WorldWideScience

Sample records for glutathione s-transferase family

  1. Association study on glutathione S-transferase omega 1 and 2 and familial ALS

    NARCIS (Netherlands)

    van de Giessen, Elsmarieke; Fogh, Isabella; Gopinath, Sumana; Smith, Bradley; Hu, Xun; Powell, John; Andersen, Peter; Nicholson, Garth; Al Chalabi, Ammar; Shaw, Christopher E.

    2008-01-01

    Glutathione S-transferase omega 1 and 2 (GSTO1 and 2) protect from oxidative stress, a possible pathogenic mechanism underlying the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Significant association of age of onset in Alzheimer's

  2. Probing the diversity of the Arabidopsis glutathione S-transferase gene family.

    Science.gov (United States)

    Wagner, Ulrich; Edwards, Robert; Dixon, David P; Mauch, Felix

    2002-07-01

    Glutathione S-transferases (GSTs) appear to be ubiquitous in plants and have defined roles in herbicide detoxification. In contrast, little is known about their roles in normal plant physiology and during responses to biotic and abiotic stress. Forty-seven members of the GST super-family were identified in the Arabidopsis genome, grouped into four classes, with amino acid sequence identity between classes being below 25%. The two small zeta (GSTZ) and theta (GSTT) classes have related GSTs in animals while the large phi (GSTF) and tau (GSTU) classes are plant specific. As a first step to functionally characterize this diverse super-family, 10 cDNAs representing all GST classes were cloned by RT-PCR and used to study AtGST expression in response to treatment with phytohormones, herbicides, oxidative stress and inoculation with virulent and avirulent strains of the downy mildew pathogen Peronospora parasitica. The abundance of transcripts encoding AtGSTF9, AtGSTF10, AtGSTU5, AtGSTU13 and AtGSTT1 were unaffected by any of the treatments. In contrast, AtGSTF6 was upregulated by all treatments while AtGSTF2, AtGSTF8, AtGSTU19 and AtGSTZ1 each showed a selective spectrum of inducibility to the different stresses indicating that regulation of gene expression in this super-family is controlled by multiple mechanisms. The respective cDNAs were over expressed in E. coli. All GSTs except AtGSTF10 formed soluble proteins which catalysed a specific range of glutathione conjugation or glutathione peroxidase activities. Our results give further insights into the complex regulation and enzymic functions of this plant gene super-family.

  3. Glutathione S-transferases in earthworms (Lumbricidae).

    Science.gov (United States)

    Stenersen, J; Guthenberg, C; Mannervik, B

    1979-01-01

    Glutathione S-transferase activity (EC 2.5.1.18) was demonstrated in six species of earthworms of the family Lumbricidae: Eisenia foetida, Lumbricus terrestris, Lumbricus rebellus, Allolobophora longa, Allolobophora caliginosa and Allolobophora chlorotica. Considerable activity was obtained with 1-chlorl-2,4-dinitrobenzene and low activity with 3,4-dichloro-1-nitrobenzene, but no enzymic reaction was detectable with sulphobromophthalein 1,2-epoxy-3-(p-nitrophenoxy)propane of trans-4-phenylbut-3-en-2-one as substrates. Enzyme prepartations from L. rubellus and A. longa were the most active, whereas A. chlorotica gave the lowest activity. The ratio of the activities obtained with 1-chloro-2,4-dinitrobenzene and 3,4-cichloro-1-nitrobenzene was very different in the various species, but no phylogenetic pattern was evident. Isoelectric focusing gave rise to various activity peaks as measured with 1-chloro-2,4-dinitrobenzene as a substrate, and the activity profiles of the species examined appeared to follow a taxonomic pattern. The activity of Allolobophora had the highest peak in the alkaline region, whereas that of Lumbricus had the highest peak in the acid region. Eisenia showed a very complex activity profile, with the highest peak ne pH 7. As determined by an enzymic assay, all the species contained glutathione, on an average about 0.5 mumol/g wet wt. Conjugation with glutathione catalysed by glutathione S-transferases may consequently be an important detoxification mechanism in earthworms. PMID:486159

  4. Cloning and expression of a tomato glutathione S- transferase (GST ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-20

    Mar 20, 2012 ... study, a putative glutathione S-transferase gene (ShGSTU1) from a wild-type tomato, Solanum ... Purification and enzymatic activity analysis were ..... Anthocyanin accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 53: 9083-9088.

  5. Glutathione S-Transferase Isoenzymes from Streptomyces griseus

    Science.gov (United States)

    Dhar, Kajari; Dhar, Alok; Rosazza, John P. N.

    2003-01-01

    An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native Mrs of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH. PMID:12514067

  6. Glutathione S-Transferase M1 and T1 Null Genotype Frequency ...

    Indian Academy of Sciences (India)

    Bluebird

    2017-10-25

    Oct 25, 2017 ... Glutathione-S-transferase (GST) family is a key contributor in the detoxification mechanism of our body. Deletion of the genes within this family has been reported for the failure of detoxification system at some extent and leading to various types of cancers and other life threatening diseases. The existing ...

  7. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance

    Science.gov (United States)

    Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup

    2018-01-01

    Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434

  8. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stal and Sogatella furcifera (Horvath (Hemiptera: Delphacidae.

    Directory of Open Access Journals (Sweden)

    Wen-Wu Zhou

    Full Text Available BACKGROUND: Glutathione S-transferase (GST genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop resistance to various insecticides has led to severe outbreaks over the last decade. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome sequence of N. lugens, we identified for the first time the complete GST gene family of a delphacid insect whilst nine GST gene orthologs were identified from the closely related species S. furcifera. Nilaparvata lugens has 11 GST genes belonging to six cytosolic subclasses and a microsomal class, many fewer than seen in other insects with known genomes. Sigma is the largest GST subclass, and the intron-exon pattern deviates significantly from that of other species. Higher GST gene expression in the N. lugens adult migratory form reflects the higher risk of this life stage in encountering the toxins of non-host plants. After exposure to a sub-lethal dose of four insecticides, chlorpyrifos, imidacloprid, buprofezin or beta-cypermethrin, more GST genes were upregulated in S. furcifera than in N. lugens. RNA interference targeting two N. lugens GST genes, NlGSTe1 and NlGSTm2, significantly increased the sensitivity of fourth instar nymphs to chlorpyrifos but not to beta-cypermethrin. CONCLUSIONS/SIGNIFICANCE: This study provides the first elucidation of the nature of the GST gene family in a delphacid species, offering new insights into the evolution of metabolic enzyme genes in insects. Further, the use of RNA interference to identify the GST genes induced by insecticides illustrates likely mechanisms for the tolerance of these insects.

  9. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and ...

    African Journals Online (AJOL)

    Background and aim of work: Persistent oxidative stress is one of several factors that participate in the pathogenesis of type 2 diabetes mellitus (T2DM). Glutathione S-transferases (GSTs) are a family of antioxidant enzymes that exert important antioxidant roles in the elimination of reactive oxygen species. We aimed to ...

  10. Glutathione s-transferase isoenzymes in relation to their role in detoxification of xenobiotics

    NARCIS (Netherlands)

    Vos, R.M.E.

    1989-01-01

    The glutathione S-transferases (GST) are a family of isoenzymes serving a major part in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic

  11. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  12. Glutathione S-transferases in kidney and urinary bladder tumors.

    Science.gov (United States)

    Simic, Tatjana; Savic-Radojevic, Ana; Pljesa-Ercegovac, Marija; Matic, Marija; Mimic-Oka, Jasmina

    2009-05-01

    Exposure to potential carcinogens is an etiologic factor for renal cell carcinoma (RCC) and transitional cell carcinoma (TCC) of the urinary bladder. Cytosolic glutathione S-transferases (GSTs) are a superfamily of enzymes that protect normal cells by catalyzing conjugation reactions of electrophilic compounds, including carcinogens, to glutathione. Some GST enzymes possess antioxidant activity against hydroperoxides. The most well characterized classes have been named alpha (GSTA), mu (GSTM), pi (GSTP) and theta (GSTT); each of these classes contains several different isoenzymes. Several types of allelic variation have been identified within classes, with GSTM1-null, GSTT1-null and GSTP1-Ile105/Ile105 conferring impaired catalytic activity. The effects of GSTM1 and GSTT1 polymorphism on susceptibility to RCC depend on exposure to specific chemicals. Individuals with the GSTM1-null genotype carry a higher risk for TCC. The roles of GSTT1 polymorphism in TCC and GSTP1 polymorphisms in both cancers are still controversial. During kidney cancerization, expression of GSTA isoenzymes tends to decrease, which promotes the pro-oxidant environment necessary for RCC growth. In the malignant phenotype of TCC of the bladder, upregulation of various GST classes occurs. Upregulation of GSTT1 and GSTP1 might have important consequences for TCC growth by providing a reduced cellular environment and inhibition of apoptotic pathways.

  13. Glutathione S-transferase gene polymorphisms in presbycusis.

    Science.gov (United States)

    Ateş, Nurcan Aras; Unal, Murat; Tamer, Lülüfer; Derici, Ebru; Karakaş, Sevim; Ercan, Bahadir; Pata, Yavuz Selim; Akbaş, Yücel; Vayisoğlu, Yusuf; Camdeviren, Handan

    2005-05-01

    Glutathione and glutathione-related antioxidant enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Reactive oxygen species generation occurs in prolonged relative hypoperfusion conditions such as in aging. The etiology of presbycusis is much less certain; however, a complex genetic cause is most likely. The effect of aging shows a wide interindividual range; we aimed to investigate whether profiles of (glutathione S-transferase (GST) M1, T1 and P1 genotypes may be associated with the risk of age-related hearing loss. We examined 68 adults with presbycusis and 69 healthy controls. DNA was extracted from whole blood, and the GSTM1, GSTT1 and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler Instrument. Associations between specific genotypes and the development of presbycusis were examined by use of logistic regression analyses to calculate odds ratios and 95% confidence intervals. Gene polymorphisms at GSTM1, GSTT1, and GSTP1 in subjects with presbycusis were not significantly different than in the controls (p > 0.05). Also, the combinations of different GSTM1, GSTT1, and GSTP1 genotypes were not an increased risk of presbycusis (p > 0.05). We could not demonstrate any significant association between the GSTM1, GSTT1, and GSTP1 polymorphism and age-related hearing loss in this population. This may be because of our sample size, and further studies need to investigate the exact role of GST gene polymorphisms in the etiopathogenesis of the presbycusis.

  14. RESEARCH ARTICLE Glutathione S-Transferase P1 Gene ...

    Indian Academy of Sciences (India)

    Navya

    2017-03-13

    Mar 13, 2017 ... endogeneously-produced products of oxidative stress) with glutathione, and in this manner mitigate ... oxidative stress can therefore result from decreased GST activity and increase susceptibility to ... age-, sex-and ethnicity-matched controls with no present or past family history of CAD or any other disease ...

  15. Association of glutathione-S-transferase P1 (GSTP1)-313 A> G gene ...

    African Journals Online (AJOL)

    Association of glutathione-S-transferase P1 (GSTP1)-313 A> G gene polymorphism and susceptibility to endometrial hyperplasia among Egyptian women. Afaf Elsaid, Wfaa Al-Kholy, Rana Ramadan, Rami Elshazli ...

  16. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase.

    NARCIS (Netherlands)

    Wark, P.A.; Grubben, M.J.A.L.; Peters, W.H.M.; Nagengast, F.M.; Kampman, E.; Kok, F.J.; Veer, P. van 't

    2004-01-01

    The glutathione (GSH)/glutathione S-transferase (GST) system is an important detoxification system in the gastrointestinal tract. A high activity of this system may benefit cancer prevention. The aim of the study was to assess whether habitual consumption of fruits and vegetables, especially citrus

  17. Molecular characterization of zeta class glutathione S-transferases ...

    Indian Academy of Sciences (India)

    2013 Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate–glutathione cycle. Biol. Plant 57, 718–724. McGonigle B., Keeler S. J., Lau S. M, Koeppe M. K and O'Keefe. D. P. 2000 A genomic approach to the comprehensive analysis of the glutathione ...

  18. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  19. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    Science.gov (United States)

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  20. Glutathione S-transferase P1 gene polymorphisms and susceptibility ...

    Indian Academy of Sciences (India)

    M. A. Bhat

    2017-11-28

    Nov 28, 2017 ... products of oxidative stress) with glutathione, and, by doing so mitigate oxidative stress and prevent cell injury. (Liet al.2000; Hayeset al.2005). Increased vulnerability to oxidative stress can, therefore, result from decreased GST activity and ... ily history of CAD or any other disease participated voluntarily ...

  1. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae

    NARCIS (Netherlands)

    Pavlidi, N.; Tseliou, V.; Riga, M.; Nauen, R.; Van Leeuwen, T.; Labrou, N.E.; Vontas, J.

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we

  2. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  3. Global deletion of glutathione S-Transferase A4 exacerbates developmental nonalcoholic steatohepatitis

    Science.gov (United States)

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...

  4. Analysis of glutathione S-transferase (M1, T1 and P1) gene ...

    African Journals Online (AJOL)

    transferase M1, T1 and P1 genetic polymorphisms with the risk of prostate cancer in various populations. The current study was done with Iranian subjects to evaluate the association of the polymorphism of glutathione S-transferase subtypes (T, M and ...

  5. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    NARCIS (Netherlands)

    Oetari, S.; Sudibyo, M.; Commandeur, J.N.M.; Samhoedi, R.; Vermeulen, N.P.E.

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or

  6. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Ploemen, J.H.T.M.; Jespersen, S.; Greef, J. van der; Verhagen, H.; Bladeren, P.J. van

    1996-01-01

    The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme

  7. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites

    OpenAIRE

    Currie Bart J; Holt Deborah C; Morgan Marjorie S; Arlian Larry G; Pasay Cielo J; Mounsey Kate E; Walton Shelley F; McCarthy James S

    2010-01-01

    Abstract Background Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. R...

  8. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    Science.gov (United States)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  9. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J. (Edinburgh Univ. (UK). Dept. of Clinical Chemistry); Chapman, B.J. (Royal Infirmary, Edinburgh (UK))

    1983-10-31

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements.

  10. Genetic variants of glutathione S-transferases mu, theta, and pi display no susceptibility to inflammatory bowel disease in the Danish population

    DEFF Research Database (Denmark)

    Ernst, Anja; Østergaard, Mette; Jacobsen, Bent Ascanius

    2010-01-01

    on the activity of detoxification enzymes. The aims of the study were to examine possible associations between the detoxifying glutathione S-transferases (GSTs) family mu, theta and pi gene variants and inflammatory bowel disease, and secondly to examine a potential genotype-genotype interaction between...

  11. The possible role of glutathione-S-transferase activity in diabetic nephropathy.

    Science.gov (United States)

    Tesauro, M; Nisticò, S; Noce, A; Tarantino, A; Marrone, G; Costa, A; Rovella, V; Di Cola, G; Campia, U; Lauro, D; Cardillo, C; Di Daniele, N

    2015-03-01

    The most common cause of end stage renal disease is diabetic nephropathy. An early diagnosis may allow an intervention to slow down disease progression. Recently, it has been hypothesized that glutathione-S-transferase (GST) activity may be a marker of severity of chronic kidney disease. In particular, a lower GST activity is present in healthy subjects compared to patients with nephropathy. In the present review we illustrate the scientific evidence underlying the possible role of GST activity in the development of diabetic nephropathy and we analyze its usefulness as a possible early biomarker of this diabetic complication. © The Author(s) 2015.

  12. Developmental studies on Drosophila melanogaster glutathione S-transferase and its induction by oxadiazolone.

    Science.gov (United States)

    Hunaiti, A A; Elbetieha, A M; Obeidat, M A; Owais, W M

    1995-12-01

    Glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene was detected in various developmental stages of Drosophila melanogaster. The specific activity of the enzyme was 110, 35, 25 and 15 nmol/min/mg protein in crude extracts prepared from eggs, larvae, pupae and adult stages respectively. The enzymes from larval, pupal and adult stages were purified and compared. Incorporation of the widely used herbicide oxadiazolone at concentrations of 375 and 563 part/million into the culture media caused 4- and 2.5-fold increase in the enzyme activity in pupal and adult stages respectively.

  13. Differential roles of tau class glutathione S-transferases in oxidative stress

    DEFF Research Database (Denmark)

    Kilili, Kimiti G; Atanassova, Neli; Vardanyan, Alla

    2004-01-01

    Tau class GSTs, which readily form heterodimers between them and BI-GST. All six LeGSTUs were found to be able to protect yeast cells from prooxidant-induced cell death. The efficiency of each LeGSTU was prooxidant-specific, indicating a different role for each LeGSTU in the oxidative stress......The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous...

  14. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells

    International Nuclear Information System (INIS)

    Scharmach, E.; Hessel, S.; Niemann, B.; Lampen, A.

    2009-01-01

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  15. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  16. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Rajarapu, Swapna Priya; Mittapalli, Omprakash

    2013-05-01

    The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-μ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-μ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. [Stress-responsive expression analysis of glutathione-S-transferase gene of Ipomoea batatas (L.) Lam].

    Science.gov (United States)

    Liu, Xun; He, Bo-Wen; Zhang, Yi-Zheng

    2009-08-01

    A prokaryotic expression plasmid pET-IbGST, which contains the full encoding region of a glutathione-S- transferase (GST) gene of sweet potato, was constructed. The recombinant IBGSTU1 protein was expressed in Escherichia coli and found in the soluble fraction, as well as in insoluble inclusion bodies of lysed cells. Its enzymatic activity was detected using UV spectrophotometer. The protein was purified and used to prepare antibody. Semi-quantitative RT-PCR and Western blotting analyses demonstrated that IBGSTU1 gene was not expressed under normal conditions. When subjected to some environ-mental stresses such as cold-stress or heavy-medal stress, the organism switches on the expression of IBGSTU1 at both mRNA and protein levels, and its expression has tissue specificity.

  18. Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses.

    Science.gov (United States)

    Ding, Na; Wang, Aimin; Zhang, Xiaojun; Wu, Yunxiang; Wang, Ruyuan; Cui, Huihui; Huang, Rulin; Luo, Yonghai

    2017-11-28

    Sweet potato, a hexaploid species lacking a reference genome, is one of the most important crops in many developing countries, where abiotic stresses are a primary cause of reduction of crop yield. Glutathione S-transferases (GSTs) are multifunctional enzymes that play important roles in oxidative stress tolerance and cellular detoxification. A total of 42 putative full-length GST genes were identified from two local transcriptome databases and validated by molecular cloning and Sanger sequencing. Sequence and intraspecific phylogenetic analyses revealed extensive differentiation in their coding sequences and divided them into eight subfamilies. Interspecific phylogenetic and comparative analyses indicated that most examined GST paralogs might originate and diverge before the speciation of sweet potato. Results from large-scale RNA-seq and quantitative real-time PCR experiments exhibited extensive variation in gene-expression profiles across different tissues and varieties, which implied strong evolutionary divergence in their gene-expression regulation. Moreover, we performed five manipulated stress experiments and uncovered highly divergent stress-response patterns of sweet potato GST genes in aboveground and underground tissues. Our study identified a large number of sweet potato GST genes, systematically investigated their evolutionary diversification, and provides new insights into the GST-mediated stress-response mechanisms in this worldwide crop.

  19. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    Science.gov (United States)

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  20. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification.

    Science.gov (United States)

    Thom, Russell; Cummins, Ian; Dixon, David P; Edwards, Robert; Cole, David J; Lapthorn, Adrian J

    2002-06-04

    Glutathione S-transferases (GSTs) from the phi (GSTF) and tau (GSTU) classes are unique to plants and play important roles in stress tolerance and secondary metabolism as well as catalyzing the detoxification of herbicides in crops and weeds. We have cloned and functionally characterized a group of GSTUs from wheat treated with fenchlorazole-ethyl, a herbicide safener. One of these enzymes, TaGSTU4-4, was highly active in conjugating the chemically distinct wheat herbicides fenoxaprop and dimethenamid. The structure of TaGSTU4-4 has been determined at 2.2 A resolution in complex with S-hexylglutathione. This enzyme is the first tau class GST structure to be determined and most closely resembles the omega class GSTs, but without the unique N-terminal extension or active site cysteine. The X-ray structure identifies key amino acid residues in the hydrophobic binding site and provides insights into the substrate specificity of these enzymes.

  1. Immune response of goats immunised with glutathione S-transferase and experimentally challenged with Fasciola hepatica.

    Science.gov (United States)

    Buffoni, L; Zafra, R; Pérez-Ecija, A; Martínez-Moreno, F J; Martínez-Galisteo, E; Moreno, T; Pérez, J; Martínez-Moreno, A

    2010-06-01

    Glutathione S-transferase (FhGST) purified from Fasciola hepatica adult worms was used to immunise goats against F. hepatica in an experimental infection; the level of protection, in terms of fluke burden, faecal egg counts and hepatic damage was determined, as well as the humoral and cellular immune response elicited. Animals were allocated into three groups of six animals each: group 1 (immunised with FhGST and infected), group 2 (unimmunised and infected), and group 3 (unimmunised and uninfected). There was no significant reduction of fluke burden (9.3%) or faecal egg counts; hepatic damage was also similar in both infected groups. However, immunisation with FhGST induced the development of a well-defined immune response, characterized by the production of specific-FhGST antibodies as well as the appearance of circulating IL-4.

  2. The role of glutathione S-transferase and claudin-1 gene polymorphisms in contact sensitization

    DEFF Research Database (Denmark)

    Ross-Hansen, K; Linneberg, A; Johansen, J D

    2013-01-01

    BACKGROUND: Contact sensitization is frequent in the general population and arises from excessive or repeated skin exposure to chemicals and metals. However, little is known about its genetic susceptibility. OBJECTIVES: To determine the role of polymorphisms of glutathione S-transferase (GST) genes...... polymorphisms: GSTM1 and GSTT1 deletion, GSTP1 single nucleotide polymorphism (SNP) rs1695, four CLDN1 SNPs (rs893051, rs9290927, rs9290929 and rs17501010) and the FLG null mutations R501X and 2282del4. RESULTS: In individuals without ear piercings, a higher prevalence of nickel sensitization was found in those...... with the minor allele of CLDN1 SNP rs9290927 (P(trend)=0·013). For CLDN1 rs17501010, contact sensitization to organic compounds was associated with the major allele (P(trend)=0·031). The risk pattern was also identified for self-reported nickel dermatitis (P(trend)=0·011). The fragrance sensitization prevalence...

  3. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... was found to significantly enhance resistance to H(2)O(2)-induced stress. These results underline the relationship between oxidative stress and Bax-induced death in yeast cells and demonstrate that the yeast-based genetic strategy described here is a powerful tool for the isolation of novel antioxidant...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...

  4. Physiological roles of glutathione s-transferases in soybean root nodules.

    Science.gov (United States)

    Dalton, David A; Boniface, Chris; Turner, Zachary; Lindahl, Amy; Kim, Hyeon Jeong; Jelinek, Laura; Govindarajulu, Manjula; Finger, Richard E; Taylor, Christopher G

    2009-05-01

    Glutathione S-transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of toxic xenobiotics and oxidatively produced compounds to reduced glutathione, which facilitates their metabolism, sequestration, or removal. We report here that soybean (Glycine max) root nodules contain at least 14 forms of GST, with GST9 being most prevalent, as measured by both real-time reverse transcription-polymerase chain reaction and identification of peptides in glutathione-affinity purified extracts. GST8 was prevalent in stems and uninfected roots, whereas GST2/10 prevailed in leaves. Purified, recombinant GSTs were shown to have wide-ranging kinetic properties, suggesting that the suite of GSTs could provide physiological flexibility to deal with numerous stresses. Levels of GST9 increased with aging, suggesting a role related to senescence. RNA interference studies of nodules on composite plants showed that a down-regulation of GST9 led to a decrease in nitrogenase (acetylene reduction) activity and an increase in oxidatively damaged proteins. These findings indicate that GSTs are abundant in nodules and likely function to provide antioxidant defenses that are critical to support nitrogen fixation.

  5. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    Energy Technology Data Exchange (ETDEWEB)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip (SVIMR-A); (Melbourne)

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  6. Insights into ligand binding to a Glutathione S-transferase from mango: structure, thermodynamics and kinetics

    Science.gov (United States)

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A.; Arvizu-Flores, Aldo A.; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A.; García-Orozco, Karina D.; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R.; Islas-Osuna, Maria A.

    2017-01-01

    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM·min−1 and 68.49 s−1 respectively and 0.693 mM, 105.32 mM·min−1 and 89.57 s−1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. PMID:28104507

  7. Is there any association between glutathione s-transferases m1 and glutathione s-transferases t1 gene polymorphisms and endometrial cancer risk? a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xiuxiu Yin

    2017-01-01

    Full Text Available Epidemiological evidence on the association between genetic polymorphisms in glutathione S-transferases M1 (GSTM1 and T1 (GSTT1 genes and risk of endometrial cancer (EC has been inconsistent. In this meta-analysis, we seek to investigate the relationship between GSTM1 and GSTT1 polymorphisms and the risk of EC. We searched Medline, PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure database, and Chinese Biomedical Literature database to identify eligible studies. The pooled odds ratios (ORs with 95% confidence intervals (CIs for the association were determined using a fixed- or random-effect model. Tests for heterogeneity of the results and sensitivity analyses were performed. A total of six case–control studies were included in the final meta-analysis of GSTM1 (1293 cases and 2211 controls and GSTT1 (1286 cases and 2200 controls genotypes. Overall, GSTM1 null genotype was not significantly associated with an increased risk of EC (OR = 1.00, 95% CI = 0.76–1.30, P = 0.982. Similarly, for GSTT1 deletion genotype, we observed no association under the investigated model in the overall analysis (OR = 0.91, 95% CI = 0.64–1.30, P = 0.619. Subgroup analysis also showed no significant association between the GSTM1 null genotype and EC risk in hospital-based design (OR = 1.26, 95% CI = 0.93–1.71, P = 0.131 and no relationship between GSTT1 null genotype with EC risk in population-based design (OR = 1.18, 95% CI = 0.79–1.76, P = 0.407. However, GSTM1 null genotype contributed to an increased EC risk in population-based design (OR = 0.76, 95% CI = 0.60–0.97, P = 0.027, while null GSTT1 in hospital-based studies (OR = 0.70, 95% CI = 0.52–0.93, P = 0.015. The present meta-analysis suggested that GSTs genetic polymorphisms may not be involved in the etiology of EC. Large epidemiological studies with the combination of GSTM1 null, GSTT1 null, and design-specific with the development of EC are needed to prove our findings.

  8. Association between herbivore stress and glutathione S-transferase expression in Pinus brutia Ten.

    Science.gov (United States)

    Semiz, A; Çelik-Turgut, G; Semiz, G; Özgün, Ö; Şen, A

    2016-03-31

    Plants have developed mechanisms to defend themselves against many factors including biotic stress such as herbivores and pathogens. Glutathione S-transferase (GST) is a glutathione-dependent detoxifying enzyme and plays critical roles in stress tolerance and detoxification metabolism in plants. Pinus brutia Ten. is a prominent native forest tree species in Turkey, due to both its economic and ecological assets. One of the problems faced by P. brutia afforestation sites is the attacks by pine processionary moth (Thaumetopoea wilkinsoni Tams.). In this study, we investigated the changes in activity and mRNA expression of GST in pine samples taken from both resistant and susceptible clones against T. wilkinsoni over a nine month period in a clonal seed orchard. It was found that the average cytosolic GST activities of trees in March and July were significantly higher than the values obtained in November. November was considered to be the control since trees were not under stress yet. In addition, RT-PCR results clearly showed that levels of GST transcripts in March and July samples were significantly higher as compared to the level seen in November. These findings strongly suggest that GST activity from P. brutia would be a valuable marker for exposure to herbivory stress.

  9. Effects of gestational and overt diabetes on placental cytochromes P450 and glutathione S-transferase.

    Science.gov (United States)

    Glover; McRobie; Tracy

    1998-07-01

    Objective: Animal and in vivo human studies have observed that diabetes alters the expression of hepatic metabolizing cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes. The placenta has the ability to metabolize a number of xenobiotic and endogenous compounds by processes similar to those seen in the liver. Our objective was to compare placental xenobiotic metabolizing activity in diabetics to matched non-diabetic controls to determine if the presence of diabetes alters placental xenobiotic metabolizing activity.Methods: The catalytic activities of 7-ethoxyresorufin-O-deethylation [EROD] (CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation with glutathione (GST) from placentas of diet controlled (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared to matched controls.Results: No differences in EROD activity were observed among overt or gestational diabetics and their respectively matched controls. CYP2E1, 2D6, and 3A4 enzyme activity were not detected in human placentas. In contrast, GST activity was significantly reduced by 30% (P diabetics as compared to their matched controls and gestational diabetics.Conclusion: Pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in exposure of the fetus to harmful reactive electrophilic metabolites.

  10. Co-Induction of a Glutathione-S-transferase, a Glutathione Transporter and an ABC Transporter in Maize by Xenobiotics

    Science.gov (United States)

    Liu, Zhiqian; Song, Xiaoyu; Li, Xuefeng; Wang, Chengju

    2012-01-01

    Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by four herbicides (2,4-D, atrazine, metolachlor and primisulfuron) and a herbicide safener (dichlormid) on the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect on gene expression varies with both chemicals and genes. The expression of ZmGST27 and ZmMRP1 was up-regulated by all five compounds, whereas that of ZmGT1 was increased by atrazine, metolachlor, primisulfuron and dichlormid, but not by 2,4-D. For all chemicals, the inducing effect was first detected on ZmGST27. The finding that ZmGT1 is activated alongside ZmGST27 and ZmMRP1 suggests that glutathione transporters are an important component in the xenobiotic detoxification system of plants. PMID:22792398

  11. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking.

