterations of muscle fibers, including fiber type disproportion or prominent dystrophic and/or inflammatory changes. Recently, we identified the p.R388P LMNA mutation as responsible for congenital muscular dystrophy (L-CMD and lipodystrophy. Here, we asked whether viral-mediated expression of mutant lamin A in murine skeletal muscles would be a pertinent model to reveal specific muscle alterations. We found that the total amount and size of muscle fibers as well as the extent of either inflammation or muscle regeneration were similar to wildtype or mutant lamin A. In contrast, the amount of fast oxidative muscle fibers containing myosin heavy chain IIA was lower upon expression of mutant lamin A, in correlation with lower expression of genes encoding transcription factors MEF2C and MyoD. These data validate this in vivo model for highlighting distinct muscle phenotypes associated with different lamin contexts. Additionally, the data suggest that alteration of muscle fiber type identity may contribute to the mechanisms underlying physiopathology of L-CMD related to R388P mutant lamin A.

  12. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    Science.gov (United States)

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties. Copyright © 2015, American Association for the Advancement of Science.

  13. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    OpenAIRE

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myobla...

  14. Acute Elevated Glucose Promotes Abnormal Action Potential-Induced Ca2+ Transients in Cultured Skeletal Muscle Fibers

    Directory of Open Access Journals (Sweden)

    Erick O. Hernández-Ochoa

    2017-01-01

    Full Text Available A common comorbidity of diabetes is skeletal muscle dysfunction, which leads to compromised physical function. Previous studies of diabetes in skeletal muscle have shown alterations in excitation-contraction coupling (ECC—the sequential link between action potentials (AP, intracellular Ca2+ release, and the contractile machinery. Yet, little is known about the impact of acute elevated glucose on the temporal properties of AP-induced Ca2+ transients and ionic underlying mechanisms that lead to muscle dysfunction. Here, we used high-speed confocal Ca2+ imaging to investigate the temporal properties of AP-induced Ca2+ transients, an intermediate step of ECC, using an acute in cellulo model of uncontrolled hyperglycemia (25 mM, 48 h.. Control and elevated glucose-exposed muscle fibers cultured for five days displayed four distinct patterns of AP-induced Ca2+ transients (phasic, biphasic, phasic-delayed, and phasic-slow decay; most control muscle fibers show phasic AP-induced Ca2+ transients, while most fibers exposed to elevated D-glucose displayed biphasic Ca2+ transients upon single field stimulation. We hypothesize that these changes in the temporal profile of the AP-induced Ca2+ transients are due to changes in the intrinsic excitable properties of the muscle fibers. We propose that these changes accompany early stages of diabetic myopathy.

  15. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO(2max) ), cycling economy (CE) and long....../short-term endurance capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P...

  16. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO2max), cycling economy (CE) and long/short-term endurance...... capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P...

  17. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O. (IIT); (Vermont)

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  18. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  19. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  20. Selective muscle fiber loss and molecular compensation in mitochondrial myopathy due to TK2 deficiency.

    Science.gov (United States)

    Vilà, Maya R; Villarroya, Joan; García-Arumí, Elena; Castellote, Amparo; Meseguer, Anna; Hirano, Michio; Roig, Manuel

    2008-04-15

    A 12-year-old patient with mitochondrial DNA (mtDNA) depletion syndrome due to TK2 gene mutations has been evaluated serially over the last 10 years. We observed progressive muscle atrophy with selective loss of type 2 muscle fibers and, despite severe depletion of mtDNA, normal activities of respiratory chain (RC) complexes and levels of COX II mitochondrial protein in the remaining muscle fibers. These results indicate that compensatory mechanisms account for the slow progression of the disease. Identification of factors that ameliorate mtDNA depletion may reveal new therapeutic targets for these devastating disorders.

  1. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics.

    Science.gov (United States)

    Zoladz, Jerzy A; Gladden, L Bruce; Hogan, Michael C; Nieckarz, Zenon; Grassi, Bruno

    2008-08-01

    The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.

  2. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Nordby, Pernille

    2013-01-01

    Skeletal muscle energy metabolism has been a research focus of physiologists for more than a century. Yet, how the use of intramuscular carbohydrate and lipid energy stores are coordinated during different types of exercise remains a subject of debate. Controversy arises from contradicting data...... preservation of muscle energy stores, air drying cryosections or cycles of freezing-thawing need to be avoided. Furthermore, optimization of the imaging settings in order to specifically image intracellular lipid droplets stained with oil red O or Bodipy-493/503 is shown. When co-staining lipid droplets...... distinct myosin heavy chain I expressing fibers: I-1 fibers have a smaller crossectional area, a higher density of lipid droplets, and a tendency to lower glycogen content compared to I-2 fibers. Type I-2 fibers have similar lipid content than IIA. Exhaustive exercise lead to glycogen depletion in type IIA...

  3. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  4. Feeding behavior of Nellore cattle fed high concentrations of crude glycerin

    Directory of Open Access Journals (Sweden)

    Eric Haydt Castello Branco Van Cleef

    2015-07-01

    Full Text Available The objective of this study was to evaluate the inclusion of up to 30% crude glycerin in Nellore cattle diets and its effects on feeding behavior parameters. It were used 30 animals with 277.7kg BW and 18 months old, which were kept in feedlot in individual pens during 103 days (21 adaptation and 82 data collection. The animals were assigned (initial weight in blocks and submitted to the following treatments: G0; G7.5; G15; G22.5; and G30, corresponding to control group, 7.5, 15, 22.5, and 30% crude glycerin in the diet dry matter, respectively. The feeding behavior (feeding, idle, ruminating, number of chews, feeding efficiency and ruminating efficiency were evaluated for three days. Data were analyzed as a completely randomized block design, analyzing contrasts and observing the significance of linear, quadratic and control treatment × glycerin treatments effects. The inclusion up to 30% crude glycerin in diets of Nellore cattle altered the feeding efficiency, expressed in g NDF h-1, the ruminating efficiency relative to NDF, the time and number of chews per ruminal bolus, facilitating the feed ingestion and directly influencing the time spent on feeding.

  5. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  6. Abelson tyrosine-protein kinase 2 Regulates Myoblast Proliferation and Controls Muscle Fiber Length

    OpenAIRE

    Burden, Steven; Lee, Jennifer

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among muscles. Here, we show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm and other muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of available myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but expansion of the diaphragm ...

  7. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  8. Contractile Activity Is Necessary to Trigger Intermittent Hypobaric Hypoxia-Induced Fiber Size and Vascular Adaptations in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    David Rizo-Roca

    2018-05-01

    Full Text Available Altitude training has become increasingly popular in recent decades. Its central and peripheral effects are well-described; however, few studies have analyzed the effects of intermittent hypobaric hypoxia (IHH alone on skeletal muscle morphofunctionality. Here, we studied the effects of IHH on different myofiber morphofunctional parameters, investigating whether contractile activity is required to elicit hypoxia-induced adaptations in trained rats. Eighteen male Sprague-Dawley rats were trained 1 month and then divided into three groups: (1 rats in normobaria (trained normobaric inactive, TNI; (2 rats subjected daily to a 4-h exposure to hypobaric hypoxia equivalent to 4,000 m (trained hypobaric inactive, THI; and (3 rats subjected daily to a 4-h exposure to hypobaric hypoxia just before performing light exercise (trained hypobaric active, THA. After 2 weeks, the tibialis anterior muscle (TA was excised. Muscle cross-sections were stained for: (1 succinate dehydrogenase to identify oxidative metabolism; (2 myosin-ATPase to identify slow- and fast-twitch fibers; and (3 endothelial-ATPase to stain capillaries. Fibers were classified as slow oxidative (SO, fast oxidative glycolytic (FOG, fast intermediate glycolytic (FIG or fast glycolytic (FG and the following parameters were measured: fiber cross-sectional area (FCSA, number of capillaries per fiber (NCF, NCF per 1,000 μm2 of FCSA (CCA, fiber and capillary density (FD and CD, and the ratio between CD and FD (C/F. THI rats did not exhibit significant changes in most of the parameters, while THA animals showed reduced fiber size. Compared to TNI rats, FOG fibers from the lateral/medial fields, as well as FIG and FG fibers from the lateral region, had smaller FCSA in THA rats. Moreover, THA rats had increased NCF in FG fibers from all fields, in medial and posterior FIG fibers and in posterior FOG fibers. All fiber types from the three analyzed regions (except the posterior FG fibers displayed a

  9. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  10. Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization

    Directory of Open Access Journals (Sweden)

    L. V. Brandão

    2013-12-01

    Full Text Available The production and rheological properties of xanthan gum from crude glycerin fermentation, a primary by-product of the biodiesel industry with environmental and health risks, were evaluated. Batch fermentations (28 °C/250 rpm /120 h were carried out using crude glycerin, 0.01% urea and 0.1% KH2PO4, (% w/v, and compared to a sucrose control under the same operational conditions, using Xanthomonas campestris strain 2103 isolate from Brazil. Its maximal production by crude glycerin fermentation was 7.23±0.1 g·L-1 at 120 h, with an apparent viscosity of 642.57 mPa·s, (2 % w/v, 25 °C, 25 s-1, 70% and 30% higher than from sucrose fermentation, respectively. Its molecular weight varied from 28.2 to 36.2×10(6 Da. The Ostwald-de-Waele model parameters (K and n indicated a pseudoplastic behavior at all concentrations (0.5 to 2.0 %, w/v and temperatures (25-85 °C, while its consistency index indicated promising rheological properties for drilling fluid applications. Therefore, crude glycerin has potential as a cost-effective and alternative substrate for non-food grade xanthan production.

  11. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    Science.gov (United States)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  12. Fat, meat quality and sensory attributes of Large White × Landrace barrows fed with crude glycerine

    Directory of Open Access Journals (Sweden)

    M. Belen Linares

    2014-07-01

    Full Text Available The use of alternative raw materials like crude glycerine in animal feed to reduce final costs could be of interest as the sector seeks to increase its competitiveness. The aims of the present work were to evaluate the effect of crude glycerine on back-fat thickness and the proximate composition of pork and to examine the effect on pork quality of using growing-finishing feeds with different percentages of crude glycerine added. For this purpose 60 crossbreed (Large White × Landrace barrows were subdivided into three groups according to the crude glycerine concentration administered in feed: C, control diet, no crude glycerine; and G2.5 and G5 with 2.5% and 5% added crude glycerine, respectively. This study evaluated proximate composition, pH, cooking losses, texture, colour coordinates, fatty acid profile, and sensorial analysis. No differences were found in any of the three groups studied (C, G2.5, G5 for measurements performed both before (with ultrasound equipment and after slaughter (millimetre ruler. The proximate composition and the physical-chemical parameters of longissimus dorsi were similar between groups. There were no differences detected (p>0.05 between the three groups as regards the CIELab coordinates, textural profile and sensory attributes. Therefore, 5% crude glycerine to replace corn could be used as an ingredient in pig feed without appreciably affecting the back-fat and meat quality characteristics.

  13. Glycerine associated molecules with herbicide for controlling ...

    African Journals Online (AJOL)

    ciganinha”, belongs to the family Bignoniaceae. The only way to control this plant species in crop fields is by the application of herbicides on the stump or directly on the stem. The present study aimed to analyze the effect of glycerine in controlling A.

  14. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  15. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    Science.gov (United States)

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Use it or lose it: tonic activity of slow motoneurons promotes their survival and preferentially increases slow fiber-type groupings in muscles of old lifelong recreational sportsmen

    Directory of Open Access Journals (Sweden)

    Simone Mosole

    2016-11-01

    Full Text Available Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i denervation contributes to muscle atrophy, ii impaired mobility accelerates the process, and iii lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers; 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers; 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always

  17. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  18. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-09-15

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  19. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    Science.gov (United States)

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  20. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  1. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  2. Performance and carcass characteristics of lambs fed on diets supplemented with glycerin from biodiesel production

    Directory of Open Access Journals (Sweden)

    Marco Antonio Bensimon Gomes

    2011-10-01

    Full Text Available This study was carried out to evaluate the influence of diets supplemented with glycerin as an alternative ingredient to corn on the performance and carcass characteristics of Santa Inês confined lambs. The study involved 27 lambs aged 90 days, having an average initial weight of 26.33 ± 0.15 kg. Lambs were randomly distributed into a control group and groups with diets containing 15 and 30% glycerin in the total feed. Diet was formulated with 40% roughage and 60% concentrate. The experimental design was completely randomized, and the production performance and carcass characteristics were analyzed by analysis of variance, and the subjective carcass characteristics, by general linear models. The daily average gain was 0.21, 0.24 and 0.23 kg/day; feeding conversion was 6.39, 5.73 and 5.92 kg of diet/kg BW for control animals, and those fed with 15 or 30% glycerin, respectively, without treatment differences. Lambs were slaughtered, weighing 34 to 36 kg, and average weight of the cold carcass and commercial carcass yield were evaluated. The results were, respectively, 15.97 kg and 49.18%, for control, 15.96 kg and 48.31% for animals fed with 15% glycerin, and 15.79 kg and 47.87% for those treated with 30% glycerin, with no treatment effects. Meat tenderness and cooking loss averages were not affected by diets, with 5.07 kg and 40.45%, 5.10 kg and 40.81%, and 5.27 kg and 39.04%, respectively, for control, and those fed with 15 or 30% glycerin. Therefore, it is possible to conclude that up to 30% of medium purity glycerin in the dry matter of the diet can be used to replace corn, without any negative effect on lamb performance or carcass characteristics.

  3. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... with morphometry, GLUT4 density was found to be significantly higher in slow compared with fast fibers in biopsy specimens from lean and obese subjects. In contrast, in type 2 diabetic subjects, GLUT4 density was significantly lower in slow compared with fast fibers. GLUT4 density in slow fibers from diabetic...... was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  4. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly.

    Science.gov (United States)

    Dirks, Marlou L; Tieland, Michael; Verdijk, Lex B; Losen, Mario; Nilwik, Rachel; Mensink, Marco; de Groot, Lisette C P G M; van Loon, Luc J C

    2017-07-01

    Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content. A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel. Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo. Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics. In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P  .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy. Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  5. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  6. Development, economic viability and attributes of lamb carcass from confined animals fed on different amounts of crude glycerin

    Directory of Open Access Journals (Sweden)

    Fabiola Cristine de Almeida Rego

    2015-10-01

    Full Text Available The current study aims to assess the effect from crude glycerin inclusion (0, 7, 14, and 21% dry matter in the diet of slaughtered lamb on their development, nutrient consumption, biometrical measures, diet economic viability and carcass features. Thirty two (32 non-castrated male Texel lambs were used in the study, they presented mean initial weight 15.9 ± 4.1 kilos and were distributed in casual outlining. They were fed with four treatments, with 8 repetitions. Animals were slaughtered when they reached approximately 35 kilos. The mean total weight gain was 20.72 kilos and mean daily weight gain was 260 grams. No changes resulted from glycerin use. The carcass performance was similar among treatments (P>0.05 and the cold carcass performance (CCP was 44.68%. There were no effects (P>0.05 on the loin eye area (LEA and on fat thickness (FT; they showed averages of 13.66 cm2 and 0.84 mm, respectively. Nutrition cost per animal during the whole confinement period varied between R$82.60 (eighty-two Reais and forty-eight cents to R$92.48. The smallest nutrition amount consisted of 21% crude glycerin. The gross profit ranged from R$30.75 to R$ 34.01 per animal, for feed without glycerin and 21% glycerin, respectively. Animal development was not impacted by glycerin introduction, even with decrease on dry and organic mass consumption. The result showed that crude glycerin inclusion might be used in lambs’ diet. Whenever there are big amounts of feed involved in the process, the 21% crude glycerin addition may be an interesting cost reduction. Seventy eight percent (78% glycerol crude glycerin to replace corn-based feed in confined lambs’ diet appeared to be nutritionally and economically viable. 

  7. Glycerine derived from biodiesel production as a feedstuff for broiler diets

    Directory of Open Access Journals (Sweden)

    CLS Silva

    2012-09-01

    Full Text Available The performance, carcass traits, and litter humidity of broilers fed increasing levels of glycerine derived from biodiesel production were evaluated. In this experiment, 1,575 broilers were distributed according to a completely randomized experimental design into five treatments with seven replicates of 45 birds each. Treatments consisted of a control diet and four diets containing 2.5, 5.0, 7.5, or 10% glycerine. The experimental diets contained equal nutritional levels and were based on corn, soybean meal and soybean oil. The glycerine included in the diets contained 83.4% glycerol, 1.18% sodium, and 208 ppm methanol, and a calculated energy value of 3,422 kcal AMEn/kg. Performance parameters (weight gain, feed intake, feed conversion ratio, live weight, and livability were monitored when broilers were 7, 21, and 42 days of age. On day 43, litter humidity was determined in each pen, and 14 birds/treatment were sacrificed for the evaluation of carcass traits. During the period of 1 to 7 days, there was a positive linear effect of the treatments on weight gain, feed intake, and live weight gain. Livability linearly decreased during the period of 1 to 21 days. During the entire experimental period, no significant effects were observed on performance parameters or carcass traits, but there was a linear increase in litter humidity. Therefore, the inclusion of up to 5% glycerine in the diet did not affect broiler performance during the total rearing period.

  8. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  9. Synthesis and characterization of dense membranes of silk fibroin with glycerin

    International Nuclear Information System (INIS)

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M.

    2009-01-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  10. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  11. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  12. Fiber Specific Changes in Sphingolipid Metabolism in Skeletal Muscles of Hyperthyroid Rats

    OpenAIRE

    Chabowski, A.; ?endzian-Piotrowska, M.; Mik?osz, A.; ?ukaszuk, B.; Kurek, K.; G?rski, J.

    2013-01-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, ...

  13. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia.

    Science.gov (United States)

    Klaver-Król, Ewa G; Rasker, Johannes J; Henriquez, Nizare R; Verheijen, Wilma G; Zwarts, Machiel J

    2012-11-01

    Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. sEMG was performed on the biceps brachii muscle of 13 women with FM and 14 matched healthy controls during prolonged dynamic exercises, unloaded, and loaded up to 20% of maximum voluntary contraction. The sEMG parameters were: muscle fiber conduction velocity (CV); skewness of motor unit potential (peak) velocities; peak frequency (PF) (number of peaks per second); and average rectified voltage (ARV). There was significantly higher CV in the FM group. Although the FM group performed the tests equally well, their electromyographic fatigue was significantly less expressed compared with controls (in CV, PF, and ARV). In the patients with FM, we clearly showed functional abnormalities of the muscle membrane, which led to high conduction velocity and resistance to fatigue in electromyography. Copyright © 2012 Wiley Periodicals, Inc.

  14. Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers

    International Nuclear Information System (INIS)

    Pan, B.S.; Solaro, R.J.

    1987-01-01

    In order to obtain information with regard to behavior of the Ca 2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca 2+ -binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca 2+ -binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca 2+ -Mg 2+ and Ca 2+ -specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45 Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca 2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca 2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca 2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45 Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca 2+ -binding sites whose off-rate constant for Ca 2+ is significantly lower than the Ca 2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC

  15. One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers

    International Nuclear Information System (INIS)

    Si Tie-Yan

    2015-01-01

    A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. (special topic)

  16. The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Ploug, Thorkil

    1999-01-01

    Skeletal muscle has a nonconventional Golgi complex (GC), the organization of which has been a subject of controversy in the past. We have now examined the distribution of the GC by immunofluorescence and immunogold electron microscopy in whole fibers from different rat muscles, both innervated a...

  17. Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study.

    NARCIS (Netherlands)

    Blijham, P.J.; Hengstman, G.J.D.; Laak, H.J. ter; Engelen, B.G.M. van; Zwarts, M.J.

    2004-01-01

    Combinations of different techniques can increase the diagnostic yield from neurophysiological examination of muscle. In 25 patients with suspected inflammatory myopathy, we prospectively performed needle electromyography (EMG) and measured muscle-fiber conduction velocity (MFCV) in a single muscle,

  18. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type...

  19. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  20. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    2010-12-01

    Full Text Available PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT has only a partial effect in skeletal muscle. In our Pompe mouse model (KO, the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO. The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  1. Qualitative characteristics of hamburgers and koftas produced from meat of lambs fed glycerine

    Directory of Open Access Journals (Sweden)

    T. H. Borghi

    2016-12-01

    Full Text Available The objective of this study was to evaluate the qualitative (pH, color, water activity, water retention capacity, cooking loss, and shear force and sensory characteristics of processed meat produced from less noble cuts of the carcasses of lambs fed diets containing sugarcane as roughage and concentrates with and without 10 and 20% glycerine. Neck and rib meat of 30 lambs slaughtered at a body weight of 32.0 ± 0.2 kg was used for the elaboration of hamburgers and koftas. Except for color, the inclusion of glycerine in the lamb diet did not influence (P>0.05 the qualitative traits evaluated. The inclusion of glycerine reduced the redness (from 10.07 to 8.89, P=0.044 and yellowness (from 5.97 to 5.07, P=0.039 of hamburgers. The same effect was observed for the redness (from 10.83 to 9.61, P=0.031 and yellowness (from 5.86 to 5.12, P=0.047 of koftas. The sensory characteristics evaluated were not influenced (P>0.05 and the grades of overall acceptance ranged from 7.4 to 7.9. The inclusion of glycerine in the diet of lambs altered the color of processed meat products, but provided satisfactory sensory characteristics.

  2. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  3. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  4. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2+/− mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation. PMID:29231808

  5. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length.

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-12-12

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2 +/- mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation.

  6. Crude glycerine inclusion in Limousin bull diets: animal performance, carcass characteristics and meat quality.

    Science.gov (United States)

    Egea, M; Linares, M B; Garrido, M D; Villodre, C; Madrid, J; Orengo, J; Martínez, S; Hernández, F

    2014-12-01

    Three hundred and six Limousin young bulls (7±1months of age, initial body weight 273±43kg) were used to evaluate the effect of crude glycerine supplementation on animal performance, carcass characteristics and meat quality. Animals were assigned to three different diets: Control (0% of crude glycerine), G2 and G4 (2 and 4% of crude glycerine, respectively). The diets were administrated ad libitum for 240days (final body weight 644±24kg). Average daily weight gain, average daily feed intake, the gain:feed ratio, ultrasound measures in vivo, carcass characteristics, pH, water holding capacity, drip losses, and cooking losses were not affected (P>0.05) by diets. Diet decreased C16:0 (P<0.01) and C16:1 (P<0.05) contents in meat. The G4 meat showed lower C12:0, C14:0, C17:0, C18:0, C18:1, C18:2, C18:3, c9,t11-c18:2, C20:0 and C20:4 levels (P<0.05) than control. Glycerine increased desirable fatty acid percentages (P<0.05) in intramuscular fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  8. The influence of controlled nutrition intensity on the muscle fiber characteristics in fattening pigs

    Directory of Open Access Journals (Sweden)

    Luboš Brzobohatý

    2015-03-01

    Full Text Available The aim of this study was to evaluate the influence of controlled nutrition on the selected muscle fibres indicators and carcass value in pork. The test included 72 hybrid pigs of the D x (LWD x L genotype of a balanced sex (barrows/gilts. Animals were divided into two groups; the 1st (control group was fed ad libitum, while the nutrition of the 2nd (experimental group was restricted upon reaching 80 kg of live weight. The nutritional restriction was achieved by feeding the animals with maximum dose of CFM up to 2.8 kg*day-1 (corresponding to 36.4 MJ ME*day-1, 46.76 g NS*day-1 and 23.52 g LYS*day-1. From the obtained results it is evident that the daily feed intake restriction corresponds with greater number of the MLLT muscle fibers as well as with a higher IIB type muscle fibers share, higher lean meat share and a higher shoulder proportion in the carcass.

  9. Performance, rumen development, and carcass traits of male calves fed starter concentrate with crude glycerin

    Directory of Open Access Journals (Sweden)

    Raylon Pereira Maciel

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to assess the effects of including crude glycerin in the diet on intake, performance, rumen development, and carcass traits of dairy crossbred veal calves fed starter concentrate containing 0, 80, 160, and 240 g kg−1 crude glycerin. Twenty-eight calves with an average weight of 38.03±6.7 kg and five days of age were distributed in a completely randomized design with four treatments with seven replications. Calves were individually housed in covered stalls equipped with feeders and drinkers for 56 days. The calf response to inclusion of crude glycerin in the concentrate changed over the weeks and the inclusion level of 240 g kg−1 resulted in greater dry matter intake and average daily gain. There was no effect on the final weight and total weight gain of the animals, with mean values of 73.60 and 35.16 kg, respectively. The weight of the rumen-reticulum adjusted for body weight, empty body weight, and total stomach weight increased linearly with the inclusion of crude glycerin. Blood total protein, globulin, urea, cholesterol, gamma glutamyl transferase, aspartate aminotransferase, and alkaline phosphatase concentrations did not differ among treatments. Carcass traits and meat color were not affected. Crude glycerin can be added to dairy calf starter concentrate up to 240 g kg−1 dry matter because it benefits concentrate intake, performance, and rumen development without affecting animal health.

  10. Performance and carcass characteristics of dairy steers fed diets containing crude glycerin

    Directory of Open Access Journals (Sweden)

    Raylon Pereira Maciel

    Full Text Available ABSTRACT The objective of the study was to assess the effects of including 0, 79.8, 159.8, and 240.0 g kg-1 crude glycerin in the total diet dry matter on the 84 days feedlot performance, nutrient digestibility, blood parameters, and carcass characteristics of crossbred dairy steers. Experimental diets were composed of 98.5 g kg-1 of sorghum silage and 901.5 g kg-1 of concentrate. Twenty-four crossbred dairy steers (337.3±39.8 kg body weight and 15 months of age were distributed in a completely randomized design with four treatments and six replicates. The intake and digestibility of the dry matter and nutrients were not altered by including crude glycerin in the diet. Crude glycerol levels did not affect the final weight (430.2 kg, daily weight gain (1.38 kg day-1, total weight gain (97.2 kg, hot carcass weight (218.9 kg, cold carcass weight (215.2 kg, hot carcass yield (0.50 kg 100 kg-1 BW, longissimus dorsi area (62.86 cm², subcutaneous fat thickness (4.05 mm, and carcass physical composition. Concentrations of serum glucose, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and creatinine were not altered by including crude glycerin in the diet. Crude glycerin can be added to high concentrate diet up to 240 g kg-1 without changing the animal performance, apparent digestibility of nutrients, the main carcass characteristics, and blood parameters of finishing crossbred dairy steers.

  11. A Randomized Controlled Trial of Glycerin Suppositories During Phototherapy in Premature Neonates.

    Science.gov (United States)

    Butler-O'Hara, Meggan; Reininger, Ann; Wang, Hongyue; Amin, Sanjiv B; Rodgers, Nathan J; D'Angio, Carl T

    To determine if glycerin suppositories were effective in reducing total duration of phototherapy in premature neonates. We hypothesized that glycerin suppositories would have no effect on phototherapy duration or total serum bilirubin levels. Prospective randomized controlled double-blinded trial. Level IV NICU. Neonates born between 30 weeks, 0 days and 34 weeks, 6 days gestational age who developed physiologic hyperbilirubinemia needing phototherapy. Neonates were randomized to the no-suppository group or to the suppository group. Neonates were randomized to receive glycerin suppositories every 8 hours while under phototherapy or to a sham group. The primary outcome was total hours of phototherapy. Secondary outcomes included peak total serum bilirubin levels, time from start to discontinuation of phototherapy, rate of decline in bilirubin levels, repeat episodes of phototherapy, and number of stools while the neonates received phototherapy. A total of 39 neonates were assigned to the no-suppository group and 40 to the suppository group. Withholding suppositories was not inferior to providing suppositories. The total hours of phototherapy were not longer (i.e., noninferior) among neonates not provided suppositories (61 ± 53 hours) than among those given suppositories (72 ± 49 hours). There were no differences in peak bilirubin levels, rate of bilirubin decline, or repeat episodes of phototherapy. Routine use of glycerin suppositories among preterm neonates who receive phototherapy does not affect bilirubin levels or phototherapy duration. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  12. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit......Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...

  13. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Madsbad, Sten

    2007-01-01

    CONTEXT: Low birth weight (LBW), a surrogate marker of an adverse fetal milieu, is linked to muscle insulin resistance, impaired insulin-stimulated glycolysis, and future risk of type 2 diabetes. Skeletal muscle mass, fiber composition, and capillary density are important determinants of muscle...

  14. Microbiological viability of bovine amniotic membrane stored in glycerin 99% at room temperature for 48 months

    Directory of Open Access Journals (Sweden)

    Kelly Cristine de Sousa Pontes

    Full Text Available ABSTRACT The medium for storing biological tissues is of great importance for their optimal use in surgery. Glycerin has been proven efficient for storing diverse tissues for prolonged time, but the preservation of the bovine amniotic membrane in glycerin 99% at room temperature has never been evaluated to be used safely in surgical procedures. This study evaluated the preservation of 80 bovine amniotic membrane samples stored in glycerin 99% at room temperature. The samples were randomly divided evenly into four groups. Samples were microbiologically tested after 1, 6, 12 and 48 months of storage. The presence of bacteria and fungi in the samples was evaluated by inoculation on blood agar and incubation at 37 ºC for 48 hours and on Sabouraud agar at 25 ºC for 5 to 10 days. No fungal or bacterial growth was detected in any of the samples. It was concluded that glycerin is an efficient medium, regarding microbiology, for preserving pre-prepared bovine amniotic membrane, keeping the tissue free of microorganisms that grow in the media up to 48 months at room temperature.

  15. Coordinated increase in skeletal muscle fiber area and expression of IGF-I with resistance exercise in elderly post-operative patients

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Clemmensen, Christoffer; Andersen, Jesper L

    2010-01-01

    Hypertrophy of developing skeletal muscle involves stimulation by insulin-like growth factor-I (IGF-I), however, the role of IGF-I in adult muscle is less clarified. In the present study, the mRNA splice variants of IGF-I (IGF-IEa and MGF) and the changes in muscle fiber cross sectional area after...... and in addition induces marked increases in the expression of IGF-I splice variants, supporting the idea that IGF-I is involved in regulating muscle hypertrophy.......-operated-side served as a within subject control. Muscle biopsies were obtained from the vastus lateralis of both limbs at +2d post-operative (baseline), at 5weeks and 12weeks post-surgery to analyze for changes in type 1 and type 2 muscle fiber area. Changes in expression levels of IGF-I mRNA isoforms were determined...

  16. Crude glycerin decreases nonesterified fatty acid concentration in ewes during late gestation and early lactation.

    Science.gov (United States)

    Polizel, D M; Susin, I; Gentil, R S; Ferreira, E M; de Souza, R A; Freire, A P A; Pires, A V; Ferraz, M V C; Rodrigues, P H M; Eastridge, M L

    2017-02-01

    Crude glycerin is a gluconeogenic substrate in ruminants and may help to decrease the occurrence of pregnancy toxemia. The objective in this trial was to determine the effects of feeding a diet containing crude glycerin on DMI, milk yield, milk composition, and blood metabolites in periparturient ewes and lamb performance. One hundred eighteen 90 (±1.1)-d pregnant Santa Inês ewes were used. After lambing, 32 ewes (62.8 ± 1.3 kg BW) were allotted in a randomized complete block design defined by prelambing diet, BW, BCS, lambing date, type of birth (single or twin), and sex of offspring. Diets were isonitrogenous (13.0 ± 0.3% CP, DM basis), composed of concentrate and raw sugarcane bagasse (70:30 ratio, DM basis), and fed ad libitum daily. Crude glycerin (83.6% glycerol) levels were 0 or 10% (DM basis), corresponding to the experimental diets G0 and G10, respectively. From 8 until 56 d of lactation, DMI was determined. In the same period, once a week at 1000 h, the ewes were separated from the lambs and mechanically milked after intravenous administration of 10 IU of synthetic oxytocin. Three hours after the first milking, ewes were milked again and milk yield and composition were determined. Glucose, NEFA, and β-hydroxybutyrate (BHBA) were determined at -14, -7, 0, 7, 14, 28, and 56 d relative to lambing and insulin was determined at -14, -7, 0, and 7 d. Crude glycerin did not affect DMI (2.2 kg/d for G0 vs. 2.2 kg/d for G10; = 0.93) or milk production (171 g/3 h for G0 vs. 164 g/3 h for G10; = 0.66). However, there was a decrease ( = 0.01) in milk fat percentage (8.1% for G0 vs. 7.0% for G10) for ewes fed glycerin. Ewes fed the G10 diet had decreased ( ewes fed the G10 diet (0.46 mmol/L for G0 vs. 0.61 mmol/L for G10). There was no effect of diets fed to ewes on lamb growth from birth to weaning. Crude glycerin improved energy balance of periparturient ewes, suggesting a reduced risk of developing clinical metabolic-related disorders. Crude glycerin can be

  17. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    Science.gov (United States)

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  19. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.

    Science.gov (United States)

    van der Zwaard, Stephan; van der Laarse, Willem J; Weide, Guido; Bloemers, Frank W; Hofmijster, Mathijs J; Levels, Koen; Noordhof, Dionne A; de Koning, Jos J; de Ruiter, Cornelis J; Jaspers, Richard T

    2018-04-01

    Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass 2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume ( R 2 = 0.65; P body.

  20. Ingestive behavior of lactating cows fed sugarcane and crude glycerin levels on the diet

    Directory of Open Access Journals (Sweden)

    Lucas Teixeira Costa

    2014-09-01

    Full Text Available The crude glycerin used as feed for ruminants has drawn attention of the researchers for dealing with environmental aspects. Considering current legislation did not establish how to treat this product, this is a low cost alternative of great amount of a residue of the biodiesel production. In this study we evaluated different crude glycerin levels on ingestive behavior which were studied as the diet of lactating cows fed with sugarcane. The glycerin levels were 0, 4, 8 and 12% of the dry matter; the diet was balanced to contain enough nutrients for the maintenance and milk production of 15 kg.dia-1. Sixteen (16 crossbred Holstein x Zebu cows were distributed into four 4x4 Latin Squares. The animals were submitted to observation of 24 hours every five minutes to evaluate ingestive behavior. The observation of the activities was recorded. The animal´s behavior was visually determined with five minutes of intervals to determine the times spent in idle, feeding, rumination, and were calculated patterns of feeding and rumination. The addition of glycerin to the diet did not affect the ingestive behavior parameter in lactating cows fed sugarcane, might be explained by the similarity in NDF content of diets, and up to 12% may be added of the diet’s dry matter.

  1. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  2. Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.

    Science.gov (United States)

    Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios

    2012-05-01

    A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.

  3. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  4. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers.

    Science.gov (United States)

    Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J

    2010-11-01

    The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role. Copyright © 2016 the American Physiological Society.

  6. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu

    2013-10-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  7. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Chen, Ye; Wu, Xiangfa; Piere, Robert

    2013-01-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  8. Force deficits and breakage rates after single lengthening contractions of single fast fibers from unconditioned and conditioned muscles of young and old rats.

    Science.gov (United States)

    Lynch, Gordon S; Faulkner, John A; Brooks, Susan V

    2008-07-01

    The deficit in force generation is a measure of the magnitude of damage to sarcomeres caused by lengthening contractions of either single fibers or whole muscles. In addition, permeabilized single fibers may suffer breakages. Our goal was to understand the interaction between breakages and force deficits in "young" and "old" permeabilized single fibers from control muscles of young and old rats and "conditioned" fibers from muscles that completed a 6-wk program of in vivo lengthening contractions. Following single lengthening contractions of old-control fibers compared with young-control fibers, the twofold greater force deficits at a 10% strain support the concept of an age-related increase in the susceptibility of fibers to mechanical damage. In addition, the much higher breakage rates for old fibers at all strains tested indicate an increase with aging in the number of fibers at risk of being severely injured during any given stretch. Following the 6-wk program of lengthening contractions, young-conditioned fibers and old-conditioned fibers were not different with respect to force deficit or the frequency of breakages. A potential mechanism for the increased resistance to stretch-induced damage of old-conditioned fibers is that, through intracellular damage and subsequent degeneration and regeneration, weaker sarcomeres were replaced by stronger sarcomeres. These data indicate that, despite the association of high fiber breakage rates and large force deficits with aging, the detrimental characteristics of old fibers were improved by a conditioning program that altered both sarcomeric characteristics as well as the overall structural integrity of the fibers.

  9. Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR.

    Science.gov (United States)

    Castrillón, L; Fernández-Nava, Y; Ormaechea, P; Marañón, E

    2013-01-01

    The aim of the present research work was to optimise biogas production from cattle manure by adding crude glycerin from the biodiesel industry. For this purpose, 6%v/v crude glycerin (the optimum amount according to previous research) was added to ground manure and the mixture was sonicated to enhance biodegradability prior to anaerobic co-digestion at 55 °C. Two different reactors were used: continuously stirred (CSTR) and induced bed (IBR). The methanol and pure glycerin contents of the crude glycerin used in this study were 5.6% and 49.4% (w/w), respectively. The best results when operating in CSTR were obtained for an organic loading rate (OLR) of 5.4 kg COD/m(3) day, obtaining 53.2m(3) biogas/t wet waste and 80.7% COD removal. When operating in IBR, the best results were obtained for an OLR of 6.44 kg COD/m(3)day, obtaining 89.6% COD removal and a biogas production of 56.5m(3)/t wet waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.

    Science.gov (United States)

    Nguyen, Thuy-Uyen; Bashur, Chris A; Kishore, Vipuil

    2016-03-17

    Application of tissue-engineered vascular grafts (TEVGs) for the replacement of small-diameter arteries is limited due to thrombosis and intimal hyperplasia. Previous studies have attempted to address the limitations of TEVGs by developing scaffolds that mimic the composition (collagen and elastin) of native arteries to better match the mechanical properties of the graft with the native tissue. However, most existing scaffolds do not recapitulate the aligned topography of the collagen fibers found in native vessels. In the current study, based on the principles of isoelectric focusing, two different types of elastin (soluble and insoluble) were incorporated into highly oriented electrochemically aligned collagen (ELAC) fibers and the effect of elastin incorporation on the mechanical properties of the ELAC fibers and smooth muscle cell (SMC) phenotype was investigated. The results indicate that elastin incorporation significantly decreased the modulus of ELAC fibers to converge upon that of native vessels. Further, a significant increase in yield strain and decrease in Young's modulus was observed on all fibers post SMC culture compared with before the culture. Real-time polymerase chain reaction results showed a significant increase in the expression of α-smooth muscle actin and calponin on ELAC fibers with insoluble elastin, suggesting that incorporation of insoluble elastin induces a contractile phenotype in SMCs after two weeks of culture on ELAC fibers. Immunofluorescence results showed that calponin expression increased with time on all fibers. In conclusion, insoluble elastin incorporated ELAC fibers have the potential to be used for the development of functional TEVGs for the repair and replacement of small-diameter arteries.

  11. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    Science.gov (United States)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  12. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    International Nuclear Information System (INIS)

    Sanchez, B; Li, J; Rutkove, S B; Bragos, R

    2014-01-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. (paper)

  13. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available A recent study demonstrated a positive effect of apple polyphenol (APP intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05. Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights did not differ between the control and 5% APP-fed animals (n = 9/group. Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.

  14. A double-blind, randomized study comparing pure chromated glycerin with chromated glycerin with 1% lidocaine and epinephrine for sclerotherapy of telangiectasias and reticular veins.

    Science.gov (United States)

    Kern, Philippe; Ramelet, Albert-Adrien; Wutschert, Robert; Mazzolai, Lucia

    2011-11-01

    Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment. To determine pain level and relative efficacy of pure or one-third lidocaine-epinephrine 1% mixed chromated glycerin in a prospective randomized double-blind trial. Patients presenting with telangiectasias and reticular leg veins on the lateral aspect of the thigh (C(1A) or (S) E(P) A(S) P(N1) ) were randomized to receive pure CG or CG mixed with one-third lidocaine-epinephrine 1% (CGX) treatment. Lower limb photographs were taken before and after treatment and analyzed by blinded expert reviewers for efficacy assessment (visual vein disappearance). Patients' pain and satisfaction were assessed using visual analogue scales. Data from 102 of 110 randomized patients could be evaluated. Patient pain scores were significantly higher when pure CG was used than with CGX (psclerotherapy pain without affecting efficacy when treating telangiectasias and reticular leg veins. © 2011 by the American Society for Dermatologic Surgery, Inc.

  15. Fiber type composition of unoperated rat soleus and extensor digitorum longus muscles after unilateral isotransplantation of a foreign muscle in long-term experiments

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Smerdu, V.; Zachařová, Gisela

    2009-01-01

    Roč. 58, č. 2 (2009), s. 253-262 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327; GA ČR(CZ) GA304/08/0256; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle transplantations * muscle fiber types * myosin heavy chains Subject RIV: ED - Physiology Impact factor: 1.430, year: 2009

  16. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    Science.gov (United States)

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  17. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  18. Evaluation of Castor Oil Cake Starch and Recovered Glycerol and Development of "Green" Composites Based on Those with Plant Fibers.

    Science.gov (United States)

    Guimarães, José Luis; Trindade Cursino, Ana Cristina; Ketzer Saul, Cyro; Sierrakowski, Maria Rita; Ramos, Luiz Pereira; Satyanarayana, Kestur Gundappa

    2016-01-27

    Continuous efforts are being made in some countries for the recovery of crude glycerin (RG/CG) and castor oil cake (COC), the two byproducts of biodiesel production. These are expected to help, not only in addressing environmental safety, but also in adding value to those byproducts, which otherwise may go to waste. Finding ways to utilize those byproducts underlines the main objective of this study. This paper presents the evaluation of (i) COC, glycerin and banana and sugarcane fibers for moisture content; (ii) COC for structural and thermal properties; and (iii) CG for its chemical characteristics. The possibility of using COC and CG with the selected fibers as reinforcement in the development of bio-composites is attempted through thermo-molding. Results revealed enhanced mechanical properties for these composites. The obtained results are discussed in terms of the observed morphology.