    Science.gov (United States)

    Gawande, Nilesh Dinkar; Subashini, Swaminathan; Murugan, Marimuthu; Subbarayalu, Mohankumar

    2014-01-01

    Glutathione S-transferases (GSTs) are one of the major families of detoxifying enzymes that detoxifies different chemical compounds including insecticides in different insect species. Among the GST subclasses, sigma GSTs are found to be the most abundant and conserved among different insect orders. These GSTs are found to play an important role in lipid peroxidation as well as detoxification. Cotton aphid, Aphis gossypii is the most damaging sucking pest with a wide range of hosts and vector of more than 50 plant viruses. Resistance to insecticides in A. gossypii is reported in India and in other countries. Glutathione S transferases (GSTs), an oxidative enzyme is understood to have a role in insecticide resistance and plant resistance breakdown. In relation to this, we have focused on the sigma 1 (GenBank Accession No: JN989964.1) and sigma 2 (GenBank Accession No: JN989965.1) GSTs of A. gossypii and their interaction with plant natural compounds and insecticides. Molecular screening of different insecticides (Chlorphinamidine, Mevinphos, Nitenpyrum, Piperonyl butoxide, Tetrachlorovinphos, Pyrethrins, Resmetrin, Pirimicarb and Dinotefuran) and known plant derived natural compounds (Catechin, Gossypol, Myrcene, Kaempferol, P-coumaric acid, Quercetin, Tannins, α-mangostin, Capsaicin, Cinnamic acid, Citronellal, Curcumin, Dicumarol, Ellagic acid, Eugenol, Geriniol, Isoeugenol, Juglone, Menadione, Methyl jasmonate, Morin, Myricetin, Myristicin, Piperine, Plumbagin, Tangitinin C, Thymol, Vanillin, Alpha pipene, α-terpineol Apigenin and β-Caryophyllene) with sigma 1 and sigma 2 GST protein models was completed using Maestro 9.3 (Schrodinger, USA). This exercise showed the binding of piperonyl butoxide with sigma 1 GST and tannin with sigma 2 GST for further consideration.

  12. Structures of a putative ζ-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis

    International Nuclear Information System (INIS)

    Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sankaran, Banumathi; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2011-01-01

    The pathogenic fungus C. immitis causes coccidioidomycosis, a potentially fatal disease. Here, apo and glutathione-bound crystal structures of a previously uncharacterized protein from C. immitis that appears to be a ζ-class glutathione S-transferase are presented. Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a ζ-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI)

  13. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were

  14. Glutathione S-transferase M1 and T1, CYP1A2-2467T/delT ...

    African Journals Online (AJOL)

    The present study investigated the impact of metabolic gene polymorphisms in modulating lung cancer risk susceptibility. Gene polymorphisms encoding Cytochrome 1A2 (CYP1A2) and Glutathione-S-transferases (GSTT1 and GSTM1) are involved in the bioactivation and detoxification of tobacco carcinogens and may ...

  15. Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45

    NARCIS (Netherlands)

    Hylckama Vlieg , van Johannes; Kingma, Jaap; Kruizinga, Wim; Janssen, Dick B.

    A glutathione S transferase (GST) with activity toward 1,2-eposy-2-methyl-3-butene (isoprene monoxide) and cis-1,2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45, The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione

  16. Some metals inhibit the glutathione S-transferase from Van Lake fish gills.

    Science.gov (United States)

    Özaslan, M Serhat; Demir, Yeliz; Küfrevioğlu, O Irfan; Çiftci, Mehmet

    2017-11-01

    Glutathione S-transferases (GSTs) are the superfamily of multifunctional detoxification isoenzymes and play important role cellular signaling. The present article focuses on the role of Cd 2+ , Cu 2+ , Zn 2+ , and Ag + in vitro inhibition of GST. For this purpose, GST was purified from Van Lake fish (Chalcalburnus tarichii Pallas) gills with 110.664 EU mg -1 specific activity and 79.6% yield using GSH-agarose affinity chromatographic method. The metal ions were tested at various concentrations on in vitro GST activity. IC 50 values were found for Cd +2 , Cu +2 , Zn +2 , Ag + as 450.32, 320.25, 1510.13, and 16.43 μM, respectively. K i constants were calculated as 197.05 ± 105.23, 333.10 ± 152.76, 1670.21 ± 665.43, and 0.433 ± 0.251 μM, respectively. Ag + showed better inhibitory effect compared with the other metal ions. The inhibition mechanisms of Cd 2+ and Cu 2+ were non-competitive, whereas Zn 2+ and Ag + were competitive. Co 2+ , Cr 2+ , Pb 2+ , and Fe 3+ had no inhibitory activity on GST. © 2017 Wiley Periodicals, Inc.

  17. Isozyme-specific fluorescent inhibitor of glutathione s-transferase omega 1.

    Science.gov (United States)

    Son, Junghyun; Lee, Jae-Jung; Lee, Jun-Seok; Schüller, Andreas; Chang, Young-Tae

    2010-05-21

    Recently, the glutathione S-transferase omega 1 (GSTO1) is suspected to be involved in certain cancers and neurodegenerative diseases. However, profound investigation on the pathological roles of GSTO1 has been hampered by the lack of specific methods to determine or modulate its activity in biological systems containing other isoforms with similar catalytic function. Here, we report a fluorescent compound that is able to inhibit and monitor the activity of GSTO1. We screened 43 fluorescent chemicals and found a compound (6) that binds specifically to the active site of GSTO1. We observed that compound 6 inhibits GSTO1 by covalent modification but spares other isoforms in HEK293 cells and demonstrated that compound 6 could report the activity of GSTO1 in NIH/3T3 or HEK293 cells by measuring the fluorescence intensity of the labeled amount of GSTO1 in SDS-PAGE. Compound 6 is a useful tool to study GSTO1, applicable as a specific inhibitor and an activity reporter.

  18. Glutathione-S-Transferase and Thiol Stress in patients with acute renal failure

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2010-07-01

    Full Text Available Introduction: Tubular damage is common finding in acute renal failure (ARF. Various etiologies have been put forth to explain the tubular damage in ARF, one important mechanism among them is oxidative damage to renal tubules. Several biomolecules including low-molecular weight peptides and enzymes in urine have been proposed as early markers of renal failure. Current study has been undertaken to study the thiol stress and glutathione-S-transferase (GST levels in ARF patients. Method: 58 ARF patients and 55 healthy controls were selected based on inclusion and exclusion criteria. Serum thiols, GST, malanoldehyde (MDA and urine thiols were determined by spectrophotometer based methods. Results: Serum thiols and urine thiols were significantly decreased (p<0.0001, and serum GST and MDA levels were significantly increased (p<0.0001 in ARF patients compared to healthy controls. Serum GST and MDA correlated positively in ARF cases (r2 = 0.6938, p<0.0001. Conclusion: There is significant thiol stress and increased lipid peroxidation in ARF patients which leads to tubular cell membrane damage and release of GST into blood stream and into urine. This may be possible mechanism for the increased presence of GST in urine (enzymuria found in other studies.

  19. In-vitro effect of flavonoids from Solidago canadensis extract on glutathione S-transferase.

    Science.gov (United States)

    Apáti, Pál; Houghton, Peter J; Kite, Geoffrey; Steventon, Glyn B; Kéry, Agnes

    2006-02-01

    Solidago canadensis is typical of a flavonoid-rich herb and the effect of an aqueous ethanol extract on glutathione-S-transferase (GST) activity using HepG2 cells was compared with those of the flavonol quercetin and its glycosides quercitrin and rutin, found as major constituents. The composition of the extract was determined by HPLC and rutin was found to be the major flavonoidal component of the extract. Total GST activity was assessed using 1-chloro-2,4-dinitrobenzene as a substrate. The glycosides rutin and quercitrin gave dose-dependent increases in GST activity, with a 50% and 24.5% increase at 250 mM, respectively, while the aglycone quercetin inhibited the enzyme by 30% at 250 mM. The total extract of the herb gave an overall dose-dependent increase, the fractions corresponding to the flavonoids showed activating effects while those containing caffeic acid derivatives were inhibitory. The activity observed corresponds to that reported for similar compounds in-vivo using rats, thus the HepG2 cell line could serve as a more satisfactory method of assessing the effects of extracts and compounds on GST.

  20. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites

    Directory of Open Access Journals (Sweden)

    Currie Bart J

    2010-05-01

    Full Text Available Abstract Background Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. Results Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p in vitro permethrin susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naïve mites (p S. scabiei var. canis- mu 1 (p S. scabiei var. hominis mites collected from a recurrent crusted scabies patient over the course of ivermectin treatment. Conclusions These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite.

  1. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites.

    Science.gov (United States)

    Mounsey, Kate E; Pasay, Cielo J; Arlian, Larry G; Morgan, Marjorie S; Holt, Deborah C; Currie, Bart J; Walton, Shelley F; McCarthy, James S

    2010-05-18

    Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p resistant S. scabiei var. canis- mu 1 (p scabies patient over the course of ivermectin treatment. These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite.

  2. Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients

    Directory of Open Access Journals (Sweden)

    Pandey Sanjay

    2012-01-01

    Full Text Available BACKGROUND: Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders. OBJECTIVE: The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status. METHODS: Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software. RESULTS: An increased frequency of the GSTT1 null genotype (p-value = 0.05 was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients. CONCLUSION: GST deletions do not play a direct role in iron overload of sickle cell patients.

  3. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Hasanreisoğlu, B; Turkozkan, N

    1998-03-01

    The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

  4. Role of oxidative stress mediated by glutathione-s-transferase in thiopurines' toxic effects.

    Science.gov (United States)

    Pelin, Marco; De Iudicibus, Sara; Fusco, Laura; Taboga, Eleonora; Pellizzari, Giulia; Lagatolla, Cristina; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana; Stocco, Gabriele

    2015-06-15

    Azathioprine (AZA), 6-mercaptopurine (6-MP), and 6-thioguanine (6-TG) are antimetabolite drugs, widely used as immunosuppressants and anticancer agents. Despite their proven efficacy, a high incidence of toxic effects in patients during standard-dose therapy is recorded. The aim of this study is to explain, from a mechanistic point of view, the clinical evidence showing a significant role of glutathione-S-transferase (GST)-M1 genotype on AZA toxicity in inflammatory bowel disease patients. To this aim, the human nontumor IHH and HCEC cell lines were chosen as predictive models of the hepatic and intestinal tissues, respectively. AZA, but not 6-MP and 6-TG, induced a concentration-dependent superoxide anion production that seemed dependent on GSH depletion. N-Acetylcysteine reduced the AZA antiproliferative effect in both cell lines, and GST-M1 overexpression increased both superoxide anion production and cytotoxicity, especially in transfected HCEC cells. In this study, an in vitro model to study thiopurines' metabolism has been set up and helped us to demonstrate, for the first time, a clear role of GST-M1 in modulating AZA cytotoxicity, with a close dependency on superoxide anion production. These results provide the molecular basis to shed light on the clinical evidence suggesting a role of GST-M1 genotype in influencing the toxic effects of AZA treatment.

  5. Association study of Glutathione S-Transferase polymorphisms and risk of endometriosis in an Iranian population

    Science.gov (United States)

    Hassani, Mina; Saliminejad, Kioomars; Heidarizadeh, Masood; Kamali, Koorosh; Memariani, Toktam; Khorram Khorshid, Hamid Reza

    2016-01-01

    Background: Endometriosis influenced by both genetic and environmental factors. Associations of glutathione S-transferases (GSTs) genes polymorphisms in endometriosis have been investigated by various researchers; however, the results are not consistent. Objective: We examined the associations of GSTM1 and GSTT1 null genotypes and GSTP1 313 A/G polymorphisms with endometriosis in an Iranian population. Materials and Methods: In this case-control study, 151 women with diagnosis of endometriosis and 156 normal healthy women as control group were included. The genotyping was determined using multiplex PCR and PCR- RFLP methods. Results: The GSTM1 null genotype was significantly higher (p=0.027) in the cases (7.3%) than the control group (1.3%). There was no significant difference between the frequency of GSTT1 genotypes between the cases and controls. The GSTP1 313 AG genotype was significantly lower (p=0.048) in the case (33.1%) than the control group (44.4%). Conclusion: Our results showed that GSTM1 and GSTP1 polymorphisms may be associated with susceptibility of endometriosis in Iranian women. PMID:27351025

  6. Glutathione S-Transferase Omega 1 variation does not influence age at onset of Huntington's disease.

    Science.gov (United States)

    Arning, Larissa; Jagiello, Peter; Wieczorek, Stefan; Saft, Carsten; Andrich, Jürgen; Epplen, Jörg T

    2004-03-24

    Huntington's disease (HD) is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO) of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Omega 1 (GSTO1) and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD) and Parkinson's disease (PD). We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls. After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively. The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD.

  7. Glutathione S-Transferase Ω 1 variation does not influence age at onset of Huntington's disease

    Science.gov (United States)

    Arning, Larissa; Jagiello, Peter; Wieczorek, Stefan; Saft, Carsten; Andrich, Jürgen; Epplen, Jörg T

    2004-01-01

    Background Huntington's disease (HD) is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO) of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Ω 1 (GSTO1) and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD) and Parkinson's disease (PD). Methods We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls. Results After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively. Conclusion The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD. PMID:15040808

  8. Glutathione S-transferase P influences redox and migration pathways in bone marrow.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available To interrogate why redox homeostasis and glutathione S-transferase P (GSTP are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs from both wild type (WT and knockout (Gstp1/p2(-/- mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+-ATPase regulate Ca(2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/- cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected

  9. Inhibition of insect glutathione S-transferase (GST) by conifer extracts.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Abou-Zaid, Mamdouh M; Arnason, John T; Liu, Rui; Walshe-Roussel, Brendan; Waye, Andrew; Liu, Suqi; Saleem, Ammar; Cáceres, Luis A; Wei, Qin; Scott, Ian M

    2014-12-01

    Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists. © 2014 Wiley Periodicals, Inc.

  10. Organometallic ruthenium anticancer complexes inhibit human glutathione-S-transferase π.

    Science.gov (United States)

    Lin, Yu; Huang, Yongdong; Zheng, Wei; Wang, Fuyi; Habtemariam, Abraha; Luo, Qun; Li, Xianchan; Wu, Kui; Sadler, Peter J; Xiong, Shaoxiang

    2013-11-01

    The organometallic ruthenium(II) anticancer complexes [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1), biphenyl (2) or 9,10-dihydrophenanthrene (3); en = ethylenediamine), exhibit in vitro and in vivo anticancer activities. In the present work, we show that they inhibit human glutathione-S-transferase π (GSTπ) with IC50 values of 59.4 ± 1.3, 63.2 ± 0.4 and 37.2 ± 1.1 μM, respectively. Mass spectrometry revealed that complex 1 binds to the S-donors of Cys15, Cys48 within the G-site and Cys102 at the interface of the GSTπ dimer, while complex 2 binds to Cys48 and Met92 at the dimer interface and complex 3 to Cys15, Cys48 and Met92. Moreover, the binding of complex 1 to Cys15 and Cys102, complex 2 to Cys48 and complex 3 to Cys15 induces the irreversible oxidation of the coordinated thiolates to sulfenates. Molecular modeling studies indicate that the coordination of the {(arene)Ru(en)}(2+) fragment to Cys48 blocks the hydrophilic G-site sterically, perhaps preventing substrate from proper positioning and accounting for the reduction in enzymatic activity of ruthenated GSTπ. The binding of the ruthenium arene complexes to Cys102 or Met92 disrupts the dimer interface which is an essential structural feature for the proper functioning of GSTπ, perhaps also contributing to the inhibition of GSTπ. © 2013.

  11. Evaluation of the in vitro inhibitory impact of hypericin on placental glutathione S-transferase pi.

    Science.gov (United States)

    Dalmizrak, Ozlem; Kulaksiz-Erkmen, Gulnihal; Ozer, Nazmi

    2012-10-01

    St John's Wort (SJW) extracts are herbal products which are available without prescription in most countries and widely used in the treatment of mild to moderate depression. Since it is a herbal product and available without prescription, use of SJW is common among pregnant and/or lactating woman. The principal of the study was to clarify the effects of hypericin, one of the components of SJW, on glutathione S-transferase-pi (GST-pi) purified from human placenta. The K (m) values of GST-pi were 0.21 ± 0.03 mM for glutathione (GSH) and 2.29 ± 0.54 mM for 1-chloro-2,4-dinitrobenzene (CDNB). At fixed [GSH], the V (m) value calculated was about 3 times higher than the conditions in which [CDNB] was fixed; 201 ± 30 U/mg protein versus 74 ± 3 U/mg protein. At constant substrate concentrations (1 mM), an average IC (50) value of 0.70 ± 0.02 μM was obtained. Hypericin inhibited GST-pi competitively with respect to both substrates. When GSH was the varied substrate a K (i) value of 0.31 ± 0.05 μM was found; when CDNB was the varied substrate, a K (i) value of 0.85 ± 0.02 μM was obtained. On the basis of these data considering transplacental transfer of hypericin and immature hepatic clearance of the baby, using this herbal product may cause abnormalites due to the inhibition of one of the most important placental detoxification enzymes, GST-pi.

  12. Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia.

    Science.gov (United States)

    Silva, Danilo Grünig Humberto; Belini Junior, Edis; Torres, Lidiane de Souza; Ricci Júnior, Octávio; Lobo, Clarisse de Castro; Bonini-Domingos, Claudia Regina; de Almeida, Eduardo Alves

    2011-06-15

    This study evaluated the oxidative stress and antioxidant capacity markers in sickle cell anemia (SCA) patients with and without treatment with hydroxyurea. We assessed GSTT1, GSTM1 and GSTP1 polymorphisms in patients and a control group. The study groups were composed of 48 subjects without hemoglobinopathies and 28 SCA patients, 13 treated with HU [SCA (+HU)], and 15 SCA patients not treated with HU [SCA (-HU)]. We observed a significant difference for GSTP1 polymorphisms in SCA patients with the V/V genotype that showed higher glutathione (GSH) and Trolox equivalent antioxidant capacity (TEAC) (p=0.0445 and p=0.0360), respectively, compared with the I/I genotype. HU use was associated with a 35.2% decrease in the lipid peroxidation levels of the SCA (+HU) group (p<0.0001). Moreover, the SCA (+HU) group showed higher TEAC as compared to the control group (p=0.002). We did not find any significant difference in glutathione-S-transferase (GST) activity between the groups (p=0.76), but the catalase (CAT) activity was about 17% and 30% decreased in the SCA (+HU) and SCA (-HU) groups, respectively (p<0.00001). Whereas the plasma GSH levels were ~2 times higher in the SCA patients than the control group (p=0.0005). HU use has contributed to higher CAT activity and TEAC, and lower lipid peroxidation in patients under treatment. These findings may explain the influence of HU in ameliorating oxidative stress on SCA subjects. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Merchant, Michael L. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40292 (United States); Prough, Russell A. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States); Williams, Jessica D. [University of Cincinnati College of Medicine, Internal Medicine, Cincinnati, OH 45267 (United States); Prabhu, Sumanth D. [Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, AL 35294 (United States); Bhatnagar, Aruni [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States)

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  14. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    International Nuclear Information System (INIS)

    Conklin, Daniel J.; Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid; Merchant, Michael L.; Prough, Russell A.; Williams, Jessica D.; Prabhu, Sumanth D.; Bhatnagar, Aruni

    2015-01-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  15. Molecular cloning and characterization of a glutathione S-transferase encoding gene from Opisthorchis viverrini.

    Science.gov (United States)

    Eursitthichai, Veerachai; Viyanant, Vithoon; Vichasri-Grams, Suksiri; Sobhon, Prasert; Tesana, Smarn; Upatham, Suchart Edward; Hofmann, Annemarie; Korge, Günter; Grams, Rudi

    2004-12-01

    An adult stage Opisthorchis viverrini cDNA library was constructed and screened for abundant transcripts. One of the isolated cDNAs was found by sequence comparison to encode a glutathione S-transferase (GST) and was further analyzed for RNA expression, encoded protein function, tissue distribution and cross-reactivity of the encoded protein with other trematode protein counterparts. The cDNA has a size of 893 bp and encodes a GST of 213 amino acids length (OV28GST). The most closely-related GST of OV28GST among those published for trematodes is a 28 kDa GST of Clonorchis sinensis as shown by multiple sequence alignment and phylogenetic analysis. Northern analysis of total RNA with a gene-specific probe revealed a 900 nucleotide OV28GST transcriptional product in the adult parasite. Through RNA in situ hybridization OV28GST RNA was detected in the parenchymal cells of adult parasites. This result was confirmed by immunolocalization of OV28GST with an antiserum generated in a mouse against bacterially-produced recombinant OV28GST. Both, purified recombinant and purified native OV28GST were resolved as 28 kDa proteins by SDS-PAGE. Using the anti-recOV28GST antiserum, no or only weak cross-reactivity was observed in an immunoblot of crude worm extracts against the GSTs of Schistosoma mansoni, S. japonicum, S. mekongi, Eurytrema spp. and Fasciola gigantica. The enzyme activity of the purified recombinant OV28GST was verified by a standard 1-chloro-2, 4-dinitrobenzene (CDNB) based activity assay. The present results of our molecular analysis of OV28GST should be helpful in the ongoing development of diagnostic applications for opisthorchiasis viverrini.

  16. Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide.

    Directory of Open Access Journals (Sweden)

    Alexandra Audemard-Verger

    Full Text Available To investigate association between genetic polymorphisms of GST, CYP and renal outcome or occurrence of adverse drug reactions (ADRs in lupus nephritis (LN treated with cyclophosphamide (CYC. CYC, as a pro-drug, requires bioactivation through multiple hepatic cytochrome P450s and glutathione S transferases (GST.We carried out a multicentric retrospective study including 70 patients with proliferative LN treated with CYC. Patients were genotyped for polymorphisms of the CYP2B6, CYP2C19, GSTP1, GSTM1 and GSTT1 genes. Complete remission (CR was defined as proteinuria ≤0.33g/day and serum creatinine ≤124 µmol/l. Partial remission (PR was defined as proteinuria ≤1.5g/day with a 50% decrease of the baseline proteinuria value and serum creatinine no greater than 25% above baseline.Most patients were women (84% and 77% were Caucasian. The mean age at LN diagnosis was 41 ± 10 years. The frequency of patients carrying the GST null genotype GSTT1-, GSTM1-, and the Ile→105Val GSTP1 genotype were respectively 38%, 60% and 44%. In multivariate analysis, the Ile→105Val GSTP1 genotype was an independent factor of poor renal outcome (achievement of CR or PR (OR = 5.01 95% CI [1.02-24.51] and the sole factor that influenced occurrence of ADRs was the GSTM1 null genotype (OR = 3.34 95% CI [1.064-10.58]. No association between polymorphisms of cytochrome P450s gene and efficacy or ADRs was observed.This study suggests that GST polymorphisms highly impact renal outcome and occurrence of ADRs related to CYC in LN patients.

  17. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Guohua Qin

    Full Text Available Glutathione S-transferases (GSTs play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1 representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni(2+-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB, detectable activity with p-nitro-benzyl chloride (p-NBC and 1, 2-dichloro-4-nitrobenzene (DCNB, whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu(2+ and Cd(2+. The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.

  18. Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study

    Directory of Open Access Journals (Sweden)

    Ackermann-Liebrich Ursula

    2007-01-01

    Full Text Available Abstract Background Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD. Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. Methods We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF25–75 during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. Results The associations of GST genotypes with FEV1, FVC, and FEF25–75 were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9 relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. Conclusion Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population.

  19. A model to environmental monitoring based on glutathione-S-transferase activity and branchial lesions in catfish

    Science.gov (United States)

    Neta, Raimunda Nonata Fortes Carvalho; Torres, Audalio Rebelo

    2017-11-01

    In this work, we validate the glutathione-S-transferase and branchial lesions as biomarkers in catfish Sciades herzbergii to obtain a predictive model of the environmental impact effects in a harbor of Brazil. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Maranhão. Two biomarkers, hepatic glutathione S-transferase (GST) activity and branchial lesions were analyzed. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. Our mathematic model indicates that when the GST ceases to act, serious branchial lesions are observed in the catfish of the contaminated port area.

  20. Frequencies of glutathione s-transferase (GSTM1, GSTM3 AND GSTT1) polymorphisms in a Malaysian population.

    Science.gov (United States)

    Alshagga, Mustafa A; Mohamed, Norazlina; Nazrun Suhid, Ahmad; Abdel Aziz Ibrahim, Ibrahim; Zulkifli Syed Zakaria, Syed

    2011-08-01

    Glutathione S-transferase (GST) is a xenobiotic metabolising enzyme (XME), which may modify susceptibility in certain ethnic groups, showing ethnic dependent polymorphism. The aim of this study was to determine GSTM1, GSTM3 and GSTT1 gene polymorphisms in a Malaysian population in Kuala Lumpur. Blood or buccal swab samples were collected from 137 Form II students from three schools in Wilayah Persekutuan Kuala Lumpur. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Glutathione-S-transferase GSTM3 gene frequencies were 89% for AA, 10% for AB and 1% for BB. The gene frequencies for deleted GSTM1 and GSTT1 were 66% and 18% respectively. This study suggested that the Malay population is at risk for environmental diseases and provides the basis for gene-environment association studies to be carried out.

  1. "INHIBITION ASSAY STUDY OF PURIFIED GLUTATHIONE S-TRANSFERASE FROM FASCIOLA HEPATICA AND SHEEP LIVER TISSUE BY HEXACHLOROPHENE"

    OpenAIRE

    A. Farahnak PM. Brophy

    2004-01-01

    Glutathione S-transferases (GSTs) are widespread in Fasciola. hepatica parasite and sheep liver tissue. Study of GSTs inhibition assays in F. hepatica and sheep liver tissue are a priority of chemotherapeutic targets in parasitic liver diseases including human fascioliasis in Iran. In this research, the whole extract of F. hepatica and sheep liver tissues were purified and eluted for sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) pattern and GSTs inhibition assay. GSTs ...

  2. Determination of glutathione-S-transferase traces in preparations of p53 C-terminal domain (aa320-393)

    Czech Academy of Sciences Publication Activity Database

    Brázdová, Marie; Kizek, René; Havran, Luděk; Paleček, Emil

    2002-01-01

    Roč. 55, 1/2 (2002), s. 115-118 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004110; GA ČR GV204/97/K084; GA ČR GA204/00/D049; GA MZd NC5343 Institutional research plan: CEZ:AV0Z5004920 Keywords : p53 * glutathione-S-transferase determination * constant current chronopotentiometry Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  3. The activity of glutathione S-transferase in hepatopancreas of Procambarus clarkii: seasonal variations and the influence of environmental pollutants.

    Science.gov (United States)

    Nies, E; Almar, M M; Hermenegildo, C; Monsalve, E; Romero, F J

    1991-01-01

    1. The glutathione S-transferase activity in hepatopancreas of the American red crayfish Procambarus clarkii after 15 days' acclimatization in tap water aquaria was measured in specimens collected monthly for a whole year, and shows seasonal variation. 2. Previous data on the environmental pollution of Lake Albufera suggest a possible correlation with the activity tested in the different seasons of the year considering the results of non-acclimatized animals.

  4. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  5. In-house preparation of hydrogels for batch affinity purification of glutathione S-transferase tagged recombinant proteins

    Directory of Open Access Journals (Sweden)

    Buhrman Jason S

    2012-09-01

    Full Text Available Abstract Background Many branches of biomedical research find use for pure recombinant proteins for direct application or to study other molecules and pathways. Glutathione affinity purification is commonly used to isolate and purify glutathione S-transferase (GST-tagged fusion proteins from total cellular proteins in lysates. Although GST affinity materials are commercially available as glutathione immobilized on beaded agarose resins, few simple options for in-house production of those systems exist. Herein, we describe a novel method for the purification of GST-tagged recombinant proteins. Results Glutathione was conjugated to low molecular weight poly(ethylene glycol diacrylate (PEGDA via thiol-ene “click” chemistry. With our in-house prepared PEGDA:glutathione (PEGDA:GSH homogenates, we were able to purify a glutathione S-transferase (GST green fluorescent protein (GFP fusion protein (GST-GFP from the soluble fraction of E. coli lysate. Further, microspheres were formed from the PEGDA:GSH hydrogels and improved protein binding to a level comparable to purchased GSH-agarose beads. Conclusions GSH containing polymers might find use as in-house methods of protein purification. They exhibited similar ability to purify GST tagged proteins as purchased GSH agarose beads.

  6. Possible gene dosage effect of glutathione-S-transferases on atopic asthma: Using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers

    DEFF Research Database (Denmark)

    Andersen, Charlotte Brasch; Christiansen, Lene; Tan, Qihua

    2004-01-01

    Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. As oxidative stress is a key component of inflammation, variations in genes involved in antioxidant defense could therefore be likely candidates for asthma. Three enzymes from the superfamily glutathione......-S-transferase (GST) involved in the antioxidant defense were tested for association to asthma using 246 Danish atopic families in a family-based transmission disequilibrium test (TDT) design. A real-time PCR assay for relative quantification of gene copy number of GSTM1 and GSTT1 was developed. The assay made...

  7. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn.

    Science.gov (United States)

    Hu, Bing; Zhao, Jietang; Lai, Biao; Qin, Yonghua; Wang, Huicong; Hu, Guibing

    2016-04-01

    A novel LcGST4 was identified and characterized from Litchi chinensis . Expression and functional analysis demonstrated that it might function in anthocyanin accumulation in litchi. Glutathione S-transferases (GSTs) have been defined as detoxification enzymes for their ability to recognize reactive electrophilic xenobiotic molecules as well as endogenous secondary metabolites. Anthocyanins are among the few endogenous substrates of GSTs for vacuolar accumulation. The gene encoding a GST protein that is involved in anthocyanin sequestration from Litchi chinensis Sonn. has not been reported. Here, LcGST4, an anthocyanin-related GST, was identified and characterized. Phylogenetic analysis showed that LcGST4 was clustered with other known anthocyanin-related GSTs in the same clade. Expression analysis revealed that the expression pattern of LcGST4 was strongly correlated with anthocyanin accumulation in litchi. ABA- and light-responsive elements were found in the LcGST4 promoter, which is in agreement with the result that the expression of LcGST4 was induced by both ABA and debagging treatment. A GST activity assay in vitro verified that the LcGST4 protein shared universal activity with the GST family. Functional complementation of an Arabidopsis mutant tt19 demonstrated that LcGST4 might function in anthocyanin accumulation in litchi. Dual luciferase assay revealed that the expression of LcGST4 was activated by LcMYB1, a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in litchi.