  19. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

    Science.gov (United States)

    Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene

    2018-05-11

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  1. Effect of electron beam irradiation on mechanical properties of gelatin/Brazil nut shell fiber composites

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida L. del; Colombo, Maria Aparecida; Rosa, Ricardo de

    2010-01-01

    The use of natural fiber as polymeric matrix reinforcement has attracted interest, as fibers are renewable, of low cost, biodegradable and possesses non-toxic properties. In the present paper, Brazil nuts (Bertholletia excelsa) shell fiber (10% w/w) were mixed with gelatin (25% w/w), glycerin as plasticizer and acrylamide as copolymer to investigate the resultant mechanical properties effects upon ionizing radiation. The samples were irradiated at 40 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The results showed that samples of gelatin with 10% of Brazil nuts shell fiber and irradiated at 40 kGy presented promising results for mechanical performance. (author)

  2. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    filtration, belt filtering and flotation , among others (98, 103). The remaining material can undergo anaerobic digestion to produce methane, burned to...132–135). In that same 1933 patent, acrolein was produced from glycerin using a copper phosphate catalyst (132). Many studies have been published...carried out over a catalyst of copper and zinc oxide on an alumina support (198, 199). The high temperature F-T can accommodate some carbon dioxide

  3. Feeding behavior, microbial efficiency, and nitrogen balance of Nellore heifers supplemented with crude glycerin

    Directory of Open Access Journals (Sweden)

    Gonçalo Mesquita da Silva

    2016-09-01

    Full Text Available This study aimed to evaluate the inclusion of crude glycerin in diets for Nellore heifers grazing on a Brachiaria brizantha pasture, during the dry season, on urine and plasma urea concentrations, feeding behavior, and microbial protein synthesis. Sixty Nellore heifers with an average initial weight of 285.89 ± 18.74 kg, at approximately 19 ± 2 months of age, were distributed, in a completely randomized design, into the following five treatments with twelve replicates: 0.00, 4.00, 8.00, 12.00, and 16.00% inclusion of crude glycerin in the diet they were fed. Grazing time decreased linearly (P 0.05, averaging 113.73g CP per kg TDN ingested. Plasma nitrogen concentration did not show any effects (P > 0.05, averaging 13.11 mg dL?1. Supplementing heifers during the dry season, at 0.7% BW, using up to 16% crude glycerin in the diet composition, did not elicit positive responses from feeding behavior and had little influence on microbial synthesis.

  4. Evaluation of Castor Oil Cake Starch and Recovered Glycerol and Development of “Green” Composites Based on Those with Plant Fibers

    Science.gov (United States)

    Guimarães, José Luis; Trindade Cursino, Ana Cristina; Ketzer Saul, Cyro; Sierrakowski, Maria Rita; Ramos, Luiz Pereira; Satyanarayana, Kestur Gundappa

    2016-01-01

    Continuous efforts are being made in some countries for the recovery of crude glycerin (RG/CG) and castor oil cake (COC), the two byproducts of biodiesel production. These are expected to help, not only in addressing environmental safety, but also in adding value to those byproducts, which otherwise may go to waste. Finding ways to utilize those byproducts underlines the main objective of this study. This paper presents the evaluation of (i) COC, glycerin and banana and sugarcane fibers for moisture content; (ii) COC for structural and thermal properties; and (iii) CG for its chemical characteristics. The possibility of using COC and CG with the selected fibers as reinforcement in the development of bio-composites is attempted through thermo-molding. Results revealed enhanced mechanical properties for these composites. The obtained results are discussed in terms of the observed morphology. PMID:28787878

  5. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF. Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1 are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90, we identified a novel gene porcine FLJ36031 (pFLJ, which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  6. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Science.gov (United States)

    Wu, Ting; Zhang, Zhenhai; Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong

    2013-01-01

    Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  7. The reproducibility of different metabolic markers for muscle fiber type distributions investigated by functional "3"1P-MRS during dynamic exercise

    International Nuclear Information System (INIS)

    Rzanny, Reinhard; Hiepe, Patrick; Gussew, Alexander; Reichenbach, Juergen R.; Stutzig, Norman; Thorhauer, Hans-Alexander

    2016-01-01

    The objective of the study was to investigate the reproducibility of exercise induced pH-heterogeneity by splitting of the inorganic phosphate (Pi) signal in the corresponding "3"1P-MRS spectra and to compare results of this approach with other fiber-type related markers, like phosphocreatine/adenosine triphosphate (PCr/ATP) ratio, and PCr-recovery parameters. Subjects (N = 3) with different sportive background were tested in 10 test sessions separated by at least 3 days. A MR-compatible pedal ergometer was used to perform the exercise and to induce a pH-based splitting of the Pi-signal in "3"1P-MR spectra of the medial gastrocnemius muscle. The PCr recovery was analyzed using a non-negative least square algorithm (NNLS) and multi-exponential regression analysis to estimate the number of non-exponential components as well as their amplitude and time constant. The reproducibility of the estimated metabolic marker and the resulting fiber-type distributions between the 10 test sessions were compared. The reproducibility (standard deviation between measurements) based on (1) Pi components varied from 2% to 4%, (2) PCr recovery time components varied from 10% to 12% and (3) phosphate concentrations at rest varied from 8% to 11% between test sessions. Due to the sportive activity differences between the 3 subjects were expected in view of fiber type distribution. All estimated markers indicate the highest type I percentage for volunteer 3 medium for volunteer 2 and the lowest for volunteer 1. The relative high reproducibility of pH dependent Pi components during exercise indicates a high potential of this method to estimate muscle fiber-type distributions in vivo. To make this method usable not only to detect differences in muscle fiber distributions but also to determine individual fiber-type volume contents it is therefore recommended to validate this marker by histological methods and to reveal the effects of muscle fiber recruitments and fiber-type specific Pi

  8. The reproducibility of different metabolic markers for muscle fiber type distributions investigated by functional {sup 31}P-MRS during dynamic exercise

    Energy Technology Data Exchange (ETDEWEB)

    Rzanny, Reinhard; Hiepe, Patrick; Gussew, Alexander; Reichenbach, Juergen R. [Univ. Hospital Jena (Germany). Medical Physics Group, Inst. of Diagnostics and Interventional Radiology; Stutzig, Norman [Univ. of Stuttgart (Germany). Exercise Science, Inst. of Sport and Movement Science; Thorhauer, Hans-Alexander [Friedrich-Schiller-Univ. Jena (Germany). Exercise Science, Inst. of Sports Science

    2016-07-01

    The objective of the study was to investigate the reproducibility of exercise induced pH-heterogeneity by splitting of the inorganic phosphate (Pi) signal in the corresponding {sup 31}P-MRS spectra and to compare results of this approach with other fiber-type related markers, like phosphocreatine/adenosine triphosphate (PCr/ATP) ratio, and PCr-recovery parameters. Subjects (N = 3) with different sportive background were tested in 10 test sessions separated by at least 3 days. A MR-compatible pedal ergometer was used to perform the exercise and to induce a pH-based splitting of the Pi-signal in {sup 31}P-MR spectra of the medial gastrocnemius muscle. The PCr recovery was analyzed using a non-negative least square algorithm (NNLS) and multi-exponential regression analysis to estimate the number of non-exponential components as well as their amplitude and time constant. The reproducibility of the estimated metabolic marker and the resulting fiber-type distributions between the 10 test sessions were compared. The reproducibility (standard deviation between measurements) based on (1) Pi components varied from 2% to 4%, (2) PCr recovery time components varied from 10% to 12% and (3) phosphate concentrations at rest varied from 8% to 11% between test sessions. Due to the sportive activity differences between the 3 subjects were expected in view of fiber type distribution. All estimated markers indicate the highest type I percentage for volunteer 3 medium for volunteer 2 and the lowest for volunteer 1. The relative high reproducibility of pH dependent Pi components during exercise indicates a high potential of this method to estimate muscle fiber-type distributions in vivo. To make this method usable not only to detect differences in muscle fiber distributions but also to determine individual fiber-type volume contents it is therefore recommended to validate this marker by histological methods and to reveal the effects of muscle fiber recruitments and fiber-type specific

  9. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...... three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...... of the extracellular potential. Compared to an isolated fiber in a large volume of Ringer's solution, uniform propagation within a 2-mu m-thick volume conductor annulus is slowed down from 1.92 to 0.72 m/s, and the extracellular potential is increased from 1 to 108 mV peak to peak, in agreement with published...

  10. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  11. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    Science.gov (United States)

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  12. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Norifumi; Nagaoka, Shunji; Nojima, Kumie

    2003-01-01

    We investigate effects of localized exposure of heavy ion to the lumbar 4th to 6th segments of the rat spinal cord on the properties of motoneurons and the innervated muscle fibers without surgical treatments. Twenty 7-week-old male Wistar rats were exposed to 5 mm spread-out Bragg peak (SOBP) carbon beam (290 MeV, linear energy transfer (LET)=130 keV/μm): Two doses (15 Gy or 20 Gy) were applied to each group of rats (n=5) in two different depths; one group was exposed only for ventral horn of the spinal cord while other for whole spinal cord. Five rats served as controls. The rats were exposed to carbon irons on October 26, 2002. We will sacrifice the rats soon after they show an abnormal behavior including posture and walking. Cell body size and oxidative enzyme activity of spinal motoneurons of the control and heavy-ion-exposed rats will be analyzed. In addition, cell size, oxidative enzyme activity, and expressions of myosin heavy chain isoforms of the gastrocnemius, soleus, plantaris, extensor digitorum longus, and tibialis anterior muscle fibers will be also determined. This study is performed to test our hypothesis that atrophy and a decrease in cross-sectional area of motoneurons and muscle fibers which they innervate, as well as a decrease in oxidative activity of motoneurons and muscle fibers, will be induced due to exposure to heavy ion. (author)

  13. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  14. Triacrylate of glycerin synthesis and use in network polymer

    International Nuclear Information System (INIS)

    Morita, Reinaldo Y.; Zawadzki, Sonia F.; Barbosa, Ronilson V.

    2009-01-01

    The goal of this work was the synthesis and characterization of a new cross linker: the glyceryl triacrylate. The synthesis was done by an esterification reaction between glycerin and acrylic acid and the product, called GA, was characterized by infrared and nuclear magnetic resonance (NMR- 1a) spectroscopy. The behavior was analysed after a copolymerization with methyl methacrylate monomer (MMA). It was also prepared the PMMA and GA homopolymers. The addition of glycerin triacrylate up to 2 % in the MMA monomer changed the solubility of the copolymer. This one became insoluble in organic solvents in which the pure linear poly(methyl methacrylate) was soluble. Thermal analysis showed that the addition of 2% GA didn't change the Tg value of the PMMA pure, but the GA homopolymer showed a Tg value equal to 180 C, lower than expected. It seems that GA product is working as cross linker, but some insaturation links did not react. They remain as pendent groups, causing the Tg lowering. The results suggest that the new product can be used as cross linker for the application in acrylic polymers. (author)

  15. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter Møller

    2018-01-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO2 -m.......3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers....

  16. The meat quality, muscle fiber characteristics and fatty acid profile in Jinjiang and F1 Simmental×Jinjiang yellow cattle

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2018-02-01

    Full Text Available Objective This study compared the meat quality, muscle fiber characteristics, and fatty acids between Jinjiang yellow cattle (JJ and F1 Simmental×Jinjiang yellow cattle (SJ which were offered the same diet. Methods Six JJ and six SJ individuals were reared and fattened from 10 to 26 months of age. After feeding, the highrib (HR, ribeye (RB, and tenderloin (TL samples were taken from the carcass for meat quality evaluations. Results The results showed that growth performance of SJ was higher than that of JJ (higher live weight and average daily gain, and the hot carcass weight of SJ was higher than that of JJ (p<0.05. pH of JJ was higher than that of SJ in TL (p<0.05; the color of a* of SJ was higher than that of JJ in TL and RB (p<0.05; the cooking loss of SJ was significantly lower than that of JJ in TL and RB (p<0.05; the shear force value was significantly lower in SJ compared to JJ (p<0.05; the muscle fiber diameter was higher and the fiber density was lower in SJ compared to JJ in HR and TL (p<0.05; compared to SJ, the muscles of JJ had higher saturated fatty acid (SFA composition; the sum of monounsaturated fatty acid and polyunsaturated fatty acid (PUFA were lower in the muscle of JJ; the mRNA expressions of myosin heavy chain-I (MyHC-I and MyHC-IIa were higher in SJ compared to JJ in muscle of HR and RB; the mRNA expressions of MyHC-IIx and MyHC-IIb were lower in SJ compared to JJ in HR and RB (p<0.05. Conclusion Meat quality and fatty acid profile differed between SJ and JJ; the muscle of SJ had higher a* and SFA; SJ had lower cooking loss, shear force and PUFA compared to the muscle of JJ. In addition, the type and development characteristics of the muscle fiber had some difference between SJ and JJ; these might be factors which caused the differences in meat quality and fatty acid profile between SJ and JJ.

  17. The effect of different physical activity levels on muscle fiber size and type distribution of lumbar multifidus. A biopsy study on low back pain patient groups and healthy control subjects.

    Science.gov (United States)

    Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P

    2009-12-01

    Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.

  18. Dry matter digestibility and metabolizable energy of crude glycerines originated from palm oil using fed rooster assay

    Directory of Open Access Journals (Sweden)

    Astiari Tia Legawa

    2017-07-01

    Full Text Available A study was conducted to determine the dry matter digestibility, gross energy (GE, the nitrogen-corrected apparent metabolizable energy (AMEn, and the nitrogen-corrected true metabolizable energy (TMEn of two crude glycerine from two different sources. The first crude glycerine (CG1 was from a large scale biodiesel producer with high content of glycerol (89.49% and low content of crude fat (1.73%, meanwhile the second crude glycerine (CG2 was from a medium scale biodiesel producer with lower content of glycerol than CG1 (38.36% and high content of crude fat (23.63%. Fed rooster assay based on Sibbald (1976 was used in the experiment. The experimental feed consisted of ground corn and three levels of crude glycerine (0, 10, and 20%. Twenty four Hisex brown roosters were housed in metabolic cages. Roosters were force fed with 30 g experimental feed, after 24 hours of fasting. Excreta collection was performed for two days while the roosters were fasting again. The content values of GE, AMEn, and TMEn of CG1 were 4065.18, 2926.59, and 3068.73 kcal kg-1 and for CG2 were 5928.09, 4010.11, and 4054.52 kcal kg, respectively.

  19. MUSCLE-FIBER CONDUCTION-VELOCITY IN AMYOTROPHIC-LATERAL-SCLEROSIS AND TRAUMATIC LESIONS OF THE PLEXUS BRACHIALIS

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; ZWARTS, MJ; VANWEERDEN, TW

    1993-01-01

    Muscle fiber conduction velocity (MFCV) in biceps brachii was studied in traumatic brachial plexus lesions (16 patients) and amyotrophic lateral sclerosis (ALS) (22 patients) by means of an invasive (S-MFCV) and a surface (S-MFCV) method. After complete denervation an exponential decrease of the

  20. Co-digestion of crude glycerin associated with cattle manure in biogas production in the State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Felix Augusto Pazuch

    2017-05-01

    Full Text Available The addition of different concentrations of crude glycerin, associated with cattle manure, on the volumetric production of biogas is analyzed. Different concentrations of crude glycerin (2, 4 and 6% m m-1 were added as supplement in anaerobic co-digestion of dairy cattle waste, in laboratory batch biodigesters (3.5 L usable volume. The biodigesters were operated under mesophilic conditions (30ºC, with 30-day hydraulic retention time (HRT. Total solids (TS, volatile solids (VS and chemical oxygen demand (COD were analyzed to determine the efficiency of the process in the removal of organic matter and its effect on biogas production. The addition of 4% glycerin provided a larger production of biogas, approximately 9.307 mL. The efficiency in COD removal decreased in treatments with glycerin, with highest reduction (68% in the control treatment. There was a 90 and 118% increase respectively for Gli4 and Gli6% treatments. VS reductions Gly 0, Gly 2, Gly 4 and Gly 6% treatments were 18.17, 61.60, 24.36 and 44.83%, for the respective treatments.

  1. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Directory of Open Access Journals (Sweden)

    Guillaume Caron

    Full Text Available The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1 untreated animals acting as control and 2 treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i no recovery (B0, ii 50% recovery (B50 and iii full recovery (B100. Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl and lactic acid injections and Electrically-Induced Fatigue (EIF, and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  2. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Science.gov (United States)

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  3. An image processing approach to analyze morphological features of microscopic images of muscle fibers.

    Science.gov (United States)

    Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; Costa, Luciano da Fontoura; Yang, Zhong

    2014-12-01

    We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of temperature on muscle recruitment and muscle function in vivo.

    Science.gov (United States)

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  5. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  6. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  7. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  8. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  9. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    Directory of Open Access Journals (Sweden)

    Paula Bresciani M. De Andrade

    2015-09-01

    Full Text Available Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i higher expression of muscle deiodinase type 3 (DIO3 which inactivates tri-iodothyronine (T3, and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2, (ii slower net formation of T3 from its T4 precursor in muscles, and (iii accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development.We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. Energy-sparing effects persist during weight recovery and likely contribute to catch-up fat.

  10. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.

    Science.gov (United States)

    De Andrade, Paula B M; Neff, Laurence A; Strosova, Miriam K; Arsenijevic, Denis; Patthey-Vuadens, Ophélie; Scapozza, Leonardo; Montani, Jean-Pierre; Ruegg, Urs T; Dulloo, Abdul G; Dorchies, Olivier M

    2015-01-01

    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.

  11. New twist on artificial muscles.

    Science.gov (United States)

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  12. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    Science.gov (United States)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  13. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats

    Science.gov (United States)

    2018-01-01

    Objective This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO) on performance, carcass traits, meat quality, and muscle chemical composition. Methods Twenty-four crossbred (Thai Native×Anglo Nubian) uncastrated male goats (16.8± 0.46 kg body weight [BW]) were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat) on a dry matter (DM) basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Results Based on this experiment, there were significant differences (p>0.05) among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM) area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. Conclusion In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production. PMID:28830128

  14. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats

    Directory of Open Access Journals (Sweden)

    Pin Chanjula

    2018-04-01

    Full Text Available Objective This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO on performance, carcass traits, meat quality, and muscle chemical composition. Methods Twenty-four crossbred (Thai Native×Anglo Nubian uncastrated male goats (16.8± 0.46 kg body weight [BW] were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat on a dry matter (DM basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Results Based on this experiment, there were significant differences (p>0.05 among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. Conclusion In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production.

  15. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats.

    Science.gov (United States)

    Chanjula, Pin; Cherdthong, Anusorn

    2018-04-01

    This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO) on performance, carcass traits, meat quality, and muscle chemical composition. Twenty-four crossbred (Thai Native×Anglo Nubian) uncastrated male goats (16.8± 0.46 kg body weight [BW]) were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat) on a dry matter (DM) basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Based on this experiment, there were significant differences (p>0.05) among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM) area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production.

  16. A study on elongation/contraction behavior and mechanical properties of oxy-polyacrylonitrile(PAN) fiber in basic/acidic solution for artificial muscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K.; Kim, S.W.; Lee, K.S.; Cho, I.H.; Lee, J.H.; Lee, J.W. [Sungkyunkwan University, Suwon (Korea); Kim, K.J. [University of Nevada, Reno (United States); Nam, J.D. [Sungkyunkwan University, Suwon (Korea)

    2002-07-01

    Oxy-PAN fiber prepared from the preoxidation and saponification of raw PAN fiber is known to elongate and contract when immersed in basic and acidic solutions, respectively. In this study, about 30% elongation in NaOH solution and 30{approx}50% contraction in HCl solution have been observed. In mechanical test, the mechanical properties of oxy-PAN fiber in the contracted state was stronger than that in the elongated state. These behaviors and mechanical properties are compared to those of living muscle and linear actuator. The change of length in NaOH and HCl solutions is due to switching between a hydrophilic and a hydrophobic structure. Other reasons are exchange of ion and water in/out of oxy-PAN fiber, and osmotic pressure difference associated with relevant ions. Much studies are needed to clarify the effective factors on but the oxy-PAN fiber's elongation/contraction behavior and mechanical properties, but the oxy-PAN fiber prepared in our laboratory has a sufficient potential for application as artificial muscle and linear actuator. (author). 20 refs., 1 tab., 9 figs.

  17. Intramyocellular lipid dependence on skeletal muscle fiber type and orientation characterized by diffusion tensor imaging and 1H-MRS

    Science.gov (United States)

    Valaparla, Sunil K.; Gao, Feng; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2014-03-01

    When muscle fibers are aligned with the B0 field, intramyocellular lipids (IMCL), important for providing energy during physical activity, can be resolved in proton magnetic resonance spectra (1H-MRS). Various muscles of the leg differ significantly in their proportion of fibers and angular distribution. This study determined the influence of muscle fiber type and orientation on IMCL using 1H-MRS and diffusion tensor imaging (DTI). Muscle fiber orientation relative to B0 was estimated by pennation angle (PA) measurements from DTI, providing orientation-specific extramyocellular lipid (EMCL) chemical shift data that were used for subject-specific IMCL quantification. Vastus lateralis (VL), tibialis anterior (TA) and soleus (SO) muscles of 6 healthy subjects (21-40 yrs) were studied on a Siemens 3T MRI system with a flex 4-channel coil. 1H-MRS were acquired using stimulated echo acquisition mode (STEAM, TR=3s, TE=270ms). DTI was performed using single shot EPI (b=600s/mm2, 30 directions, TR=4.5s, TE=82ms, and ten×5mm slices) with center slice indexed to the MRS voxel. The average PA's measured from ROI analysis of primary eigenvectors were PA=19.46+/-5.43 for unipennate VL, 15.65+/-3.73 for multipennate SO, and 7.04+/-3.34 for bipennate TA. Chemical shift (CS) was calculated using [3cos2θ-1] dependence: 0.17+/-0.02 for VL, 0.18+/-0.01 for SO and 0.19+/-0.004 ppm for TA. IMCL-CH2 concentrations from spectral analysis were 12.77+/-6.3 for VL, 3.07+/-1.63 for SO and 0.27+/-0.08 mmol/kg ww for TA. Small PA's were measured in TA and large CS with clear separation between EMCL and IMCL peaks were observed. Larger variations in PA were measured VL and SO resulting in an increased overlap of the EMCL on IMCL peaks.