  8. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    Science.gov (United States)

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Correlation between serum and peritoneal fluid glutathione S-transferases T1 concentration with different stages of endometriosis

    Directory of Open Access Journals (Sweden)

    Sohail Mashayekhi

    2018-03-01

    Full Text Available Endometriosis is a gynecological disease defined by the histological presence of endometrial glands and stroma outside the uterine cavity. Ectopic endometrial cell proliferation and chronic inflammation in endometriosis were shown to be associated with oxidative stress (OS induction. OS is a condition in which reactive oxygen species (ROS overproduction and antioxidant deficiency cause a shift in oxidant/antioxidant balance. Glutathione S-transferases (GSTs comprise a family of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH to xenobiotic substrates for the purpose of detoxification. The aim of this project was to study the concentrations of GSTT1 in the serum and peritoneal fluid (PF of patients with different stages of endometriosis. Frothy two PF and serum from normal and 152 from different stages of patients with endometriosis (stage I: n = 30, stage II: n = 39, stage III: n = 43 and stage IV: n = 40 were included in this study. The level of GSTT1 in the serum was determined by enzyme linked immunosorbent assay (ELISA. The results showed the presence of GSTT1 in all serum and peritoneal fluid samples, while, starting from stages I to IV endometriosis, a significant decrease in GSTT1 concentration was seen as compared to controls. It is concluded that levels of GSTT1 is negatively correlated with advanced stages of endometriosis. It is also suggested that the detection of serum and/or peritoneal fluid GSTT1 concentration may be valuable in the classifying of endometriosis.

  10. Role of scavenging enzymes and hydrogen peroxide and glutathione S-transferase in mitigating the salinity effects on wheat

    Directory of Open Access Journals (Sweden)

    Ezatollah Esfadiari

    2014-05-01

    Full Text Available In order to study effects of salt stress on activities of hydrogen peroxide scavenging enzymes, glutathione S-transferase, some oxidative stress markers and Na+ and K+ distribution patterns in sensitive (Koohdasht and tolerant (Gaskogen wheat varieties were selected and grown in aeroponics culture. The seedlings were fed by nutrition solution till 3-4 leaf stage then the medium was added 200 mM NaCl. The plants were hold at this condition for 14 days. The results indicated that Gaskogen had always more shoot dry matter than Koohdasht. Also, dry matter production rate in control condition was higher than salinity. The enzyme activity of catalase, ascorbate peroxidase and glutathione S-transferase, was significantly decreased under salinity condition compared to the control condition in Koohdasht variety. However guaiacol peroxidase activity in this variety did not change significantly compared to the control. The activities of guaiacol peroxidase and glutathione S-transferase in Gaskogen significantly was increased under salinity whereas ascorbate peroxidase and catalase did not have any significant variation. Further results showed that sodium was readily absorbed and transported to the shoot in both varieties. Among various parts of cultivars there was no difference regarding the level of accumulated sodium. As a result, the ratio of potassium and sodium in various parts of the seedlings was decreased. Results obtained from this study showed that activity of scavenging enzyme like hydrogen peroxide together with glutation S-transferase caused controlling of toxic compounds in the Gaskogen variety and suppressed oxidative stress affects in compared to Kouhdasht that could refer to lower rate of hydrogen peroxidase and less lipid peroxidation in Koohdasht. As a final result, it could be stated that H2O2-scavenging enzymes and glutathione S-transferase had special roles in detoxification of toxic compounds leading to keep stable conditions inside

  11. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    Science.gov (United States)

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  12. Glutathione S transferase polymorphisms influence on iron overload in β-thalassemia patients

    Directory of Open Access Journals (Sweden)

    Serena Sclafani

    2013-11-01

    Full Text Available In patients with β-thalassemia iron overload that leads to damage to vital organs is observed. Glutathione S transferase (GST enzymes have an antioxidant role in detoxification processes of toxic substances. This role is determined genetically. In this study, we correlated GSTT1 and GSTM1 genotypes with iron overload measured with direct and indirect non-invasive methods; in particular, we used serum ferritin and signal intensity of the magnetic resonance image (MRI in 42 patients with β-thalassemia, which were regularly subjected to chelation and transfusion therapy. Multiplex polymerase chain reaction was used to determine the genotype. The loss of both alleles leads to a decreased value of liver and heart MRI-signal intensity with a consequent iron accumulation in these organs; the loss of only one allele doesn’t lead to relevant overload. Serum ferritin doesn’t appear to be correlated to iron overload instead. 对于β-地中海贫血患者,由于铁过量而造成重要器官受损的情况也在观察之中。谷胱甘肽S转移酶(GST 酶类在对有毒物质进行解毒的过程中有着抗氧化剂的作用。该作用是由基因决定的。 在这份研究中,我们运用了直接和间接非侵入性的方法对基因型铁过量GSTT1 和GSTM1进行了相关性测量;特别地,我们对42位定期接受螯合和输血治疗的β-地中海贫血患者进行了血清铁蛋白和磁共振强度图像(MRI 的测试。 多重聚合酶链反应的测试也被运用来确定该基因型。 该两种等位基因的缺失,导致了肝功能减损及心脏磁共振强度的下降,并造成了在这些器官中铁含量的积累;其中一种等位基因的缺失并不会导致过度的铁含量。血清蛋白和铁过量之间,看起来并不存在相关性。

  13. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Wanius, E-mail: wanius@if.sc.usp.br [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Travensolo, Regiane F. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Rodrigues, Nathalia C.; Muniz, João R. C. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Caruso, Célia S. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Lemos, Eliana G. M. [Laboratório de Bioquímica de Microrganismos e de Plantas, Departamento de Tecnologia, UNESP, Jaboticabal (Brazil); Araujo, Ana Paula U. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Carrilho, Emanuel, E-mail: wanius@if.sc.usp.br [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil)

    2008-02-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source.

  14. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    International Nuclear Information System (INIS)

    Dusinska, Maria; Staruchova, Marta; Horska, Alexandra; Smolkova, Bozena; Collins, Andrew; Bonassi, Stefano; Volkovova, Katarina

    2012-01-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  15. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    Science.gov (United States)

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus.

    Science.gov (United States)

    Liu, Huihui; He, Jianyu; Zhao, Rongtao; Chi, Changfeng; Bao, Yongbo

    2015-08-01

    Glutathione S-transferases (GSTs) are the superfamily of phase II detoxification enzymes that play crucial roles in innate immunity. In this study, a pi-class GST homolog was identified from Mytilus coruscus (named as McGST1, KC525103). The full-length cDNA sequence of McGST1 was 621bp with a 5' untranslated region (UTR) of 70bp and a 3'-UTR of 201bp. The deduced amino acid sequence was 206 residues in length with theoretical pI/MW of 5.60/23.72kDa, containing the conserved G-site and diversiform H-site. BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of pi class GST family. The prediction of secondary structure displayed a preserved N-terminal and a C-terminal comprised with α-helixes. Quantitative real time RT-PCR showed that constitutive expression of McGST1 was occurred, with increasing order in mantle, muscle, gill, hemocyte, gonad and hepatopancreas. The stimulation of bacterial infection, heavy metals and 180CST could up-regulate McGST1 mRNA expression in hepatopancreas with time-dependent manners. The maximum expression appeared at 6h after pathogenic bacteria injected, with 10-fold in Vibrio alginolyticus and 16-fold in Vibrio harveyi higher than that of the control. The highest point of McGST1 mRNA appeared at different time for exposure to copper (10-fold at day 15), cadmium (9-fold at day10) and 180 CST (10-fold at day 15). These results suggested that McGST1 played a significant role in antioxidation and might potentially be used as indicators and biomarkers for detection of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  18. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Jane T. Jones

    2016-08-01

    Full Text Available Nuclear Factor kappa B (NF-κB is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ, among other NF-κB proteins. Glutathione S-transferase Pi (GSTP is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS. TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor.

  19. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties.

    Science.gov (United States)

    Arockiaraj, Jesu; Gnanam, Annie J; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Chaurasia, Mukesh Kumar; Pasupuleti, Mukesh; Ramaswamy, Harikrishnan; Arasu, Abirami; Sathyamoorthi, Akila

    2014-08-10

    Glutathione S-transferases play an important role in cellular detoxification and may have evolved to protect cells against reactive oxygen metabolites. In this study, we report the molecular characterization of glutathione s-transferase-theta (GST-θ) from freshwater prawn Macrobrachium rosenbergii. A full length cDNA of GSTT (1417 base pairs) was isolated and characterized bioinformatically. Exposure to virus (white spot syndrome baculovirus or M. rosenbergii nodovirus), bacteria (Aeromonas hydrophila or Vibrio harveyi) or heavy metals (cadmium or lead) significantly increased the expression of GSTT (P<0.05) in hepatopancreas. Recombinant GST-θ with monochlorobimane substrate had an optimum activity at pH7.5 and 35 °C. Furthermore recombinant GST-θ activity was abolished by the denaturants triton X-100, Gua-HCl, Gua-thiocyanate, SDS and urea in a dose-dependent manner. Overall, the results suggest a potential role for M. rosenbergii GST-θ in detoxification and possibly conferring immune protection. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Glutathione S-transferase GSTM1, GSTT1 and p53 codon 72 polymorphisms in human tumor cells.

    Science.gov (United States)

    Ueda, Masatsugu; Hung, Yao-Ching; Terai, Yoshito; Kanda, Koji; Takehara, Mikio; Yamashita, Hikari; Yamaguchi, Hiroyuki; Akise, Daisuke; Yasuda, Masayuki; Nishiyama, Koji; Ueki, Minoru

    2003-12-01

    The genes of the glutathione S-transferase (GST) family encode enzymes that appear to be critical in cellular protection against the cytotoxic effects, whereas p53 is a tumor suppressor gene. Despite a large number of studies on germline polymorphisms of GSTM1, GSTT1 and p53 genes, there have been very few reports on genotyping of these genes in human malignant tumor cells. In this study, we investigated GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human tumor cell lines originating from different organs to clarify tissue-specific polymorphic frequency of these genes in human solid tumors. The GSTM1 and GSTT1 genetic polymorphisms were evaluated using multiplex PCR techniques and PCR-RFLP analysis was conducted to identify p53 codon 72 genotypes. Gene expression of GSTM1 or GSTT1 was detected by RT-PCR in the cells with respective present genotype for each. Polymorphisms of p53 codon 72 detected by PCR-RFLP were also confirmed using SSCP and sequence analyses. GSTM1 and GSTT1 genotypes were various in 104 cell lines examined. Null GSTM1 genotype was dominant in small cell lung, kidney and ovarian carcinoma cells, whereas null GSTT1 genotype was dominant in cervical and endometrial carcinoma cells. GSTM1 and GSTT1 genotypes in ovarian carcinoma cells were quite similar to those in small cell lung carcinoma cells. Polymorphic frequency of p53 codon 72 was also various among the cells, however, the Pro allele was found in only 1 of 6 kidney, 14 cervical and 4 endometrial carcinoma cell lines. There was a significant difference in GSTM1 and p53 genotypes between 34 small cell and 24 non small cell lung carcinoma cells (P p53 genotypes revealed that null GSTM1 genotype was associated with the Arg allele of p53 codon 72 in 58 lung carcinoma cells and null GSTT1 genotype was associated with the Pro/Pro homozygote in 104 tumor cell lines examined. This is the first study examining GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human solid tumor

  1. Glutathione-S-transferase: a minor allergen in birch pollen due to limited release from hydrated pollen.

    Directory of Open Access Journals (Sweden)

    Stephan Deifl

    Full Text Available Recently, a protein homologous to glutathione-S-transferases (GST was detected in prominent amounts in birch pollen by proteomic profiling. As members of the GST family are relevant allergens in mites, cockroach and fungi we investigated the allergenic relevance of GST from birch (bGST.bGST was expressed in Escherichia coli, purified and characterized by mass spectrometry. Sera from 217 birch pollen-allergic patients were tested for IgE-reactivity to bGST by ELISA. The mediator-releasing activity of bGST was analysed with IgE-loaded rat basophil leukaemia cells (RBL expressing human FcεRI. BALB/c mice were immunized with bGST or Bet v 1. Antibody and T cell responses to either protein were assessed. IgE-cross-reactivity between bGST with GST from house dust mite, Der p 8, was studied with murine and human sera in ELISA. The release kinetics of bGST and Bet v 1 from birch pollen were assessed in water, simulated lung fluid, 0.9% NaCl and PBS. Eluted proteins were quantified by ELISA and analysed by immunoblotting.Only 13% of 217 birch pollen-allergic patients showed IgE-reactivity to bGST. In RBL assays bGST induced mediator release. Immunization of mice with bGST induced specific IgE and a Th2-dominated cellular immune response comparably to immunization with Bet v 1. bGST did not cross-react with Der p 8. In contrast to Bet v 1, only low amounts of bGST were released from pollen grains upon incubation in water and the different physiological solutions.Although bGST is abundant in birch pollen, immunogenic in mice and able to induce mediator release from effector cells passively loaded with specific IgE, it is a minor allergen for birch pollen-allergic patients. We refer this discrepancy to its limited release from hydrated pollen. Hence, bGST is an example demonstrating that allergenicity depends mainly on rapid elution from airborne particles.

  2. Quantitative assessment of the influence of glutathione S-transferase M1 null variant on ovarian cancer risk

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-01-01

    Full Text Available Objective: Many studies have reported the role of glutathione S-transferase Mu 1 (GST M1 polymorphism with ovary cancer risk, but the results remained controversial. Materials and Methods: To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs with 95% confidence intervals (CIs were estimated to assess the association between GSTM1 polymorphism and ovary cancer risk. A total of 11 studies including 2709 cases and 3599 controls were also involved in this meta-analysis. Results: When all the eligible studies were pooled into this meta-analysis, no significant association between ovary cancer risk and GSTM1 polymorphism was found (OR = 1.010, 95% CI = 0.911-1.121, P heterogeneity = 0.174, P = 0.848. Discussion: Our meta-analysis supports that the GSTM1 polymorphism is not contributed to the risk of ovary cancer from currently available evidence.

  3. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Science.gov (United States)

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  4. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available Although glutathione S-transferases (GST, EC 2.5.1.18 are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  5. Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells

    International Nuclear Information System (INIS)

    Kim, Jae Chul; Shin, Sei One

    2001-01-01

    Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x- irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed

  6. Genetic polymorphisms in glutathione-S-transferases are associated with anxiety and mood disorders in nicotine dependence.

    Science.gov (United States)

    Odebrecht Vargas Nunes, Sandra; Pizzo de Castro, Márcia Regina; Ehara Watanabe, Maria Angelica; Losi Guembarovski, Roberta; Odebrecht Vargas, Heber; Reiche, Edna Maria Vissoci; Kaminami Morimoto, Helena; Dodd, Seetal; Berk, Michael

    2014-06-01

    Nicotine dependence is associated with an increased risk of mood and anxiety disorders and suicide. The primary hypothesis of this study was to identify whether the polymorphisms of two glutathione-S-transferase enzymes (GSTM1 and GSTT1 genes) predict an increased risk of mood and anxiety disorders in smokers with nicotine dependence. Smokers were recruited at the Centre of Treatment for Smokers. The instruments were a sociodemographic questionnaire, Fagerström Test for Nicotine Dependence, diagnoses of mood disorder and nicotine dependence according to DSM-IV (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Anxiety disorder was assessed based on the treatment report. Laboratory assessment included glutathione-S-transferases M1 (GSTM1) and T1 (GSTT1), which were detected by a multiplex-PCR protocol. Compared with individuals who had both GSTM1 and GSTT1 genes, a higher frequency of at least one deletion of the GSTM1 and GSTT1 genes was identified in anxious smokers [odds ratio (OR)=2.21, 95% confidence interval (CI)=1.05-4.65, P=0.034], but there was no association with bipolar and unipolar depression (P=0.943). Compared with nonanxious smokers, anxious smokers had a greater risk for mood disorders (OR=4.67; 95% CI=2.24-9.92, P<0.001), lung disease (OR=6.78, 95% CI=1.95-23.58, P<0.003), and suicide attempts (OR=17.01, 95% CI=2.23-129.91, P<0.006). This study suggests that at least one deletion of the GSTM1 and GSTT1 genes represents a risk factor for anxious smokers. These two genes may modify the capacity for the detoxification potential against oxidative stress.

  7. Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns.

    Science.gov (United States)

    Stojanović, Vesna D; Barišić, Nenad A; Radovanović, Tanja D; Kovač, Nataša B; Djuran, Jelena D; Antić, Amira Peco E; Doronjski, Aleksandra D

    2018-02-23

    The incidence of acute kidney injury (AKI) among the neonates treated at the Neonatal Intensive Care Unit is high with high mortality rates. Glutathione S-transferase (GST) class Pi plays an important role in the protection of cells from cytotoxic and oncogenic agents. The aim of the study was to examine whether the levels of serum glutathione S-transferase Pi (GST Pi) determined after birth have any predictive value for the outcome and development of AKI in premature neonates. The prospective study included 36 premature neonates. The data about morbidity was gathered for all the neonates included in the study. The blood samples were taken in the first 6 h of life and GST Pi levels were measured. The mean values and standard deviations of GST Pi among the neonates who died and who survived were 1.904 ± 0.4535 vs 1.434 ± 0.444 ng/ml (p = 0.0128). Logistic regression revealed a statistically significant, positive correlation between GST Pi levels and death (p = 0.0180, OR7.5954; CI 1.4148-40.7748).The mean value of GST Pi levels in the neonates with AKI was higher than in neonates without AKI (p = 0.011). The conclusion of our study is that high levels of serum GST Pi in the first 6 h after birth are associated with an increased mortality and development of AKI in prematurely born neonates.

  8. Expression of an enzymatically active Yb3 glutathione S-transferase in Escherichia coli and identification of its natural form in rat brain.

    Science.gov (United States)

    Abramovitz, M; Ishigaki, S; Felix, A M; Listowsky, I

    1988-11-25

    Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.

  9. STUDY ON GLUTATHIONE S-TRANSFERASE INHIBITION ASSAY BY TRICLABENDAZOLE. III: NEMATODIRUS PARASITE AND SHEEP LIVER TISSUE

    Directory of Open Access Journals (Sweden)

    A. Farahnak

    2007-09-01

    Full Text Available The most important and widely prevalent nematodes of sheep are the trichostrongyle group parasites, including nematodirus parasite. Accidental infection of man by nematodirus has been reported in Iran. Glutathione S-Transferase enzymes (GSTs are detoxification enzymes in parasites such as nematodirus. Therefore, GST enzymes of these parasites could be a target for evaluation of drugs effect as triclabendazole (C14H9CL3N2OS. For this reason, GST enzymes were purified from nematodirus parasite and sheep liver tissue by glutathione affinity chromatography and prepared their SDS-PAGE banding pattern for GST fraction separation. GST enzymes specific activity levels are also assayed in the whole extract and purified solutions with reduced glutathione (GSH and 1-chloro-2, 4-dinitrobenzen (CDNB secondary substrate. Finally, GST inhibition assay was investigated in the solutions by powder and bolus forms of triclabendazole. The level of GST specific activity in purified solutions was detected 9.86 µmol / min/ mg protein for nematodirus parasite and 37.84 µmol/ min/ mg protein for liver tissue. Comparison of the effect of powder and bolus of tricla¬bendazole on solutions revealed inhibition concentration (IC50 5.54 and 6.01 µg/ml for nematodirus GST and 8.65 and 9.70 µg/ml for liver tissue GST, respectively. These findings revealed the possibility of isolation and inhibition of nematodirus GST by triclabendazole, and more tolerance of liver tissue than parasite against this drug in vitro situation.

  10. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study.

    Science.gov (United States)

    Matic, Marija G; Coric, Vesna M; Savic-Radojevic, Ana R; Bulat, Petar V; Pljesa-Ercegovac, Marija S; Dragicevic, Dejan P; Djukic, Tatjana I; Simic, Tatjana P; Pekmezovic, Tatjana D

    2014-01-01

    We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR) with corresponding 95% confidence interval (95%CI) was calculated. The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032). The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001). The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001). The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002). Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067). Null or low-activity genotypes of the glutathione S-transferase A1, T1, and P1 did not contribute

  11. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study.

    Directory of Open Access Journals (Sweden)

    Marija G Matic

    Full Text Available OBJECTIVE: We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. PATIENTS AND METHODS: A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR with corresponding 95% confidence interval (95%CI was calculated. RESULTS: The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032. The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001. The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001. The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002. Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067. CONCLUSION: Null or low-activity genotypes of the

  12. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Ji, Wei; Zhu, Yanming; Li, Yong; Yang, Liang; Zhao, Xiaowen; Cai, Hua; Bai, Xi

    2010-08-01

    Glycine soja is a species of soybean that survives in adverse environments including high salt and drought conditions. We constructed a cDNA library from G. soja seedlings treated with NaCl and isolated a glutathione S-transferase gene (GsGST: GQ265911) from the library. The cDNA encoding GsGST contains an open reading frame of 660 bp and the predicted protein belongs to the tau class of GST family proteins. Tobacco plants over-expressing the GsGST gene showed sixfold higher GST activity than wild-type plants. Transgenic tobacco plants exhibited enhanced dehydration tolerance. T(2) transgenic tobacco plants showed higher tolerance at the seedling stage than wild-type plants to salt and mannitol as demonstrated by longer root length and less growth retardation.

  13. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling

    International Nuclear Information System (INIS)

    Singhal, Sharad S.; Singh, Sharda P.; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-01-01

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes — higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. - Highlights: • GSTs are the major

  14. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  15. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  16. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy.

    Science.gov (United States)

    Sharma, Mohini; Gupta, Stuti; Singh, Kalpana; Mehndiratta, Mohit; Gautam, Amar; Kalra, Om P; Shukla, Rimi; Gambhir, Jasvinder K

    Hyperglycemia induced oxidative stress is implicated as a contributor to the onset and progression of type 2 diabetes mellitus (T2DM) and its complications like diabetic nephropathy (DN). Glutathione-S-transferase (GST) is primarily involved in the neutralization of reactive oxygen species (ROS) by enzymatic conjugation with the scavenger peptide glutathione (GSH). Therefore, present study was aimed to evaluate the role of GST along with oxidative stress markers and their correlation in patients with Type 2 diabetes mellitus with and without nephropathy. This study comprised of 300 participants divided into three groups of 100 each: healthy controls (HC), T2DM without complications and DN. Plasma GST, malondialdehyde (MDA), reduced GSH levels and ferric reducing ability of plasma (FRAP) were estimated spectrophotometrically. Highest GST levels was observed in T2DM which was significantly higher (pGST showed a significant negative correlation with GSH, FRAP and positive correlation with MDA in both patients groups. Highest activity of GST in T2DM might be as a compensatory mechanism in response to oxidative stress. GST is found to have significant negative association with decreased GSH. Altered redox milieu in DN collectively conspire to increase the risk of renal damage in T2DM. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. VALUE OF P-GLYCOPROTEIN, GLUTATHIONE-S-TRANSFERASE-PI, C-ERBB-2, AND P53 AS PROGNOSTIC FACTORS IN OVARIAN CARCINOMAS

    NARCIS (Netherlands)

    VANDERZEE, AGJ; HOLLEMA, H; SUURMEIJER, AJH; KRANS, M; SLUITER, WJ; WILLEMSE, PHB; AALDERS, JG; DEVRIES, EGE

    Purpose: To determine the prognostic value of immunostaining of P-glycoprotein (P-gp), glutathione S-transferase (GST) pi, c-erbB-2, and p53 in patients with advanced-stage ovarian carcinoma. Patients and Methods: Immunostaining of P-gp, GST pi, c-erbB-2, and p53 was performed on 89 primary tumors

  18. Increased bioactivation of dihaloalkanes in rat liver due to induction of class Theta glutathione S-transferase T1-1

    NARCIS (Netherlands)

    Sherratt, P.J.; Manson, M.M.; Thomson, A.M.; Hissink, E.A.M.; Neal, G.E.; Bladeren, P.J. van; Green, T.; Hayes, J.D.

    1998-01-01

    A characteristic feature of the class Theta glutathione S-transferase (GST) T1-1 is its ability to activate dichloromethane and dibromoethane by catalysing the formation of mutagenic conjugates. The level of the GSTT1 subunit within tissues is an important determinant of susceptibility to the

  19. No elevation of glutathione S-transferase-a1-1 by amiodarone loading in intensive care unit patients with atrial fibrillation.

    NARCIS (Netherlands)

    Hilkens, M.; Pickkers, P.; Peters, W.H.M.; Hoeven, J.G. van der

    2009-01-01

    Hepatocellular toxicity is a putative side-effect of amiodarone. The hepatic detoxification enzyme glutathione S-transferase-A1-1 (GSTA1-1) is a sensitive indicator of hepatocellular damage. We investigated the occurrence of subclinical liver injury, as measured by plasma GSTA1-1 in intensive care

  20. The interaction of glutathione S-transferase M1-null variants with tobacco smoke exposure and the development of childhood asthma

    DEFF Research Database (Denmark)

    Rogers, A J; Brasch-Andersen, C; Ionita-Laza, I

    2009-01-01

    BACKGROUND: The glutathione S-transferase M1 (GSTM1)-null variant is a common copy number variant associated with adverse pulmonary outcomes, including asthma and airflow obstruction, with evidence of important gene-by-environment interactions with exposures to oxidative stress. OBJECTIVE: To exp...

  1. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Science.gov (United States)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  2. Copy number variation in glutathione S-transferases M1 and T1 and ischemic vascular disease: four studies and meta-analyses

    DEFF Research Database (Denmark)

    Nørskov, Marianne S; Frikke-Schmidt, Ruth; Loft, Steffen

    2011-01-01

    Glutathione S-transferases (GSTs) M1 and T1 detoxify products of oxidative stress and may protect against atherosclerosis and ischemic vascular disease (IVD). We tested the hypothesis that copy number variation (CNV) in GSTM1 and GSTT1 genes, known to be associated with stepwise decreases...

  3. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    International Nuclear Information System (INIS)

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    Highlights: ► Developed qPCR assays to distinguish closely related GST isoforms in salmon. ► Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. ► Modulation of GST varied among isoforms, tissues, and included a loss of expression. ► Metallothionein outperformed, but generally complemented, GSTs as biomarkers. ► Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8–48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 h relative to earlier time

  4. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  5. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Tai Tin Tsoi, J N; Ragetli, H M; Timmerman, H; Blast, A

    1988-01-01

    Allyl alcohol is hepatotoxic. It is generally believed that acrolein, generated out of allyl alcohol by cytosolic alcohol dehydrogenase, is responsible for this toxicity. The effect of acrolein in vitro and in vivo on the glutathione (GSH) dependent protection of liver microsomes against lipid

  6. Genetic Polymorphism of the Glutathione S-Transferase M1 and T1 Genes in Three Distinct Arab Populations

    Directory of Open Access Journals (Sweden)

    Abdel Halim Salem

    2011-01-01

    Full Text Available Deletion polymorphisms for the glutathione S-transferase (GST gene are associated with increased risk of cancer, and are implicated in detoxifying mutagenic electrophilic compounds. GST Polymorphic variants were reported for different populations. The aim of this study was to investigate the frequencies of GSTM1 and GSTT1 null genotypes among Bahraini, Lebanese and Tunisian Arabs. GST genotyping was done by multiplex PCR-based methods. Study subjects comprised 167 Bahrainis, 141 Lebanese and 186 Tunisians unrelated healthy individuals. GSTM1 deletion homozygosity of 49.7%, 52.5% and 63.4% were recorded for Bahraini, Lebanese and Tunisians, respectively. Among Bahrainis, the prevalence of GSTT1 null homozygotes was 28.7%, while in higher rates were seen in Lebanese (37.6% and Tunisians (37.1%. Our results indicate that there are no major differences in allelic distribution of GSTM1 and GSTT1 genes between the three Arab populations investigated except between Bahrainis and Tunisians regarding the allelic distribution of GSTM1 gene (P = 0.013. Combined analysis of both genes revealed that 14.4% of Bahrainis, 16.3% of Lebanese and 21.0% of Tunisians harbor the deleted genotype of both genes. This is the first study that addresses GST gene polymorphism in Bahraini and Lebanese Arabs, and will help genetic studies on the association of GSTM1 and GSTT1 polymorphisms with disease risks and drug effects in Arab populations.

  7. Evaluation of hepatic damage and local immune response in goats immunized with native glutathione S-transferase of Fasciola hepatica.

    Science.gov (United States)

    Zafra, R; Pérez-Ecija, R A; Buffoni, L; Mendes, R E; Martínez-Moreno, A; Martínez-Moreno, F J; Galisteo, M E Martínez; Pérez, J

    2010-01-01

    Worm burden, hepatic damage and local cellular and humoral immune responses were assessed in goats immunized with glutathione-S-transferase and challenged with Fasciola hepatica. Infected but unimmunized and uninfected control groups were also studied. Hepatic damage was evaluated grossly and microscopically. Local immune response was evaluated by (1) microscopical examination of hepatic lymph nodes (HLNs); (2) analysis of the distribution of CD2(+), CD4(+), CD8(+), T-cell receptor gammadelta(+) lymphocytes and immunoglobulin (Ig) G(+) plasma cells; and (3) investigation of the distribution of cells expressing interleukin (IL)-4 and interferon (IFN)-gamma in the hepatic inflammatory infiltrates and HLNs. Immunized animals did not have significant reduction in fluke number, but there was significant (Phepatic lobe. Microscopical lesions were similar in both infected groups and were typical of chronic fascioliosis. These included portal fibrosis, inflammatory infiltration with plasma cells, formation of lymphoid follicles, accumulation of haemosiderin-laden macrophages and granulomatous foci. Both infected groups had a marked local immune response characterized by infiltration of CD2(+), CD4(+) and CD8(+) T lymphocytes, and IgG(+) plasma cells in hepatic lesions and in HLNs. There was no expression of IL-4 or INF-gamma by cells in the hepatic inflammatory infiltrate, but expression of INF-gamma in HLNs was much lower than that of IL-4, suggesting an immune response dominated by T helper 2 cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Glutathione-S-transferase and microsomal epoxide hydrolase polymorphism and viral-related hepatocellular carcinoma risk in India.

    Science.gov (United States)

    Kiran, Manjula; Chawla, Yogesh Kumar; Kaur, Jyotdeep

    2008-12-01

    Hepatocellular carcinoma (HCC) is the fourth most common cancer worldwide, the main etiological factors being chronic infections with hepatitis B and C viruses. Genetic polymorphic forms of glutathione-S-transferase (GST) and microsomal epoxide hydrolase (mEPHX) have been associated with risk for various malignancies. The present study was undertaken to evaluate the association of GSTT1 and GSTM1 null genotypes and mEPHX polymorphisms with hepatitis virus-related HCC risk in an Indian population. Three groups of subjects were considered, control (n = 169), chronic viral hepatitis (n = 174), and HCC (n = 63). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for this polymorphic study. Genotype distributions between categories were compared using the chi2 test; odds ratios (ORs) and 95% confidence interval were calculated to express the relative risk. GSTT1 null genotype was associated with 2.23-fold (p GST and mEPHX variants share a positive association with viral-related HCC risk in Indian population, although a larger sample size is still required to confirm the results.

  9. Partial purification and characterization of glutathione S-transferase from the somatic tissue of Gastrothylax crumenifer (Trematoda: Digenea

    Directory of Open Access Journals (Sweden)

    Sakil Ahmed

    2017-12-01

    Full Text Available Aim: Aim of the present study was to carry out the partial purification and biochemical characterization of glutathione S-transferase (GST from the somatic tissue of ruminal amphistome parasite, Gastrothylax crumenifer (Gc infecting Indian water buffalo (Bubalus bubalis. Materials and Methods: The crude somatic homogenate of Gc was subjected to progressive ammonium sulfate precipitation followed by size exclusion chromatography in a Sephacryl S 100-HR column. The partially purified GST was assayed spectrophotometrically, and the corresponding enzyme activity was also recorded in polyacrylamide gel. GST isolated from the amphistome parasite was also exposed to variable changes in temperature and the pH gradient of the assay mixture. Results: The precipitated amphistome GST molecules showed maximum activity in the sixth elution fraction. The GST subunit appeared as a single band in the reducing polyacrylamide gel electrophoresis with an apparent molecular weight of 26 kDa. The GST proteins were found to be fairly stable up to 37°C, beyond this the activity got heavily impaired. Further, the GST obtained showed a pH optima of 7.5. Conclusion: Present findings showed that GST from Gc could be conveniently purified using gel filtration chromatography. The purified enzyme showed maximum stability and activity at 4°C.

  10. Cytochrome P4501A1 and glutathione S transferase gene polymorphisms in patients with aplastic anemia in India.

    Science.gov (United States)

    Poonkuzhali, B; Shaji, R V; Salamun, D E; George, B; Srivastava, A; Chandy, M

    2005-01-01

    The etiology of acquired aplastic anemia (AA) in most patients remains unclear. It is believed that patients with a reduced ability to detoxify environmental toxins are at increased risk of developing AA. Cytochrome P450 (CYP450) and glutathione S transferase (GST) are the major phase I and phase II xenobiotic-metabolizing enzymes. We analyzed the impact of the polymorphisms in CYP4501A1 and GSTM1 and GSTT1 genes on the susceptibility and disease severity in 200 patients with AA and compared the frequency with the normal population. There was a significantly increased frequency of the CYP1A1m4 allele in AA patients compared with normal controls (odds ratio = 3.01; 95% confidence interval 1.76-5.17; p = 0.00001). None of the other CYP1A1 genotypes or the GST genotypes were significantly different between AA patients and controls. Altered metabolism of benzo(a)pyrene due to the polymorphism in the CYP1A1 gene might be an etiologic factor in the increased incidence of AA in these patients. The CYP1A1m4 allele may play a role in determining the risk of AA in India. (c) 2005 S. Karger AG, Basel

  11. Glutathione S-Transferase activity and total thiol status in chronic alcohol abusers before and 30 days after alcohol abstinence

    Directory of Open Access Journals (Sweden)

    Manjunatha S Muttigi

    2009-05-01

    Full Text Available Background: Glutathione S Transferase (GST has been involved in detoxification process in the liver and its activity has been shown to be increased in alcohol abusers. In the current work we measured the GST activity, total thiol status, AST, ALT, and direct bilirubin in chronic alcohol abusers before and 30 days after alcohol abstinence and lifestyle modification. Methods: Serum and urine GST activity and total thiol status were determined using spectrophotometric methods and serum transaminases were determined using clinical chemistry analyzer. Results: We found,significant increase in serum and urine GST (p<0.001, AST (p<0.001, ALT (p<0.001, and decrease in total thiol status (p<0.001 in chronic alcohol abusers. GST activity significantly decreased (p<0.001 and total thiol status were improved significantly (p<0.001 30 days after alcohol abstinence and lifestyle modification. Conclusion: This study provides preliminary data to suggest the role of GST as prognostic indicator of alcohol abstinence with possible trend towards an improvement in liver function.

  12. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis.

    Directory of Open Access Journals (Sweden)

    Ke Wu

    Full Text Available Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST, cytochrome P450 (CYP and carboxyl/cholinesterase (CCE gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J' and J" clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J' and J" clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis.

  13. Glutathione S-Transferase Deletion Polymorphisms in Early-Onset Psychotic and Bipolar Disorders: A Case-Control Study.

    Science.gov (United States)

    Pejovic-Milovancevic, Milica M; Mandic-Maravic, Vanja D; Coric, Vesna M; Mitkovic-Voncina, Marija M; Kostic, Milutin V; Savic-Radojevic, Ana R; Ercegovac, Marko D; Matic, Marija G; Peljto, Amir N; Lecic-Tosevski, Dusica R; Simic, Tatjana P; Pljesa-Ercegovac, Marija S

    2016-08-01

    To examine glutathione S-transferase (GST) deletion polymorphisms in development of early-onset severe mental disorders, with the hypothesis that patients with GSTM1-null and GSTT1-null genotypes will develop psychotic disorders at a younger age. We identified GSTM1 and GSTT1 deletion polymorphisms by multiplex polymerase chain reaction (PCR) in 93 patients with early onset severe mental disorders and 278 control individuals. The diagnoses were confirmed by Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version and Schedule for Affective Disorders and Schizophrenia-Life-Time Version (K-SADS-PL) interviews. Individuals with the GSTM1-null genotype were at 3.36-fold higher risk of developing early-onset severe mental disorders than carriers of a corresponding active genotype. The risk of those disorders was increased by 6.59-fold in patients with GSTM1-null/GSTT1-active genotype. Patients with the GSTM1-null genotype were at approximately 2-fold increased risk for developing early-onset schizophrenia-spectrum disorder (EOS), early-onset bipolar disorder (EOBD) with psychotic symptoms, or early-onset first-episode psychosis (EOFEP), compared with patients with the GSTM1-active genotype. The GSTM1-null genotype might be associated with higher risk for early onset severe mental disorders. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Glutathione S-transferases are involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Yang, Xin; He, Chao; Xie, Wen; Liu, Yating; Xia, Jixing; Yang, Zezong; Guo, Litao; Wen, Yanan; Wang, Shaoli; Wu, Qingjun; Yang, Fengshan; Zhou, Xiaomao; Zhang, Youjun

    2016-11-01

    The whitefly, Bemisia tabaci, has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we assessed the level of cross-resistance, the activities of detoxifying enzymes, and the expression profiles of 23 glutathione S-transferase (GST) genes in a thiamethoxam-resistant ant and -susceptible strain of Bemisia tabaci Q. The thiamethoxam-resistant strain showed a moderate level of cross-resistance to another nicotinoid insecticide imidacloprid, a low level of cross-resistance to acetamiprid and nitenpyram, and no significant cross-resistance to abamectin and bifenthrin. Among detoxifying enzymes, only GSTs had significantly higher activity in the resistant strain than in the susceptible strain. Seven of 23 GST genes were over-expressed in the resistant strain relative to the susceptible strain. Using the technology of RNA interference to knockdown a GST gene (GST14), the results showed that silencing GST14 increased the mortality of whiteflies to thiamethoxam in Bemisia tabaci. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. "INHIBITION ASSAY STUDY OF PURIFIED GLUTATHIONE S-TRANSFERASE FROM FASCIOLA HEPATICA AND SHEEP LIVER TISSUE BY HEXACHLOROPHENE"

    Directory of Open Access Journals (Sweden)

    A. Farahnak PM. Brophy

    2004-08-01

    Full Text Available Glutathione S-transferases (GSTs are widespread in Fasciola. hepatica parasite and sheep liver tissue. Study of GSTs inhibition assays in F. hepatica and sheep liver tissue are a priority of chemotherapeutic targets in parasitic liver diseases including human fascioliasis in Iran. In this research, the whole extract of F. hepatica and sheep liver tissues were purified and eluted for sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE pattern and GSTs inhibition assay. GSTs inhibition was detected by hexachlorophene as an inhibitor and 1-chloro-2,4-dinitrobenzene (CDNB as secondary substrate. The purified GSTs from F. hepatica and liver tissue contained comparable components and showed a molecular weight of 26kDa. The inhibitor concentration of hexachlorophene, for the remaining 50% activity (IC50% of GST enzymes from F. hepatica and liver were graphically calculated, and the results were 0.25 µM and 1 µM, respectively. GSTs of F. hepatica may be more sensitive than sheep liver tissue to hexachlorophene.

  16. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro.

    Science.gov (United States)

    Hansen, Tina V A; Fryganas, Christos; Acevedo, Nathalie; Caraballo, Luis; Thamsborg, Stig M; Mueller-Harvey, Irene; Williams, Andrew R

    2016-08-01

    Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.).

    Science.gov (United States)

    Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin

    2014-11-01

    In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella.

  18. Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Yang, Jun; Sun, Xiao-Qin; Yan, Shu-Ying; Pan, Wen-Jun; Zhang, Mao-Xin; Cai, Qing-Nian

    2017-07-01

    Plant phenolics are crucial defense phytochemicals against herbivores and glutathione S-transferase (GST) and carboxylesterase (CarE) in herbivorous insects are well-known detoxification enzymes for such xenobiotics. To understand relationship between a plant phenolic and herbivore GST or CarE genes, we evaluated the relationship between a rice phenolic ferulic acid and resistance to brown planthopper (BPH, Nilaparvata lugens), and investigated the interaction of ferulic acid with GST or CarE genes in BPH. The results indicate that ferulic acid content in tested rice varieties was highly associated with resistance to BPH. Bioassays using artificial diets show that the phenolic acid toxicity to BPH was dose dependent and the LC 25 and LC 50 were 5.81 and 23.30 μg/ml at 72 hr, respectively. Activities of the enzymes BPH GST and CarE were increased at concentrations below the LC 50 of ferulic acid. Moreover, low ferulic acid concentrations (ferulic acid increased nymph mortality by 92.9%, 119.9%, or 124.6%, respectively. These results suggest that depletion of detoxification genes in herbivorous insects by plant-mediated RNAi technology might be a new potential resource for improving rice resistance to BPH.

  19. Glutathione S-Transferase P1 (GSTP1 gene polymorphism increases age-related susceptibility to hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kuo Wu-Hsien

    2010-03-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the most frequent malignant neoplasms in the world. Genetic polymorphism has been reported to be a factor increasing the risk of HCC. Phase II enzymes such as glutathione s-transferases (GSTP1, GSTA1 play important roles in protecting cells against damage induced by carcinogens. The aim of this study was to estimate the relationship of the GSTP1 and GSTA1 gene polymorphisms to HCC risk and clinico-pathological status. Methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP was used to measure GSTP1 (A→G and GSTA1 (C→T gene polymorphisms in 386 healthy controls and 177 patients with HCC. Results Neither gene polymorphism was associated with the clinico-pathological status of HCC and serum expression of liver-related clinico-pathological markers. No association between the GSTA1 gene polymorphism and HCC susceptibility was found. However, in the younger group, aged ≤ 57 years, individuals with AG or GG alleles of GSTP1 had a 2.18-fold (95%CI = 1.09-4.36; p = 0.02 and 5.64-fold (95%CI = 1.02-31.18; p = 0.04 risk, respectively, of developing HCC compared to individuals with AA alleles, after adjusting for other confounders. Conclusion AG and GG alleles of GSTP1 gene polymorphisms may be considered as factors increasing the susceptibility to and risk of HCC in Taiwanese aged ≤ 57 years.

  20. Extração, purificação e avaliação da atividade da glutationa S-Transferase de fígado bovino Extraction of glutathione s-transferase from bovine liver

    Directory of Open Access Journals (Sweden)

    Maria Célia Lopes Torres

    2006-04-01

    Full Text Available Considerando a ação detoxificante da enzima Glutationa S-Transferase (GST, importante contra o estresse oxidativo, câncer e outras doenças degenerativas, com este estudo, objetivou-se avaliar a atividade dessa enzima extraída de fígado bovino e avaliar a estabilidade em condições de refrigeração (5(0C. O fígado bovino foi selecionado por ser matéria prima disponível comercialmente e de baixo custo. A extração foi realizada em quatro etapas (homogeneização/centrifugação, passagem em coluna contendo dietilaminoetil-celulose (DEAE-celulose, precipitação com sulfato de amônia e passagem em coluna contendo Carboximetilcelulose (CMC. O extrato obtido apresentou atividade com o 1 cloro 2, 4 dinitrobenzeno, na presença de glutationa reduzida. O extrato final apresentou atividade específica 5 vezes maior que o extrato bruto centrifugado e estabilidade da atividade enzimática foi mantida nas condições de 5(0C, durante 70 dias.Considering the detoxication functions of Glutathione S-transferase (GST enzyme, that is important against oxidative stress, cancer and others degenerative diseases, this study aimed to evaluate the stability and activity of Glutathione S-transferase extracted from bovine liver, which is commercially available at low cost. The extraction was done in four steps (homogenization/centrifugation, passage through column containing diethylaminoethyl-cellulose (DEAE, precipitation with ammonium sulfate and passing through column of carboxy-methyl-cellulose (CMC. The extract thus obtained showed activity with 1 chloro 2, 4 dinitrobenzene, in the presence of reduced glutation. The specific activity of the final extract was 5 times greater than the crude centrifuged extract, and was stable for 70 days when stored at 5 ºC.

  1. Glutathione-S-transferase production in earthworm (Annelida: Eudrilidae) as a tool for heavy metal pollution assessment in abattoir soil.

    Science.gov (United States)

    Ojo, Owagboriaye Folarin; Adewumi, Dedeke Gabriel; Oluwatoyin, Ademoly Kehinde

    2016-06-01

    The use of direct response of animals to environmental challenges by production of biomarkers is a better tool to assess environmental pollution than the conventional methods. This study aimed to measure Glutathione-S-transferase (GST) in earthworms as tools for assessing heavy metal pollution in abattoir soil. Five (5) replicates each of earthworm species (Libyodrilus violaceous, Eudrilus eugeniae and Alma millsoni), soil and rumen waste samples were collected from three (3) abattoir sites (Lafenwa, Gbonogun and Madojutimi abattoirs), and a control site located within Federal University of Agriculture Abeokuta, beside an undisturbed stream with no rumen waste. Heavy metal (Cu, Zn, Pb, Cd, Co, Cr, Ni and Mn) concentrations in rumen waste, abattoir soils and earthworm tissues were determined using Atomic Absorption Spectrophotometer. The pH and organic matter (OM) concentrations of the rumen waste and abattoir soils were determined by standard methods. GST activities in the earthworm tissues were determined through the conjugation of 1 mM reduced glutathione (GSH) with 1 mM 1-chloro-2,4-dinitrobenzene (CDNB). The rumen waste recorded significantly higher (p ≤ 0.05) % OM, heavy metal concentrations and pH level than in their respective abattoir soils. The mean heavy metal concentrations of Cu, Zn, Pb, Cd and Mn were highest in the tissue of earthworm species obtained from Lafenwa abattoir. A significantly (p ≤ 0.05) higher GST activities were recorded in the tissue of earthworm species obtained from Lafenwa and Gbonogun abattoirs. Libyodrilous violaceus obtained from Lafenwa abattoir recorded the highest GST activity (8.47±1.39) in their tissue followed by the ones from Gbonogun abattoir (8.21±0.85). A significant (p ≤ 0.05) positive correlations was observed between GST activities in earthworm tissues and heavy metal concentrations. GST activities can therefore be used to assess the level of heavy metal pollution in abattoir soils.

  2. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation.

    Science.gov (United States)

    Varzari, Alexander; Deyneko, Igor V; Tudor, Elena; Turcan, Svetlana

    2016-02-01

    Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype-phenotype correlations were examined using logistic regression analysis. None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04-0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10-0.54). The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required.

  3. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    Science.gov (United States)

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Enzymatic Activity of Glutathione S-Transferase and Dental Fluorosis Among Children Receiving Two Different Levels of Naturally Fluoridated Water.

    Science.gov (United States)

    Bonola-Gallardo, Irvin; Irigoyen-Camacho, María Esther; Vera-Robles, Liliana; Campero, Antonio; Gómez-Quiroz, Luis

    2017-03-01

    This study was conducted to measure the activity of the enzyme glutathione S-transferase (GST) in saliva and to compare the activity of this enzyme in children with and without dental fluorosis in communities with different concentrations of naturally fluoridated water. A total of 141 schoolchildren participated in this cross-sectional study. Children were selected from two communities: one with a low (0.4 ppm) and the other with a high (1.8 ppm) water fluoride concentration. Dental fluorosis was evaluated by applying the Thylstrup and Fejerskov Index (TFI) criteria. Stimulated saliva was obtained, and fluoride concentration and GST activity were measured. The GST activity was compared among children with different levels of dental fluorosis using multinomial logistic regression models and odds ratios (OR). The mean age of the children was 10.6 (±1.03) years. Approximately half of the children showed dental fluorosis (52.5 %). The average GST activity was 0.5678 (±0.1959) nmol/min/μg. A higher concentration of fluoride in the saliva was detected in children with a higher GST activity (p = 0.039). A multinomial logistic regression model used to evaluate the GST activity and the dental fluorosis score identified a strong association between TFI = 2-3 (OR = 15.44, p = 0.007) and TFI ≥ 4 (OR = 55.40, p = 0.026) and the GST activity level, compared with children showing TFI = 0-1, adjusted for age and sex. Schoolchildren with higher levels of dental fluorosis and a higher fluoride concentration in the saliva showed greater GST activity. The increased GST activity most likely was the result of the body's need to inactivate free radicals produced by exposure to fluoride.

  5. Distribution of glutathione S-transferase T1 and M1 genes polymorphisms in North East Indians: a potential report.

    Science.gov (United States)

    Thoudam, Regina Devi; Yadav, Dhirendra Singh; Mishra, Ashwani Kumar; Kaushal, Mishi; Ihsan, Rakhshan; Chattopadhyay, Indranil; Chauhan, Pradeep Singh; Sarma, Jagannath; Zomawia, Eric; Verma, Yogesh; Nandkumar, A; Mahanta, Jagadish; Phukan, Rupkumar; Kapur, Sujala; Saxena, Sunita

    2010-04-01

    Detoxifying glutathione S-transferase (GST) gene polymorphisms show variation in different ethnic populations. GST detoxifies and metabolizes carcinogens, including oxygen free radicals. GST polymorphisms have been associated with susceptibility to different diseases. In the current study, allelic polymorphisms of GSTM1 and GSTT1 were analyzed in three ethnic groups of North East (NE) India where a high prevalence of various cancers and other diseases such as hypertension, tuberculosis, and asthma have been reported. We compared the prevalence of GSTT1 and GSTM1 deletion genotypes, which were determined by multiplex polymerase chain reaction, in 422 voluntary, healthy NE Indians with those of other populations. The data was statistically analyzed. The GSTT1-null genotype was found in 51%, 34.3%, and 15.7% of individuals (from Mizoram, Sikkim, and Assam regions of NE India, respectively), whereas the GSTM1-null genotype was found in 46.9%, 46%, and 35% of individuals from the same areas. The NE Indians differ from the rest of the Indian population with reference to genotypic distribution of GST polymorphisms but the frequency was found to be similar to that which has been reported from China. This may explain the hypothesis of the common ancestral origin of both the NE Indians and the Chinese and a higher frequency of cancers such as gastric, esophageal, and oral cancers, which has been reported from these regions. This study establishes baseline frequency data for GST polymorphisms for future case control studies on the role these polymorphisms play with regard to diseases. The results presented here provide the first report on GST polymorphisms in the NE Indian population.

  6. Polymorphisms of glutathione-S-transferase genes and the risk of aerodigestive tract cancers in the Northeast Indian population.

    Science.gov (United States)

    Yadav, Dhirendra Singh; Devi, Thoudam Regina; Ihsan, Rakhshan; Mishra, Ashwani Kumar; Kaushal, Mishi; Chauhan, Pradeep Singh; Bagadi, Sarangadhara A R; Sharma, Jagannath; Zamoawia, Eric; Verma, Yogesh; Nandkumar, Ambakumar; Saxena, Sunita; Kapur, Sujala

    2010-10-01

    Widespread use of tobacco and betel quid consumption and a high incidence of tobacco-associated aerodigestive tract cancers have been reported in different ethnic groups from several regions of Northeast (NE) India. This study was done to explore the possibility of phase II metabolic enzymes being responsible for the high prevalence of cancers in this region of India. Samples from 370 cases with oral, gastric, and lung cancers and 270 controls were analyzed for polymorphism of glutathione-S-transferase (GST) genes using polymerase chain reaction-restriction fragment length polymorphism-based methods. Tobacco smoking and betel quid chewing were found to be high risk factors for oral and lung cancers but not for gastric cancer, whereas tobacco chewing was found to be a risk factor for oral cancer but not for gastric or lung cancer. The variant genotypes of GSTP1 were not associated with any of the aerodigestive tract cancers. GSTT1 and GSTM1 null genotypes appeared to play a protective role for lung cancer (odds ratio [OR] = 0.47, 95% confidence interval [95% CI]: 0.24-0.93, p = 0.03) and (OR = 0.52, 95% CI: 0.28-0.96, p = 0.04), but they were not associated with oral and gastric cancers. However, when data was analyzed in different geographic regions the GSTT1 null genotype was found to be a significant risk factor for oral (OR = 2.58, 95% CI 1.01-6.61, p = 0.05) as well as gastric cancer (OR = 3.08, 95% CI 1.32-7.19, p = 0.009) in samples obtained from the Assam region of NE India. This is the first study on the association of GST polymorphisms and aerodigestive tract cancers in the high-risk region of NE India.

  7. Production and characterization of a monoclonal antibody against recombinant glutathione S-transferase (GST) of Fasciola gigantica.

    Science.gov (United States)

    Khawsuk, Witoon; Soonklang, Nantawan; Grams, Rudi; Vichasri-Grams, Suksiri; Wanichanon, Chaitip; Meepool, Ardool; Chaithirayanon, Kulathida; Ardseungneon, Pissanee; Viyanant, Vithoon; Upathum, Suchart Edward; Sobhon, Prasert

    2002-12-01

    A monoclonal antibody (MoAb) against a recombinant glutathione S-transferase (rGST) of F. gigantica was produced in BALB/c mice. Reactivity and specificity of this monoclonal antibody was assessed by ELISA and immunoblotting. Six stable clones, namely 3A3, 3B2, 3C6, 4A6, 4B1 and 4D6 were obtained, All these MoAb reacted with rGST and native GST at a molecular weight of 28 kDa and found to be IgG1, kappa-light chain isotypes. These MoAb cross-reacted with Schistosoma mansoni and Schistosoma japonicum antigens at molecular weights of 28 and 26 kDa, respectively, but no cross-reactions were detected with antigens of Eurytrema and Paramphistomum spp. The localization of GST in metacercaria, 7-week-old juvenile and adult F. gigantica was performed by immunofluorescence technique, using MoAb as well as polyclonal antibody (PoAb) to the native protein as probes. In general, all clones of MoAb gave similar results and the pattern was quite similar to staining by PoAb. The fluorescence was intense, which implied the presence of a high concentration of GST in the parenchymal tissue in all stages of the parasite. However, the parenchymal cells were not evenly stained which implied the existence of subpopulations of this cell type with regard to GST production and storage. In addition, in adult and juvenile stages a moderate fluorescence was present in the basal layer of the tegument, while light fluorescence was observed in the caecal epithelium, cells in the ovary, testis and vitelline gland of the adult. In the metacercaria stage, in addition to parenchymal tissue, the tegument and tegumental cells were stained relatively more intense with MoAb and PoAb than in other stages.

  8. Genetic polymorphisms of glutathione S-transferase genes GSTM1, GSTT1 and risk of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Kang Song

    Full Text Available BACKGROUND: A number of case-control studies were conducted to investigate the association of glutathione S-transferase (GST genetic polymorphisms and hepatocellular carcinoma (HCC risk. However, these studies have yielded contradictory results. We therefore performed a meta-analysis to derive a more precise estimation of the association between polymorphisms on GSTM1, GSTT1 and HCC. METHODOLOGY/PRINICPAL FINDINGS: PubMed, EMBASE, ISI web of science and the CNKI databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. Odds ratios (ORs and 95% confidence intervals (95% CIs were used to assess the strength of association. Potential sources of heterogeneity were also assessed by subgroup analysis and meta-regression. Funnel plots and Egger's linear regression were used to test publication bias among the articles. A total of 34 studies including 4,463 cases and 6,857 controls were included in this meta-analysis. In a combined analysis, significantly increased HCC risks were found for null genotype of GSTM1 (OR = 1.29, 95% CI: 1.06-1.58; P = 0.01 and GSTT1 (OR = 1.43, 95% CI: 1.22-1.68; P<10(-5. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. Significant results were found in East Asians and Indians when stratified by ethnicity; whereas no significant associations were found among Caucasians and African populations. By pooling data from 12 studies that considered combinations of GSTT1 and GSTM1 null genotypes, a statistically significant increased risk for HCC (OR = 1.88, 95% CI: 1.41-2.50; P<10(-4 was detected for individuals with combined deletion mutations in both genes compared with positive genotypes. CONCLUSIONS/SIGNIFICANCE: This meta-analysis suggests that the GSTM1 and GSTT1 null genotype may slightly increase the risk of HCC and that interaction between unfavourable GSTs genotypes may exist.

  9. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    Science.gov (United States)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiyuan [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); An, Byoung Ha [Department of Food and Nutrition, College of Life Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kim, Min Jung; Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kang, Young Sook [Department of Pharmacy, College of Pharmacy, Sookmyung Women’s University, Seoul (Korea, Republic of); Chang, Minsun, E-mail: minsunchang@sm.ac.kr [Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women’s University, Seoul (Korea, Republic of)

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  11. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  12. Comparative study of acetylcholinesterase and glutathione S-transferase activities of closely related cave and surface Asellus aquaticus (Isopoda: Crustacea.

    Directory of Open Access Journals (Sweden)

    Anita Jemec

    Full Text Available The freshwater isopod crustacean Asellus aquaticus has recently been developed as an emerging invertebrate cave model for studying evolutionary and developmental biology. Mostly morphological and genetic differences between cave and surface A. aquaticus populations have been described up to now, while scarce data are available on other aspects, including physiology. The purpose of this study was to advance our understanding of the physiological differences between cave A. aquaticus and its surface-dwelling counterparts. We sampled two surface populations from the surface section of the sinking Pivka River (central Slovenia, Europe, i.e. locality Pivka Polje, and locality Planina Polje, and one cave population from the subterranean section of the sinking Pivka River, i.e. locality Planina Cave. Animals were sampled in spring, summer and autumn. We measured the activities of acetylcholinesterase (AChE and glutathione S-transferase (GST in individuals snap-frozen in the field immediately after collection. Acetylcholinesterase is likely related to animals' locomotor activity, while GST activity is related to the metabolic activity of an organism. Our study shows significantly lower AChE and GST activities in the cave population in comparison to both surface A. aquaticus populations. This confirms the assumption that cave A. aquaticus have lower locomotor and metabolic activity than surface A. aquaticus in their respective natural environments. In surface A. aquaticus populations, seasonal fluctuations in GST activity were observed, while these were less pronounced in individuals from the more stable cave environment. On the other hand, AChE activity was generally season-independent in all populations. To our knowledge, this is the first study of its kind conducted in A. aquaticus. Our results show that among closely related cave and surface A. aquaticus populations also physiological differences are present besides the morphological and genetic

  13. Influence of Glutathione S-Transferase Polymorphisms on Cognitive Functioning Effects Induced by p,p′-DDT among Preschoolers

    Science.gov (United States)

    Morales, Eva; Sunyer, Jordi; Castro-Giner, Francesc; Estivill, Xavier; Julvez, Jordi; Ribas-Fitó, Nuria; Torrent, Maties; Grimalt, Joan O.; de Cid, Rafael

    2008-01-01

    Background Early-life exposure to p,p′-DDT [2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane] is associated with a decrease in cognitive skills among preschoolers at 4 years of age. We hypothesized that genetic variability in glutathione S-transferase (GST) genes (GSTP1, GSTM1, and GSTT1) could influence the effects of prenatal exposure to p,p′-DDT. Methods We used data from 326 children assessed in a prospective population-based birth cohort at the age of 4 years. In that study, the McCarthy Scales of Children’s Abilities were administrated by psychologists, organochlorine compounds were measured in cord serum, and genotyping was conducted for the coding variant Ile105Val from GSTP1 and for null alleles from GSTM1 and GSTT1. We used linear regression models to measure the association between organochlorines and neurodevelopmental scores by GST polymorphisms. Results p,p′-DDT cord serum concentration was inversely associated with general cognitive, memory, quantitative, and verbal skills, as well as executive function and working memory, in children who had any GSTP1 Val-105 allele. GSTP1 polymorphisms and prenatal p,p′-DDT exposure showed a statistically significant interaction for general cognitive skills (p = 0.05), quantitative skills (p = 0.02), executive function (p = 0.01), and working memory (p = 0.02). There were no significant associations between p,p′-DDT and cognitive functioning at 4 years of age according to GSTM1 and GSTT1 polymorphisms. Conclusions Results indicate that children with GSTP1 Val-105 allele were at higher risk of the adverse cognitive functioning effects of prenatal p,p′-DDT exposure. PMID:19057715

  14. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children.