  18. Synthesis of polyacrylonitrile (PAN) with different stereoregularity by urea radiation inclusion polymerization and its application to carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Fujikura, Yoshiaki; Minakawa, Masaaki [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Makuuchi, Keizo; Matsuo, Masaru; Yoshii, Fumio

    1998-01-01

    Application to carbon fiber started in this Year. In this paper, a spinning and calcination process are explained. Fiber was obtained by wet spinning of the PAN solution. Ten solvents were tested and the results proved that dimethyl sulfoxide (DMSO) was the best solvent. Glycerine was used as a coagulating bath. The thin fiber (10 to 50 denier) was produced under the conditions of about 20wt% concentration at about 110degC. Heat-treat temperature was about 270 to 275degC. The viscosity-tacticity relationship and T{sub sol} vs. inverse tacticity were shown in the paper. (S.Y.)

  19. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  20. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  1. Dynamic cardiomyoplasty using artificial muscle.

    Science.gov (United States)

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Dynamic cardiomyoplasty using latissimus dorsi muscle was previously used to compensate for congestive heart failure. Now, however, this method is not acceptable because the long-term result was not as expected owing to fatigue of the skeletal muscle. BioMetal fiber developed by Toki Corporation is one of the artificial muscles activated by electric current. The behavior of this fiber is similar to that of organic muscle. We made an artificial muscle like the latissimus dorsi using BioMetal fiber and tested whether we could use this new muscle as a cardiac supporting device. Testing one Biometal fiber showed the following performance: practical use maximal generative force was 30 g, exercise variation was 50%, and the standard driving current was 220 mA. We created a 4 x 12-cm tabular artificial muscle using 8 BioMetal fibers as a cardiac support device. We also made a simulation circuit composed of a 6 x 8-cm soft bag with unidirectional valves, reservoir, and connecting tube. The simulation circuit was filled with water and the soft bag was wrapped with the artificial muscle device. After powering the device electrically at 9 V with a current of 220 mA for each fiber, we measured the inside pressure and observed the movement of the artificial device. The artificial muscle contracted in 0.5 s for peak time and squeezed the soft bag. The peak pressure inside the soft bag was measured as 10 mmHg. Although further work will be needed to enhance the speed of deformability and movement simulating contraction, we conclude that artificial muscle may be potentially useful as a cardiac assistance device that can be developed for dynamic cardiomyoplasty.

  2. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women.

    Science.gov (United States)

    Staron, R S; Malicky, E S; Leonardi, M J; Falkel, J E; Hagerman, F C; Dudley, G A

    1990-01-01

    Twenty-four women completed a 20-week heavy-resistance weight training program for the lower extremity. Workouts were twice a week and consisted of warm-up exercises followed by three sets each of full squats, vertical leg presses, leg extensions, and leg curls. All exercises were performed to failure using 6-8 RM (repetition maximum). Weight training caused a significant increase in maximal isotonic strength (1 RM) for each exercise. After training, there was a decrease in body fat percentage (p less than 0.05), and an increase in lean body mass (p less than 0.05) with no overall change in thigh girth. Biopsies were obtained before and after training from the superficial portion of the vastus lateralis muscle. Sections were prepared for histological and histochemical examination. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished following routine myofibrillar adenosine triphosphatase histochemistry. Areas were determined for fiber types I, IIA, and IIAB + IIB. The heavy-resistance training resulted in significant hypertrophy of all three groups: I (15%), IIA (45%), and IIAB + IIB (57%). These data are similar to those in men and suggest considerable hypertrophy of all major fiber types is also possible in women if exercise intensity and duration are sufficient. In addition, the training resulted in a significant decrease in the percentage of IIB with a concomitant increase in IIA fibers, suggesting that strength training may lead to fiber conversions.

  3. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  4. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  5. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    Science.gov (United States)

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  6. Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry

    Energy Technology Data Exchange (ETDEWEB)

    Robra, S.; Neto, J. A. Almeida [Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Rod. Ilheus/Itabuna km 16 s/n, CEP 45662-000 Ilheus, Bahia (Brazil); Serpa da Cruz, R.; de Oliveira, A.M.; Santos, J.V. [Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, Rod. Ilheus/Itabuna km 16 s/n, CEP 45662-000 Ilheus, Bahia (Brazil)

    2010-09-15

    The influence of crude glycerin on biogas production and methane content of the produced biogas was studied, when added to cattle slurry. The experimental design consisted of 5% wt (Gli 5), 10% wt (Gli 10), and 15% wt (Gli 15) of crude glycerin added to cattle slurry, and one control digester without addition of crude glycerin. Anaerobic digestion was carried out in 4 laboratory size CSTR-type biogas digesters with a working volume of 3 L, in semi-continuous regime at mesophilic conditions, over a period of 10 weeks. The highest biogas yields (825.3 mL g{sup -1} and 825.7 mL g{sup -1}, respectively) relative to mass of volatile compounds added, were produced by the treatments Gli 5 and Gli 10. The control treatment produced 268.6 mL g{sup -1}, whereas the treatment Gli 15 produced 387.9 mL g{sup -1}. This low value was due to the breakdown of the process. Compared to the control, methane contents was increased by 9.5%, 14.3%, and 14.6%, respectively, for the treatments Gli 5, Gli 10, and Gli 15. (author)

  7. The production of paper soaps from coconut oil and Virgin Coconut Oil (VCO) with the addition of glycerine as plasticizer

    Science.gov (United States)

    Widyasanti, Asri; Miracle Lenyta Ginting, Anastasia; Asyifani, Elgina; Nurjanah, Sarifah

    2018-03-01

    Hand washing with soap is important because it is proven to clean hands from germs and bacteria. The paper soapswere made from coconut oil and virgin coconut oil (VCO) with the addition of glycerin as a plasticizer. The aims of this research were to determine both formulation of paper soap using coconut oil and VCO based with addition of glycerin, and to determine the quality of the paper soapswhich is a disposable hand soap. This research used laboratory experimental method using descriptive analysis. The treatments of this research were treatment A (paper soap without the addition of glycerin), treatment B (paper soap with the addition of glycerin 10% (w/w)), treatment C (paper soap with the addition of glycerin 15% (w/w)), treatment D (paper soap with the addition of glycerin of 20% (w/w)). Parameters tested were moisture content, stability of foam, pH value, insoluble material in ethanol, free alkali content, unsaponified fat, antibacterial activity test, and organoleptic test. The result of physicochemical characteristics for bothcoconut oil-paper soap and VCO-paper soap revealed that treatment C (the addition of glycerin 15% (w/w) was the best soap formulation. Coconut Oil papersoap 15% w/w glicerin had water content 13.72%, the content of insoluble material in ethanol 3.93%, the content of free alkali 0.21%, and the content of unsaponified fat 4.06%, pH value 10.78, stability of foam 97.77%, and antibacterial activity against S. aureus 11.66 mm. Meanwhile, VCO paper soap 15% w/w glicerin had the value of water content of 18.47%, the value stability of foam of 96.7%, the pH value of 10.03, the value of insoluble material in ethanol of 3.49%, the value of free alkali content 0.17%, the value of unsaponified fat 4.91%, and the value of inhibition diameter on the antibacterial activity test 15.28 mm. Based on Mandatory Indonesian National Standard of solid soap SNI 3532:2016 showed that both of paper soap had not been accorded with SNI 3532:2016, unless the

  8. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    Science.gov (United States)

    Despite cleft palate repair, velopharyngeal competence is not achieved in ~ 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resi...

  9. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  10. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions

    Science.gov (United States)

    Colliander, E. B.; Dudley, G. A.; Tesch, P. A.

    1988-01-01

    Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.

  11. The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way

    Directory of Open Access Journals (Sweden)

    Boekschoten Mark V

    2010-03-01

    Full Text Available Abstract Background The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, we used microarray analysis to compare the gastrocnemius with the quadriceps from mice fed a low fat diet (LFD or high fat diet (HFD for 8 weeks. Additional qPCR analysis were performed in the gastrocnemius, quadriceps and soleus muscle from mice fed an LFD or HFD for 20 weeks. Results In mice fed the 8-week LFD 162 genes were differentially expressed in the gastrocnemius vs. the quadriceps. Genes with the strongest differences in expression were markers for oxidative fiber types (e.g. Tnni1 and genes which are known to be involved in embryogenesis (Dkk3, Hoxd8,Hoxd9 and Tbx1. Also Dkk2, Hoxa5, Hoxa10, Hoxc9, Hoxc10, Hoxc6 and Tbx15 were detectably, but not differentially expressed in adult muscle tissue. Expression of differentially expressed genes was not influenced by an 8-week or 20-week HFD. Comparing gastrocnemius, quadriceps and soleus, expression of Hoxd8 and Hoxd9 was not related with expression of markers for the four different fiber types. We found that the expression of both Hoxd8 and Hoxd9 was much higher in the gastrocnemius than in the quadriceps or soleus, whereas the expression of Dkk3 was high in quadriceps, but low in both gastrocnemius and soleus. Finally, expression of Tbx1 was high in quadriceps, intermediate in soleus and low in gastrocnemius. Conclusions We found that genes from the Dkk family, Hox family and Tbx family are detectably expressed in adult mouse muscle. Interestingly, expression of Dkk3, Hoxd8, Hoxd9 and Tbx1 was highly different between gastrocnemius, quadriceps and soleus. In fact, every muscle type showed a unique combination of expression of these four genes which was not influenced by diet. Altogether

  12. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  13. The influence of temperature on the rheology of biodiesel and on the biodiesel-glycerin-ethanol blend - doi: 10.4025/actascitechnol.v34i1.8067

    Directory of Open Access Journals (Sweden)

    Andrés José Cocato Steluti

    2011-11-01

    Full Text Available After transesterification reaction, biodiesel and glycerin (the resulting co-product, coupled to reaction excesses and impurities, make up two distinct phases that must be separated. The use of ethanol as a transesterificating agent impairs the above-mentioned separation due to the greater affinity of ethyl esters (biodiesel from ethanol to glycerin. Current research provides an analysis of the influence of temperature on the rheology of biodiesel and the bio-diesel-glycerin-ethanol blend. Rheology behavior is highly important not merely in issues involving, for instance, discharging and pumping, but also as a factor that should be evaluated within the process of separation of the biodiesel-glycerin phases by decantation and centrifugation.

  14. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  15. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  16. Gender differences in MR muscle tractography

    International Nuclear Information System (INIS)

    Okamoto, Yoshikazu; Minami, Manabu; Kunimatsu, Akira; Kono, Tatsuo; Sonobe, Jyunichi; Kujiraoka, Yuka

    2010-01-01

    Tractography of skeletal muscle can clearly reveal the 3-dimensional course of muscle fibers, and the procedure has great potential and could open new fields for diagnostic imaging. Studying this technique for clinical application, we noticed differences in the number of visualized tracts among volunteers and among muscles in the same volunteer. To comprehend why the number of visualized tracts varied so that we could acquire consistently high quality tractography of muscle fiber, we started to examine whether differences in individual parameters affected tractography visualization. The purpose of this study was to determine whether there are gender- and age-specific differences that differentiate the muscles by gender and age in MR tractography of skeletal muscle fiber. We divided 33 healthy volunteers by gender and age among 3 groups, A (13 younger men, aged 20 to 36 years), B (11 younger women, 25 to 39 years), and C (9 older men, 50 to 69), and we obtained from each volunteer tractographs of 8 fibers, including the bilateral gastrocnemius medialis (GCM), gastrocnemius lateralis (GCL), soleus (SOL), and anterior tibialis (AT) muscles. We classified the fibers into 5 grades depending on the extent of visualized tracts and used Mann-Whitney U-test to compare scores by gender (Group A versus B) and age (Group A versus C). Muscle tracts were significantly better visualized in women than men (median total visual score, 34 versus 24, P<0.05). In particular, the SOL muscles showed better visualization in the right (4.0 in women, 1.0 in men, P<0.05) and left (3.0 in women, 1.0 in men, P<0.05). Difference by age was not significant. The GCL was the highest scored muscle in all groups. Our results suggest that group differences, especially by gender, affected visualization of tractography of muscle fiber of the calf. (author)

  17. Methodology for full comparative assessment of direct gross glycerin combustion in a flame tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, Aymer Yeferson; Pagliuso, Josmar D. [Dept. of Mechanical Engineering. Sao Carlos School of Engineering. University of Sao Paulo, Sao Carlos, SP (Brazil)], e-mails: aymermat@sc.usp.br, josmar@sc.usp.br

    2010-07-01

    This study is to develop a methodology to identify and evaluate the emissions and heat transfer associated to combustion of gross glycerin a by-product of the Brazilian biodiesel manufacture process as alternative energy source. It aims to increase the present knowledge on the matter and to contribute to the improvement of the economic and environmental perspective of biodiesel industry. This methodology was considered to be used for assessment of gross glycerin combustion from three different types of biodiesel (bovine tallow, palm and soy). The procedures for evaluation and quantification of emissions of sulphur and nitrogen oxides, total hydrocarbons, carbon monoxide, carbon dioxide, and acrolein were analyzed, described and standardized. Experimental techniques for mutagenic and toxic effects assessment of gases similarly were analyzed and standardized, as well as the calorific power, the associate heat transfer and fundamentals operational parameters. The methodology was developed, using a full-instrumented flame tube furnace, continuous gas analyzers, a chromatograph, automatic data acquisition systems and other auxiliary equipment. The mutagenic and toxic effects of the study was based on Tradescantia clone KU-20, using chambers of intoxication and biological analytical techniques previously developed and others were specially adapted. The benchmark for the initial set up was based on the performance evaluation of the previous equipment tested with diesel considering its behavior during direct combustion. Finally, the following factors were defined for the combustion of crude glycerin, configurations of equipment types, operational parameters such as air fuel ratio adiabatic temperature and other necessary aspect for successful application of the methodology. The developed and integrated methodology was made available to the concern industry, environmental authorities and researchers as procedures to access the viability of gross glycerin or similar fuels as

  18. The equivalent circuit of single crab muscle fibers as determined by impedance measurements with intracellular electrodes.

    Science.gov (United States)

    Eisenberg, R S

    1967-07-01

    The input impedance of muscle fibers of the crab was determined with microelectrodes over the frequency range 1 cps to 10 kc/sec. Care was taken to analyze, reduce, and correct for capacitive artifact. One dimensional cable theory was used to determine the properties of the equivalent circuit of the membrane admittance, and the errors introduced by the neglect of the three dimensional spread of current are discussed. In seven fibers the equivalent circuit of an element of the membrane admittance must contain a DC path and two capacitances, each in series with a resistance. In two fibers, the element of membrane admittance could be described by one capacitance in parallel with a resistance. In several fibers there was evidence for a third very large capacitance. The values of the elements of the equivalent circuit depend on which of several equivalent circuits is chosen. The circuit (with a minimum number of elements) that was considered most reasonably consistent with the anatomy of the fiber has two branches in parallel: one branch having a resistance R(e) in series with a capacitance C(e); the other branch having a resistance R(b) in series with a parallel combination of a resistance R(m) and a capacitance C(m). The average circuit values (seven fibers) for this model, treating the fiber as a cylinder of sarcolemma without infoldings or tubular invaginations, are R(e) = 21 ohm cm(2); C(e) = 47 microf/cm(2); R(b) = 10.2 ohm cm(2); R(m) = 173 ohm cm(2); C(m) = 9.0 microf/cm(2). The relation of this equivalent circuit and another with a nonminimum number of circuit elements to the fine structure of crab muscle is discussed. In the above equivalent circuit R(m) and C(m) are attributed to the sarcolemma; R(e) and C(e), to the sarcotubular system; and R(b), to the amorphous material found around crab fibers. Estimates of actual surface area of the sarcolemma and sarcotubular system permit the average circuit values to be expressed in terms of unit membrane area. The

  19. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  20. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Science.gov (United States)

    2010-04-01

    ... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not in...

  1. Randomized controlled trial: impact of glycerin suppositories on time to full feeds in preterm infants.

    Science.gov (United States)

    Khadr, Sophie N; Ibhanesebhor, Samuel E; Rennix, Connie; Fisher, Hazel E; Manjunatha, Chikkanayakanahalli M; Young, David; Abara, Rosemary C

    2011-01-01

    Feed intolerance delays achievement of enteral feeding in preterm infants. Parenteral nutrition is associated with cholestasis and increased risk of sepsis. Glycerin suppositories have been used to promote gastrointestinal motility and feed tolerance. To investigate whether daily glycerin suppositories (a) reduce the time to full enteral feeding in infants born at suppositories; 28-31(+6) weeks subgroup); controls - no intervention. The same feeding protocol and departmental guidelines for other aspects of neonatal intensive care were used in all subjects. Analysis was by intention to treat. 54 babies were recruited (31 males), 29 randomized to receive suppositories; 48 achieved full enteral feeds. The median (range) time to full feeds was 1.6 days shorter in intervention group babies than controls, but not statistically significant: 7.4 (4.6-30.9) days versus 9.0 (4.4-13.3) days (p = 0.780; 95% confidence interval: -1.917, 2.166). No significant differences were observed in secondary outcomes. Intervention group babies passed their first stool earlier than controls (median: day 2 vs. day 4; p = 0.016). Regular glycerin suppositories did not reduce the time to full enteral feeds in infants born at <32 weeks' gestation in our setting. Copyright © 2011 S. Karger AG, Basel.

  2. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.

    Science.gov (United States)

    Smith, Lucas R; Barton, Elisabeth R

    2014-01-01

    Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection

  3. The Influence of a Humectant on the Retention by Humans of Solanesol from Cigarette Smoke (Part 2, Glycerin

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available Two common humectants are used as additives in the cigarette manufacturing process, propylene glycol (PG and glycerin. The humectants may influence the deposition of cigarette smoke in the human respiratory tract by affecting the hygroscopic properties and growth of smoke particles. This study examines the influence of glycerin addition on the retention of solanesol by smokers. The influence of PG addition has been previously reported (7. The first cigarette used in the study (control was a commercially available brand containing no additives in the blend (with a measured level of glycerin of 0.19%. The other cigarette (test had an identical tobacco blend to the control, but had 2.3% added glycerin. The construction of the cigarette with 2.3% glycerin (test was selected to match as closely as possible the ‘tar’ (as measured by Federal Trade Commission regimen, pressure drop (open and closed, and nicotine level of the commercial cigarette (control. Twelve smokers evaluated both products. The sample collection was performed using three cigarettes smoked within one hour. Each human subject smoked the control cigarette and then the test cigarette in two separate sessions. The exhaled smoke was collected using a vacuum assisted procedure designed to avoid strain in exhaling, and solanesol was analyzed using an high performance liquid chromatography (HPLC technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol in the smoke delivered to the human subject, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of delivered amount of solanesol and that in the exhaled smoke it was possible to calculate the retention of this compound from mainstream

  4. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2017-02-02

    The vast majority of dynamometer-based animal models for investigation of the response to chronic muscle contraction exposure has been limited to analysis of isometric, lengthening, or shortening contractions in isolation. An exception to this has been the utilization of a rat model to study stretch-shortening contractions (SSCs), a sequence of consecutive isometric, lengthening, and shortening contractions common during daily activity and resistance-type exercise. However, the availability of diverse genetic strains of rats is limited. Therefore, the purpose of the present study was to develop a dynamometer-based SSC training protocol to induce increased muscle mass and performance in plantarflexor muscles of mice. Young (3 months old) C57BL/6 mice were subjected to 1 month of plantarflexion SSC training. Hindlimb muscles were analyzed for muscle mass, quantitative morphology, myogenesis/myopathy relevant gene expression, and fiber type distribution. The main aim of the research was achieved when training induced a 2-fold increase in plantarflexion peak torque output and a 19% increase in muscle mass for the agonist plantaris (PLT) muscle. In establishing this model, several outcomes emerged which raised the value of the model past that of being a mere recapitulation of the rat model. An increase in the number of muscle fibers per transverse muscle section accounted for the PLT muscle mass gain while the antagonist tibialis anterior (TA) muscle atrophied by 30% with preferential atrophy of type IIb and IIx fibers. These alterations were accompanied by distinct gene expression profiles. The findings confirm the development of a stretch-shortening contraction training model for the PLT muscle of mice and demonstrate that increased cross-sectional fiber number can occur following high-intensity SSC training. Furthermore, the TA muscle atrophy provides direct evidence for the concept of muscle imbalance in phasic non-weight bearing muscles, a concept largely

  5. Long-term high-level exercise promotes muscle reinnervation with age.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra

    2014-04-01

    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.

  6. Effect of salbutamol on innervated and denervated rat soleus muscle

    Directory of Open Access Journals (Sweden)

    ?oic-Vranic T.

    2005-01-01

    Full Text Available The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10, treated with salbutamol (N = 30, denervated (N = 30, and treated with salbutamol after denervation (N = 30. Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21% in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  7. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  8. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  9. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  10. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration.

    Science.gov (United States)

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2017-07-01

    Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  12. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    Science.gov (United States)

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  13. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  14. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training

    DEFF Research Database (Denmark)

    Jakobsen, Jens R.; Mackey, A L; Knudsen, A B

    2017-01-01

    The myotendinous junction (MTJ) is a common site of strain injury and yet understanding of its composition and ability to adapt to loading is poor. The main aims of this study were to determine the profile of selected collagens and macrophage density in human MTJ and adjoining muscle fibers...... 4 weeks of training may reflect a training-induced protection against strain injuries in this region....

  15. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    Science.gov (United States)

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  16. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  17. Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report.

    Science.gov (United States)

    Thongprasom, Kobkan

    2016-06-01

    This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician's diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC). A patch test using the toothpaste containing sodium lauryl sulfate (SLS) was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case.

  18. Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report

    Directory of Open Access Journals (Sweden)

    Kobkan Thongprasom

    2016-01-01

    Full Text Available This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician’s diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC. A patch test using the toothpaste containing sodium lauryl sulfate (SLS was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case.

  19. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles.

    Science.gov (United States)

    Furuichi, Yasuro; Goto-Inoue, Naoko; Manabe, Yasuko; Setou, Mitsutoshi; Masuda, Kazumi; Fujii, Nobuharu L

    2014-10-01

    Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent.

    Science.gov (United States)

    Hanke, Nina; Scheibe, Renate J; Manukjan, Georgi; Ewers, David; Umeda, Patrick K; Chang, Kin-Chow; Kubis, Hans-Peter; Gros, Gerolf; Meissner, Joachim D

    2011-03-01

    Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Synthesis and characterization of Al2O3 obtained from the polymeric precursor method using glycerin as a poly alcohol

    International Nuclear Information System (INIS)

    Elicker, C.; Gaier, M.; Almeida, S.R.; Vieiraaa, B.M.; Ratmann, C.W.R.; Pereira, C.M.P. de; Cava, S.S.; Egea, J.J.

    2014-01-01

    In this study, calcium aluminate was synthesized using glycerin to replace ethylene glycol in the polymeric precursor method. The resulting resin was pre-calcined in a muffle at 300 °C for 2 h and the resulting material was calcined at 900 °C for 2 h. The powders were analyzed by XRD, SEM and EDX, TEM, Micro-Raman and IR. The results demonstrated the possibility of using glycerin as an alternative to ethylene glycol in the polymeric precursor method. (author)

  2. Human Masseter Muscle Fibers From the Elderly Express Less Neonatal Myosin Than Those of Young Adults

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Janáček, Jiří; Kubínová, Lucie; Plasencia, A.L.; Eržen, I.

    2012-01-01

    Roč. 295, č. 8 (2012), s. 1364-1372 ISSN 1932-8486 R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090910 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : aging * confocal microscopy * myosin heavy chain * immunohistochemistry * muscle fiber types Subject RIV: FH - Neurology Impact factor: 1.343, year: 2012

  3. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  4. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  5. Composição de fibras musculares esqueléticas de eqüinos jovens da raça Brasileiro de Hipismo Composition of skeletal muscle fibers of young Brasileiro de Hipismo horse breed

    Directory of Open Access Journals (Sweden)

    F.H.F. D’Angelis

    2006-08-01

    Full Text Available The aim of this study was to typify the skeletal striated fibers of the gluteus medius muscle of young Brasileiro de Hipismo (BH horses by means of histochemical analysis with m-ATPase and NADH-TR according to the sex and the biopsy depth. It was observed that the frequency (F;% and the relative cross sectional area (RCSA;% of the fibers type IIX were greater than the fibers type IIA, which F and RCSA were greater than the fibers type I. The comparison between sex and muscles depht, showed no significant difference in F and RCSA in the three types of fibers. The results of morphometry showed that the gluteus medius muscle has greater glycolitic metabolism and anaerobic capacity because of the presence of large proportion of type IIX fibers. This may be justified by the genetic influence of Thoroughbred in the formation of Brasileiro de Hipismo breed.

  6. Improvement of livestock breeding strategies using physiologic and functional genomic information of the muscle regulatory factors gene family for skeletal muscle development

    NARCIS (Netherlands)

    Pas, te M.F.W.; Soumillon, A.

    2001-01-01

    A defined number of skeletal muscle fibers are formed in two separate waves during prenatal development, while postnatal growth is restricted to hypertrophic muscle fiber growth. The genes of the MRF (muscle regulatory factors) gene family, consisting of 4 structurally related transcription factors

  7. Chemical characterization of composites developed from glycerol and dicarboxylic acids rein forced with piassava fiber

    International Nuclear Information System (INIS)

    Miranda, Cleidiene S.; Oliveira, Jamerson C.; Guimaraes, Danilo H.; Jose, Nadia M.; Carvalho, Ricardo F.

    2011-01-01

    In search of alternative technologies that enable the use of products with lower environmental impact, This study aims to develop a composite polymer-based piassava fiber. The sludge, waste and byproduct of commercial uses currently being used as reinforcement in polymer matrices, due to presence of lignocellulosic materials. The matrix polymer used was synthesized from glycerol with dicarboxylic acids, in order to open future perspectives on the use of glycerin generated from purified biodiesel production plastics. Composites with 2, 5, 10 wt% of piassava fiber cut into 5 mm raw and treated were obtained a mixture of solution. The materials were characterized by TGA, DSC, XRD and SEM. It was observed that the material under study is promising for the industrial market, because it has good compatibility with natural fibers allowing wider application of fiber natural and glycerol, producing semicrystalline composites and with good thermal properties. (author)

  8. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Glycogen synthesis from lactate in a chronically active muscle

    International Nuclear Information System (INIS)

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-01-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [ 14 C]lactate intraperitoneal injection leads to preferential 14 C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [ 14 C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers

  10. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  11. [Changes in cell respiration of postural muscle fibers under long-term gravitational unloading after dietary succinate supplementation].

    Science.gov (United States)

    Ogneva, I V; Veselova, O M; Larina, I M

    2011-01-01

    The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.

  12. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats

    Science.gov (United States)

    Hao, Yanlei; Jackson, Janna R.; Wang, Yan; Edens, Neile; Pereira, Suzette L.

    2011-01-01

    β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling. PMID:21697520

  13. Borderlines between sarcopenia and mild late-onset muscle disease

    Directory of Open Access Journals (Sweden)

    Johanna ePalmio

    2014-09-01

    Full Text Available Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat is seen on muscle imaging. However, the degree of these changes vary greatly between individuals and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very late age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle MRI is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly.

  14. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    Science.gov (United States)

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. The meat quality, muscle fiber characteristics and fatty acid profile in Jinjiang and F1 Simmental×Jinjiang yellow cattle.

    Science.gov (United States)

    Zheng, Yue; Wang, Shizhi; Yan, Peishi

    2018-02-01

    This study compared the meat quality, muscle fiber characteristics, and fatty acids between Jinjiang yellow cattle (JJ) and F1 Simmental×Jinjiang yellow cattle (SJ) which were offered the same diet. Six JJ and six SJ individuals were reared and fattened from 10 to 26 months of age. After feeding, the highrib (HR), ribeye (RB), and tenderloin (TL) samples were taken from the carcass for meat quality evaluations. The results showed that growth performance of SJ was higher than that of JJ (higher live weight and average daily gain), and the hot carcass weight of SJ was higher than that of JJ (pJJ was higher than that of SJ in TL (pJJ in TL and RB (pJJ in TL and RB (pJJ (pJJ in HR and TL (pJJ had higher saturated fatty acid (SFA) composition; the sum of monounsaturated fatty acid and polyunsaturated fatty acid (PUFA) were lower in the muscle of JJ; the mRNA expressions of myosin heavy chain-I (MyHC-I) and MyHC-IIa were higher in SJ compared to JJ in muscle of HR and RB; the mRNA expressions of MyHC-IIx and MyHC-IIb were lower in SJ compared to JJ in HR and RB (pJJ; the muscle of SJ had higher a* and SFA; SJ had lower cooking loss, shear force and PUFA compared to the muscle of JJ. In addition, the type and development characteristics of the muscle fiber had some difference between SJ and JJ; these might be factors which caused the differences in meat quality and fatty acid profile between SJ and JJ.

  16. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  17. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats.

    Science.gov (United States)

    Mizunoya, Wataru; Miyahara, Hideo; Okamoto, Shinpei; Akahoshi, Mariko; Suzuki, Takahiro; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Komiya, Yusuke; Lan, Mu; Waga, Toshiaki; Iwata, Akira; Nakazato, Koichi; Ikeuchi, Yoshihide; Anderson, Judy E; Tatsumi, Ryuichi

    2015-01-01

    A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P strategy for application in animal sciences, and human sports and age-related health sciences.

  18. Wet-Spun Biofiber for Torsional Artificial Muscles.

    Science.gov (United States)

    Mirabedini, Azadeh; Aziz, Shazed; Spinks, Geoffrey M; Foroughi, Javad

    2017-12-01

    The demands for new types of artificial muscles continue to grow and novel approaches are being enabled by the advent of new materials and novel fabrication strategies. Self-powered actuators have attracted significant attention due to their ability to be driven by elements in the ambient environment such as moisture. In this study, we demonstrate the use of twisted and coiled wet-spun hygroscopic chitosan fibers to achieve a novel torsional artificial muscle. The coiled fibers exhibited significant torsional actuation where the free end of the coiled fiber rotated up to 1155 degrees per mm of coil length when hydrated. This value is 96%, 362%, and 2210% higher than twisted graphene fiber, carbon nanotube torsional actuators, and coiled nylon muscles, respectively. A model based on a single helix was used to evaluate the torsional actuation behavior of these coiled chitosan fibers.

  19. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  20. Mechanical Defects of Muscle Fibers with Myosin Light Chain Mutants that Cause Cardiomyopathy

    OpenAIRE

    Roopnarine, Osha

    2003-01-01

    Familial hypertrophic cardiomyopathy is a disease caused by single mutations in several sarcomeric proteins, including the human myosin ventricular regulatory light chain (vRLC). The effects of four of these mutations (A13T, F18L, E22K, and P95A) in vRLC on force generation were determined as a function of Ca2+ concentration. The endogenous RLC was removed from skinned rabbit psoas muscle fibers, and replaced with either rat wildtype vRLC or recombinant rat vRLC (G13T, F18L, E22K, and P95A). ...

  1. Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers.

    Science.gov (United States)

    Arata, T

    1990-07-20

    Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.

  2. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have...... typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture...

  3. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  4. Cracking oils, etc. , glycerine, oil and coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Mann, W

    1919-02-06

    In the cracking of hydrocarbon oils, the thermal decomposition of fats to obtain glycerine, the production of oil and coal gas, and the destructive distillation of coal, peat, shale, etc., the lower molecular weight products are separated, while the higher molecular weight products are separated, while the higher molecular weight products and undecomposed substances are retained for further exposure to the decomposition conditions, by interposing one or more porous septa between the decomposition chamber and the condenser or receiver. The decomposition conditions may be maintained up to the porous septum; but it is preferable to place the porous septum in a separate chamber inside or outside the decomposition vessel; and a plurality of decomposition chambers may be used in series or parallel.

  5. Skeletal muscle weakness in osteogenesis imperfecta mice.

    Science.gov (United States)

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  7. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    OpenAIRE

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  8. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats. The 2nd report

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Xiao Dong Wang; Nagaoka, Shunji; Nojima, Kumie

    2004-01-01

    We examined the effects of acute exposure of heavy ion on the properties of motoneurons and their innervating muscle fibers. A 40 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in five 8-week-old male rats. Five male rats served as controls. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of motoneurons innervating the soleus and plantaris muscles were analyzed. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no changes in the number of motoneurons between the control and heavy-ion-exposed rats. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in motoneurons of the heavy-ion-exposed rats. There were no changes in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the muscles between the control and heavy-ion-exposed rats. It is concluded that a 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there were no influences on the properties of muscle fibers which they innervate. (author)

  9. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners.

    Science.gov (United States)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens

    2018-02-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.

    Science.gov (United States)

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2015-02-01

    The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at skeletal muscle contraction (Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter (Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.

  11. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  12. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    Science.gov (United States)

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  13. Analytical control of an esterification batch reaction between glycerine and fatty acids by near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Blanco, Marcelo; Beneyto, Rafael; Castillo, Miguel; Porcel, Marta

    2004-01-01

    Near-infrared spectroscopy was used to control an esterification reaction between glycerine and middle- or long-chain fatty acids performed in a laboratory-scale reactor. The process involves the initial formation of monoglycerides, which is followed by that of di- and triglycerides as well as transesterification. Establishing the end point of the process is critical with a view to ensuring that the end product will have the composition required for its intended use. PLS calibration was applied to industrial and laboratory-scale batch samples, and laboratory samples were additionally used to extend calibration ranges and avoid correlation between the concentration of the batch samples. In this way, PLS calibration models for glycerine, fatty acids, water, and mono-, di- and triglycerides, were constructed. The proposed method allows the reaction to be monitored in real time, thereby avoiding long analysis times, excessive reagent consumption and the obtainment of out-of-specification products

  14. Photothermal imaging of skeletal muscle mitochondria.

    Science.gov (United States)

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-06-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.

  15. Effects of concurrent training on oxidative capacity in rat gastrocnemius muscle

    NARCIS (Netherlands)

    Furrer, R.; Bravenboer, N.; Kos, D.; Lips, P.; de Haan, A.; Jaspers, R.T.

    2013-01-01

    PURPOSE: Training for improvement of oxidative capacity of muscle fibers may be attenuated when concurrently training for peak power. However, because of fiber type-specific recruitment, such attenuation may only account for high-oxidative muscle fibers. Here, we investigate the effects of

  16. Embryonic muscle development of Convoluta pulchra (Turbellaria-acoelomorpha, platyhelminthes).

    Science.gov (United States)

    Ladurner, P; Rieger, R

    2000-06-15

    We studied the embryonic development of body-wall musculature in the acoel turbellarian Convoluta pulchra by fluorescence microscopy using phalloidin-bound stains for F-actin. During stage 1, which we define as development prior to 50% of the time between egg-laying and hatching, actin was visible only in zonulae adhaerentes of epidermal cells. Subsequent development of muscle occurred in two distinct phases: first, formation of an orthogonal grid of early muscles and, second, differentiation of other myoblasts upon this grid. The first elements of the primary orthogonal muscle grid appeared as short, isolated, circular muscle fibers (stage 2; 50% developmental time), which eventually elongated to completely encircle the embryo (stage 3; at 60% of total developmental time). The first primary longitudinal fibers appeared later, along with some new primary circular fibers, by 60-63% of total developmental time (stage 4). From 65 to 100% of total developmental time (stages 5 to 7), secondary fibers, using primary fibers as templates, arose; the number of circular and longitudinal muscles thus increased, and at the same time parenchymal muscles began appearing. Hatchlings (stage 8) possessed about 25 circular and 30 longitudinal muscles as well as strong parenchymal muscles. The remarkable feature of the body wall of many adult acoel flatworms is that longitudinal muscles bend medially and cross each other behind the level of the mouth. We found that this development starts shortly after the appearance of the ventral mouth opening within the body wall muscle grid. The adult organization of the body-wall musculature consists of a grid of several hundred longitudinal and circular fibers and a few diagonal muscles. Musculature of the reproductive organs developed after hatching. Thus, extensive myogenesis must occur also during postembryonic development. Comparison between the turbellarians and the annelids suggests that formation of a primary orthogonal muscle grid and

  17. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  18. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  19. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    OpenAIRE

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. T...

  20. Physiological aspects of the subcellular localization of glycogen in skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Ørtenblad, Niels

    2013-01-01

    Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10-45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated...... investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural......, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility...

  1. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis.

    Directory of Open Access Journals (Sweden)

    Chelsi J Snow

    2008-10-01

    Full Text Available Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ. In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininbeta1 or laminingamma1 contrast with later dystrophic phenotypes in lamininalpha2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.

  2. Ultrastructural muscle and neuro-muscular junction alterations in polymyositis

    Directory of Open Access Journals (Sweden)

    L. L. Babakova

    2012-01-01

    Full Text Available Ultrastructural analysis of 7 biopsies from m.palmaris longus and m.deltoideus in patients with confirmed polymyositis revealed alterationand degeneration of muscle fibers and anomalies of neuro-muscular junction (NMJ. The NMJ abnormalities and following denervation ofmuscle fibers in polymyositis start with subsynaptic damages. The occurance of regeneration features in muscle fibers at any stage is characteristic for PM.

  3. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy

    NARCIS (Netherlands)

    Korfage, J.A.M.; Wang, J.; Lie, S.H.J.T.J.; Langenbach, G.E.J.

    2012-01-01

    Introduction: Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Methods: Three months after the injection of botulinum

  4. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  5. Resistance to rocuronium of rat diaphragm as compared with limb muscles.

    Science.gov (United States)

    Huang, Lina; Yang, Meirong; Chen, Lianhua; Li, Shitong

    2014-12-01

    Skeletal muscles are composed of different muscle fiber types. We investigated the different potency to rocuronium among diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL) in vitro as well as to investigate the differences of acetylcholine receptors (AChRs) among these three typical kinds of muscles. The isolated left hemidiaphragm nerve-muscle preparations, the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations were established to evaluate the potency to rocuronium. Concentration-response curves were constructed and the values of IC50 were obtained. The density of AChRs at the end plate and the number of AChRs per unit fiber cross fiber area (CSA), AChR affinity for muscle relaxants were evaluated. The concentration-twitch tension curves of rocuronium were significantly different. The curves demonstrated a shift to the right of the DIA compared with the EDL and SOL (P  0.05). IC50 was significantly largest in DIA, second largest in SOL, and smallest in EDL (P rocuronium of DIA compared with EDL and SOL was verified. The DIA was characterized by the largest number of AChRs per unit fiber CSA and the lowest affinity of the AChRs. Although compared with SOL, EDL was proved to have larger number of AChRs per unit fiber CSA and the lower affinity of the AChRs. These findings may be the mechanisms of different potency to rocuronium in DIA, EDL, and SOL. The results of the study could help to explain the relationship between different composition of muscle fibers and the potency to muscle relaxants. Extra caution should be taken in clinical practice when monitoring muscle relaxation in anesthetic management using different muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    Energy Technology Data Exchange (ETDEWEB)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. (Montreal Neurological Institute, McGill University, Quebec (Canada))

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  7. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  8. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. Copyright © 2012 Wiley Periodicals, Inc.

  9. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  10. Preslaughter Transport Effect on Broiler Meat Quality and Post-mortem Glycolysis Metabolism of Muscles with Different Fiber Types.

    Science.gov (United States)

    Wang, Xiaofei; Li, Jiaolong; Cong, Jiahui; Chen, Xiangxing; Zhu, Xudong; Zhang, Lin; Gao, Feng; Zhou, Guanghong

    2017-11-29

    Preslaughter transport has been reported to decrease the quality of breast meat but not thigh meat of broilers. However, tissue-specific difference in glycogen metabolism between breast and thigh muscles of transported broilers has not been well studied. We thus investigated the differences in meat quality, adenosine phosphates, glycolysis, and bound key enzymes associated with glycolysis metabolism in skeletal muscles with different fiber types of preslaughter transported broilers during summer. Compared to a 0.5 h transport, a 3 h transport during summer decreased ATP content, increased AMP content and AMP/ATP ratio, and accelerated glycolysis metabolism via the upregulation of glycogen phosphorylase expression accompanied by increased activities of bound glycolytic enzymes (hexokinase, pyruvate kinase, and lactate dehydrogenase) in pectoralis major muscle, which subsequently increased the likelihood of pale, soft, and exudative-like breast meat. On the other hand, a 3 h transport induced only a moderate glycolysis metabolism in tibialis anterior muscle, which did not cause any noticeable changes in the quality traits of the thigh meat.

  11. Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; Sinkjær, Thomas

    2005-01-01

    The aim of this study was to investigate the contribution of feedback from large-diameter sensory fibers to the adaptation of soleus muscle activity after small ankle trajectory modifications during human walking. Small-amplitude and slow-velocity ankle dorsiflexion enhancements and reductions were...... applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated...... duration (P ankle dorsiflexion was, respectively, enhanced or reduced. In the patients, the soleus EMG increased during the dorsiflexion...