    Science.gov (United States)

    Islam, T; Berhane, K; McConnell, R; Gauderman, W J; Avol, E; Peters, J M; Gilliland, F D

    2009-03-01

    Because asthma has been associated with exercise and ozone exposure, an association likely mediated by oxidative stress, we hypothesised that glutathione-S-transferase (GST)P1, GSTM1, exercise and ozone exposure have interrelated effects on the pathogenesis of asthma. Associations of the well characterised null variant of GSTM1 and four single nucleotide polymorphisms (SNPs) that characterised common variation in the GSTP1 locus with new onset asthma in a cohort of 1610 school children were examined. Children's exercise and ozone exposure were classified using participation in team sports and community annual average ozone levels, respectively. A two SNP model involving putatively functional variants (rs6591255, rs1695 (Ile105Va)) best captured the association between GSTP1 and asthma. The risk of asthma was lower for those with the Val allele of Ile105Val (hazard ratio (HR) 0.60, 95% CI 0.4 to 0.8) and higher for the variant allele of rs6591255 (HR 1.40, 95% CI 1.1 to 1.9). The risk of asthma increased with level of exercise among ile(105) homozygotes but not among those with at least one val(105) allele (interaction p value = 0.02). The risk was highest among ile(105) homozygotes who participated in >or=3 sports in the high ozone communities (HR 6.15, 95% CI 2.2 to 7.4). GSTM1 null was independently associated with an increased risk of asthma and showed little variation with air pollution or GSTP1 genotype. These results were consistent in two independent fourth grade cohorts recruited in 1993 and 1996. Children who inherit a val(105) variant allele may be protected from the increased risk of asthma associated with exercise, especially in high ozone communities. GSTM1 null genotype was associated with an increased risk of asthma.

  15. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    Science.gov (United States)

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  16. Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones.

    Science.gov (United States)

    Hu, Tingzhang; He, Shuai; Yang, Guojun; Zeng, Hua; Wang, Guixue; Chen, Zaigang; Huang, Xiaoyun

    2011-04-01

    OsGSTL2, encoding glutathione S-transferase, is a lambda class gene on chromosome 3 of rice (Oryza sativa L.). RNA blot analysis and semi-quantitative RT-PCR assays demonstrated that the transcription of OsGSTL2 in rice roots treated with chlorsulfuron increased significantly. To further understand OsGSTL2 promoter activity, a DNA fragment (GST2171) of 2,171 bp upstream of the OsGSTL2 coding region was isolated. In silico sequence analysis revealed that this fragment contains stress-regulated regulatory elements, hormone-responsive elements and three transposable elements. To define the core promoter sequence, a series of 5' truncation derivatives of GST2171 were fused to uidA gene. The chimeric genes were introduced into rice plants via Agrobacterium-mediated transformation. The expression of the GST2171::GUS transgene varied considerably. GUS staining indicated that the uidA gene is expressed in young seedlings, older leaves, flowering glumes and seeds, but not in older roots. Quantitative fluorescence assays revealed that the expression of the uidA gene is strong in young seedlings and decreases gradually over a period of 25 days. To our surprise, among the 5' truncation derivatives, the shortest promoter GST525 showed the highest GUS expression, and the second shortest promoter GST962 showed the lowest GUS expression. The uidA gene expression in the roots of transgenic rice seedlings is upregulated by chlorsulfuron, glyphosate, salicylic acid (SA) and naphthalene acetic acid (NAA). The possible roles of the repetitive elements on the OsGSTL2 promoter were discussed in terms of transcription repression and promoter induction by herbicides and hormones.

  17. Are glutathione S-transferase polymorphisms (GSTM1, GSTT1) associated with primary open angle glaucoma? A meta-analysis.

    Science.gov (United States)

    Lu, Yan; Shi, Yuhua; Yin, Jie; Huang, Zhenping

    2013-09-15

    Glutathione S-transferase (GST) variants have been considered as risk factors for the pathogenesis of primary open angle glaucoma (POAG). However, the results have been inconsistent. In this study, we performed a meta-analysis to assess the association between GSTM1 and GSTT1 null genotypes and the risk for POAG. Published literature from PubMed and EMBASE databases was retrieved. All studies evaluating the association between GSTM1/GSTT1 variants and POAG were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed- or random-effects model. 14 studies (1711 POAG cases and 1537 controls) were included in the meta-analysis of GSTM1 genotypes and 10 studies (1306 POAG cases and 1114 controls) were included in the meta-analysis of GSTT1 genotypes. The overall result showed that the association between GSTM1 and GSTT1 null genotypes and risk for POAG was not statistically significant (GSTM1: OR=1.19, 95% CI=0.82-1.73, p=0.361; GSTT1: OR=1.26, 95% CI=0.77-2.06, p=0.365). The results by ethnicity showed that the association between the GSTM1 null genotype and risk for POAG is statistically significant in East Asians (OR=1.41, 95% CI=1.04-1.90, p=0.026), but not in Caucasians (OR=1.13, 95% CI=0.69-1.84, p=0.638) and Latin-American (OR=1.09, 95% CI=0.62-1.92, p=0.767). In addition, there was no significant association of GSTT1 null genotype with risk for POAG in either ethnic population. The present meta-analysis suggested that there might be a significant association of GSTM1 null genotype with POAG risk in East Asians. © 2013 Elsevier B.V. All rights reserved.

  18. Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna

    Directory of Open Access Journals (Sweden)

    Song Yuzhi

    2017-03-01

    Full Text Available Applying pesticides to crops is one of the causes of water pollution by surface runoff, and chlorpyrifos, trifluralin and chlorothalonil are used respectively as insecticide, herbicide and fungicide for crop plants widely. To explore effects of three pesticides on aquatic organisms, superoxide dismutase (SOD and glutathione S-transferase (GST activities were determined after 24 h and 48 h exposure of D. magna with ages of 6–24 h to several low concentrations of chlorpyrifos (0.36, 0.72, 1.43, 2.86, 5.72 μg∙L−1, trifluralin (0.17, 0.33, 0.66, 1.33, 2.65 mg∙L−1 and chlorothalonil (0.09, 0.18, 0.36, 0.72, 1.43 mg∙L−1 respectively. Main reproductive parameters including first pregnancy time, first brood time, the number of first brood and total fecundity after 21 d exposures at the same concentrations of pesticides as described above were also measured. The results showed that the activities of GST increased in lower concentrations and decreased in higher concentrations after 24 h exposure to three pesticides, respectively. The activities of SOD showed the same changes after 48 h exposure. With the time prolonged, the activities of GST decreased while the activities of SOD increased. After 21 d exposure, the first pregnancy time and first brood time were delayed, while the number of the first brood and total fecundity per female decreased with increasing concentrations. These results corroborated that GST activity was more sensitive to those pesticides than SOD activity, and there was a significant relationship between total fecundity and pesticides-dose(r>0.94, n=6, GST activity after 48 h exposure and total fecundity after 21 d exposure (r>0.92, n=6.

  19. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-01-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST ω1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST ω2 (GSTO2) Asn142Asp, GST π1 (GSTP1) Ile105Val, GST μ1 (GSTM1) wild/null, and GST θ1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As V than the wild homo type. Higher percentage of DMA V in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As V to As III . Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  20. Expression of π-class glutathione S-transferase: two populations of high grade prostatic intraepithelial neoplasia with different relations to carcinoma

    OpenAIRE

    Montironi, R; Mazzucchelli, R; Stramazzotti, D; Pomante, R; Thompson, D; Bartels, P H

    2000-01-01

    Background/Aims—Patients with high grade prostatic intraepithelial neoplasia of the transition zone appear to be at increased risk of developing prostatic carcinoma, although not to the same degree as patients with high grade prostatic intraepithelial neoplasia of the peripheral/central zone. Previous investigations have shown loss of expression of π-class glutathione S-transferase (GST-π; an enzyme that protects against electrophilic carcinogens) in prostatic carcinoma and in high grade pros...

  1. The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Brasch-Andersen, Charlotte; Husemoen, Lise-Lotte

    2012-01-01

    Introduction: Exposure to particulate matter (PM) may induce inflammation and oxidative stress in the airways. Carriers of null polymorphisms of glutathione S-transferases (GSTs), which detoxify reactive oxygen species, may be particularly susceptible to the effects of PM. Objectives: To investig....... The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease. Clin Respir J 2011; DOI:10.1111/j.1752-699X.2011.00258.x.......Introduction: Exposure to particulate matter (PM) may induce inflammation and oxidative stress in the airways. Carriers of null polymorphisms of glutathione S-transferases (GSTs), which detoxify reactive oxygen species, may be particularly susceptible to the effects of PM. Objectives......: To investigate whether deletions of GSTM1 and GSTT1 modify the potential effects of exposure to indoor sources of PM on symptoms and objective markers of respiratory disease. Methods: We conducted a population-based, cross-sectional study of 3471 persons aged 18-69 years. Information about exposure to indoor...

  2. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  3. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.

    Science.gov (United States)

    Enya, Sora; Ameku, Tomotsune; Igarashi, Fumihiko; Iga, Masatoshi; Kataoka, Hiroshi; Shinoda, Tetsuro; Niwa, Ryusuke

    2014-10-10

    In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects.

  4. Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest, Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae).

    Science.gov (United States)

    Jing, Tian-Xing; Wu, Yu-Xian; Li, Ting; Wei, Dan-Dan; Smagghe, Guy; Wang, Jin-Jun

    2017-04-01

    Glutathione S-transferases (GSTs) comprise a diverse family of enzymes found ubiquitously in aerobic organisms and they play important roles in insecticide resistance. In this study, we tested the sensitivities of Liposcelis entomophila, collected from four different field populations, to three insecticides. The results showed that the insects from Tongliang population had a relatively higher tolerance to malathion and propuxor than insects from other field populations. The insecticide sensitivities of different populations detected in psocids may be due to the different control practices. Through sequence mining and phylogenetic analyses, we identified 15 delta class GST genes that contained the conserved motifs of the GSTs. Quantitative real-time PCR (Q-PCR) analysis indicated that the 15 GST genes were expressed at all tested developmental stages, and 12 GST genes had significantly higher expression levels in adulthood than in egg stage. The expression levels of 15 GST genes in different field populations showed that 9 GST genes were significantly higher in Tongliang population compared to other populations. Furthermore, Q-PCR confirmed that the expression of several delta class GSTs was upregulated at different times after malathion, propuxor and deltamethrine exposure with the LC 50 concentration of insecticide. Taken together, these findings showed that delta class GST genes have various expression levels in different developmental stages and different field populations, and they were up-regulated in response to insecticide exposure, which suggested that these GSTs may be associated with insecticide metabolism in psocids. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Glutathione S-transferase omega-2 polymorphism Asn142Asp modifies the risk of age-related cataract in smokers and subjects exposed to ultraviolet irradiation.

    Science.gov (United States)

    Stamenkovic, Miroslav; Radic, Tanja; Stefanovic, Ivan; Coric, Vesna; Sencanic, Ivan; Pljesa-Ercegovac, Marija; Matic, Marija; Jaksic, Vesna; Simic, Tatjana; Savic-Radojevic, Ana

    2014-04-01

    Glutathione S-transferase omega-1 and 2 have a unique range of enzymatic activities, including the regeneration of ascorbate by their dehydroascorbate reductase activities. Because these enzymes could have a protective role from oxidative damage in the lens, the question of whether the two coding glutathione S-transferase omega polymorphisms confer the risk of age-related cataract was addressed. rs4925 (Ala140Asp) of glutathione S-transferase omega-1 and rs156697 (Asn142Asp) of glutathione S-transferase omega-2 polymorphisms in 100 patients with age-related cataract and 130 controls were assessed. Presence of one mutant GSTO1*Asp or GSTO2*Asp allele did not contribute independently towards the risk of cataract; however, homozygous carriers of GSTO1*Asp/GSTO2*Asp haplotype demonstrated 3.42-fold enhanced risk of cataract development (95% confidence interval = 0.84-13.93; P = 0.086). When GSTO genotype was analysed in association with smoking or professional exposure to ultraviolet irradiation, carriers of at least one mutant GSTO2*Asp allele had increased risk of cataract development in comparison with individuals with wild-type GSTO2*Asn/Asn with no history of smoking or ultraviolet exposure (odds ratio = 6.89, 95% confidence interval = 1.81-16.21, P = 0.005; odds ratio = 4.10, 95% confidence interval = 1.23-13.74, P = 0.022, respectively). Regarding the distribution of particular glutathione S-transferase omega genotype and cataract type, the highest frequency of mutant GSTO2*Asp allele was found in patients with nuclear cataract. The results indicate that mutant GSTO2*Asp genotype is associated with increased risk of age-related cataract in smokers and ultraviolet-exposed subjects, suggesting a role of inefficient ascorbate regeneration in cataract development. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  6. Association between glutathione S-transferase M1 and T1 polymorphisms and colorectal cancer risk in patients from Kazakhstan.

    Science.gov (United States)

    Zhunussova, Gulnur; Zhunusbekova, Benazir; Djansugurova, Leyla

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide and the incidence is increasing in developed as well as developing countries including Kazakhstan. Glutathione S-transferases (GSTs) are considered to be cancer susceptibility genes as they play a role in the detoxification of carcinogenic species. In this case-control study the influence of GSTM1 and GSTT1 polymorphisms on CRC risk in Kazakhstan population were evaluated. Blood samples were collected from patients diagnosed with rectal or colon cancer (300 individuals) as well as a control cohort of healthy volunteers (300 individuals), taking into account the age, gender, ethnicity, and smoking habits of the CRC patients. Deletion polymorphisms were genotyped employing a multiplex PCR amplification method. Association between polymorphisms and CRC susceptibility risk was calculated using multivariate analysis and logistic regression for odd ratio (OR). The homozygous GSTM1 null genotype was associated with significantly increased risk of CRC (OR = 2.01, 95% CI = 1.45-2.79, p = 0.0001) while the homozygous GSST1 null genotype was not associated with the risk of developing CRC (OR = 1.10, 95% CI = 0.78-1.55, p = 0.001), but the heterozygous genotype correlated with CRC susceptibility (OR = 1.98, 95% CI = 1.30-3.00, p = 0.001). Also, separate analyses of each of the main ethnic groups (Kazakh and Russian) showed a strong association of GSTM1 null genotype with CRC risk (for Kazakhs OR = 2.36, 95% CI = 1.35-4.10, p = 0.006 and for Russians OR = 1.84, 95% CI = 1.17-2.89, p = 0.003). The CRC risk of GSTM1 null genotype in smokers was considerably higher (OR = 3.37, 95% CI = 1.78-6.38, p = 0.0007). The combination of the GSTM1 and GSTT1 null genotypes in combined mixed population of Kazakhstan showed a trend to increasing the risk of developing CRC (OR = 1.60, 95% CI = 1.00-2.56), but it was not statistically significant. In conclusion, the results of this case-control study for sporadic cases of

  7. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    Science.gov (United States)

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  8. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

    OpenAIRE

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-01-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-V...

  9. Females with paired occurrence of cancers in the UADT and genital region have a higher frequency of either Glutathione S-transferase M1/T1 null genotype

    Directory of Open Access Journals (Sweden)

    Jhavar Sameer G

    2005-03-01

    Full Text Available Abstract Upper Aero digestive Tract (UADT is the commonest site for the development of second cancer in females after primary cervical cancer. Glutathione S-transferase (GSTM1 and / or T1 null genotype modulates the risk of developing UADT cancer (primary as well as second cancer. The aim of this study was to evaluate the difference in GST null genotype frequencies in females with paired cancers in the UADT and genital region as compared to females with paired cancers in the UADT and non-genital region. Forty-nine females with a cancer in the UADT and another cancer (at all sites-genital and non-genital were identified from a database of patients with multiple primary neoplasms and were analyzed for the GSTM1 and T1 genotype in addition to known factors such as age, tobacco habits, alcohol habits and family history of cancer. Frequencies of GSTM1 null, GSTT1 null, and either GSTM1/T1 null were higher in females with paired occurrence of cancer in the UADT and genital site (54%, 33% and 75% respectively in comparison to females with paired occurrence of cancer in the UADT and non-genital sites (22%, 6% and 24% respectively. The significantly higher inherited frequency of either GSTM1/T1 null genotype in females with a paired occurrence of cancers in UADT and genital region (p = 0.01, suggests that these females are more susceptible to damage by carcinogens as compared to females who have UADT cancers in association with cancers at non-genital sites.

  10. Association between Glutathione S-Transferase GSTM1-T1 and P1 Polymorphisms with Metabolic Syndrome in Zoroastrians in Yazd, Iran

    Science.gov (United States)

    AFRAND, Mohammadhosain; BASHARDOOST, Nasrollah; SHEIKHHA, Mohammad Hasan; AFKHAMI-ARDEKANI, Mohammad

    2015-01-01

    Background: The aim of this study was to assess the possible association between genetic polymorphisms of the glutathione S-transferase (GST) gene family and the risk of the development of metabolic syndrome (MS) in Zoroastrian females in Yazd, Iran. Methods: In this case-control study, GSTM1, T1, and P1 polymorphisms were genotyped in 51 randomly selected MS patients and 50 randomly selected healthy controls on February 2014 among Zoroastrian females whose ages ranged from 40 to 70 yr. DNA was extracted from peripheral blood. Data were analyzed with SPSS version 17. Results: We observed a significant association of GSTP1-I/V (Isoleucine/Valine) allele and GSTP1-V/V (Valine / Valine) allele with MS (P = 0.047 and P = 0.044, respectively). The combined analysis of the two genotypes, the present genotype of GSTT1, I/V and V/V alleles of GSTP1 genotype demonstrated a decrease in the risk of acquiring MS (OR = 0.246, P = 0.031). The null genotype of GSTM1, I/V, and V/V alleles of the GSTP1 genotype showed a lower risk in double combinations (OR = 0.15, P = 0.028 and OR = 0.13, P = 0.013, respectively). The combinations of the GSTM1 null genotypes and GSTT1 present genotypes and the GSTP1 I/V and V/V alleles together were associated with decreased risk of having MS in triple combinations (OR = 0.071, P = 0.039 and OR = 0.065, P = 0.022, respectively). Conclusion: GSTP1-I/V and V/V alleles, alone or in association with GSTM1 null and GSTT1 present genotypes, are related with decreased susceptibility to the development of MS in Zoroastrian females. PMID:26284209

  11. Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium.

    Science.gov (United States)

    Thier, R; Pemble, S E; Kramer, H; Taylor, J B; Guengerich, F P; Ketterer, B

    1996-01-01

    The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB) and 1,2,3,4-diepoxybutane (BDE); in contrast, mutagenicity of 1,2-epoxy-3-(4'-nitro-phenoxy)propane (EPNP) was reduced. S.typhimurium TA1535 cells were transformed with an expression plasmid carrying the cDNA of the human theta ortholog GST1-1 either in sense or antisense orientation, the latter being the control. These transformed bacteria were utilized for mutagenicity assays. Mutagenicity of EDB, BDE, CH2Br2, epibromohydrin and 1,3-dichloroacetone was higher in the S.typhimurium TA1535 expressing GSTT1-1 than in the control strain. The expression of active enzyme did not affect the mutagenicity of 1,2-epoxy-3-butene or propylene oxide. GSTT1-1 expression reduced the mutagenicity of EPNP. Glutathione S-transferase 5-5 and GSTT1-1 modulate genotoxicity of several industrially important chemicals in the same way. Polymorphism of the GSTT1 locus in humans may therefore cause differences in cancer susceptibility between the two phenotypes.

  12. The association between genetic damage in peripheral blood lymphocytes and polymorphisms of three glutathione S-transferases in Chinese workers exposed to 1,3-butadiene.

    Science.gov (United States)

    Cheng, Xuemei; Zhang, Tianliang; Zhao, Jing; Zhou, Jingyang; Shao, Hua; Zhou, Zhonghua; Kong, Fanling; Feng, Nannan; Sun, Yuan; Shan, Baode; Xia, Zhaolin

    2013-01-20

    1,3-Butadiene (BD) has been classified as a human carcinogen, group I; however, the relationship between polymorphisms of glutathione S-transferases that metabolize BD and chromosomal damage is not clear. The present study used sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays to detect chromosomal damage in peripheral lymphocytes of 44 BD-exposed workers and 39 non-exposed healthy controls. PCR and PCR-RFLP were employed to detect three known glutathione S-transferase polymorphisms GSTT1, GSTM1, and GSTP1 (Ile105Val). The data demonstrated that the micronucleus (CBMN) frequency in BD-exposed workers was significantly higher than that in controls (frequency ratio (FR)=1.48, 95% CI: 1.14-1.91, P0.05). Among exposed workers, chromosomal damage was related to BD exposure levels (FR=1.35, 95% CI: 1.02-1.80, P0.05). Our results suggested that higher levels of BD exposure in the workplace resulted in increased chromosomal damage, and that polymorphisms in GSTT1 and GSTM1 genes might modulate the genotoxic effects of BD exposure. Furthermore, the GSTT1 and GSTM1 polymorphisms exhibited an additive effect. Finally, urinary DHBMA was found to provide a biomarker that correlated with airborne BD levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Ethanol induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S- transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis

    Science.gov (United States)

    Wu, Minghui; Shariat-Madar, Bahbak; Haron, Mona H.; Wu, Mengmeng; Khan, Ikhlas A.; Dasmahapatra, Asok K.

    2010-01-01

    Although the mechanism of ethanol toxicity during embryogenesis is unknown, our earlier studies on Japanese rice fish (Oryzias latipes) embryos indicated that the effects might be mediated through oxidative stress. In this study we have determined the oxidative stress and the mRNA content of four antioxidant enzymes (catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) during Japanese rice fish embryogenesis (from 0 day post-fertilization to hatching) and after exposing the embryos to ethanol (100 and 300 mM) for 48 h at three stages (0–2, 1–3 and 4–6 day post fertilization, dpf) of organogenesis. We observed that oxidative stress was minimal in blastula, gastrula or neurula stages, increased gradually with the advancement of morphogenesis and reached its maximum level in hatchlings. The antioxidant enzyme mRNAs were constitutively expressed throughout development; however, the expression pattern was not identical among the enzymes. Catalase and superoxide dismutase (SOD) mRNAs were minimal in the fertilized eggs, but increased significantly in 1 dpf and then either sharply dropped (SOD) or maintained a steady-state (catalase). Glutathione S-transferase (GST) was very high in fertilized eggs and sharply dropped 1 dpf and then gradually increased thereafter. Glutathione reductase (GR) maintained a steady-state throughout the development. Ethanol was able to attenuate oxidative stress in embryos exposed only to 300 mM 1–3 dpf; no significant difference with controls was observed in other ethanol-treated groups. The antioxidant enzyme mRNAs also remained unaltered after ethanol treatment. From these data we conclude that the attenuation of oxidative stress by ethanol is probably due to the inhibition of normal growth of the embryos rather than by inhibiting catalase, GST, GR or SOD- dependent activities. PMID:20965276

  14. Molecular determinants of xenobiotic metabolism: QM/MM simulation of the conversion of 1-chloro-2,4-dinitrobenzene catalyzed by M1-1 glutathione S-transferase.

    NARCIS (Netherlands)

    Bowman, A.L.; Ridder, L.; Rietjens, I.M.C.M.; Vervoort, J.J.M.; Mulholland, A.J.

    2007-01-01

    Modeling methods allow the identification and analysis of determinants of reactivity and specificity in enzymes. The reaction between glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) is widely used as a standard activity assay for glutathione S-transferases (GSTs). It is important to understand

  15. Association of glutathione S-transferase (GSTM1, T1 and P1 gene polymorphisms with type 2 diabetes mellitus in north Indian population

    Directory of Open Access Journals (Sweden)

    Bid H

    2010-01-01

    Full Text Available Background: Diabetes mellitus is associated with an increased production of reactive oxygen species (ROS and a reduction in antioxidant defense. The oxidative stress becomes evident as a result of accumulation of ROS in conditions of inflammation and Type 2 diabetes mellitus (T2DM. The genes involved in redox balance, which determines the susceptibility to T2DM remain unclear. In humans, the glutathione S-transferase (GST family comprises several classes of GST isozymes, the polymorphic variants of GSTM1, T1 and P1 genes result in decreased or loss of enzyme activity. Aims: The present study evaluated the effect of genetic polymorphisms of the GST gene family on the risk of developing T2DM in the North Indian population. Settings and Design: GSTM1, T1 and P1 polymorphisms were genotyped in 100 T2DM patients and 200 healthy controls from North India to analyze their association with T2DM susceptibility. Materials and Methods: Analysis of GSTM1 and GSTT1 gene polymorphisms was performed by multiplex polymerase chain reaction (PCR and GSTP1 by PCR-Restriction Fragment Length Polymorphism (RFLP. Statistical Analysis: Fisher′s exact test and χ2 statistics using SPSS software (Version-15.0. Results: We observed significant association of GSTM1 null (P=0.004, OR= 2.042, 95%CI= 1.254-3.325 and GSTP1 (I/V (P=0.001, OR= 0.397, 95%CI=0.225-0.701 with T2DM and no significant association with GSTT1 (P=0.493. The combined analysis of the three genotypes GSTM1 null, T1 present and P1 (I/I demonstrated an increase in T2DM risk (P= 0.005, OR= 2.431 95% CI=1.315-4.496. Conclusions: This is the first study showing the association of a combined effect of GSTM1, T1 and P1 genotypes in a representative cohort of Indian patients with T2DM. Since significant association was seen in GSTM1 null and GSTP1 (I/V and multiple association in GSTM1 null, T1 present and P1 (I/I, these polymorphisms can be screened in the population to determine the diabetic risk.

  16. Glutathione S-Transferase Alpha 4 Prevents Dopamine Neurodegeneration in a Rat Alpha-Synuclein Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Michael Jewett

    2018-04-01

    Full Text Available Parkinson’s disease (PD is a common, progressive neurodegenerative disease, which typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep disturbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the substantia nigra pars compacta (SNpc and Lewy bodies, neuronal inclusions containing α-synuclein (α-syn. Mutations and copy number variations of SNCA, the gene encoding α-syn, are linked to familial PD and common SNCA gene variants are associated to idiopathic PD. Large-scale genome-wide association studies have identified risk variants across another 40 loci associated to idiopathic PD. These risk variants do not, however, explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione S-transferase alpha 4 (Gsta4 gene, which encodes a protein involved in clearing lipid peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 on a DA strain background, was recently reported to express higher levels of Gsta4 transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 6-hydroxydopamine (6-OHDA induced model for PD. Since α-syn expression increases the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects of Vra1 in an α-syn-induced PD model. Human wild-type α-syn was overexpressed by unilateral injections of the rAAV6-α-syn vector in the SNpc of DA and DA.VRA1 congenic rats. Gsta4 gene expression levels were significantly higher in the striatum and midbrain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly lower fiber loss in the striatum and lower loss of dopaminergic neurons in the

  17. Two homologs of rho-class and polymorphism in alpha-class glutathione S-transferase genes in the liver of three tilapias.

    Science.gov (United States)

    Yu, Ying; Liang, Xu-Fang; Li, Ling; He, Shan; Wen, Zheng-Yong; Shen, Dan

    2014-03-01

    To clarify detoxification metabolism of tilapia, a natural and biological control for removing the leftover toxicants in fresh water, sequence structure, expression profile and polymorphisms of members of glutathione S-transferase (GST) genes were analyzed in Nile tilapia, blue tilapia and their hybrid. Full-length mRNA sequences of alpha-class GST (GSTA) and two homologs of rho-class GST (GSTR) were identified. Sequence analysis confirmed the similarity in conserved domain regions and their phylogenetic relationships with GST genes in other fishes. In addition, three single nucleotide polymorphisms of GSTA genes were identified in the three populations, two (C266T and G525A) of which showed significant association. The relative mRNA expression of GSTA gene was significantly (Ptilapia at 24h post-injection of MC-LR, significantly (Ptilapia whereas slightly decreased (P>0.05) in hybrid tilapia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Protective effect of aqueous extract of Phyllanthus fraternus against bromobenzene induced changes on cytosolic glutathione S-transferase isozymes in rat liver

    Directory of Open Access Journals (Sweden)

    Sriram Gopi

    2017-07-01

    Full Text Available The aim of this study was to investigate beneficial effect of aqueous extract of Phyllanthus fraternus (AEPF on bromobenzene (BB induced changes on cytosolic glutathione S-transferase (GST isozymes in rat liver. Administration of BB significantly decreased the activity of GST, however, prior administration of AEPF prevented the BB induced decrease in GST activity. Further the cytosolic GSTs were purified from 3 groups of animals (control, BB and AEPF+BB administered and resolved into three protein bands on SDS-PAGE. Densitometric analysis showed a significant decrease in BB group compared to control. Further, 2D PAGE analysis resolved these proteins into 8 bands which were identified as five isozymes of alpha, two of Mu and one of theta by MALDI-TOF MS and also observed decreased levels of isozymes in BB group. However, on prior administration of AEPF significantly prevented the BB induced decrease in GSTs and restored to normal levels.

  19. Chromosomal aberrations in humans induced by urban air pollution: influence of DNA repair and polymorphisms of glutathione S-transferase M1 and N-acetyltransferase 2

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, H; Gamborg, M O

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....... as a biomarker of genotoxic damage and dimethylsulfate-induced unscheduled DNA synthesis in mononuclear WBCs, the glutathione S-transferase M1 (GSTM1) genotype, and the N-acetyltransferase 2 (NAT2) genotype as biomarkers of susceptibility. The bus drivers, who had previously been observed to have elevated levels...

  20. Role of household exposure, dietary habits and glutathione S-Transferases M1, T1 polymorphisms in susceptibility to lung cancer among women in Mizoram India.

    Science.gov (United States)

    Phukan, Rup Kumar; Saikia, Bhaskar Jyoti; Borah, Prasanta Kumar; Zomawia, Eric; Sekhon, Gaganpreet Singh; Mahanta, Jagadish

    2014-01-01

    A case-control study was conducted to evaluate the effect of household exposure, dietary habits, smoking and Glutathione S-Transferases M1, T1 polymorphisms on lung cancer among women in Mizoram, India. We selected 230 newly diagnosed primary lung cases and 460 controls from women in Mizoram. Multivariate logistic regression analysis was performed to estimate adjusted odds ratio (OR). Exposure of cooking oil fumes (pkitchen inside living room (p=0.001), improper ventilated house (p=0.003), roasting of soda in kitchen (p=0.001), current smokers of tobacco (p=0.043), intake of smoked fish (p=0.006), smoked meat (p=0.001), Soda (poil emission and wood smoke, intake of smoked meat, smoked fish and soda (an alkali preparation used as food additives in Mizoram) and tobacco consumption for increase risk of lung cancer among Women in Mizoram.