  12. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  13. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  14. Skeletal muscle cellularity and glycogen distribution in the hypermuscular Compact mice

    Directory of Open Access Journals (Sweden)

    T. Kocsis

    2014-07-01

    Full Text Available Normal 0 21 false false false HU X-NONE X-NONE MicrosoftInternetExplorer4 The TGF-beta member myostatin acts as a negative regulator of skeletal muscle mass. The Compact mice were selected for high protein content and hypermuscularity, and carry a naturally occurring 12-bp deletion in the propeptide region of the myostatin precursor. We aimed to investigate the cellular characteristics and the glycogen distribution of the Compact tibialis anterior (TA muscle by quantitative histochemistry and spectrophotometry. We have found that the deficiency in myostatin resulted in significantly increased weight of the investigated hindlimb muscles compared to wild type. Although the average glycogen content of the individual fibers kept unchanged, the total amount of glycogen in the Compact TA muscle increased two-fold, which can be explained by the presence of more fibers in Compact compared to wild type muscle. Moreover, the ratio of the most glycolytic IIB fibers significantly increased in the Compact TA muscle, of which glycogen content was the highest among the fast fibers. In summary, myostatin deficiency caused elevated amount of glycogen in the TA muscle but did not increase the glycogen content of the individual fibers despite the marked glycolytic shift observed in Compact mice.

  15. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health

    Science.gov (United States)

    Brown, Laura D.

    2014-01-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817

  16. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel

    Science.gov (United States)

    Maghami, M.; Sadrameli, S. M.; Shamloo, M.

    2018-02-01

    Biodiesel is an environmental friendly alternative liquid transportation fuel that can be used in diesel engines without major modifications. The scope of this research work is to produce biodiesel from waste fish oil and its purification from the byproducts using a ceramic membrane. Transesterification of waste fish oil was applied for the biodiesel production using methanol in the presence of KOH as a catalyst. Effect of catalyst weight percent, temperature and methanol to oil molar ratio (MR) on the biodiesel yield have been studied and the results show that highest methyl ester yield of 79.2% has been obtained at 60 °C, MR: 6 and 1% KOH. The produced biodiesel purified by a ceramic membrane. Membrane flux and glycerin removal at different operating conditions such as temperature, trans-membrane pressures and cross flow velocities have been measured. Glycerin purity by membrane method is 99.97% by weight at the optimum condition. The highest membrane flux occurred at 50 °C temperature, 1 bar pressure and 3 m/s velocity.

  17. Anaerobic co-digestion cassava wastewater and crude glycerin for removal of COD and solid; Co-digestao anaerobica de manipueira e glicerina bruta para remocao de DQO e solidos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jefferson L.G.; Guerra Junior, Joao B. [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], E-mail: j.lg11@yahoo.com.br; Gomes, Simone D.; Mallmann, Larissa S. [Universidade Estadual do Oeste do Parana (CCET/PGEAGRI/UNIOESTE), Cascavel, PR (Brazil). Dept. de Recursos Hidricos e Saneamento Ambiental

    2012-11-01

    To be discarded into the environment, cassava wastewater, generated during the processing of the cassava root, needs to be dealt with trying to reduce its organic load and total solids, harmful to water bodies. As for crude glycerin, a byproduct of biodiesel production, need alternatives to its destination, because the cost to its purification is often not feasible, preventing its use by pharmaceutical and food industries. In this study we chose to anaerobic digestion to treat manipueira assessing the behavior of the reactor with the addition of glycerin. The reactor was constructed of PVC with 60cm long, 20cm in diameter and a volume of 8.38 L, and HRT was 5 days. Three treatments were applied: T1, only manipueira, T2 with 0.25% glycerol and T3, with 0.50%. The three treatments showed a great reduction of organic load (above 90%) and higher with the addition of 0.25% crude glycerine. The highest mean removal of solids and total volatile solids occurred in treatment with 0.50% crude glycerine, being 84.18% and 91.41% respectively. (author)

  18. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  19. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  20. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    Science.gov (United States)

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  1. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  2. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    Science.gov (United States)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  3. Effects of glycerol on the metabolism of broilers fed increasing glycerine levels

    OpenAIRE

    Romano,GG; Menten,JFM; Freitas,LW; Lima,MB; Pereira,R; Zavarize,KC; Dias,CTS

    2014-01-01

    This study evaluated the metabolic response of broilers fed diets containing increasing crude glycerine levels in two bioassays. Birds were house in metabolic cages, and were distributed according to a completely randomized experimental design with five treatments of 4 replicates each (1st assay: 5 birds/ cage; 2nd assay: 1-20 days = 8 birds/ cage, and 21-42 days = 4 birds/cage). Treatments consisted of a control diet based on corn and soybean meal, and four other diets containing 2.5%, 5.0%,...

  4. Lack of the serum- and glucocorticoid-inducible kinase SGK1 improves muscle force characteristics and attenuates fibrosis in dystrophic mdx mouse muscle

    DEFF Research Database (Denmark)

    Steinberger, Martin; Föller, Michael; Vogelgesang, Silke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a human genetic disease characterized by fibrosis and severe muscle weakness. Currently, there is no effective treatment available to prevent progressive fibrosis in skeletal muscles. The serum- and glucocorticoid-inducible kinase SGK1 regulates a variety...... of physiological functions and participates in fibrosis stimulation. Here, we investigated whether SGK1 influences structure, function and/or fibrosis of the muscles from the mdx mouse, an animal model for DMD. As expected, mdx muscles showed the typical pathological features of muscular dystrophy including fiber...... size variations, central nuclei of muscle fibers, fibrosis in the diaphragm, and force reduction by 30–50 %. Muscles from sgk1 -/- mice were histologically overall intact and specific force was only slightly reduced compared to wild-type muscles. Surprisingly, soleus and diaphragm muscles of mdx/sgk1...

  5. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  6. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats (the 3rd report)

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Wang, Xiao Dong; Nagaoka, Shunji; Nojima, Kumie

    2005-01-01

    The effects of acute exposure of heavy ion on the properties of spinal motoneurons and their innervating muscle fibers were investigated. A 15, 20, 40, 50, or 70 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in 8-week-old male rats. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of spinal motoneurons innervating the soleus and plantaris muscles were analyzed by a computer-assisted image processing system. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no differences in the number of spinal motoneurons innervating the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in spinal motoneurons of the heavy-ion-exposed rats at the dose levels of 40, 50, and 70 Gy. There were no differences in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. It is concluded that more than 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there are no influences on the properties of muscle fibers which they innervate. (author)

  7. Effects of botulinum toxin type A on healing of injured skeletal muscles

    Directory of Open Access Journals (Sweden)

    Shokravi Ramin

    2007-01-01

    Full Text Available Objectives: (1 Evaluation of microscopic healing of skeletal muscle fibers after injuries, especially the arrangement of new muscle fibers and scar tissue diameter in the injury region. (2 Evaluation of alterations in microscopy of the healing procedure within skeletal muscles after injury following botulinum toxin type A (BTX -A induced muscle immobilization. Materials and Methods: The study was done on 12 white lab rabbits of either sex in a 6-month period. Results: The immobilization of skeletal muscle fibers as a result of the use of BTX-A after injury caused a qualitative increase in fibrous tissue formation in the area of injury, and the BTX-A-induced immobilization for a period of 6 months led to muscle atrophy.

  8. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    Science.gov (United States)

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (PGear ratio decreased with increasing force in young (Pgearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.

  9. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    Full Text Available BACKGROUND: Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. METHODOLOGY/PRINCIPAL FINDINGS: We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1 and fast-glycolytic (type 2B fibers through transcriptome analysis at the single fiber level (microgenomics. Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. CONCLUSIONS/SIGNIFICANCE: As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological conditions.

  10. Obtaining polyester from glycerin for synthesis of polyurethanes

    International Nuclear Information System (INIS)

    Breves, Rodolfo A.; Ghesti, Grace F.; Sales, Maria J.A.

    2014-01-01

    The use of renewable resources has been increasing, due to the development of materials that have viable applications that are environmentally friendly. In this paper, a polyester was synthesized from glycerin, with the addition of adipic acid in a molar ratio of 1: 1.5, with dilauryl tin catalyst, which was added in proportions of 1 to 3% obtained PUs from castor oil (Ricinus communis) and MDI (diphenyl methane diisocyanate). The materials were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance "1H NMR, thermogravimetry (TG) and derivative thermogravimetry (DTG). The reaction for obtaining the polyester was confirmed by FTIR, the absorption band between 1708-1730 cm"-"1 and "1H NMR, in the region 1.4 to 1.8 ppm and 2.2 to 2.6 ppm. The thermal decomposition of polyester occurred with temperature above 300 ° C. PUs showed similar thermal stability. (author)

  11. Anatomy and histology of the frontalis muscle.

    Science.gov (United States)

    Costin, Bryan R; Plesec, Thomas P; Sakolsatayadorn, Natta; Rubinstein, Tal J; McBride, Jennifer M; Perry, Julian D

    2015-01-01

    To determine the gross and histologic configurations of the medial and lateral frontalis muscle. After making a midcoronal incision and bluntly dissecting to the orbital rim, the frontalis muscle was marked and measured. A protractor was used to measure the frontalis-orbicularis angle (FOA) and, when present, the angle of central bifurcation (AOB). Three strips of full-thickness forehead soft tissue measuring 0.5 cm × 8 cm were excised 3, 4.5, and 6 cm above the supraorbital notch and analyzed histologically for the presence of skeletal muscle fibers. Data were analyzed using 2-sample t tests, paired t tests, Pearson correlations, and mixed effect models. A p value of ≤ 0.05 was considered statistically significant. Sixty-four hemifaces of 32 cadavers (16 males) were dissected. All specimens were Caucasian. The average age was 78.2 years (range, 56-102 years). The average FOA was 88.7° (13.0°), and the average AOB was 90.0° (26.4°). A visible midline bifurcation occurred in 28 of 32 subjects (88%) at an average height of 4.7 cm (range, 2.4-7.2 cm) superior to the supraorbital notch. Continuous skeletal muscle fibers were present within the midline bifurcation histologically in 89%, 75%, and 11% of specimens 3.5, 5.0, and 6.5 cm above the supraorbital notch, respectively. In 46% of individuals, skeletal muscle fibers were continuously present microscopically within the gross bifurcation. While a medial frontalis muscle bifurcation occurs grossly in most senescent Caucasians, muscle fibers exist microscopically within this zone in nearly half of individuals.

  12. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  13. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c......EDS patients (fibronectin and MMP-2). DISCUSSION: The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared to cEDS patients....

  14. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia.

    NARCIS (Netherlands)

    Wust, R.C.; Jaspers, R.T.; Heyst, A.F.J. van; Hopman, M.T.E.; Hoofd, L.J.C.; Laarse, W.J. van der; Degens, H.

    2009-01-01

    Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same

  15. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  16. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  17. Muscle activity pattern dependent pain development and alleviation

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-01-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity...... do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms...... during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain...

  18. Muscle glycogen depletion and lactate concentration during downhill skiing.

    Science.gov (United States)

    Tesch, P; Larsson, L; Eriksson, A; Karlsson, J

    1978-01-01

    Skilled and unskilled skiers were studied during downhill skiing. Muscle glycogen and muscle lactate concentrations in the vastus lateralis muscle were determined following different skiing conditions. Heavy glycogen utilization was found in the groups studied during a day of skiing. The skilled and unskilled skiers differed with respect to selective glycogen depletion pattern and the skilled subjects demonstrated greater depletion of slow twitch fibers than the unskilled subjects. Lactate concentrations ranged from approximately 5-26 mmoles x kg-1 wet muscle after approximately one minute of maximal skiing. This wide range was not found to be related to the level of skiing proficiency. However, skiing with varyingly angled boots, resulting in different knee angles, did affect lactate concentration. Lactate concentration was positively correlated to individual muscle fiber composition expressed as a percent of fast twitch fibers. The results suggest more pronounced involvement of aerobic energy metabolism in skilled skiers than in unskilled skiers.

  19. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.

    Science.gov (United States)

    Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R

    2009-09-01

    Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.

  20. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Flotats, Xavier; Fernández, Belén

    2017-03-01

    The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490days, with a hydraulic retention time of 21-33days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2kg COD m -3 d -1 . The best methane production rate (0.64Nm 3 CH4 m -3 d -1 ) represented an increment of 2.9-fold the initial one (0.22Nm 3 CH4 m -3 d -1 with pig manure solely). It was attained with a ternary mixture composed, in terms of inlet volatile solids, by 35% pig slurry, 47% pasteurized slaughterhouse waste and 18% glycerine. This blend was obtained through a stepwise C/N adjustment: this strategy led to a more balanced biodegradation due to unstressed bacterial populations through the performance, showed by the VFA-related indicators. Besides this, an improved methane yield (+153%) and an organic matter removal efficiency (+83%), regarding the digestion of solely pig slurry, were attained when the C/N ratio was adjusted to 10.3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  2. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  3. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  4. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Science.gov (United States)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  5. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    Science.gov (United States)

    Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank

    2015-01-01

    Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087

  6. Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles.

    Science.gov (United States)

    Lee, Jae Ah; Li, Na; Haines, Carter S; Kim, Keon Jung; Lepró, Xavier; Ovalle-Robles, Raquel; Kim, Seon Jeong; Baughman, Ray H

    2017-08-01

    While artificial muscle yarns and fibers are potentially important for many applications, the combination of large strokes, high gravimetric work capacities, short cycle times, and high efficiencies are not realized for these fibers. This paper demonstrates here electrochemically powered carbon nanotube yarn muscles that provide tensile contraction as high as 16.5%, which is 12.7 times higher than previously obtained. These electrochemical muscles can deliver a contractile energy conversion efficiency of 5.4%, which is 4.1 times higher than reported for any organic-material-based artificial muscle. All-solid-state parallel muscles and braided muscles, which do not require a liquid electrolyte, provide tensile contractions of 11.6% and 5%, respectively. These artificial muscles might eventually be deployed for a host of applications, from robotics to perhaps even implantable medical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  8. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    Science.gov (United States)

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  9. Ontogeny of muscle bioenergetics in Adelie penguin chicks (Pygoscelis adeliae).

    Science.gov (United States)

    Fongy, Anaïs; Romestaing, Caroline; Blanc, Coralie; Lacoste-Garanger, Nicolas; Rouanet, Jean-Louis; Raccurt, Mireille; Duchamp, Claude

    2013-11-01

    The ontogeny of pectoralis muscle bioenergetics was studied in growing Adélie penguin chicks during the first month after hatching and compared with adults using permeabilized fibers and isolated mitochondria. With pyruvate-malate-succinate or palmitoyl-carnitine as substrates, permeabilized fiber respiration markedly increased during chick growth (3-fold) and further rose in adults (1.4-fold). Several markers of muscle fiber oxidative activity (cytochrome oxidase, citrate synthase, hydroxyl-acyl-CoA dehydrogenase) increased 6- to 19-fold with age together with large rises in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial content (3- to 5-fold) and oxidative activities (1.5- to 2.4-fold). The proportion of IMF relative to SS mitochondria increased with chick age but markedly dropped in adults. Differences in oxidative activity between mitochondrial fractions were reduced in adults compared with hatched chicks. Extrapolation of mitochondrial to muscle respirations revealed similar figures with isolated mitochondria and permeabilized fibers with carbohydrate-derived but not with lipid-derived substrates, suggesting diffusion limitations of lipid substrates with permeabilized fibers. Two immunoreactive fusion proteins, mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), were detected by Western blots on mitochondrial extracts and their relative abundance increased with age. Muscle fiber respiration was positively related with Mfn2 and OPA1 relative abundance. Present data showed by two complementary techniques large ontogenic increases in muscle oxidative activity that may enable birds to face thermal emancipation and growth in childhood and marine life in adulthood. The concomitant rise in mitochondrial fusion protein abundance suggests a role of mitochondrial networks in the skeletal muscle processes of bioenergetics that enable penguins to overcome harsh environmental constraints.

  10. Lactate Accumulation in Muscle and Blood during Submaximal Exercise

    Science.gov (United States)

    1981-09-21

    exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow

  11. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    Directory of Open Access Journals (Sweden)

    Stefanie eKnappe

    2015-08-01

    Full Text Available Muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 and replace and repair damaged fibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of damaged muscle. We found that both small, focal injuries and large injuries affecting the entire myotome lead to the expression of myf5 and myogenin. Their expression was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post fertilization (dpf. Following a small injury, we observed that GFP+ cells responded by extending processes, before migrating to the injured fibers. Furthermore, these cells responded more rapidly to injury in 4dpf larvae compared to 7dpf. Interestingly, we did not see GFP+ fibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to fiber formation in this injury context. On the contrary, numerous GFP+ fibers could be observed after a large single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4dpf than 7dpf, This indicates intriguing developmental differences, even at these relatively early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during muscle regeneration, which may reflect the extent of muscle damage.

  12. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2008-04-01

    PT, Zhang, CY, Wu, Z, Boss, O et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow - twitch muscle fibres . Nature...Calcineurin and CaMK signaling pathways in fast -to- slow fiber type transformation of cultured mouse skeletal muscle fibers Xiaodong Mu, PhD The John...Surgery”). 3. Ectopic bone formation in fast and slow skeletal muscle (Meszaros L., “Influence of vascularity on muscle regeneration, fibrosis and

  13. The Effect of Soursop (Announa Muricata L. Leaves Powder on Diameter of Muscle Fiber, Lipid Cell, Body Weight Gain and Carcass Percentage of Tegal Duck

    Directory of Open Access Journals (Sweden)

    Elly Tugiyanti

    2017-09-01

    Full Text Available The present study investigated the supplementation of soursop leaves powder (Annona muricata L. on body weight gain and carcass percentage of male Tegal duck. Research was conducted from 29 November 2015 to 3 January 2016 in duck cage in Sokaraja Kulon, Purwokerto. One hundred male Tegal duck were fed basal feed consisted of 30% corn, 7% soy bean meal, 6,1% vegetable oil, 17% poultry meat meal, 38,2% ricebran, 0,1% L-lysin HCL, 0,3% DL-methionin, 0,2% topmix, 0,1% NaCl, and 1% CaCO3. Experimental research used completely randomized design with treatments composed of basal feed plus 0, 5, 10, and 15% soursop leaves meal, each with 5 replicates. The observed variables were diameter of muscle fiber, lipid cell, body weight gain, and carcass percentage. The obtained data were subject to analysis of variance followed by orthogonal polynomial test. Result showed that treatments affected non significantly (P>0.05 to the diameter of chest muscle fiber, carcass percentage and carcass but significantly affected (P<0,05 body weight gain with equation Y  =  427,74  - 67,10 X  + 2,27 X2..  Conclusively, supplementation of soursop leaves meal (Annona muricata L. in feed has not been able to increase the muscle fiber diameter of intermuscular lipid cell, carcass percentage and carcass parts. Excessive supplement even lowers the body weight gain of male Tegal duck.

  14. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers.

    Science.gov (United States)

    Georgiev, Tihomir; Zapiec, Bolek; Förderer, Moritz; Fink, Rainer H A; Vogel, Martin

    2015-12-01

    Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    Science.gov (United States)

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  16. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  17. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    Science.gov (United States)

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p run in the training group (r = 0.61, p running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  18. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  19. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  20. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  1. Passive mechanical properties of rat abdominal wall muscles suggest an important role of the extracellular connective tissue matrix.

    Science.gov (United States)

    Brown, Stephen H M; Carr, John Austin; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    Abdominal wall muscles have a unique morphology suggesting a complex role in generating and transferring force to the spinal column. Studying passive mechanical properties of these muscles may provide insights into their ability to transfer force among structures. Biopsies from rectus abdominis (RA), external oblique (EO), internal oblique (IO), and transverse abdominis (TrA) were harvested from male Sprague-Dawley rats, and single muscle fibers and fiber bundles (4-8 fibers ensheathed in their connective tissue matrix) were isolated and mechanically stretched in a passive state. Slack sarcomere lengths were measured and elastic moduli were calculated from stress-strain data. Titin molecular mass was also measured from single muscle fibers. No significant differences were found among the four abdominal wall muscles in terms of slack sarcomere length or elastic modulus. Interestingly, across all four muscles, slack sarcomere lengths were quite long in individual muscle fibers (>2.4 µm), and demonstrated a significantly longer slack length in comparison to fiber bundles (p resistance to lengthening at long muscle lengths. Titin molecular mass was significantly less in TrA compared to each of the other three muscles (p < 0.0009), but this difference did not correspond to hypothesized differences in stiffness. Copyright © 2012 Orthopaedic Research Society.

  2. Muscle as an endocrine organ: focus on muscle-derived interleukin-6

    DEFF Research Database (Denmark)

    Febbraio, M.A.; Pedersen, Bente Klarlund

    2008-01-01

    Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent...... period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease...

  3. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  4. Bones, Muscles, and Joints: The Musculoskeletal System

    Science.gov (United States)

    ... Skeletal muscles are called striated (pronounced: STRY-ay-ted) because they are made up of fibers that ... blood through your body. When we smile and talk, muscles are helping us communicate, and when we ...

  5. A simple mixture to enhance muscle transmittance

    Science.gov (United States)

    Oliveira, Luís; Lage, Armindo; Clemente, Manuel Pais; Tuchin, Valery V.