  1. Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: Usefulness of alpha-glutathione S-transferase

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, Guillaume [LCE EA2598, Toxicologie Industrielle et Environnementale, Maison de la Recherche en Environnement Industriel de Dunkerque 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque (France); Leleu, Bruno [Laboratoire Universitaire de Medecine du Travail et Environnement, Faculte de Medecine - Pole Recherche, 01, place de Verdun, 59045 Lille Cedex (France); Marez, Thierry [LCE EA2598, Toxicologie Industrielle et Environnementale, Maison de la Recherche en Environnement Industriel de Dunkerque 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque (France); Zerimech, Farid [Laboratoire de Biochimie et de Biologie Moleculaire, Hopital Huriez, 01, Place de Verdun, 59045 Lille Cedex (France); Haguenoer, Jean-Marie [Laboratoire de Toxicologie, Sante Publique et Environnement, Faculte des Sciences Pharmaceutiques et Biologiques, 03, Rue du Pr. Laguesse, BP 83, 59006 Lille Cedex (France); Furon, Daniel [Laboratoire Universitaire de Medecine du Travail et Environnement, Faculte de Medecine - Pole Recherche, 01, place de Verdun, 59045 Lille Cedex (France); Shirali, Pirouz [LCE EA2598, Toxicologie Industrielle et Environnementale, Maison de la Recherche en Environnement Industriel de Dunkerque 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque (France)]. E-mail: Pirouz.Shirali@univ-littoral.fr

    2007-05-15

    A successful prevention of renal diseases induced by occupational exposure to lead (Pb) and/or cadmium (Cd) largely relies on the capability to detect nephrotoxic effects at a stage when they are still reversible or at least not yet compromising renal function. Hence, the aim of this cross-sectional study was to evaluate the usefulness of a set of early biological markers of oxidative stress or nephrotoxicity for the biomonitoring of workers occupationally exposed to Pb and/or Cd in a non-ferrous metal smelter, and gender, age, socioeconomic status, smoking habits, and drug use-matched control individuals. In exposed subjects, mean levels of Pb in blood and urine were also 387.1 {+-} 99.1 {mu}g Pb/L (1.868 {+-} 0.478 {mu}mol Pb/L) and 217.7 {+-} 117.7 {mu}g Pb/g creatinine (1.051 {+-} 0.568 {mu}mol Pb/g creatinine), and mean levels of Cd in blood and urine were 3.26 {+-} 2.11 {mu}g Cd/L (0.029 {+-} 0.019 {mu}mol Cd/L) and 2.51 {+-} 1.89 {mu}g Cd/g creatinine (0.022 {+-} 0.017 {mu}mol Cd/g creatinine), suggesting thereby relatively low occupational exposure levels. Statistically significant variations in zinc protoporphyrin, malondialdehyde, retinol binding protein, alpha-glutathione S-transferase, and urinary protein levels were reported between the two groups, and were closely correlated with Pb and/or Cd exposure levels. Variations in {alpha}GST levels were closely associated with Pb exposure. Taken together, these results suggest the use of alpha-glutathione S-transferase excretion in urine as a hallmark of early changes in the proximal tubular integrity.

  2. Functional analysis of genetic polymorphism in Wuchereria bancrofti glutathione S-transferase antioxidant gene: impact on protein structure and enzyme catalysis.

    Science.gov (United States)

    Sakthidevi, Moorthy; Prabhu, Prince Rajaiah; Chowdhary, Swati; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2013-01-01

    Wuchereria bancrofti glutathione S-transferase (Wb-GST) is referred as a promising chemotherapeutic target for lymphatic filariasis. GST represents the major class of detoxifying enzymes of the tissue dwelling parasitic helminths. Though many inhibition studies were carried out for Wb-GST, understanding its genetic distribution in parasite population is necessary to develop ideal inhibitor. Our genetic polymorphic studies exposed the existence of three variant Wb-GST alleles in the four endemic regions of India. Moreover, it also revealed the variability in the distribution of Wb-GST alleles in the studied population. Therefore we cloned, expressed and purified the recombinant variant Wb-GST proteins to study the mutation impact on its structure and hence on its catalysis. Among the studied mutations, the I60F/G78S substitutions in the N-terminal domain and loop region connecting the two domains of Wb-GST lowered the affinity for glutathione and its analog, S-hexyl glutathione. Moreover, molecular modeling and docking studies revealed that the I60F/G78S mutations affected the proximity of Trp38 and Arg95 in glutathione binding site resulting in weaker interaction with S-hexyl glutathione. Besides, the variants also had lower affinity (Ki) and higher IC50 values for well-known GST inhibitors. Interestingly, the Wb-GST variant proteins showed enhanced catalytic efficiency for lipid peroxidation products which are produced due to oxidative stress. Thus, our study provides evidence for the functional impact of mutations on Wb-GST protein and also spotlights the mechanisms of parasite survival against the host oxidative stress environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Diversidad e implicaciones de los polimorfismos de las enzimas glutatión S transferasas en la patogénesis del asma:-- Diversity and implications of glutathione S-transferase enzymes polymorphisms in the pathogenesis of asthma

    Directory of Open Access Journals (Sweden)

    Yosed Anaya Chávez, Biol

    2011-01-01

    Full Text Available Las glutatión S-transferasas (GST representan una superfamilia de enzimas presentes en todos los organismos aerobios. Existen tres familias principales que se encuentran ampliamente distribuidas en la naturaleza y se clasifican en citosólicas, mitocondriales y microsomales de acuerdo con su localización en la célula. Existen polimorfismos en los genes de estas enzimas los cuales se han encontrado asociados con enfermedades como el asma bajo los efectos de los contaminantes ambientales. La distribución de la frecuencia de estos polimorfismos varía en las distintas poblaciones y por ende la susceptibilidad de los individuos frente a las enfermedades relacionadas con ellos. Teniendo en cuenta la importancia de los polimorfismos en las GST y su relación con enfermedades de tipo respiratorio, se hace una revisión teórica actualizada acerca de las propiedades y funciones de estas enzimas, descripción de los polimorfismos genéticos y metodologías usadas para su genotipificación, así como la participación de los mismos en la patogénesis del asma.______________________________________________________________________The glutathione S-transferases (GST represent a superfamily of enzymes present in all aerobic organisms. There are three main families that are widely distributed in nature and are classified into cytosolic glutathione s transferases, mitochondrial and microsomal according to their location in the cell. Polymorphisms reported in thegenes encoding these enzymes have been associated with the onset of diseases such as asthma under the influence of environmental contaminants. The frequency distribution of these polymorphisms is different in the populations and therefore the susceptibility of individuals to the diseases associated with them. Given the importance of polymorphisms in GST and their relation with the respiratorydiseases, we present a theoretical review updates on the properties and functions of glutathione S

  4. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.L.; Baker, R.T.; Board, P.G. [Australian National Univ., Canberra (Australia)] [and others

    1995-01-20

    Until recently the Theta-class glutathione S-transferases (GSTs) were largely overlooked due to their low activity with the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) and their failure to bind to immobilized glutathione affinity matrices. Little is known about the number of genes in this class. Recently, Pemble et al. reported the cDNA cloning of a human Theta-class GST, termed GSTT1. In this study, we describe the molecular cloning of a cDNA encoding a second human Theta-class GST (GSTT2) from a {lambda}gt11 human liver 5{prime}-stretch cDNA library. The encoded protein contains 244 amino acids and has 78.3% sequence identity with the rat subunit 12 and only 55.0% identity with human GSTT1. GSTT2 has been mapped to chromosome 22 by somatic cell hybrid analysis. The precise position of the gene was localized to subband 22q11.2 by in situ hybridization. The absence of other regions of hybridization suggests that there are no closely related sequences (e.g., reverse transcribed pseudogenes) scattered throughout the genome and that if there are closely related genes, they must be clustered near GSTT2. Southern blot analysis of human DNA digested with BamHI shows that the size of the GSTT2 gene is relatively small, as the coding sequence falls within a 3.6-kb BamHI fragment. 35 refs., 6 figs.

  5. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins

    Science.gov (United States)

    Conn, Simon; Curtin, Chris; Bézier, Annie; Franco, Chris; Zhang, Wei

    2008-01-01

    The ligandin activity of specific glutathione S-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from Vitis vinifera L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with heterologous expression in Escherichia coli used to confirm GST activity. Transcriptional profiling of these candidate GST genes and key anthocyanin biosynthetic pathway genes (PAL, CHS, DFR, and UFGT) in cell suspensions and grape berries against anthocyanin accumulation demonstrated strong positive correlation with two sequences, VvGST1 and VvGST4, respectively. The ability of VvGST1 and VvGST4 to transport anthocyanins was confirmed in the heterologous maize bronze-2 complementation model, providing further evidence for their function as anthocyanin transport proteins in grape cells. Furthermore, the differential induction of VvGST1 and VvGST4 in suspension cells and grape berries suggests functional differences between these two proteins. Further investigation of these candidate ligandins may identify a mechanism for manipulating anthocyanin accumulation in planta and in vitro suspension cells. PMID:18836188

  6. Mechanistic insights into EgGST1, a Mu class glutathione S-transferase from the cestode parasite Echinococcus granulosus.

    Science.gov (United States)

    Arbildi, Paula; Turell, Lucía; López, Verónica; Alvarez, Beatriz; Fernández, Verónica

    2017-11-01

    Glutathione transferases (GSTs) comprise a major detoxification system in helminth parasites, displaying both catalytic and non-catalytic activities. The kinetic mechanism of these enzymes is complex and depends on the isoenzyme which is being analyzed. Here, we characterized the kinetic mechanism of rEgGST1, a recombinant form of a cytosolic GST from Echinococcus granulosus (EgGST1), which is related to the Mu-class of mammalian enzymes, using the canonical substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Initial rate and product inhibition studies were consistent with a steady-state random sequential mechanism, where both substrates are bound to the enzyme before the products are released. Kinetic constants were also determined (pH 6.5 and 30 °C). Moreover, rEgGST1 lowered the pK a of GSH from 8.71 ± 0.07 to 6.77 ± 0.08, and enzyme-bound GSH reacted with CDNB 1 × 10 5 times faster than free GSH at pH 7.4. Finally, the dissociation of the enzyme-GSH complex was studied by means of intrinsic fluorescence, as well as that of the complex with the anthelminth drug mebendazole. This is the first report on mechanistic issues related to a helminth parasitic GST. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells

    NARCIS (Netherlands)

    Zanden, van J.J.; Geraets, L.; Wortelboer, H.M.; Bladeren, van P.J.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2004-01-01

    The objective of this study was to investigate the structural requirements necessary for inhibition of glutathione S-transferase P1-1 (GSTP1-1) and GS-X pump (MRP1 and MRP2) activity by structurally related flavonoids, in GSTP1-1 transfected MCF7 cells (pMTG5). The results reveal that GSTP1-1

  8. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    Science.gov (United States)

    Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Ruker, F.; Carter, D. C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  9. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunjoo; Lee, Juwon; Noh, Jinseok; Kong, Kwanghoon [Chung-Ang Univ., Seoul (Korea, Republic of)

    2012-12-15

    To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the K{sub m}{sup CDNB} value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

  10. Isolation, characterization and comparison of antipeptide and antiprotein rabbit antibodies to the pi-isoform of glutathione S-transferase.

    Science.gov (United States)

    Di Modugno, F; Rosano L; Castelli, M; Chersi, A

    1998-01-01

    The main linear epitopes of pi-glutathione transferase (pi-GST, EC 2.5.1.18), an enzyme related to cancer progression in a restricted number of tumours, were identified by testing in ELISA the reactivities of polyclonal anti-pi-GST rabbit sera against a panel of 51 overlapping decapeptides, covering the whole 216-residue sequence of the protein. Several major reactivity peaks were detected, each covering two or three adjacent peptides. The most active fragments were then reconstructed by conventional solid-phase synthesis, linked to Sepharose, and used as affinity ligands for isolating specific anti-pi-GST antibody subsets. A second group of antisera was then prepared in rabbits by using as immunogens some of the above described synthetic fragments, linked to a carrier protein, and antipeptide antibodies purified by affinity chromatography. An ELISA test was then performed, using as antigens a panel of peptides and different isoforms of GST, in order to establish whether antibodies isolated from total anti-pi-GST sera would display higher reactivity and specificity, as compared to traditional antipeptide antibodies. Binding data clearly confirm that the formers might be indeed better reagents for the detection and possibly quantitation of pi-GST.

  11. Comparative Assay of Glutathione S- Transferase (GSTs Activity of Excretory-Secretory Materials and Somatic Extract of Fasciola spp Parasites

    Directory of Open Access Journals (Sweden)

    Taghi Golmohamadi

    2010-11-01

    Full Text Available Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  12. Comparative Assay of Glutathione S- Transferase (GSTs Activity of Excretory-Secretory Materials and Somatic Extract of Fasciola spp Parasites

    Directory of Open Access Journals (Sweden)

    Heshmatollah Alirahmi

    2010-12-01

    Full Text Available Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  13. Glutathione S-transferase M1 and T1, CYP1A2-2467T/delT ...

    African Journals Online (AJOL)

    Bв€™chir Fatma

    2012-06-16

    Jun 16, 2012 ... The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net ... lung cancer appears to be relevant in this Tunisian population, suggesting that CYP1A2 metabolic genetic factor may, in partly, play a role in ... Other variables, such occupational exposure, family history of cancer, were available but ...

  14. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    Science.gov (United States)

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  15. Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate cancer in Northern India.

    Science.gov (United States)

    Srivastava, Daya Shankar Lal; Mandhani, Anil; Mittal, Balraj; Mittal, Rama Devi

    2005-01-01

    To examine the association of glutathione-S-transferase (GST) gene polymorphisms in patients with sporadic prostate cancer, in a North Indian population, as GSTs are active in detoxifying a wide variety of endogenous or exogenous carcinogens, and genetic polymorphisms of GSTM1, GSTT1 and GSTP1 have been assessed to evaluate the relative risk of various cancers. We assessed 127 patients with prostate cancer and 144 age-matched controls, all from North India. The GSTT1 and GSTM1 null genotypes were identified by multiplex polymerase chain reaction (PCR) in peripheral blood DNA samples, and GSTP1-313 A/G polymorphism was determined by PCR/restriction fragment length polymorphism. There was a significant association in null alleles of the GSTM1 (odds ratio 2.239, 95% confidence interval 1.37-3.65, P = 0.001) and GSTT1 (1.891, 1.089-3.282, P = 0.026) with prostate cancer risk, and in the -313 G alleles (Val) of the GSTP1 gene (2.48, 1.51-4.08, P India.

  16. Association of polymorphisms in glutathione S-transferase genes (GSTM1, GSTT1, GSTP1 with idiopathic azoospermia or oligospermia in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Da-Ke Xiong

    2015-06-01

    Full Text Available The reported effects of the glutathione S-transferase (GSTs genes (GSTM1, GSTT1, and GSTP1 on male factor infertility have been inconsistent and even contradictory. Here, we conducted a case-control study to investigate the association between functionally important polymorphisms in GST genes and idiopathic male infertility. The study group consisted of 361 men with idiopathic azoospermia, 118 men with idiopathic oligospermia, and 234 age-matched healthy fertile male controls. Genomic DNA was extracted from the peripheral blood, and analyzed by polymerase chain reaction and restriction fragment length polymorphism analysis. There was a significant association between the GSTP1 variant genotype (Ile/Val + Val/Val with idiopathic infertility risk (odds ratio [OR]: 1.53; 95% confidence interval [CI]: 1.11-2.11; P = 0.009. Similarly, a higher risk of infertility was noted in individuals carrying a genotype combination of GSTT1-null and GSTP1 (Ile/Val + Val/Val (OR: 2.17; 95% CI: 1.43-3.31; P = 0.0002. These results suggest an increased risk of the GSTP1 variant genotype (Ile/Val + Val/Val for developing male factor infertility. Our findings also underrate the significance of the effect of GSTM1 and/or GSTT1 (especially the former in modulating the risk of male infertility in males from Sichuan, southwest China.

  17. Association of Glutathione-S-Transferase (GSTM1 and GSTT1) and FTO Gene Polymorphisms with Type 2 Diabetes Mellitus Cases in Northern India.

    Science.gov (United States)

    Raza, St; Abbas, S; Ahmad, A; Ahmed, F; Zaidi, Zh; Mahdi, F

    2014-06-01

    Type 2 diabetes mellitus (T2DM) is growing in an epidemic manner across the world and India has the world's largest number of diabetic subjects. The present study was carried out to investigate the association of glutathione-S-transferase (GSTM1, GSTT1) and fat mass and obesity associated (FTO) gene polymorphisms with T2DM patients and controls, and its role in increasing the susceptibility to T2DM. A total of 198 subjects (101 T2DM patients and 97 controls) participated in this study. GSTM1, GSTT1 and FTO gene polymorphisms in the patients and controls were evaluated by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). We observed significant association of GSTM1 positive (p = 0.046) and GSTM1 null (p = 0.046) genotypes with T2DM, while no significant association was found with the FTO gene polymorphism in our study. It seems that the GSTM1 gene polymorphism can be a predictive marker for early identification of a population at risk of T2DM. The potential role of GST and FTO gene polymorphisms as a marker of susceptibility to T2DM needs further studies in a larger number of patients.

  18. Polymorphism of glutathione S-transferase M1 and T1 genes and susceptibility to psoriasis disease: A study from North India.

    Science.gov (United States)

    Srivastava, Daya Shankar Lal; Jain, Vijay K; Verma, Poonam; Yadav, Jaya P

    2018-01-01

    Increased oxidative stress and resulting inflammation has been emphasized as a factor in the pathogenesis of many diseases including psoriasis. Glutathione S-transferases (GSTs) protect against oxidative stress, inflammation, and genotoxicity. Polymorphisms in the GST genes may lead to an imbalance in pro- and antioxidant systems resulting in the increased production of reactive oxygen species that could influence the pathogenesis of psoriasis. The aim of this study was to investigate the association between GSTs (GSTM1 and GSTT1) gene polymorphism in patients with chronic plaque psoriasis as a factor in the susceptibility and development of psoriasis. We assessed 128 patients with psoriasis and 250 age- and sex-matched healthy controls. Genomic DNA was extracted from peripheral blood by the phenol chloroform method. The null GSTT1 and GSTM1 genotypes were identified by multiplex polymerase chain reaction (PCR) method. The null genotype of GSTM1 and GSTT1 was seen in 45.3% and 40.6% in psoriasis patients whereas in the controls it was 34.4% and 20.0%, respectively. A significant association was seen between the null alleles of the GSTT1 (OR = 2.74) and GSTM1 (OR = 1.58) alone or in combination with tobacco use (P India.

  19. Association of Glutathione-S-Transferase (GSTM1 and GSTT1 and FTO Gene Polymorphisms with Type 2 Diabetes Mellitus Cases in Northern India

    Directory of Open Access Journals (Sweden)

    S.T. Raza

    2014-06-01

    Full Text Available Type 2 diabetes mellitus (T2DM is growing in an epidemic manner across the world and India has the world’s largest number of diabetic subjects. The present study was carried out to investigate the association of glutathione-S-transferase (GSTM1, GSTT1 and fat mass and obesity associated (FTO gene polymorphisms with T2DM patients and controls, and its role in increasing the susceptibility to T2DM. A total of 198 subjects (101 T2DM patients and 97 controls participated in this study. GSTM1, GSTT1 and FTO gene polymorphisms in the patients and controls were evaluated by polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLP. We observed significant association of GSTM1 positive (p = 0.046 and GSTM1 null (p = 0.046 genotypes with T2DM, while no significant association was found with the FTO gene polymorphism in our study. It seems that the GSTM1 gene polymorphism can be a predictive marker for early identification of a population at risk of T2DM. The potential role of GST and FTO gene polymorphisms as a marker of susceptibility to T2DM needs further studies in a larger number of patients.

  20. Association of Angiotensin-Converting Enzyme and Glutathione S-Transferase Gene Polymorphisms with Body Mass Index among Hypertensive North Indians.

    Science.gov (United States)

    Rizvi, Saliha; Raza, Syed T; Siddiqi, Zeba; Abbas, Shania; Mahdi, Farzana

    2015-11-01

    This study aimed to examine the association of angiotensin-converting enzyme (ACE) and glutathione S-transferase (GST) gene polymorphisms with body mass index (BMI) in hypertensive North Indians. This case-control study was carried out between May 2013 and November 2014 at the Era's Lucknow Medical College & Hospital, Lucknow, India, and included 378 subjects divided into three groups. One group constituted 253 hypertensive individuals (sustained diastolic blood pressure of >90 mmHg and systolic blood pressure of >140 mmHg) who were subcategorised according to normal (GST theta 1-null and GST mu 1-positive genotype frequencies among the hypertensive overweight/obese individuals and controls (P = 0.014 and 0.033, respectively). However, no difference was observed in the frequency of ACE polymorphisms. ACE insertion/insertion genotype (P = 0.006), insertion and deletion alleles (P = 0.007 each) and GST theta 1-null and GST theta 1-positive genotypes (P = 0.006 each) were found to differ significantly between hypertensive cases and controls, regardless of BMI. ACE and GST gene polymorphisms were not associated with BMI but were significantly associated with hypertension among the studied group of North Indians.

  1. The mosquitocidal activity of methanolic extracts of Lantana cramera root and Anacardium occidentale leaf: role of glutathione S-transferase in insecticide resistance.

    Science.gov (United States)

    Tripathy, Asima; Samanta, Luna; Das, Sachidananda; Parida, Sarat K; Marai, Neetisheel; Hazra, Rupenansu K; Mallavdani, U V; Kar, Santanu K; Mahapatra, Namita

    2011-03-01

    Larvicidal activity of methanolic plant extracts of Lantana cramera (P1) root and Anacardium occidentale (P2) leaf was investigated against the larvae of the three mosquito species (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti reared in the laboratory), and the respective glutathione S-transferase (GST) activity was analyzed as an index of protection against the extracts. The LC50 (extract concentration that shows 50% mortality) values of P1 extract for An. stephensi, Ae. aegypti, and Cx. quinquefasciatus were 132.55, 27.82, and 11.68 ppm, respectively, whereas those of P2 extract were 56.81, 912, and 10.79 ppm, respectively. In general, in the untreated groups, the level of GST activity was significantly higher in Ae. aegypti in comparison with An. stephesi and Cx. quinquefasciatus. However, the enzyme activity failed to show any response when treated with either of the plant extracts in Ae. aegypti. However, an increase in the GST activity was recorded in extract-treated larvae of both An. stephensi and Cx. quinquefasciatus. The results of the current study suggest that both the plant extracts show species-specific mosquitocidal potential. Induction of GST activities in survived An. stephensi and Cx. quinquefasciatus larvae suggests the role of this enzyme in conferring resistance to the plant extracts.

  2. Glutathione S-Transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae for environmental monitoring: the case study of São Marcos Bay, Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    Raimunda N.F Carvalho-Neta

    2013-04-01

    Full Text Available The Glutathione S-Transferase (GST activity has been proposed as a biomarker of susceptibility to the presence of potentially damaging xenobiotics in aquatic organisms. The aim of this work was to measure GST activity in the liver of Sciades herzbergii (catfish in order to evaluate the biochemical effects of pollutants. The catfish samples were collected along known pollution gradients areas (A1 and from areas regarded as relatively free of anthropogenic input (A2, in São Marcos Bay, São Luis de Maranhão, Brazil. The variables analyzed in fish were: length, weight, gonadal stages, gonadosomatic index and GST activity. The databases from this analysis were compiled, and generalized linear models were used to analyze the dependence of enzyme activity on the areas of sampling and on selected biological parameters of fish. A significant difference was observed in GST activity in the liver of S. herzbergii in the comparison between fish from the contaminated site and those from the reference site (P < 0.05. Morphometric (length and weight parameters and gonadosomatic index of collected fish were significant in the linear model of GST activity only in the reference site. These results may be due to the activity pattern of the enzyme, which increases with the sexual maturity of the animals in healthy environments. In the contaminated area (A1 these correlations do not exist, probably as a result of the energy used in the biotransformation of the various contaminants.

  3. Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawisza-Raszka

    2013-01-01

    Full Text Available Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction and 900 (extremely high, close to LOEC for mortality mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900 mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide.

  4. Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in Dictyostelium discoideum.

    Science.gov (United States)

    Kuwayama, Hidekazu; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kubohara, Yuzuru

    2016-12-01

    In the development of the cellular slime mold Dictyostelium discoideum , two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography-tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 ( gst4 - and gst4 OE , respectively) formed fruiting bodies, but the fruiting bodies of gst4 - cells were smaller than those of wild-type Ax2 cells, and those of gst4 OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum .

  5. Modulation of plasma antioxidant levels, glutathione S-transferase activity and DNA damage in smokers following a single portion of broccoli: a pilot study.

    Science.gov (United States)

    Riso, Patrizia; Del Bo', Cristian; Vendrame, Stefano; Brusamolino, Antonella; Martini, Daniela; Bonacina, Gaia; Porrini, Marisa

    2014-02-01

    Broccoli is a rich source of bioactive compounds (i.e. glucosinolates, carotenoids, vitamin C and folate) that may exert an antioxidant effect and reduce oxidative damage. The objective of this pilot study was to investigate the effect of broccoli consumption on carotenoids, vitamin C and folate absorption, glutathione S-transferase (GST) activity, and oxidatively induced DNA damage in male smokers. Ten healthy subjects consumed a single portion of steamed broccoli (250 g) with cooked pasta. Blood was drawn at baseline and at 3, 6 and 24 h from consumption. Broccoli significantly (P ≤ 0.01) increased plasma level of vitamin C and folate (+35% and 70%, respectively) at 3 h, and β-carotene (+8%) at 6 h. A modulation of GST activity occurred in plasma 6 h after broccoli consumption. A significant (P ≤ 0.01) reduction of the levels of H₂O₂-induced DNA damage (-18%) was observed in blood mononuclear cells 24 h after broccoli intake in GSTM1 positive, but not in GSTM1 null subjects. One portion of broccoli increased plasma antioxidant levels, modulated plasma GST activity and improved cell resistance against H₂O₂-induced DNA damage in healthy smokers. These results support the importance of consuming fruit and vegetable regularly. © 2013 Society of Chemical Industry.

  6. [Correlation between smoking and the polymorphisms of cytochrome P450 1A1-Msp I and glutathione S-transferase T1 genes and oral cancer].

    Science.gov (United States)

    Guo, Like; Zhang, Chaoxian; Shi, Shumin; Guo, Xiaofeng

    2012-04-01

    To investigate the correlation between the combination of smoking and the polymorphisms of cytochrome P450 (CYP) 1A1-Msp I and glutathione S-transferase (GST) T1 genes and oral cancer. The genetic polymorphisms of CYP1A1-Msp I and GSTT1 were detected by polymerase chain reaction (PCR) technique in peripheral blood leukocytes of 300 oral cancer cases and 300 non-cancer controls, and the correlation between smoking, the two metabolic enzymes genetic polymorphisms and oral cancer were analyzed. The frequencies of CYP1A1-Msp I (m2/m2) and GSTT1(-) were 38.33% and 69.33% in oral cancer cases and 21.00% and 44.33% in healthy controls respectively. Statistical tests showed significant difference in the frequencies between the two groups (Psmoking rate of the case group was significantly higher than that in the control group (OR=2.71, 95%CI 1.31-4.52, Psmoking and CYP1A1-Msp I (m2/m2)/GSTT1(-) genotypes polymorphisms which increased risk of oral cancer (OR=25.00, 95%CI 11.87-35.64). CYP1A1-Msp I (m2/m2) and GSTT1(-) are the risk factors in oral cancer. Smoking is also related to the susceptibility to oral cancer. There may be a synergetic interaction among CYP1A1-Msp I (m2/m2), GSTT1(-) and smoking on the elevated susceptibility of oral cancer.

  7. Oxidative Stress and Modulatory effects of the root extract of Phlogacanthus tubiflorus on the activity of Glutathione-S-Transferase in Hydrogen Peroxide treated Lymphocyte

    Directory of Open Access Journals (Sweden)

    Ramteke A

    2012-04-01

    Full Text Available Glutathione-S-transferase is one of the important enzyme systems that plays vital role in decomposition of lipid hydro-peroxides formed due to oxidative stress. In the present study GST activity increased in the lymphocytes treated with increasing concentration of H2O2, and decrease in the levels of GSH was observed. For similar treatment conditions LDH activity and MDA levels increased significantly leading to decrease in the cell viability. Treatment of lymphocytes with the root extract of Phlogacanthus tubiflorus (PTE resulted in dose dependent decline in the GST activity and rise in GSH levels. LDH activity and MDA levels also declined that led to the increase of cell viability. Lymphocytes pre-treated with the PTE followed by H2O2 (0.1 and 1% treatment, decline in the activity of GST and increase in GSH levels was observed. Also we have observed decline in the activity of LDH and MDA levels in the lymphocytes for both 0.1 and 1% of H2O2 though the magnitude of change was higher in the lymphocytes pre-treated with the PTE followed with 1% of H2O2 treatment. Significant increase in the cell viability for similar conditions was also observed. These findings suggest protective function of the root extracts might be through modulation of GST activity and levels of GSH and might find application in Chemomodulation in future.

  8. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients

    DEFF Research Database (Denmark)

    Buchard, Anders; Eefsen, Martin; Semb, Synne

    2012-01-01

    poisoning) compared to carrying two functioning copies of the gene. No significant association was found between any of the GSTM1 and GSTP1 genotypes and PT. The frequency of GSTP1 Val/Val genotypes was significantly lower in the patients than in the background population (p = 0.047). The results suggest......The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival...... in these patients. A total of 104 APAP-poisoned patients were genotyped for deletion polymorphisms in the GSTT1 and GSTM1 genes and for the GSTP1 Ile105Val polymorphism. We found a borderline association (p = 0.05) between the GSTT1 homozygous deletion genotype and high trough PT (a marker of prognosis in APAP...