    2008-06-01

    Skeletal muscle is a fibrous tissue composed by muscle fibers and interstitial fluid. Due to this constitution, the muscle presents a non uniform refractive index profile that origins strong light scattering. One way to improve tissue transmittance is to reduce this refractive index mismatch by immersing the muscle in an optical clearing agent. As a consequence of such immersion tissue also suffers dehydration. The study of the optical clearing effect created by a simple mixture composed by ethanol, glycerol and distilled water has proven its effectiveness according to the variations observed in the parameters under study. The effect was characterized in terms of its magnitude, time duration and histological variations. The applied treatment has created a small reduction of the global sample refractive index that is justified by the long time rehydration caused by water in the immersing solution. From the reduction in sample pH we could also identify the dehydration process created in the sample. The immersion treatment has originated fiber bundle contraction and a spread distribution of the muscle fiber bundles inside. New studies with the mixture used, or with other combinations of its constituents might be interesting to perform with the objective to develop new clinical procedures.

  6. Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM.

    Science.gov (United States)

    Müller, Monika C M; Schmidt-Rhaesa, Andreas

    2003-05-01

    In the present investigation the entire muscle system of the cyclorhagid kinorhynch Antygomonas sp. was three-dimensionally reconstructed from whole mounts by means of FITC-phalloidin labeling and confocal scanning microscopy. With this technique, which proved to be especially useful for microscopically small species, we wanted to reinvestigate and supplement the findings obtained by histological and electron microscopical methods. The organization of the major muscle systems can be summarized as follows: 1) All muscle fibers, apart from the intestinal ones, the spine, and the mouth cone muscles, show a cross-striated pattern; 2) Dorsal longitudinal muscle fibers as well as segmentally arranged dorsoventral fibers occur from segment III to XIII; 3) Diagonal muscle fibers are located laterally in segments III to X; 4) Two rings of circular fibers are present in segment II, forming the closing apparatus in Cyclorhagida. Further circular muscles are present in segment I, forming the mouth cone and the eversible introvert, and in the pharyngeal bulb. Copyright 2003 Wiley-Liss, Inc.

  7. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles.

    Science.gov (United States)

    Valaparla, Sunil K; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D

    2015-04-01

    Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy ([Formula: see text]) acquisition ([Formula: see text]), diffusion tensor imaging (DTI) with a [Formula: see text]-value of [Formula: see text], and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were [Formula: see text], [Formula: see text], and [Formula: see text] in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA ([Formula: see text]). Strong correlations were observed between total fat fractions from [Formula: see text] and Dixon MRI for VL ([Formula: see text]), SO ([Formula: see text]), and TA ([Formula: see text]). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): [Formula: see text] (LoA: [Formula: see text] to 0.69%) in VL, [Formula: see text] (LoA: [Formula: see text] to 1.33%) in SO, and [Formula: see text] (LoA: [Formula: see text] to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types.

  8. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging.

    Science.gov (United States)

    Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas

    2005-06-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.

  9. MR muscle tractography study on VX2 soft-tissue tumor in rabbits

    International Nuclear Information System (INIS)

    Li Yonggang; Guo Liang; Xie Daohai; Hu Chunhogn; Guo Maofeng; Zhu Wei; Chen Jianhua; Xing Jianming; Wang Renfa

    2008-01-01

    Objective: To determine if diffusion tensor imaging (DTI) and muscle fiber tracts of muscle disease are feasible. Methods: Twenty Newzealand white rabbits were implanted with 0.2 ml VX 2 tumor tissue suspension in the right proximal thighs. MRI and DTI were performed on these rabbits and DTI of muscle fiber tracts in the muscles around the lesions were reconstructed. The fractional anisotropy(FA) and volume ratio anisotropy(VrA) of the tumor and the normal muscle were analyzed. The correlation study between MRI and pathological findings was done. Results: All experimental animal models of rabbit VX 2 soft tissue tumors were successfully established. The difference of FA between the central parenchyma area and the necrosis area, the peripheral area of the tumor, the adjacent and contralateral normal muscle was statistically significant (P 0.05). The difference of FA and VrA between the adjacent and contralateral normal muscle was not statistically significant (P>0.05). The arrangement of normal muscle was regular on DTI of muscle tract. The muscle around the tumor lesions was infiltrated and destructed, which demonstrated irregular and interrupted muscle fiber on muscle tractography. Conclusion: DTI is advantageous to demonstrate the structure of soft tissue tumors and its border, which should be helpful in the structure and function research of muscle, as well as in the diagnosis of muscle diseases. (authors)

  10. Anaerobic co-digestion of crude glycerin and starch industry effluent Codigestão anaeróbia de glicerina bruta e efluente de fecularia

    Directory of Open Access Journals (Sweden)

    Andrea C. Larsen

    2013-04-01

    Full Text Available The Brazil's Biodiesel Production and Use Program introduces biodiesel in the Brazilian energy matrix, bringing along the perspective of a growth of the glycerin offer, co-product generated in the proportion of 10 kg for each 100 L of biodiesel. The aim of this study was to evaluate the addition of crude glycerin in the anaerobic digestion of cassava starch industry effluent (cassava wastewater, in a horizontal semi-continuous flow reactor of one phase in laboratory scale. It was used a reactor with a 8.77 L of useful volume, a medium support for corrugated conduit of polyvinyl chloride (PVC, temperature of 261 ºC, fed with cassava wastewater and glycerin, with hydraulic detention times of 4 and 5 days and increasing volumetric organic load of 3.05; 9.32; 14.83 and 13.59 g COD L-1 d-1, obtained with the addition of glycerin at 0; 2; 3 and 2% (v/v, respectively. The average removal efficiencies of TS and TVS were decreasing from the addition of glycerin to the cassava wastewater, averaging 81.19 to 55.58% for TS and 90.21 to 61.45% for TVS. The addition of glycerin at 2% increased the biogas production compared to the control treatment, reaching 1.979 L L-1 d-1. The biogas production as a function of the consumed COD was higher for the control treatment than for the treatments with addition of glycerin, which indicates lower conversion of organic matter into biogas.O Programa Nacional de Produção e Uso do Biodiesel introduziu o biodiesel na matriz energética brasileira, trazendo a perspectiva de aumento da oferta de glicerina, coproduto gerado na proporção de 10 kg para cada 100 L de biodiesel. O objetivo principal deste trabalho foi avaliar a adição de glicerina bruta na digestão anaeróbia de efluente de indústria de fécula de mandioca (manipueira, em reator de fluxo semicontínuo horizontal de uma fase, em escala de laboratório. Foi utilizado um reator com volume útil de 8,77 L, meio suporte em eletroduto corrugado de policloreto

  11. Cold-water immersion after training sessions: Effects on fiber type-specific adaptations in muscle K+ transport proteins to sprint-interval training in men.

    Science.gov (United States)

    Christiansen, Danny; Bishop, David John; Broatch, James R; Bangsbo, Jens; McKenna, Michael John; Murphy, Robyn M

    2018-05-10

    Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K + transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally-active men (24{plus minus}6 y, 79.5{plus minus}10.8 kg, 44.6{plus minus}5.8 mL∙kg -1 ∙min -1 ) completed six weeks of sprint-interval cycling either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10{degree sign}C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na + ,K + -ATPase isoforms (α 1-3 , β 1-3 ) and FXYD1, and after recovery treatments (+0h and +3h) on the first day of training to measure mRNA content. Training increased (ptraining (p>0.05). CWI after each session did not influence responses to training (p>0.05). However, α 2 mRNA increased after the first session in COLD (+0h, p0.05). In both conditions, α 1 and β 3 mRNA increased (+3h; p 0.05) after the first session. In summary, Na + ,K + -ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which for most isoforms do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K + regulation.

  12. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Science.gov (United States)

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  13. Viscoelasticity-based MR elastography of skeletal muscle

    International Nuclear Information System (INIS)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf; Braun, Juergen

    2010-01-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  14. Viscoelasticity-based MR elastography of skeletal muscle

    Science.gov (United States)

    Klatt, Dieter; Papazoglou, Sebastian; Braun, Jürgen; Sack, Ingolf

    2010-11-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  15. Viscoelasticity-based MR elastography of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf [Department of Radiology, Charite-Universitaetsmedizin, Berlin (Germany); Braun, Juergen, E-mail: ingolf.sack@charite.d [Institute of Medical Informatics, Charite-Universitaetsmedizin, Berlin (Germany)

    2010-11-07

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, {mu} and {alpha}, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, {mu} increased in all volunteers upon contraction from 2.68 {+-} 0.23 kPa to 3.87 {+-} 0.50 kPa. Also {alpha} varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation ({alpha} = 0.253 {+-} 0.009) to contraction ({alpha} = 0.270 {+-} 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  16. Mitochondrial specialization revealed by single muscle fiber proteomics

    DEFF Research Database (Denmark)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y

    2015-01-01

    to buffering the H2 O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mito-chondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2 O2...

  17. Skeletal muscle myofilament adaptations to aging, disease and disuse and their effects on whole muscle performance in older adult humans

    Directory of Open Access Journals (Sweden)

    Mark Stuart Miller

    2014-09-01

    Full Text Available Skeletal muscle contractile function declines with aging, disease and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment.

  18. Morphology and histochemistry of primary flight muscles in ...

    African Journals Online (AJOL)

    preincubation staining protocol for myosin ATPase. The primary flight muscles, serratus ventralis included type I, type IIa and type IIb fibers. Type I fibers were highly oxidative, as stained dark for NADHTR. Type IIa fibers exhibited relatively weak staining properties for NADH-TR and SDH, indicating an intermediate oxidative ...

  19. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Chowdhury, Shiplu Roy; Fauzi, M B

    2018-05-01

    The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability.

    Science.gov (United States)

    Ward, Samuel R; Kim, Choll W; Eng, Carolyn M; Gottschalk, Lionel J; Tomiya, Akihito; Garfin, Steven R; Lieber, Richard L

    2009-01-01

    Muscular instability is an important risk factor for lumbar spine injury and chronic low-back pain. Although the lumbar multifidus muscle is considered an important paraspinal muscle, its design features are not completely understood. The purpose of the present study was to determine the architectural properties, in vivo sarcomere length operating range, and passive mechanical properties of the human multifidus muscle. We hypothesized that its architecture would be characterized by short fibers and a large physiological cross-sectional area and that it would operate over a relatively wide range of sarcomere lengths but would have very stiff passive material properties. The lumbar spines of eight cadaver specimens were excised en bloc from T12 to the sacrum. Multifidus muscles were isolated from each vertebral level, permitting the architectural measurements of mass, sarcomere length, normalized fiber length, physiological cross-sectional area, and fiber length-to-muscle length ratio. To determine the sarcomere length operating range of the muscle, sarcomere lengths were measured from intraoperative biopsy specimens that were obtained with the spine in the flexed and extended positions. The material properties of single muscle fibers were obtained from passive stress-strain tests of excised biopsy specimens. The average muscle mass (and standard error) was 146 +/- 8.7 g, and the average sarcomere length was 2.27 +/- 0.06 microm, yielding an average normalized fiber length of 5.66 +/- 0.65 cm, an average physiological cross-sectional area of 23.9 +/- 3.0 cm(2), and an average fiber length-to-muscle length ratio of 0.21 +/- 0.03. Intraoperative sarcomere length measurements revealed that the muscle operates from 1.98 +/- 0.15 microm in extension to 2.70 +/- 0.11 microm in flexion. Passive mechanical data suggested that the material properties of the muscle are comparable with those of muscles of the arm or leg. The architectural design (a high cross-sectional area and

  1. Femoral quadriceps muscle injury: ultrasonography and magnetic resonance

    International Nuclear Information System (INIS)

    Rodriguez, P.; Manjon, P.; Revilla, Y.; Ciudad, E.; Buj, M.J.

    1998-01-01

    Femoral quadriceps muscle (FQM) injury is a common lesion amongathletes, especially soccer players. It is important to determine the extension of the lesion and whether or not here is accompanying hematoma. Ultrasound and magnetic resonance (MR) are excellent methods for studying these lesions. To assess the ultrasonographic and MR findings associated with FQM injury to aid in its diagnosis and the determination of its extension. We review the ultrasonographic studies in 9 patients with FQM injury and the corresponding MR studies in five of these patients. Ultrasound and MR reveal the rupture of the muscle fibers, the mass effect produced by the hematoma between the ruptured fiber and the changes in echogenicity and typical signal changes in the hematoma. Chronic cases presented fibrous scar tissue and intermittent mass effects mimicking those of tumors. Ultrasound and MR demonstrate that these masses correspond to normal contractions of the muscle fibers among the fibrous scar tissue, ruling our their tumor-related etiology. Although both ultrasound and MR are excellent methods and of similar value in the study of muscle injury, we consider the former to be more readily available and inexpensive. Moreover, the ultrasonographic study is more suitable for the study of the intermittent mass effect produced by abnormal contraction of chronically injured muscles. (Author) 5 refs

  2. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    Science.gov (United States)

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  3. Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses.

    Science.gov (United States)

    Kinoshita, Hideaki; Umezawa, Takashi; Omine, Yuya; Kasahara, Masaaki; Rodríguez-Vázquez, José Francisco; Murakami, Gen; Abe, Shinichi

    2013-03-01

    There is little or no information about the distribution of elastic fibers in the human fetal head. We examined this issue in 15 late-stage fetuses (crown-rump length, 220-320 mm) using aldehyde-fuchsin and elastica-Masson staining, and we used the arterial wall elastic laminae and external ear cartilages as positive staining controls. The posterior pharyngeal wall, as well as the ligaments connecting the laryngeal cartilages, contained abundant elastic fibers. In contrast with the sphenomandibular ligament and the temporomandibular joint disk, in which elastic fibers were partly present, the discomalleolar ligament and the fascial structures around the pterygoid muscles did not have any elastic fibers. In addition, the posterior marginal fascia of the prestyloid space did contain such fibers. Notably, in the middle ear, elastic fibers accumulated along the tendons of the tensor tympani and stapedius muscles and in the joint capsules of the ear ossicle articulations. Elastic fibers were not seen in any other muscle tendons or vertebral facet capsules in the head and neck. Despite being composed of smooth muscle, the orbitalis muscle did not contain any elastic fibers. The elastic fibers in the sphenomandibular ligament seemed to correspond to an intermediate step of development between Meckel's cartilage and the final ligament. Overall, there seemed to be a mini-version of elastic fiber distribution compared to that in adults and a different specific developmental pattern of connective tissues. The latter morphology might be a result of an adaptation to hypoxic conditions during development.

  4. Muscle activity pattern dependent pain development and alleviation.

    Science.gov (United States)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  5. Development of collagen fibers and vasculature of the fetal TMJ.

    Science.gov (United States)

    Yang, L; Wang, H; Wang, M; Ohta, Y; Suwa, F

    1992-10-01

    Using 12 human fetuses, histological development and changes in connective fiber structure and fine vascular patterns have been investigated in various fetal gestational stages by light and scanning electron microscopy. The main arterial supply of the articular disc was from the bilaminar region and pterygoideus lateralis muscle. The vascular network on the disc surface was related with fluid secretion. When the bilaminar region was compressed, it caused ischemia and fibrosis as the main pathological changes in TMJ derangement. A decrease in fluid from blood vessels might occur in TMJ degeneration. Collagen fibers in the disc passed mainly anteroposteriorly. In the anterior and posterior bands, muscular tendon fibers came from the pterygoideus lateralis muscle and superior stratum of the bilaminar region. In the posterior band three-dimensional structures of collagen fibers suitable for load bearing were observed. The compass network and process on the disc showed the normal structure that is formed gradually and has functions including dispersion, pressure bearing, friction-proofing and storage of the synovial fluid. Attachments of the disc were suitable for disc function. Large elastic fibers in the posterolateral part of the superior stratum of the bilaminar region may be antagonistic to the upper head of the pterygoideus lateralis muscle fibers passing medioanteriorly, indicating that this antagonism is available for disc function.

  6. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine

    OpenAIRE

    Rodríguez-Abalde, Ángela; Flotats Ripoll, Xavier; Fernández García, Belén

    2016-01-01

    The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490 days, with a hydraulic retention time of 21–33 days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2 kgCOD m-3 d-1. The best methane production rate (0.64 Nm3CH4 m-3 d-1) represented an ...

  7. Reincarnation in cultured muscle of mitochondrial abnormalities. Two patients with epilepsy and lactic acidosis.

    Science.gov (United States)

    Askanas, V; Engel, W K; Britton, D E; Adornato, B T; Eiben, R M

    1978-12-01

    Two unrelated 9-year-old boys failed to thrive from ages 5 and 4 years, and had focal cerebral seizures followed by transcent hemipareses. Histochemistry of their muscle biopsies showed "ragged-red" fibers, which ultrastructurally contained clusters of mitochondria having loss of crisp delineation of crista membranes and contained amorphous inclusion material and parallel-packed cristae and sometimes paracrystalline inclusions. In the patients' cultured muscles, similar mitochondrial abnormalities were present. 2,4-Dinitrophenol, introduced to the medium of cultures of normal human muscle, produced mitochondrial abnormalities similar to those of the patients', and the medium of the patients' muscle cultures worsened the mitochondrial abnormalities. This study, in demonstrating a mitochondrial defect reproducible in the cultured muscle fibers and, therefore, intrinsic to the ragged-red muscle fibers themselves, raises the possibility of a collateral mitochondrial defect in CNS cells as part of a multicellular mitochondriopathy.

  8. Qualitative-feed-restricted heavy swine: meat quality and morpho-histochemical characteristics of muscle fibers

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thomaz

    2009-10-01

    Full Text Available To evaluate the effect of different levels of qualitative feed restriction (0, 5, 10, 15 and 20% on pork quality and muscle morpho-histochemical characteristics, 60 castrated male swines were used. Ten animals were slaughtered at 89 kg BW. Other 50 pigs were fed experimental diets and slaughtered at 128 kg BW. Qualitative restriction increased pH45, and water holding capacity, and reduced the redness, yellowness and cholesterol concentrations of Longissimus lumborum. Quadratic tendency for oleic acid contents of loin and fiber cross-section area of Multifidus dorsi (P=0.08 were observed, with maximum point at 11-12% of restriction. No effect (P>0.1 on percentage of M. dorsi fibers SO, FG and FOG was found. The meat from 128-kg-BW pig showed numerically higher values for colorness, water losses, and lipid content and lower shear force than 89-kg-BW pigs. Qualitative feed restriction for finishing swines neither affected negatively pork quality nor modified the muscle fiber profile.Para avaliar o efeito de diferentes níveis de restrição alimentar qualitative (0, 5, 10, 15 e 20% sobre a qualidade da carne e características morfohistoquímicas musculares, sessenta suínos machos castrados foram utilizados. Dez suínos formaram o grupo abatido inicialmente (89 kg PV e outros 50 suínos foram alimentados com as dietas experimentais e foram abatidos aos 128 kg PV. A restrição qualitativa aumentou o pH45, e a capacidade de retenção de água, bem como reduziu a coloração vermelha e amarela, e o teor de colesterol do músculo Longissimus lumborum. Tendência quadrática para conteúdo de ácido oléico do lombo e da área de seção transversal do músculo Multifidus dorsi (P=0.08 foram observada, com ponto de máxima em11-12% de restrição. Não foi encontrado efeito (P>0.1 na porcentagem de fibras SO, FG e FOG no músculo Multifidus. A carne dos animais abatidos aos 128 kg PV apresentou valores numericamente maiores para coloração, perda de

  9. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    Science.gov (United States)

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is

  10. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    Science.gov (United States)

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  11. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    Science.gov (United States)

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  12. Muscle metabolism of professional athletes using 31P-spectroscopy

    International Nuclear Information System (INIS)

    Maeurer, J.; Soellner, O.; Ehrenstein, T.; Knollmann, F.; Vogl, T.J.; Felix, R.; Konstanczak, P.; Wolff, R.

    1999-01-01

    Purpose: The aim of the study was to examine muscle metabolism in athletes by 31 P-spectroscopy (MRS) and to evaluate to what degree the respective resonance spectrum correlates with the kind of muscle exercise. Material and Methods: Twelve runners and 12 young ice skaters were studied by 31 P-spectroscopy of the gastrocnemic medialis muscle and the vastus medialis muscle using a surface coil at 1.5 T. Results: Sprinters displayed a higher phosphocreatinine/inorganic phosphate (PCr/Pi) and PCr/β-ATP ratios than marathon runners. The respective parameters for middle distance runners were in between. Ice skaters could prospectively be divided into sprint- and long-distance runners by our results which correlated with the athletes' training performance. Conclusion: 31 P-spectroscopy can evaluate the distribution of muscle fiber types. Thus, the athlete's potential for sprint- or long-distance running can be determined. Additional studies will have to demonstrate to what extent training may change muscle fiber distribution. (orig.)

  13. Electrophysiologic and clinico-pathologic characteristics of statin-induced muscle injury

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulrazaq

    2015-08-01

    Conclusion: Atorvastatin increased average creatine kinase, suggesting, statins produce mild muscle injury even in asymptomatic subjects. Diabetic statin users were more prone to develop muscle injury than others. Muscle fiber conduction velocity evaluation is recommended as a simple and reliable test to diagnose statin-induced myopathy instead of invasive muscle biopsy.

  14. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  15. Inverse break-through investigation on uranium isotope separation in the system Fe(III) water-glycerine solution-U(IV) cathionic resin

    International Nuclear Information System (INIS)

    Murgulescu, Sanda; Calusaru, A.