  9. Evaluation of glutathione S-transferase T1 deletion polymorphism on type 2 diabetes mellitus risk in Zoroastrian females in Yazd, Iran

    Science.gov (United States)

    Afrand, Mohammadhosain; Khalilzadeh, Saeedhossein; Bashardoost, Nasrollah; Sheikhha, Mohammad Hasan

    2015-01-01

    Background: There has been much interest in the role of free radicals and oxidative stress in the pathogenesis of diabetes mellitus (DM). The aim of this study was to assess the possible association between genetic polymorphisms of the glutathione S-transferase-Theta (GSTT1) and the risk of the development of DM in Zoroastrian females in Yazd, Iran. Materials and Methods: This was a case-control study in which GSTT1 polymorphism was genotyped in 51 randomly selected DM patients and 50 randomly selected healthy controls among Zoroastrian females whose ages ranged from 40 to 70. Results: The frequencies of GSTT1 null genotype and GSTT1 present were 72% and 28%, respectively, in control samples, while in patients with type 2 diabetes (T2DM), the frequencies of GSTT1 null genotype and GSTT1 present were 27.5% and 72.5%, respectively. There were higher levels of triglyceride (TG), fasting blood sugar (FBS), total cholesterol (TC), low-density lipoprotein (LDL), Urea, and high-density lipoprotein (HDL) in cases of GSTT1 null genotype compared to the GSTT1 present genotype in controls. Conclusions: Our results indicated that healthy subjects had a higher frequency of the GSTT1 null genotype than patients with T2DM. However, we observed no significant association between the GSTT1 null genotype and T2DM in the current study. PMID:25593839

  10. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway.

    Science.gov (United States)

    Lin, Chia-Yuan; Wu, Chi-Rei; Chang, Shu-Wei; Wang, Yu-Jung; Wu, Jia-Jiuan; Tsai, Chia-Wen

    2015-06-01

    Induction of phase II enzymes is important in cancer chemoprevention. We compared the effect of rosemary diterpenes on the expression of the pi class of glutathione S-transferase (GSTP) in rat liver Clone 9 cells and the signaling pathways involved. Culturing cells with 1, 5, 10, or 20 μM carnosic acid (CA) or carnosol (CS) for 24 h in a dose-dependent manner increased the GSTP expression. CA was more potent than CS. The RNA level and the enzyme activity of GSTP were also enhanced by CA treatment. Treatment with 10 μM CA highly induced the reporter activity of the enhancer element GPEI. Furthermore, CA markedly increased the translocation of nuclear factor erythroid-2 related factor 2 (Nrf2) from the cytosol to the nucleus after 30 to 60 min. CA the stimulated the protein induction of p38, nuclear Nrf2, and GSTP was diminished in the presence of SB203580 (a p38 inhibitor). In addition, SB203580 pretreatment or silencing of Nrf2 by siRNA suppressed the CA-induced GPEI-DNA binding activity and GSTP protein expression. Knockdown of p38 or Nrf2 by siRNA abolished the activation of p38 and Nrf2 as well as the protein induction and enzyme activity of GSTP by CA. These results suggest that CA up-regulates the expression and enzyme activity of GSTP via the p38/Nrf2/GPEI pathway.

  11. Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen-receptor content in primary breast cancer

    International Nuclear Information System (INIS)

    Moscow, J.A.; Townsend, A.J.; Goldsmith, M.E.; Whang-Peng, J.; Vickers, P.J.; Poisson, R.; Legault-Poisson, S.; Myers, C.E.; Cowan, K.H.

    1988-01-01

    The development of multidrug resistance in MCF7 human breast cancer cells is associated with overexpression of P-glycoprotein, changes in activities of several detoxication enzymes, and loss of hormone sensitivity and estrogen receptors (ERs). The authors have cloned the cDNA for one of the drug-detoxifying enzymes overexpressed in multidrug-resistant MCF7 cells (Adr R MCF7), the anionic isozyme of glutathione S-transferase (GSTπ). Hybridization with this GSTπ cDNA, GSTπ-1, demonstrated that increased GSTπ activity in Adr R MCF7 cells is associated with overexpression but not with amplification of the gene. They mapped the GSTπ gene to human chromosome 11q13 by in situ hybridization. Since multidrug resistance and GSTπ overexpression are associated with the loss of ERs in Adr R MCF7 cells, they examined several other breast cancer cell lines that were not selected for drug resistance. In each of these cell lines they found an inverse association between GSTπ expression and ER content. They also examined RNA from 21 primary breast cancers and found a similar association between GSTπ expression and ER content in vivo. The finding of similar patterns of expression of a drug-detoxifying enzyme and of ERs in vitro as well as in vivo suggests that ER-negative breast cancer cells may have greater protection against antineoplastic agents conferred by GSTπ than ER-positive tumors

  12. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  13. Determination of serum neuron specific enolase and glutathion S transferases levels in patients with acute cerebral infarction and its clinical significance

    International Nuclear Information System (INIS)

    Guo Jianyi; Lu Tianhe; Bao Yanmei

    2002-01-01

    Objective: To evaluate the variation of serum neuron specific enolase (NSE) and glutathion S transferases (GST) levels in patients with cerebral infarction and its clinical significance. Methods: The serum levels of NSE in cerebral infarction patients were determined with immunoradiometric assay (IRMA), and the serum level of GST were determined by enzyme immuno sandwich assay (ELISA). Results: Serum NSE levels linked in patients were significantly higher (p<0.01) and GST serum levels were significantly lower (p < 0.01) within 3 days after onset of disease than those at two weeks and those in the controls. There was a positive correlation between serum NSE levels and neurological deficit scores (p < 0.001) and a negative correlation with serum GST levels (p < 0.05). There was also a close relationship between the serum NSE levels and the volume of infarction (p < 0.001). Conclusion: There was a close relationship between the Serum levels of NSE, GST and clinical features of Patients in the early stage of cerebral infarction

  14. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    International Nuclear Information System (INIS)

    Pool-Zobel, Beatrice; Veeriah, Selvaraju; Boehmer, Frank-D.

    2005-01-01

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  15. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pool-Zobel, Beatrice [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany)]. E-mail: b8pobe@uni-jena.de; Veeriah, Selvaraju [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany); Boehmer, Frank-D. [Institute of Molecular Cell Biology, University Hospital, Friedrich Schiller University Jena, 07743 Jena (Germany)

    2005-12-11

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  16. Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine.

    Science.gov (United States)

    Harshbarger, Wayne; Gondi, Sudershan; Ficarro, Scott B; Hunter, John; Udayakumar, Durga; Gurbani, Deepak; Singer, William D; Liu, Yan; Li, Lianbo; Marto, Jarrod A; Westover, Kenneth D

    2017-01-06

    Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura.

    Science.gov (United States)

    Xu, Zhi-Bin; Zou, Xiao-Peng; Zhang, Ni; Feng, Qi-Li; Zheng, Si-Chun

    2015-08-01

    Insect glutathione S-transferases (GSTs) play important roles in detoxifying toxic compounds and eliminating oxidative stress caused by these compounds. In this study, detoxification activity of the epsilon GST SlGSTE1 in Spodoptera litura was analyzed for several insecticides and heavy metals. SlGSTE1 was significantly up-regulated by chlorpyrifos and xanthotoxin in the midgut of S. litura. The recombinant SlGSTE1 had Vmax (reaction rate of the enzyme saturated with the substrate) and Km (michaelis constant and equals to the substrate concentration at half of the maximum reaction rate of the enzyme) values of 27.95 ± 0.88 μmol/min/mg and 0.87 ± 0.028 mmol/L for glutathione, respectively, and Vmax and Km values of 22.96 ± 0.78 μmol/min/mg and 0.83 ± 0.106 mmol/L for 1-chloro-2,4-dinitrobenzene, respectively. In vitro enzyme indirect activity assay showed that the recombinant SlGSTE1 possessed high binding activities to the insecticides chlorpyrifos, deltamethrin, malathion, phoxim and dichloro-diphenyl-trichloroethane (DDT). SlGSTE1 showed higher binding activity to toxic heavy metals cadmium, chromium and lead than copper and zinc that are required for insect normal growth. Western blot analysis showed that SlGSTE1 was induced in the gut of larvae fed with chlorpyrifos or cadmium. SlGSTE1 also showed high peroxidase activity. All the results together indicate that SlGSTE1 may play an important role in the gut of S. litura to protect the insect from the toxic effects of these compounds and heavy metals. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  18. Glutathione S-transferases Y

    African Journals Online (AJOL)

    The effects of the non-substrate ligand rose-Bengal as well as the substrate ligands sulphobromophthalein and acrolein on the GSH peroxidase activity of these two iso-enzymes were also investigated. Depending on the ligand, the inhibition profiles of these two iso-enzymes when measured with either the peroxidase ...

  19. Association of Angiotensin-Converting Enzyme and Glutathione S-Transferase Gene Polymorphisms with Body Mass Index among Hypertensive North Indians

    Directory of Open Access Journals (Sweden)

    Syed T. Raza

    2015-11-01

    Full Text Available Objectives: This study aimed to examine the association of angiotensin-converting enzyme (ACE and glutathione S-transferase (GST gene polymorphisms with body mass index (BMI in hypertensive North Indians. Methods: This case-control study was carried out between May 2013 and November 2014 at the Era’s Lucknow Medical College & Hospital, Lucknow, India, and included 378 subjects divided into three groups. One group constituted 253 hypertensive individuals (sustained diastolic blood pressure of >90 mmHg and systolic blood pressure of >140 mmHg who were subcategorised according to normal (<25 kg/m2 or high (≥25 kg/m2 BMI. The third group consisted of 125 age-, gender- and ethnically-matched normotensive controls with a normal BMI. Gene polymorphisms were evaluated by polymerase chain reaction. The genotypic and allelic frequency distribution among both groups were analysed. Results: A significant difference was found between GST theta 1-null and GST mu 1-positive genotype frequencies among the hypertensive overweight/obese individuals and controls (P = 0.014 and 0.033, respectively. However, no difference was observed in the frequency of ACE polymorphisms. ACE insertion/insertion genotype (P = 0.006, insertion and deletion alleles (P = 0.007 each and GST theta 1-null and GST theta 1-positive genotypes (P = 0.006 each were found to differ significantly between hypertensive cases and controls, regardless of BMI. Conclusion: ACE and GST gene polymorphisms were not associated with BMI but were significantly associated with hypertension among the studied group of North Indians.

  20. Aphicidal Activity of Illicium verum Fruit Extracts and Their Effects on the Acetylcholinesterase and Glutathione S-transferases Activities in Myzus persicae (Hemiptera: Aphididae).

    Science.gov (United States)

    Zhou, Ben-Guo; Wang, Sa; Dou, Ting-Ting; Liu, Su; Li, Mao-Ye; Hua, Ri-Mao; Li, Shi-Guang; Lin, Hua-Feng

    2016-01-01

    This study aims to explore the aphicidal activity and underlying mechanism of Illicium verum Hook. f. that is used as both food and medicine. The contact toxicity of the extracts from I. verum fruit with methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) against Myzus persicae (Sulzer), and the activities of acetylcholinesterase (AChE) and glutathione S-transferases (GSTs) of M. persicae after contact treatment were tested. The results showed that MA, EA, and PE extracts of 1.000 mg/l caused, respectively, M. persicae mortalities of 68.93%, 89.95% and 74.46%, and the LC50 of MA, EA, and PE extracts were 0.31, 0.14 and 0.27 mg/l at 72 h after treatment, respectively; the activities of AChE and GSTs in M. persicae were obviously inhibited by the three extracts, as compared with the control, with strong dose and time-dependent effects, the inhibition rates on the whole reached more than 50.00% at the concentration of 1.000 mg/l at 72 h after treatment. The inhibition of the extracts on AChE and GSTs activities (EA extract > PE extract > MA extract) were correlated with theirs contact toxic effects, so it is inferred that the decline of the metabolic enzymes activities may be one of important reasons of M. persicae death. The study results suggested that I. verum extracts have potential as a eco-friendly biopesticide in integrated pest management against M. persicae. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  1. Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines.

    Science.gov (United States)

    Langevin, Scott M; Ioannidis, John P A; Vineis, Paolo; Taioli, Emanuela

    2010-10-01

    There is an overwhelming abundance of genetic association studies available in the literature, which can often be collectively difficult to interpret. To address this issue, the Venice interim guidelines were established for determining the credibility of the cumulative evidence. The objective of this report is to evaluate the literature on the association of common glutathione S-transferase (GST) variants (GSTM1 null, GSTT1 null and GSTP1 Ile105Val polymorphism) and lung cancer, and to assess the credibility of the associations using the newly proposed cumulative evidence guidelines. Information from the literature was enriched with an updated meta-analysis and a pooled analysis using data from the Genetic Susceptibility to Environmental Carcinogens database. There was a significant association between GSTM1 null and lung cancer for the meta-analysis (meta odds ratio=1.17, 95% confidence interval: 1.10-1.25) and pooled analysis (adjusted odds ratio=1.10, 95% confidence interval: 1.04-1.16), although substantial heterogeneity was present. No overall association between lung cancer and GSTT1 null or GSTP1 Ile105Val was found. When the Venice criteria was applied, cumulative evidence for all associations were considered 'weak', with the exception of East Asian carriers of the G allele of GSTP1 Ile105Val, which was graded as 'moderate' evidence. Despite the large amounts of studies, and several statistically significant summary estimates produced by meta-analyses, the application of the Venice criteria suggests extensive heterogeneity and susceptibility to bias for the studies on association of common genetic polymorphisms, such as with GST variants and lung cancer.

  2. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    Science.gov (United States)

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.

  3. Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: a meta-analysis.

    Science.gov (United States)

    Song, Zhiwang; Shao, Chuan; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2016-01-01

    Several case-control studies investigating the relationship between genetic polymorphisms of glutathione S-transferase (GST) M1, GSTT1, and GSTP1 (rs1695) and the risk of breast cancer have reported contradictory results. We therefore performed a meta-analysis to clarify this issue. An updated meta-analysis using PubMed and Web of Knowledge databases for the eligible case-control studies was performed. Random- or fixed-effects model was used. A total of 10,067 cancer cases and 12,276 controls in 41 independent case-control studies from 19 articles were included in this meta-analysis. Significant increase in risk of breast cancer for Asians was found in GSTM1-null genotype (P=0.012, odds ratio [OR] =1.17, 95% confidence interval [CI] =1.04-1.32) and GSTT1-null genotype (P=0.039, OR =1.19, 95% CI =1.01-1.41). In addition, our results showed that the GSTP1 (rs1695) polymorphisms can significantly increase the risk among Caucasians (P=0.042, OR =1.16, 95% CI =1.01-1.34). Sensitivity analysis and publication bias further confirmed the dependability of the results in this meta-analysis. Our results demonstrate that both GSTM1- and GSTT1-null polymorphisms are associated with an increased risk of breast cancer in Asians and that GSTP1 Val105Ile (rs1695) polymorphism is associated with an increased breast cancer risk in Caucasians.

  4. Glutathione S-transferase P1, gene-gene interaction, and lung cancer susceptibility in the Chinese population: An updated meta-analysis and review

    Directory of Open Access Journals (Sweden)

    Xue-Ming Li

    2015-01-01

    Full Text Available Aim of Study: To assess the impact of glutathione S-transferase P1 (GSTP1 Ile105Val polymorphism on the risk of lung cancer in the Chinese population, an updated meta-analysis and review was performed. Materials and Methods: Relevant studies were identified from PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure, and Chinese Biology Medicine published through January 22, 2015. The odds ratios (ORs and 95% confidence intervals (CIs were calculated to estimate the strength of the associations. Results: A total of 13 case-control studies, including 2026 lung cancer cases and 2451 controls, were included in this meta-analysis. Overall, significantly increased lung cancer risk was associated with the variant genotypes of GSTP1 polymorphism in the Chinese population (GG vs. AA: OR = 1.36, 95% CI = 1.01-1.84. In subgroup analyses stratified by geographic area and source of controls, the significant results were found in population-based studies (GG vs. AA: OR = 1.62, 95% CI: 1.13-2.31; GG vs. AG: OR = 1.49, 95% CI: 1.03-2.16; GG vs. AA + AG: OR = 1.55, 95% CI: 1.12-2.26. A gene-gene interaction analysis showed that there was an interaction for individuals with combination of GSTM1 (or GSTT1 null genotype and GSTP1 (AG + GG mutant genotype for lung cancer risk in Chinese. Conclusion: This meta-analysis suggests that GSTP1 Ile105Val polymorphism may increase the risk of lung cancer in the Chinese population.

  5. Evaluating glutathione S-transferase (GST) null genotypes (GSTT1 and GSTM1) as a potential biomarker of predisposition for developing leukopenia.

    Science.gov (United States)

    Goncalves, M S; Moura Neto, J P; Souza, C L; Melo, P; Reis, M G

    2010-02-01

    Glutathione S-transferase (GST) enzymes protect cells against xenobiotics and oxidative stress products through an electrophilic conjugation process. We investigated the theta (GSTT1) and mu (GSTM1) null genotypes in a group of leukopenic subjects and normal subjects from Northeast Brazil, evaluating their use as biomarkers of susceptibility for developing leukopenia. In a sample-based case-control study, we analysed white blood cell (WBC) counts and GSTT1 and GSTM1 genotypes. A total of 278 subjects were analysed: 91 with leukopenia and 187 controls. GSTT1 null genotype conferred a 5.92-fold risk for occurrence of leukopenia [odds ratios (OR) = 5.92, CI(MLE): 1.64-26.72, P(MLE) = 0.002] and a 3.90-fold risk of neutropenia (OR = 3.90; CI(MLE): 1.05-13.66; P(MLE) = 0.02), while GSTM1 null genotype conferred a 1.78-fold risk for leukopenia (OR = 1.75; CI(MLE): 1.04-3.06, P(MLE) = 0.017) and no risk of neutropenia (OR = 1.71; CI(MLE): 0.88-3.35; P(MLE) = 0.06). The GSTT1, but not the GSTM1 null genotype, was found to be associated with leukopenia and neutropenia. More cellular and molecular studies are needed to evaluate the existence of genotype interactions, and to confirm the appropriateness of using the GSTT1 and/or GSTM1 null genotypes as biomarkers of susceptibility to white blood-cell deficiencies.

  6. Superoxide dismutase, catalase, glutathione peroxidase and gluthatione S-transferases M1 and T1 gene polymorphisms in three Brazilian population groups.

    Science.gov (United States)

    de Oliveira Hiragi, Cássia; Miranda-Vilela, Ana Luisa; Rocha, Dulce Maria Sucena; de Oliveira, Silviene Fabiana; Hatagima, Ana; de Nazaré Klautau-Guimarães, Maria

    2011-01-01

    Antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX1) reduce the oxidation rates in the organism. Gluthatione S-transferases (GSTs) play a vital role in phase 2 of biotransformation of many substances. Variation in the expression of these enzymes suggests individual differences for the degree of antioxidant protection and geographical differences in the distribution of these variants. We described the distribution frequency of CAT (21A/T), SOD2 (Ala9Val), GPX1 (Pro198Leu), GSTM1 and GSTT1 polymorphisms in three Brazilian population groups: Kayabi Amerindians (n = 60), Kalunga Afro-descendants (n = 72), and an urban mixed population from Federal District (n = 162). Frequencies of the variants observed in Kalunga (18% to 58%) and Federal District (33% to 63%) were similar to those observed in Euro and Afro-descendants, while in Kayabi (3% to 68%), depending on the marker, frequencies were similar to the ones found in different ethnic groups. Except for SOD2 in all population groups studied here, and for GPX1 in Kalunga, the genotypic distributions were in accordance with Hardy-Weinberg Equilibrium. These data can clarify the contribution of different ethnicities in the formation of mixed populations, such as that of Brazil. Moreover, outcomes will be valuable resources for future functional studies and for genetic studies in specific populations. If these studies are designed to comprehensively explore the role of these genetic polymorphisms in the etiology of human diseases they may help to prevent inconsistent genotype-phenotype associations in pharmacogenetic studies.

  7. Polymorphisms of glutathione-S-transferase M1, T1, P1 and the risk of prostate cancer: a case-control study

    Directory of Open Access Journals (Sweden)

    Račay Peter

    2009-03-01

    Full Text Available Abstract Background It has been suggested that polymorphisms in glutathione-S-transferases (GST could predispose to prostate cancer through a heritable deficiency in detoxification pathways for environmental carcinogens. Yet, studies linking GST polymorphism and prostate cancer have so far failed to unambiguously establish this relation in patients. A retrospective study on healthy, unrelated subjects was conducted in order to estimate the population GST genotype frequencies in the Slovak population of men and compare our results with already published data (GSEC project-Genetic Susceptibility to Environmental Carcinogens. A further aim of the study was to evaluate polymorphisms in GST also in patients with prostate cancer in order to compare the evaluated proportions with those found in the control subjects. Methods We determined the GST genotypes in 228 healthy, unrelated subjects who attended regular prostate cancer screening between May 2005 and June 2007 and in 129 histologically verified prostate cancer patients. Analysis for the GST gene polymorphisms was performed by PCR and PCR-RFLP. Results We found that the GST frequencies are not significantly different from those estimated in a European multicentre study or from the results published by another group in Slovakia. Our results suggest that Val/Val genotype of GSTP1 gene could modulate the risk of prostate cancer, even if this association did not reach statistical significance. We did not observe significantly different crude rates of the GSTM1 and GSTT1 null genotypes in the men diagnosed with prostate cancer and those in the control group. Conclusion Understanding the contribution of GST gene polymorphisms and their interactions with other relevant factors may improve screening diagnostic assays for prostate cancer. We therefore discuss issues of study feasibility, study design, and statistical power, which should be taken into account in planning further trials.

  8. Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics.

    Science.gov (United States)

    Pool-Zobel, Beatrice Louise; Selvaraju, Veeriah; Sauer, Julia; Kautenburger, Tanja; Kiefer, Jeannette; Richter, Konrad Klaus; Soom, Malle; Wölfl, Stefan

    2005-06-01

    Butyrate, formed by bacterial fermentation of plant foods, has been suggested to reduce colon cancer risks by suppressing the proliferation of tumor cells. In addition, butyrate has been shown to induce glutathione S-transferases (GSTs) in tumor cell lines, which may contribute to the detoxification of dietary carcinogens. We hypothesize that butyrate also affects biotransformation in non-transformed colon cells. Thus, we have investigated the gene expression of drug metabolism genes in primary human colon tissue, premalignant LT97 adenoma and HT29 tumor cells cultured in an appropriate medium+/-butyrate. A total of 96 drug metabolism genes (including 12 GSTs) spotted on cDNA macroarrays (Superarray; n = 3) were hybridized with biotin-labeled cDNA probes. To validate the expression detected with Superarray, samples of LT97 cells were also analyzed with high density microarrays (Affymetrix U133A), which include biotransformation genes that overlap with the set of genes represented on the Superarray. Relative expression levels were compared across colon samples and for each colon sample+/-butyrate. Compared with fresh tissue, 13 genes were downregulated in primary cells cultivated ex vivo, whereas 8 genes were upregulated. Several genes were less expressed in LT97 (40 genes) or in HT29 (41 and 17 genes, grown for 72 and 48 h, respectively) compared with primary colon tissue. Butyrate induced GSTP1, GSTM2, and GSTA4 in HT29 as previously confirmed by other methods (northern blot/qPCR). We detected an upregulation of GSTs (GSTA2, GSTT2) that are known to be involved in the defence against oxidative stress in primary cells upon incubation with butyrate. The changes in expression detected in LT97 by Superarray and Affymetrix were similar, confirming the validity of the results. We conclude that low GST expression levels were favourably altered by butyrate. An induction of the toxicological defence system possibly contributes to reported chemopreventive properties of

  9. Glutathione S-transferase pi (GST-pi) inhibition and anti-inflammation activity of the ethyl acetate extract of Streptomyces sp. strain MJM 8637.

    Science.gov (United States)

    Lee, Sung-Kwon; Lee, Dong-Ryung; Choi, Bong-Keun; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    To investigate the anti-cancer properties of soil-borne actinobacteria, MJM 8637, the glutathione S-transferase pi (GST-pi) assay, anti-tumor necrosis factor (TNF)-α assay, the level of antioxidant potential by DPPH radical scavenging activity, NO scavenging activity, and ABTS radical scavenging activity in ethyl acetate extract were determined. The 16S rDNA sequencing analysis revealed that Streptomyces sp. strain MJM 8637, which was isolated from Hambak Mountain, Korea, has 99.5% similarity to Streptomyces atratus strain NBRC 3897. The physiological and the morphological characteristics of the strain MJM 8637 were also identified. The ethyl acetate extract of MJM 8637 inhibited TNF-α production approximately 61.8% at concentration 100 μg/ml. The IC50 value of the strain MJM 8637 extract on GST-pi was identified to be 120.2 ± 1.6 μg/ml. In DPPH, NO, and ABTS radical scavenging assays, the IC50 values of the strain MJM 8637 extract were found to be 977.2 μg/ml, 1143.7 μg/ml, and 454.4 μg/ml, respectively. The ethyl acetate extract of the strain MJM 8637 showed 97.2 ± 1.3% of cell viability at 100 μg/ml in RAW 264.7 cell viability assay. The results obtained from this study suggest that the ethyl acetate extract of Streptomyces sp. strain MJM 8637 could be considered as a potential source of drug for the cancers that have multidrug resistance with its GST-pi inhibition and anti-inflammation activities, and low cytotoxicity.

  10. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish).

    Science.gov (United States)

    Wang, Zhuo; Huang, Suzhen; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Xu, Biyu; Jin, Zhiqiang

    2013-09-01

    Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.

  11. OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides.

    Science.gov (United States)

    Longkumer, Toshisangba; Parthasarathy, Sunil; Vemuri, Sujana Ghanta; Siddavattam, Dayananda

    2014-01-01

    While screening a genomic library of Acinetobacter baumannii DS002 isolated from organophosphate (OP)-polluted soils, nine ORFs were identified coding for glutathione S-transferase (GST)-like proteins. These GSTs (AbGST01-AbGST09) are phylogenetically related to a number of well-characterized GST classes found in taxonomically diverse groups of organisms. Interestingly, expression of Abgst01 (GenBank accession no. KF151191) was upregulated when the bacterium was grown in the presence of an OP insecticide, methyl parathion (MeP). The gene product, AbGST01, dealkylated MeP to desMeP. An OxyR-binding motif was identified directly upstream of Abgst01. An Abgst-lacZ gene fusion lacking the OxyR-binding site showed a drastic reduction in promoter activity. Very low β-galactosidase activity levels were observed when the Abgst-lacZ fusion was mobilized into an oxyR (GenBank accession no. KF151190) null mutant of A. baumannii DS002, confirming the important role of OxyR. The OxyR-binding sites are not found upstream of other Abgst (Abgst02-Abgst09) genes. However, they contained consensus sequence motifs that can serve as possible target sites for certain well-characterized transcription factors. In support of this observation, the Abgst genes responded differentially to different oxidative stress inducers. The Abgst genes identified in A. baumannii DS002 are found to be conserved highly among all known genome sequences of A. baumannii strains. The versatile ecological adaptability of A. baumannii strains is apparent if sequence conservation is seen together with their involvement in detoxification processes.

  12. Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease.

    Science.gov (United States)

    Etemad, A; Vasudevan, R; Aziz, A F A; Yusof, A K M; Khazaei, S; Fawzi, N; Jamalpour, S; Arkani, M; Mohammad, N A; Ismail, P

    2016-04-07

    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking's oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors.

  13. VP1 pseudocapsids, but not a glutathione-S-transferase VP1 fusion protein, prevent polyomavirus infection in a T-cell immune deficient experimental mouse model.

    Science.gov (United States)

    Vlastos, Andrea; Andreasson, Kalle; Tegerstedt, Karin; Holländerová, Dana; Heidari, Shirin; Forstová, Jitka; Ramqvist, Torbjörn; Dalianis, Tina

    2003-06-01

    The ability to vaccinate against polyomavirus infection in a T-cell deficient as well as a normal immune context was studied using polyomavirus major capsid protein (VP1) pseudocapsids (VP1-ps) or a glutathione-S-transferase-VP1 (GST-VP1) fusion protein. VP1-ps (1 or 10 microg) were administered subcutaneously, alone or together with Freund's complete and incomplete adjuvant, to CD4(-/-)8(-/-) T-cell deficient or normal C57Bl/6 mice on four occasions. Alternatively, CD4(-/-)8(-/-) and normal mice were inoculated with either GST-VP1 or Py-VP1-ps (5 microg). Following immunisation, antibody titres were tested by ELISA to VP1-ps or GST-VP1 or by haemagglutination inhibition (HAI). Mice were then infected with polyomavirus. Three weeks post-infection, the mice were killed and examined for the presence of polyomavirus DNA by PCR. Viral DNA was not detected in CD4(-/-)8(-/-) mice immunised with either VP1-ps alone or in combination with Freund's complete and incomplete adjuvant, or in any of the normal mice immunised with VP1-ps or GST-VP1. However, viral DNA was detected in 2/5 of the CD4(-/-)8(-/-) mice immunised with GST-VP1 and in non-immunised controls. Greater antibody titres were observed to VP1-ps than to GST-VP1 in CD4(-/-)8(-/-) mice after VP1-ps compared to GST-VP1 immunisation and antibody responses were better in normal than in immune-deficient mice. Only immunisation with VP1-ps resulted in haemagglutination inhibition. Complete protection against polyomavirus infection in the T-cell deficient context was obtained with VP1-ps, but not with GST-VP1, immunisation using the present vaccination protocol. Copyright 2003 Wiley-Liss, Inc.

  14. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    Full Text Available Research from the Multiethnic Cohort (MEC demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA, a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005 SPMA/ml urine than Whites (2.67 [0.13] while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005. SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1 deletion explained between 14.2-31.6% (p = 5.4x10-157 and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9 of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.