    1977-01-01

    When a solution containing ferric ions passes on cationic resin in U(IV) form, the substitution of uranium by iron is preceded by oxydation of U(IV) to U(VI). During the contact of U(VI) in solution with U(IV) in resin, an exchange reaction occurs, in which 235 U is slightly concentrated in solution and 238 U in resin phase. Since increase of temperature accelerates the exchange reaction, the apparent thermodynamic values of the exchange reaction were calculated, by taking into account the variation of the apparent equilibrium constant as a function of the reciprocal value of the temperature. The corresponding thermodynamic values in both pure aqueous and water-glycerine solution are: ΔH 0 =6.45 cal.mol -1 and ΔS 0 =21.6x10 -3 cal. 0 K -1 . The use of glycerine containing solutions offers the important advantage to increase the stability versus hydrolysis of the ferric ions even at higher temperature

  16. Architectural design of the pelvic floor is consistent with muscle functional subspecialization.

    Science.gov (United States)

    Tuttle, Lori J; Nguyen, Olivia T; Cook, Mark S; Alperin, Marianna; Shah, Sameer B; Ward, Samuel R; Lieber, Richard L

    2014-02-01

    Skeletal muscle architecture is the strongest predictor of a muscle's functional capacity. The purpose of this study was to define the architectural properties of the deep muscles of the female pelvic floor (PFMs) to elucidate their structure-function relationships. PFMs coccygeus (C), iliococcygeus (IC), and pubovisceral (PV) were harvested en bloc from ten fixed human cadavers (mean age 85 years, range 55-102). Fundamental architectural parameters of skeletal muscles [physiological cross-sectional area (PCSA), normalized fiber length, and sarcomere length (L(s))] were determined using validated methods. PCSA predicts muscle-force production, and normalized fiber length is related to muscle excursion. These parameters were compared using repeated measures analysis of variance (ANOVA) with post hoc t tests, as appropriate. Significance was set to α = 0.05. PFMs were thinner than expected based on data reported from imaging studies and in vivo palpation. Significant differences in fiber length were observed across PFMs: C = 5.29 ± 0.32 cm, IC = 7.55 ± 0.46 cm, PV = 10.45 ± 0.67 cm (p design shows individual muscles demonstrating differential architecture, corresponding to specialized function in the pelvic floor.

  17. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  18. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    Science.gov (United States)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  19. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    Science.gov (United States)

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha

  20. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  1. Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses

    Science.gov (United States)

    Kinoshita, Hideaki; Umezawa, Takashi; Omine, Yuya; Kasahara, Masaaki; Rodríguez-Vázquez, José Francisco; Murakami, Gen

    2013-01-01

    There is little or no information about the distribution of elastic fibers in the human fetal head. We examined this issue in 15 late-stage fetuses (crown-rump length, 220-320 mm) using aldehyde-fuchsin and elastica-Masson staining, and we used the arterial wall elastic laminae and external ear cartilages as positive staining controls. The posterior pharyngeal wall, as well as the ligaments connecting the laryngeal cartilages, contained abundant elastic fibers. In contrast with the sphenomandibular ligament and the temporomandibular joint disk, in which elastic fibers were partly present, the discomalleolar ligament and the fascial structures around the pterygoid muscles did not have any elastic fibers. In addition, the posterior marginal fascia of the prestyloid space did contain such fibers. Notably, in the middle ear, elastic fibers accumulated along the tendons of the tensor tympani and stapedius muscles and in the joint capsules of the ear ossicle articulations. Elastic fibers were not seen in any other muscle tendons or vertebral facet capsules in the head and neck. Despite being composed of smooth muscle, the orbitalis muscle did not contain any elastic fibers. The elastic fibers in the sphenomandibular ligament seemed to correspond to an intermediate step of development between Meckel's cartilage and the final ligament. Overall, there seemed to be a mini-version of elastic fiber distribution compared to that in adults and a different specific developmental pattern of connective tissues. The latter morphology might be a result of an adaptation to hypoxic conditions during development. PMID:23560235

  2. Nonlinear deformation of skeletal muscles in a passive state and in isotonic contraction

    Science.gov (United States)

    Shil'ko, S. V.; Chernous, D. A.; Pleskachevskii, Yu. M.

    2012-07-01

    A procedure for a two-level modeling of deformation of skeletal muscles is offered. Based on a phenomenological model of an individual muscle fiber, consisting of a viscous, a contractive, and two nonlinearly elastic elements (the first level), various means for describing a skeletal muscle as a whole (the second, macroscopic level) are considered. A method for identification of a muscle model by utilizing experimental elongation diagrams in a passive state and in isotonic contraction is put forward. The results of a biomechanical analysis are compared with known experimental data for the isotonic and isometric activation regimes of tailor's muscle of a frog. It is established that preferable is the description of a muscle that takes into account the different lengths of muscle fibers and their twist.

  3. Systems Biology Approaches to Discerning Striated Muscle Pathologies

    OpenAIRE

    Mukund, Kavitha

    2016-01-01

    The human muscular system represents nearly 75% of the body mass and encompasses two major muscle forms- striated and smooth. Striated muscle, composed broadly of myofibers, accompanying membrane systems, cytoskeletal networks together with the metabolic and regulatory machinery, have revealed complexities in composition, structure and function. A disruption to any component within this complex system of interactions lead to disorders of the muscle, typically characterized by muscle fiber los...

  4. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  5. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle

    International Nuclear Information System (INIS)

    Oe, Keisuke; Ueha, Takeshi; Sakai, Yoshitada; Niikura, Takahiro; Lee, Sang Yang; Koh, Akihiro; Hasegawa, Takumi; Tanaka, Masaya; Miwa, Masahiko; Kurosaka, Masahiro

    2011-01-01

    Highlights: → PGC-1α is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. → We demonstrated transcutaneous application of CO 2 up-regulated the gene expression of PGC-1α, SIRT1 and VEGF, and instance of muscle fiber switching. → Transcutaneous application of CO 2 may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptor (PPAR)-gamma coactivator-1 (PGC-1α) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1α-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO 2 increased blood flow and a partial increase of O 2 pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO 2 to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO 2 application caused: (1) the gene expression of PGC-1α, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO 2 may have therapeutic potential for muscular strength recovery resulting from disuse atrophy in post-operative patients and the elderly population.

  6. Muscle Structure Influences Utrophin Expression in mdx Mice

    Science.gov (United States)

    Banks, Glen B.; Combs, Ariana C.; Odom, Guy L.; Bloch, Robert J.; Chamberlain, Jeffrey S.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. PMID:24922526

  7. The male bulbospongiosus muscle and its relation to the external anal sphincter.

    Science.gov (United States)

    Peikert, Kevin; Platzek, Ivan; Bessède, Thomas; May, Christian Albrecht

    2015-04-01

    The bulbospongiosus muscle is part of the superficial muscular layer of the perineum and pelvic floor. Its morphology remains controversial in the literature. Therefore, we reinvestigated the fascial arrangement and fiber courses of the bulbospongiosus muscle and its topographical relation to the external anal sphincter. The perineum was dissected in 9 male cadavers (mean ± SD age 78.3 ± 10.7 years). Select samples were obtained for histology and immunohistochemistry. In 43 patients (mean age 60.7 ± 12 years) the topographical relation between the bulbospongiosus muscle and the external anal sphincter was determined by magnetic resonance imaging. The perineum contains several fascial layers consisting of elastic and collagen fibers as well as bundles of smooth muscle cells. The bulbospongiosus muscle was subdivided into a ventral and dorsal portion, which developed in 4 variants. The ventral insertion formed a morphological unity with the ischiocavernous muscle while the dorsal origin had a variable relation to the external anal sphincter (5 variants). A muscle-like or connective tissue-like connection was frequently present between the muscles. However, in some cases the muscles were completely separated. We suggest a concept of variations of bulbospongiosus muscle morphology that unifies the conflicting literature. Its ventral fiber group and the ischiocavernosus muscle form a functional and morphological unity. While the bulbospongiosus muscle and the external anal sphincter remain independent muscles, their frequent connection might have clinical implications for perineal surgery and anogenital disorders. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review.

    Science.gov (United States)

    Goubert, Dorien; Oosterwijck, Jessica Van; Meeus, Mira; Danneels, Lieven

    2016-01-01

    Lumbar muscle dysfunction due to pain might be related to altered lumbar muscle structure. Macroscopically, muscle degeneration in low back pain (LBP) is characterized by a decrease in cross-sectional area and an increase in fat infiltration in the lumbar paraspinal muscles. In addition microscopic changes, such as changes in fiber distribution, might occur. Inconsistencies in results from different studies make it difficult to draw firm conclusions on which structural changes are present in the different types of non-specific LBP. Insights regarding structural muscle alterations in LBP are, however, important for prevention and treatment of non-specific LBP. The goal of this article is to review which macro- and/or microscopic structural alterations of the lumbar muscles occur in case of non-specific chronic low back pain (CLBP), recurrent low back pain (RLBP), and acute low back pain (ALBP). Systematic review. All selected studies were case-control studies. A systematic literature search was conducted in the databases PubMed and Web of Science. Only full texts of original studies regarding structural alterations (atrophy, fat infiltration, and fiber type distribution) in lumbar muscles of patients with non-specific LBP compared to healthy controls were included. All included articles were scored on methodological quality. Fifteen studies were found eligible after screening title, abstract, and full text for inclusion and exclusion criteria. In CLBP, moderate evidence of atrophy was found in the multifidus; whereas, results in the paraspinal and the erector spinae muscle remain inconclusive. Also moderate evidence occurred in RLBP and ALBP, where no atrophy was shown in any lumbar muscle. Conflicting results were seen in undefined LBP groups. Results concerning fat infiltration were inconsistent in CLBP. On the other hand, there is moderate evidence in RLBP that fat infiltration does not occur, although a larger muscle fat index was found in the erector spinae

  9. The selected histological traits of the pectoral muscle and basic slaughter values in crossbred geese

    Directory of Open Access Journals (Sweden)

    Konrad WALASIK

    2017-11-01

    Full Text Available The aim of study was to determine of basic values slaughter meat production and histological parameters of pectoral muscle in quadruple 24 weeks old crossbred geese. The hybrids produced using Graylag, White Kołuda and Slovakian geese. The geese were divided to 4 groups differing crosses scheme. The body weight before slaughter was in the range from 4,752 g to 4,921 g, weight of carcass with neck from 3,101 g to 3,175 g and weight of breast muscles from 649 g to 698 g. Histological analysis of pectoral muscle showed that diameters of white fibers (αW was in the range from 43 μm to 46 μm, red fibers (βR from 19.4 μm to 22.1 μm. The percentage share of αW muscle fibers was in the range from 25.3% to 28.9%, βR fibers from 71.1% to 74.7%. The number of muscle fibers per unit area was in the range from 256 to 316 and intramuscular fat content from 3.9% to 6.7%. The results of evaluation of microstructural traits of musculus pectoralis superficialis and meat production parameters suggest that the breast muscles of the crossbred geese are raw material of high quality. The quadruple crossbred geese with graylag geese it is an alternative for production of high-quality meat.

  10. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  11. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  12. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  13. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Science.gov (United States)

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  14. Muscle pathology in lower motor neuron paraplegia and h-b FES

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2010-03-01

    Full Text Available After complete Spinal Cord Injury (SCI, causing complete disconnection between the muscle fibers and the nervous system, the denervated muscles become unexcitable with commercial electrical stimulators within several months and undergo severe atrophy and disorganization of contractile apparatus after 1-3 years. Years after the injury the surviving and regenerated myofibers are substituted with adipocytes and collagen. To counteract the progressive changes transforming muscle into an unexcitable tissue, we developed a novel therapy concept for paraplegic patients with complete lower motor neuron (LMN denervation of the lower extremities. The new stimulators for home-based functional electrical stimulation (h-b FES have been designed to reverse longstanding and severe atrophy of LMN denervated muscles by delivering high-intensity (up to 2,4 J and long-duration impulses (up to 150 ms able to elicit contractions of denervated skeletal muscle fibers in absence of nerve. Concurrent to the development of the stimulation equipment, specific clinical assessments and training strategies were developed at the Wilhelminenspital Wien, Austria. Main results of our clinical study on 20 patients, which completed a 2 years h-b FES program are: 1. significant +33% increase of muscle size and +75% of the mean diameter of muscle fibers, with striking improvements of the ultra-structural organization of contractile material; 2. recovery of the tetanic contractility with significant increase in muscle force output during electrical stimulation; 3. five subjects performed FES-assisted stand-up and stepping-in-place exercises;. 4. data from ultrastructural analyses indicating that the shorter the time span between SCI and the beginning of h-b FES, the larger were the number and the size of recovered fibers. The study demonstrates that h-b FES of permanent LMN denervated muscle is an effective home therapy that results in rescue of muscle mass, function and perfusion

  15. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle

    DEFF Research Database (Denmark)

    Pedersen, Thomas Holm; Riisager, Anders; de Paoli, Frank Vincenzo

    2016-01-01

    Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane...... temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate...

  16. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar

    2002-01-01

    Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study...

  17. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  18. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  20. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    Science.gov (United States)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  1. Women at Altitude: Voluntary Muscle Exercise Performance with and Without a-Adrenergic Receptor Blockage

    Science.gov (United States)

    1999-02-01

    proportion of active muscle volume occupied by slow - twitch fibers (a consequence of women having a smaller, fast - twitch fiber cross-sectional area (11,27...oxidative metabolism and in the ratio of slow -to- fast twitch fiber area must be considered with caution, however, since the proportion of slow fatiguing...ventilatory acclimatization to 4300m. Respir.Physiol. 70: 195-204,1987. 27. Nygaard, E. Skeletal muscle fibre characteristics in young women. Acta

  2. Recruitment of single muscle fibers during submaximal cycling exercise

    NARCIS (Netherlands)

    Altenburg, T.M.; Degens, H.; van Mechelen, W.; Sargeant, A.J.; de Haan, A.

    2007-01-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which

  3. The role of extracellular matrix in lateral transmission of force in skeletal muscle

    Science.gov (United States)

    Gao, Yingxin

    This dissertation describes the role of extracellular matrix (ECM) in the lateral transmission of force. It consists of an experimental studies of the ECM and mathematical modeling of lateral transmission of force. The effect of aging on the structural and mechanical properties of the epimysium of muscle of the rats were examined. No statistically significant differences were found in the ultrastructure, or the thickness of the epimysium. However, from the tensile stress-strain tests, it was found that the epimysium of muscles from old rats was much stiffer than that of the young rats. Based on these observations. It was concluded that the differences in the mechanical properties of the epimysium of the muscles from the old compared with young rats were not associated with the arrangement and size of collagen fibers in the epimysium. Consequently, other methods will be required to identify the structural bases of the mechanical differences. The stress-strain relationships for the epimysiums of the skeletal muscles from both the young and old rats were found to be nonlinear. A mathematical model was developed that showed that the nonlinear behavior results from the waviness and the reorientation of the collagen fibers in the epimysium. The ECM plays an important role in lateral transmission of force in skeletal muscle by providing shear stress between the muscle fibers or fascicles. A mathematical model was developed to investigate the mechanisms of lateral transmission. It was a modification of the shear lag theory for chopped fiber composite materials used in engineering applications. The modified shear lag theory includes an activation strain to account for muscle contraction and a myofibrils-endomysium interfaces that accounts for the molecular lateral linkages. The model was used to simulate the classic experiments of Street. It was demonstrated that lateral transmission of force in the skeletal muscle is affected by the mechanical and structural properties of

  4. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact

  5. The Gross Morphology and Histochemistry of Respiratory Muscles in Bottlenose Dolphins, Tursiops truncatus

    Science.gov (United States)

    Cotten, Pamela B.; Piscitelli, Marina A.; McLellan, William A.; Rommel, Sentiel A.; Dearolf, Jennifer L.; Pabst, D. Ann

    2011-01-01

    Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath-hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3s) (Ridgway et al., 1969). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf, 2003) suggests that this muscle does not likely power their rapid ventilatory event. Based upon Bramble's (1989) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of cranio-cervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbo-pelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n=7) and the fiber-type profiles (n=6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the cranio-cervical muscles act to draw the sternum and associated ribs cranio-dorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbo-pelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that

  6. Single-fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism.

    Science.gov (United States)

    Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis

    2015-06-01

    To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell.

    Science.gov (United States)

    Choi, Seung-Jun

    2016-09-01

    Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation-contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  8. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell

    Directory of Open Access Journals (Sweden)

    Seung-Jun Choi

    2016-09-01

    Full Text Available Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation–contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  9. Skeletal muscle plasticity with marathon training in novice runners.

    Science.gov (United States)

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (Pmarathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  10. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Directory of Open Access Journals (Sweden)

    Irina V Ogneva

    Full Text Available The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05 compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7. In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively

  11. Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing

    Science.gov (United States)

    Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.

    2011-01-01

    During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key

  12. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  13. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....

  14. Neuromuscular partitioning, architectural design, and myosin fiber types of the M. vastus lateralis of the llama (Lama glama).

    Science.gov (United States)

    Graziotti, Guillermo H; Palencia, Pablo; Delhon, Gustavo; Rivero, José-Luis L

    2004-11-01

    The llama (Lama glama) is one of the few mammals of relatively large body size in which three fast myosin heavy chain isoforms (i.e., IIA, IIX, IIB) are extensively expressed in their locomotory muscles. This study was designed to gain insight into the morphological and functional organization of skeletal musculature in this peculiar animal model. The neuromuscular partitioning, architectural design, and myosin fiber types were systematically studied in the M. vastus lateralis of adult llamas (n = 15). Four nonoverlapping neuromuscular partitions or compartments were identified macroscopically (using a modified Sihler's technique for muscle depigmentation), although they did not conform strictly to the definitions of "neuromuscular compartments." Each neuromuscular partition was innervated by primary branches of the femoral nerve and was arranged within the muscle as paired partitions, two in parallel (deep-superficial compartmentalization) and the other two in-series (proximo-distal compartmentalization). These neuromuscular partitions of the muscle varied in their respective architectural designs (studied after partial digestion with diluted nitric acid) and myosin fiber type characteristics (identified immunohistochemically with specific anti-myosin monoclonal antibodies, then examined by quantitative histochemistry and image analysis). The deep partitions of the muscle had longer fibers, with lower angles of pinnation, and higher percentages of fast-glycolytic fibers than the superficial partitions of the muscle. These differences clearly suggest a division of labor in the whole M. vastus lateralis of llamas, with deep partitions exhibiting features well adapted for dynamic activities in the extension of stifle, whereas superficial portions seem to be related to the antigravitational role of the muscle in preserving the extension of the stifle during standing and stance phase of the stride. This peculiar structural and functional organization of the llama M

  15. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  16. Cross-bridge blocker BTS permits direct measurement of SR Ca2+ pump ATP utilization in toadfish swimbladder muscle fibers.

    Science.gov (United States)

    Young, Iain S; Harwood, Claire L; Rome, Lawrence C

    2003-10-01

    Because the major processes involved in muscle contraction require rapid utilization of ATP, measurement of ATP utilization can provide important insights into the mechanisms of contraction. It is necessary, however, to differentiate between the contribution made by cross-bridges and that of the sarcoplasmic reticulum (SR) Ca2+ pumps. Specific and potent SR Ca2+ pump blockers have been used in skinned fibers to permit direct measurement of cross-bridge ATP utilization. Up to now, there was no analogous cross-bridge blocker. Recently, N-benzyl-p-toluene sulfonamide (BTS) was found to suppress force generation at micromolar concentrations. We tested whether BTS could be used to block cross-bridge ATP utilization, thereby permitting direct measurement of SR Ca2+ pump ATP utilization in saponin-skinned fibers. At 25 microM, BTS virtually eliminates force and cross-bridge ATP utilization (both BTS. At 25 microM, BTS had no effect on SR pump ATP utilization. Hence, we used BTS to make some of the first direct measurements of ATP utilization of intact SR over a physiological range of [Ca2+]at 15 degrees C. Curve fits to SR Ca2+ pump ATP utilization vs. pCa indicate that they have much lower Hill coefficients (1.49) than that describing cross-bridge force generation vs. pCa (approximately 5). Furthermore, we found that BTS also effectively eliminates force generation in bundles of intact swimbladder muscle, suggesting that it will be an important tool for studying integrated SR function during normal motor behavior.

  17. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  18. High-efficiency gene transfer into skeletal muscle mediated by electric pulses

    DEFF Research Database (Denmark)

    Mir, L M; Bureau, M F; Gehl, J

    1999-01-01

    Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We...... report very efficient plasmid DNA transfer in muscle fibers by using square-wave electric pulses of low field strength (less than 300 V/cm) and of long duration (more than 1 ms). Contrary to the electropermeabilization-induced uptake of small molecules into muscle fibers, plasmid DNA has to be present...... in the tissue during the electric pulses, suggesting a direct effect of the electric field on DNA during electrotransfer. This i.m. electrotransfer method increases reporter and therapeutic gene expression by several orders of magnitude in various muscles in mouse, rat, rabbit, and monkey. Moreover, i...

  19. POST-EXERCISE MUSCLE GLYCOGEN REPLETION IN THE EXTREME: EFFECT OF FOOD ABSENCE AND ACTIVE RECOVERY

    Directory of Open Access Journals (Sweden)

    Paul A. Fournier

    2004-09-01

    Full Text Available Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses

  20. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Directory of Open Access Journals (Sweden)

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.