  15. Association Study of Glutathione S-transferases Gene Polymorphisms (GSTM1 and GSTT1 with Ulcerative Colitis and Crohn's Disease in the South of Iran

    Directory of Open Access Journals (Sweden)

    Maryam Moini

    2017-01-01

    Full Text Available Background: Inflammatory bowel diseases (IBDs, including ulcerative colitis (UC and Crohn's disease (CD, are chronic inflammatory disorders of the gastrointestinal tract. A combination of environmental factors and interactions with a genetic predisposition are suggested to play an important role in the etiology and pathogenesis of the IBD. Glutathione S-transferases (GSTs are multifunctional enzymes involved in the cellular oxidative stress handling. Possible associations between GSTs gene polymorphisms and susceptibility to UC and CD have been reported in different population. The relationship between GSTM1 and GSTT1 deletion polymorphisms and susceptibility to UC and CD were investigated in the Iranian population. Materials and Methods: The study was performed in 106 IBD patients and 243 age- and sex-matched healthy Iranian controls consulting the IBD registry center of the Motahari Clinic, Shiraz University of Medical Sciences, Shiraz, Iran, between 2011 and 2013. GSTM1 and GSTT1 genotyping were performed using multiplex polymerase chain reaction and differences in the distribution of gene polymorphisms were analyzed statistically between the studied groups. Results: Statistically significant higher frequency of GSTM1 null genotype was observed in IBD patients (P = 0.01 and in the subgroup of patients with UC (P = 0.04 compared to healthy controls, whereas this was not true for CD patients. No significant association was found between GSTT1 gene polymorphism and UC or CD. Conclusions: Absence of GSTT1 functional gene does not play an important role in the pathophysiology and development of IBD, UC, and CD in Iranian population whereas GSTM1 null genotype could be considered as a possible genetic predisposing factor for more susceptibility to IBD and UC.

  16. Molecular characterization of kappa class glutathione S-transferase from the disk abalone (Haliotis discus discus) and changes in expression following immune and stress challenges.

    Science.gov (United States)

    Sandamalika, W M Gayashani; Priyathilaka, Thanthrige Thiunuwan; Liyanage, D S; Lee, Sukkyoung; Lim, Han-Kyu; Lee, Jehee

    2018-04-02

    Glutathione S-transferase (GST; EC 2.5.1.18) isoenzymes represent a complex group of proteins that are involved in phase II detoxification in several organisms. In this study, GST kappa (GSTκ) from the disk abalone (Haliotis discus discus; AbGSTκ) was characterized at both the transcriptional and functional levels to determine its potential capacity to perform as a detoxification agent under conditions of different stress. The predicted AbGSTκ protein consists of 227 amino acids, with a predicted molecular weight of 25.6 kDa and a theoretical isoelectric point (pI) of 7.78. In silico analysis reveals that AbGSTκ is a disulfide bond formation protein A (DsbA), consisting of a thioredoxin domain, GSH binding sites (G-sites), and a catalytic residue. In contrast, no hydrophobic ligand binding site (H-site), or signal peptides, were detected. AbGSTκ showed the highest sequence identity with the orthologue from pufferfish (Takifugu obscurus) (60.0%). In a phylogenetic tree, AbGSTκ clustered closely together with other fish GSTκs, and was evolutionarily distanced from other cytosolic GSTs. The predicted three-dimensional structure clearly demonstrates that the dimer adopts a butterfly-like shape. A tissue distribution analysis revealed that GSTκ was highly expressed in the digestive tract, suggesting it has detoxification ability. Depending on the tissue and time, AbGSTκ showed different expression patterns, and levels of expression, following challenge of the abalone with immune stimulants. Enzyme kinetics of the purified recombinant proteins demonstrated its conjugating ability using 1-Chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH) as substrates, and suggested it has a low affinity for both substrates. The optimum temperature and pH for the rAbGSTκ GSH: CDNB conjugating activity were found to be 35 °C and pH 8, respectively indicating that the abalone is well adapted to a wide range of environmental conditions. Cibacron blue (100 μM) was

  17. Influence of the exposure way and the time of sacrifice on the effects induced by a single dose of pure Cylindrospermopsin on the activity and transcription of glutathione peroxidase and glutathione-S-transferase enzymes in Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Gutiérrez-Praena, Daniel; Jos, Angeles; Pichardo, Silvia; Puerto, María; Cameán, Ana M

    2013-01-01

    Cylindrospermopsin is a cyanobacterial toxin frequently implicated in cyanobacterial blooms that is approaching an almost cosmopolitan distribution pattern. Moreover, the predominant extracellular availability of this cyanotoxin makes it particularly likely to be taken up by a variety of aquatic organisms including fish. Recently, Cylindrospermopsin has shown to alter the activity and gene expression of some of the glutathione related enzymes in tilapias (Oreochromis niloticus), but little is known about the influence of the route of exposure and the time of sacrifice after a single exposure to Cylindrospermopsin on these biomarkers. With this aim, tilapias were exposed by gavage or by intraperitoneal injection to a single dose of 200 μg kg(-1) bw of pure Cylindrospermopsin and after 24h or 5d they were sacrificed. The activity and relative mRNA expression by real-time PCR of antioxidant enzymes glutathione peroxidase and soluble glutathione-S-transferases (sGST) and the sGST protein abundance by Western blot analysis were evaluated in liver and kidney. Results showed differential responses in dependence on the variables considered with a higher toxicity with the intraperitoneal exposure and with 5d as time of sacrifice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo: characterization and role in resistance to the carcinogenic mycotoxin aflatoxin B1.

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    Full Text Available Domestic turkeys (Meleagris gallopavo are one of the most susceptible animals known to the toxic effects of the mycotoxin aflatoxin B1 (AFB1, a potent human hepatocarcinogen, and universal maize contaminant. We have demonstrated that such susceptibility is associated with the inability of hepatic glutathione S-transferases (GSTs to detoxify the reactive electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO. Unlike their domestic counterparts, wild turkeys, which are relatively AFB1-resistant, possess hepatic GST-mediated AFBO conjugating activity. Here, we characterized the molecular and functional properties of hepatic alpha-class GSTs (GSTAs from wild and domestic turkeys to shed light on the differences in resistance between these closely related strains. Six alpha-class GST genes (GSTA amplified from wild turkeys (Eastern and Rio Grande subspecies, heritage breed turkeys (Royal Palm and modern domestic (Nicholas strain turkeys were sequenced, and catalytic activities of heterologously-expressed recombinant enzymes determined. Alpha-class identity was affirmed by conserved GST domains and four signature motifs. All GSTAs contained single nucleotide polymorphisms (SNPs in their coding regions: GSTA1.1 (5 SNPs, GSTA1.2 (7, GSTA1.3 (3, GSTA2 (3, GSTA3 (1 and GSTA4 (2. E. coli-expressed GSTAs possessed varying activities toward GST substrates 1-chloro-2,4-dinitrobenzene (CDNB, 1,2-dichloro-4-nitrobenzene (DCNB, ethacrynic acid (ECA, cumene hydroperoxide (CHP. As predicted by their relative resistance, livers from domestic turkeys lacked detectable GST-mediated AFBO detoxification activity, whereas those from wild and heritage birds possessed this critical activity, suggesting that intensive breeding and selection resulted in loss of AFB1-protective alleles during domestication. Our observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are down-regulated, silenced, or

  19. Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Song ZW

    2016-05-01

    Full Text Available Zhiwang Song,1 Chuan Shao,2 Chan Feng,1 Yonglin Lu,1 Yong Gao,1 Chunyan Dong1 1Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, 2Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China Background: Several case–control studies investigating the relationship between genetic polymorphisms of glutathione S-transferase (GST M1, GSTT1, and GSTP1 (rs1695 and the risk of breast cancer have reported contradictory results. We therefore performed a meta-analysis to clarify this issue.Materials and methods: An updated meta-analysis using PubMed and Web of Knowledge databases for the eligible case–control studies was performed. Random- or fixed-effects model was used.Results: A total of 10,067 cancer cases and 12,276 controls in 41 independent case–control studies from 19 articles were included in this meta-analysis. Significant increase in risk of breast cancer for Asians was found in GSTM1-null genotype (P=0.012, odds ratio [OR] =1.17, 95% confidence interval [CI] =1.04–1.32 and GSTT1-null genotype (P=0.039, OR =1.19, 95% CI =1.01–1.41. In addition, our results showed that the GSTP1 (rs1695 polymorphisms can significantly increase the risk among Caucasians (P=0.042, OR =1.16, 95% CI =1.01–1.34. Sensitivity analysis and publication bias further confirmed the dependability of the results in this meta-analysis.Conclusion: Our results demonstrate that both GSTM1- and GSTT1-null polymorphisms are associated with an increased risk of breast cancer in Asians and that GSTP1 Val105Ile (rs1695 polymorphism is associated with an increased breast cancer risk in Caucasians. Keywords: GSTM1, GSTT1, GSTP1, polymorphism, breast cancer, meta-analysis

  20. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase

    Directory of Open Access Journals (Sweden)

    Campbell Ewan M

    2010-08-01

    Full Text Available Abstract Background The parasitic mite Varroa destructor is considered the major pest of the European honey bee (Apis mellifera and responsible for declines in honey bee populations worldwide. Exploiting the full potential of gene sequences becoming available for V. destructor requires adaptation of modern molecular biology approaches to this non-model organism. Using a mu-class glutathione S-transferase (VdGST-mu1 as a candidate gene we investigated the feasibility of gene knockdown in V. destructor by double-stranded RNA-interference (dsRNAi. Results Intra-haemocoelic injection of dsRNA-VdGST-mu1 resulted in 97% reduction in VdGST-mu1 transcript levels 48 h post-injection compared to mites injected with a bolus of irrelevant dsRNA (LacZ. This gene suppression was maintained to, at least, 72 h. Total GST catalytic activity was reduced by 54% in VdGST-mu1 gene knockdown mites demonstrating the knockdown was effective at the translation step as well as the transcription steps. Although near total gene knockdown was achieved by intra-haemocoelic injection, only half of such treated mites survived this traumatic method of dsRNA administration and less invasive methods were assessed. V. destructor immersed overnight in 0.9% NaCl solution containing dsRNA exhibited excellent reduction in VdGST-mu1 transcript levels (87% compared to mites immersed in dsRNA-LacZ. Importantly, mites undergoing the immersion approach had greatly improved survival (75-80% over 72 h, approaching that of mites not undergoing any treatment. Conclusions Our findings on V. destructor are the first report of gene knockdown in any mite species and demonstrate that the small size of such organisms is not a major impediment to applying gene knockdown approaches to the study of such parasitic pests. The immersion in dsRNA solution method provides an easy, inexpensive, relatively high throughput method of gene silencing suitable for studies in V. destructor, other small mites and

  1. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yokoyama, Akira; Kato, Hoichi; Yokoyama, Tetsuji; Tsujinaka, Toshimasa; Muto, Manabu; Omori, Tai; Haneda, Tatsumasa; Kumagai, Yoshiya; Igaki, Hiroyasu; Yokoyama, Masako; Watanabe, Hiroshi; Fukuda, Haruhiko; Yoshimizu, Haruko

    2002-11-01

    The genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2), alcohol dehydrogenase-2 (ADH2), ADH3, and glutathione S-transferase M1 (GSTM1) influence the metabolism of alcohol and other carcinogens. The ALDH2*1/2*2 genotype, which encodes inactive ALDH2, and ADH2*1/2*1, which encodes the low-activity form of ADH2, enhance the risk for esophageal cancer in East Asian alcoholics. This case-control study of whether the enzyme-related vulnerability for esophageal cancer can be extended to a general population involved 234 Japanese men with esophageal squamous cell carcinoma and 634 cancer-free Japanese men who received annual health checkups. The GSTM1 genotype was not associated with the risk for this cancer. Light drinkers (1-8.9 units/week) with ALDH2*1/2*2 had an esophageal cancer risk 5.82 times that of light drinkers with ALDH2*1/2*1 (reference category), and their risk was similar to that of moderate drinkers (9-17.9 units/week) with ALDH2*1/2*1 (odds ratio = 5.58). The risk for moderate drinkers with ALDH2*1/2*2 (OR = 55.84) exceeded that for heavy drinkers (18+ units/week) with ALDH2*1/2*1 (OR = 10.38). Similar increased risks were observed for those with ADH2*1/2*1. A multiple logistic model including ALDH2, ADH2, and ADH3 genotypes showed that the ADH3 genotype does not significantly affect the risk for esophageal cancer. For individuals with both ALDH2*1/2*2 and ADH2*1/2*1, the risk of esophageal cancer was enhanced in a multiplicative fashion (OR = 30.12), whereas for those with either ALDH2*1/2*2 or ADH2*1/2*1 alone the ORs were 7.36 and 4.11. In comparison with the estimated population-attributable risks for preference for strong alcoholic beverages (30.7%), smoking (53.6%) and for lower intake of green and yellow vegetables (25.7%) and fruit (37.6%), an extraordinarily high proportion of the excessive risk for esophageal cancer in the Japanese males can be attributed to drinking (90.9%), particularly drinking by persons with inactive heterozygous ALDH

  2. Placental biomarkers of PAH exposure and glutathione-S-transferase biotransformation enzymes in an obstetric population from Tijuana, Baja California, Mexico

    International Nuclear Information System (INIS)

    Dodd-Butera, Teresa; Quintana, Penelope J.E.; Ramirez-Zetina, Martha; Batista-Castro, Ana C.; Sierra, Maria M.; Shaputnic, Carolyn; Garcia-Castillo, Maura; Ingmanson, Sonja; Hull, Stacy

    2017-01-01

    Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=−0.375, p=0.007); adduct #1 (rho=−0.388, p=0.005); and adduct #3 (rho =−0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted. - Highlights: • Maternal-fetal environment susceptible to toxic exposures at US-Mexico border. • Lower serum folate was correlated with higher PAH-DNA adduct levels at birth. • Placental DNA adducts in GST mu (-) cord blood

  3. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  4. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Wu Weidong

    2012-08-01

    Full Text Available Abstract Background Diesel exhaust particles (DEP contribute substantially to ambient particulate matter (PM air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1 null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+ using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8 and IL-1β proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1β expression were also investigated. Methods IL-8 and IL-1β protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+ to 25-100 μg/ml DEP for 24 h significantly increased IL-8 and IL-1β protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1β expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K, in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1β expression. DEP

  5. Protective effect of copy number polymorphism of glutathione S-transferase T1 gene on melanoma risk in presence of CDKN2A mutations, MC1R variants and host-related phenotypes.

    Science.gov (United States)

    Chaudru, Valérie; Lo, M T; Lesueur, F; Marian, C; Mohamdi, H; Laud, K; Barrois, M; Chompret, A; Avril, M F; Demenais, F; Bressac-de Paillerets, B

    2009-01-01

    The effect of CDKN2A, the major high-risk melanoma susceptibility gene, has been shown to be modified by host-related phenotypes and variants of MC1R gene. The glutathione S-transferase (GSTs) genes, implicated in detoxification of metabolites after UV exposure, are candidates for modulating CDKN2A penetrance. Few case-control studies have investigated the effect of GSTs on melanoma risk, and have led to controversial results while these genes have not yet been studied in CDKN2A melanoma-prone families. We examined the effect of GSTP1, GSTM1 and GSTT1 genotypes on melanoma risk in 25 multi-generational melanoma-prone families with CDKN2A mutations, in presence of MC1R gene variants, sun exposure, and host-related phenotypes. These data included 195 genotyped subjects for all studied genes. We applied the GEE (Generalized Estimating Equations) approach to test for the effect of GSTs while adjusting for age, sex and CDKN2A mutation status and including successively MC1R, sun exposure and host factors in the model. No significant effect of null GSTM1 allele and GSTP1 variants (p.I105V, p.A114V) on melanoma risk was found. However, a significant protective effect of carrying >or=1 null GSTT1 allele was shown: OR(adjusted for age,sex,CDKN2A ) = 0.41 (0.18-0.94) and OR(adjusted for age,sex,CDKN2A,MC1R ) = 0.24 (0.15-0.58). Altogether, the factors modifying significantly the melanoma risk associated with CDKN2A mutations (stepwise procedure) were: MC1R and dysplastic nevi (increasing the risk) and GSTT1 (decreasing the risk). This study shows that even when a high-risk gene (CDKN2A) has been identified, multiple genetic modifiers influence melanoma risk.

  6. Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study

    International Nuclear Information System (INIS)

    Lavender, Nicole A; Benford, Marnita L; VanCleave, Tiva T; Brock, Guy N; Kittles, Rick A; Moore, Jason H; Hein, David W; Kidd, La Creis R

    2009-01-01

    Polymorphisms in glutathione S-transferase (GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabolites that may contribute to PCA development. Genetic variations within selected GST genes may influence PCA risk following exposure to carcinogen compounds found in cigarette smoke and decreased the ability to detoxify them. Thus, we evaluated the effects of polymorphic GSTs (M1, T1, and P1) alone and combined with cigarette smoking on PCA susceptibility. In order to evaluate the effects of GST polymorphisms in relation to PCA risk, we used TaqMan allelic discrimination assays along with a multi-faceted statistical strategy involving conventional and advanced statistical methodologies (e.g., Multifactor Dimensionality Reduction and Interaction Graphs). Genetic profiles collected from 873 men of African-descent (208 cases and 665 controls) were utilized to systematically evaluate the single and joint modifying effects of GSTM1 and GSTT1 gene deletions, GSTP1 105 Val and cigarette smoking on PCA risk. We observed a moderately significant association between risk among men possessing at least one variant GSTP1 105 Val allele (OR = 1.56; 95%CI = 0.95-2.58; p = 0.049), which was confirmed by MDR permutation testing (p = 0.001). We did not observe any significant single gene effects among GSTM1 (OR = 1.08; 95%CI = 0.65-1.82; p = 0.718) and GSTT1 (OR = 1.15; 95%CI = 0.66-2.02; p = 0.622) on PCA risk among all subjects. Although the GSTM1-GSTP1 pairwise combination was selected as the best two factor LR and MDR models (p = 0.01), assessment of the hierarchical entropy graph suggested that the observed synergistic effect was primarily driven by the GSTP1 Val marker. Notably, the GSTM1-GSTP1 axis did not provide additional information gain when compared to either loci alone based on a

  7. Influence of the heavy metals Pb, Cd, Zn, Mn, Cu, Hg and Be on the glutathione-S-transferases of rat liver. Einfluss der Schwermetalle Pb, Cd, Zn, Mn, Cu, Hg und Be auf die Glutathion-S-Transferasen der Rattenleber

    Energy Technology Data Exchange (ETDEWEB)

    Hosny Abd El-Fadil, I.H.

    1988-07-04

    The aim of this study was to explore the influence of the heavy metal salts Pb-acetate, CdCl[sub 2], ZnSO[sub 4], MnCl[sub 2], CuCl, HgNO[sub 3], and BeSO[sub 4] on the two glutathione S-transferase (GST) isoenzymes glutathione S-epoxide transferase and glutathione S-aryltransferase after addition of these salts to rat liver enzyme preparations. Rat liver enzyme preparations were also investigated after pretreatment of the animals with these salts. (orig./VT).

  8. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  9. Influence of glutathione S-transferase polymorphisms (GSTT1, GSTM1, GSTP1) on type-2 diabetes mellitus (T2D) risk in an endogamous population from north India.

    Science.gov (United States)

    Mastana, Sarabjit S; Kaur, Antarpreet; Hale, Rachel; Lindley, Martin R

    2013-12-01

    Glutathione S-transferases (GSTs) belong to a group of multigene and multifunctional detoxification enzymes, which defend cells against a wide variety of toxic insults and oxidative stress. Oxidative stress leads to cellular dysfunction which contributes to the pathophysiology of diseases such as cancer, atherosclerosis, and diabetes mellitus. It is important to assess whether the glutathione S-Transferase (GSTT1, GSTM1 and GSTP1) genotypes are associated with type 2 diabetes mellitus as deletion polymorphisms have an impaired capability to counteract the oxidative stress which is a feature of diabetes. GSTT1, GSTM1 and GSTP1 gene polymorphisms were analysed in 321 patients and 309 healthy controls from an endogamous population from north India. An association analysis was carried out at two levels (a) individual genes and (b) their double and triple combinations. The proportion of GSTT1 and GSTM1 null genotypes was higher in diabetics compared to controls (GSTT1 30.8 vs. 21.0 %; GSTM1 49.5 vs. 27.2 %). The frequency of the null genotype at both loci was higher in diabetics (19.6 vs. 7.8 %) leading to an odds ratio of 2.90 (CI 1.76-4.78, P GST genes may play an important role in the pathogenesis of type 2 diabetes. The risk is higher in individuals carrying more than one susceptible genotype at these loci. The potential role of GST polymorphisms as markers of susceptibility to type 2 diabetes needs further investigations in a larger number of patients and populations.

  10. Indigofera suffruticosa Mill extracts up-regulate the expression of the π class of glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 in rat Clone 9 liver cells.

    Science.gov (United States)

    Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li

    2013-09-01

    Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of π class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interaction of Leukotriene C4 and Chinese Hamster Lung Fibroblasts (V79A03 Cells). 2. Subcellular Distribution of Binding and Unlikely Role of Glutathione-s-Transferase

    Science.gov (United States)

    1990-10-01

    cell culture, Ms. Yvonne Caicedo for technical manipulations, and Mrs. Jane Koeser for secretarial help, are gratefully acknowledged. This work was...F.F., L.Y. Chau, and K.F. Austen . Binding of Leukotriene C. by Glutathione Transferase: A Reassessment of Biochemical and Functional Criteria for...Krillis, S., R.A. Lewis, E.J. Corey, and K.F. Austen . Specific Receptors for Laukotriene C4 on a Smooth Muscle Cell Line. J. Clin. Invest. 72:1516

  12. Glutathione S-transferase T1, O1 and O2 polymorphisms are associated with survival in muscle invasive bladder cancer patients.

    Directory of Open Access Journals (Sweden)

    Tatjana I Djukic

    Full Text Available OBJECTIVE: To examine the association of six glutathione transferase (GST gene polymorphisms (GSTT1, GSTP1/rs1695, GSTO1/rs4925, GSTO2/rs156697, GSTM1, GSTA1/rs3957357 with the survival of patients with muscle invasive bladder cancer and the genotype modifying effect on chemotherapy. PATIENTS AND METHODS: A total of 105 patients with muscle invasive bladder cancer were included in the study. The follow-up lasted 5 years. The effect of GSTs polymorphisms on predicting mortality was analyzed by the Cox proportional hazard models, while Kaplan-Meier analysis was performed to assess differences in survival. RESULTS: GSTT1 active, GSTO1 Asp140Asp or GSTO2 Asp142Asp genotypes were independent predictors of a higher risk of death among bladder cancer patients (HR = 2.5, P = 0.028; HR = 2.9, P = 0.022; HR = 3.9, P = 0.001; respectively and significantly influenced the overall survival. There was no association between GSTP1, GSTM1 and GSTA1 gene variants with overall mortality. Only GSTO2 polymorphism showed a significant effect on the survival in the subgroup of patients who received chemotherapy (P = 0.006. CONCLUSION: GSTT1 active genotype and GSTO1 Asp140Asp and GSTO2 Asp142Asp genotypes may have a prognostic/pharmacogenomic role in patients with muscle invasive bladder cancer.

  13. Glutathione S-transferase T1, O1 and O2 polymorphisms are associated with survival in muscle invasive bladder cancer patients.

    Science.gov (United States)

    Djukic, Tatjana I; Savic-Radojevic, Ana R; Pekmezovic, Tatjana D; Matic, Marija G; Pljesa-Ercegovac, Marija S; Coric, Vesna M; Radic, Tanja M; Suvakov, Sonja R; Krivic, Biljana N; Dragicevic, Dejan P; Simic, Tatjana P

    2013-01-01

    To examine the association of six glutathione transferase (GST) gene polymorphisms (GSTT1, GSTP1/rs1695, GSTO1/rs4925, GSTO2/rs156697, GSTM1, GSTA1/rs3957357) with the survival of patients with muscle invasive bladder cancer and the genotype modifying effect on chemotherapy. A total of 105 patients with muscle invasive bladder cancer were included in the study. The follow-up lasted 5 years. The effect of GSTs polymorphisms on predicting mortality was analyzed by the Cox proportional hazard models, while Kaplan-Meier analysis was performed to assess differences in survival. GSTT1 active, GSTO1 Asp140Asp or GSTO2 Asp142Asp genotypes were independent predictors of a higher risk of death among bladder cancer patients (HR = 2.5, P = 0.028; HR = 2.9, P = 0.022; HR = 3.9, P = 0.001; respectively) and significantly influenced the overall survival. There was no association between GSTP1, GSTM1 and GSTA1 gene variants with overall mortality. Only GSTO2 polymorphism showed a significant effect on the survival in the subgroup of patients who received chemotherapy (P = 0.006). GSTT1 active genotype and GSTO1 Asp140Asp and GSTO2 Asp142Asp genotypes may have a prognostic/pharmacogenomic role in patients with muscle invasive bladder cancer.

  14. Activation versus inhibition of microsomal glutathione S-transferase activity by acrolein. Dependence on the concentration and time of acrolein exposure.

    Science.gov (United States)

    Sthijns, Mireille M J P E; den Hartog, Gertjan J M; Scasso, Caterina; Haenen, Jan P; Bast, Aalt; Haenen, Guido R M M

    2017-09-25

    The toxicity of acrolein, an α,β-unsaturated aldehyde, is due to its soft electrophilic nature and primarily involves the adduction of protein thiols. The thiol glutathione (GSH) forms the first line of defense against acrolein. The present study confirms that acrolein added to isolated rat liver microsomes can increase microsomal GSH transferase (MGST) activity 2-3 fold, which can be seen as a direct adaptive increase in the protection against acrolein. At a relatively high exposure level, acrolein appeared to inhibit MGST. The activation is due to adduction of thiol groups, and the inactivation probably involves adduction of amino groups in the enzyme by acrolein. The preference of acrolein to react with thiol groups over amino groups can explain why the enzyme is activated at a low exposure level and inhibited at a high exposure level of acrolein. These opposite forms of direct adaptation on the level of enzyme activity further narrow the thin line between survival and promotion of cell death, governed by the level of exposure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-κB translocation

    International Nuclear Information System (INIS)

    Yang Yongzhen; Yang Yusong; Xu Ya; Lick, Scott D.; Awasthi, Yogesh C.; Boor, Paul J.

    2008-01-01

    Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-κB plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-κB mediated gene expression, but conflicting results on 4-HNE's effect on NF-κB have been reported. We compared the effect of 4-HNE on iNOS and the NF-κB pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a α-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-κB (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS

  16. Comparative assay of glutathione S-transferase (GSTs) activity of excretory-secretory materials and somatic extract of Fasciola spp parasites.

    Science.gov (United States)

    Alirahmi, Heshmatollah; Farahnak, Ali; Golmohamadi, Taghi; Esharghian, Mohammad Reza

    2010-01-01

    Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates) were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  17. Prevalence of glutathione S-transferase M1 null polymorphism in tobacco users, oral leukoplakia and oral squamous cell carcinoma patients in South Indian population: A polymerase chain reaction study

    Directory of Open Access Journals (Sweden)

    Renu Tanwar

    2015-01-01

    Full Text Available Context: Tobacco abuse is a well-known risk factor for potentially malignant disorders as well as oral squamous cell carcinoma (SCC. Factors that influence tobacco-exposed individuals developing a malignancy may include a combination of total tobacco exposure and genetic susceptibility. Aim: This study was undertaken to determine the prevalence of the glutathione S-transferase M1 (GSTM1 null polymorphism in oral leukoplakia and oral SCC patients in South Indian population. Settings and Design: This case-control study was conducted in hospital setting on South Indian population. Materials and Methods: Totally, 280 subjects with a history of tobacco use, oral leukoplakia, oral SCC were included in this study. Three milliliter of blood was collected and transported under cold cycle and taken for evaluation of GSTM1 null polymorphism using Multiplex Polymerase Chain Reaction. Results and Discussion: On comparing the prevalence of GSTM1 null polymorphism among the group with subjects with habits and no oral lesions, oral leukoplakia and oral SCC, it was observed that there was a statistically significant association between GSTM1 null polymorphism and the different groups (P < 0.01. Conclusion: The lack of GSTM1 activity would make the oral tissues more susceptible to action of tobacco carcinogens and to the development of a high-grade level of dysplasia in oral leukoplakia and thereby increases the susceptibility of lesion to undergo malignant changes.

  18. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  19. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  20. Effects of Dietary Pb and Cd and Their Combination on Glutathion-S-Transferase and Catalase Enzyme Activities in Digestive Gland and Foot of the Green Garden Snail, Cantareus apertus (Born, 1778).

    Science.gov (United States)

    Mleiki, Anwar; Marigómez, Ionan; El Menif, Najoua Trigui

    2015-06-01

    The present study was focused on the assessment of glutathion-S-transferase (GST) and catalase (CAT) activities in the digestive gland and foot of the land snail, Cantareus apertus (Born, 1778), exposed to different nominal dietary concentrations of Pb (25 and 2500 mg Pb/Kg), Cd (5 and 100 mg Cd/Kg) and their combination (25 mg Pb + 5 mg Cd/Kg and 2500 mg Pb + 100 mg Cd/Kg) for 7 and 60 days. GST activity was significantly increased after 7 and 60 days exposure to the highest concentration of Pb, Cd and their combination. The levels of CAT activity were different in the two studied organs but in both cases it resulted increased after 7 and 60 days of exposure, which varied significantly between metals and dietary concentrations. Therefore, it can be concluded that GST and CAT enzymes in digestive gland and foot of C. apertus are responsive to Cd, Pb and their combination, whereby they are suitable to be included in a battery of biomarkers for ecosystem health assessment in metal polluted soils using this species as sentinel.

  1. Impact of the Ile105Val Polymorphism of the Glutathione S-transferase P1 (GSTP1) Gene on Obesity and Markers of Cardiometabolic Risk in Young Adult Population.

    Science.gov (United States)

    Chielle, E O; Trott, A; da Silva Rosa, B; Casarin, J N; Fortuna, P C; da Cruz, I B M; Moretto, M B; Moresco, R N

    2017-05-01

    The aim of the study was to investigate the association between Glutathione S-transferase P1 (GSTP1) gene polymorphism with obesity and markers of cardiometabolic risk. A cross-sectional study was carried out in individuals aged≥18 and ≤30 years. The study included 54 normal weight, 27 overweight and 68 obese volunteers. Anthropometric measurements and biochemical parameters were evaluated, the DNA was extracted from blood samples and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to measure GSTP1 Ile 105 Val gene polymorphism of the study participants. Also, biochemical analysis and hormone assays were carried out. A positive association between GSTP1 polymorphism and obesity was observed on subjects carrying at least one G allele (AG and GG). GG genotype was found only in the obese group. The G allele carriers presented 2.4 times higher chance of obesity when compared to those with the AA genotype. These results were independent of sex and age. We suggest that despite a study in population regional (south of Brazil), the GSTP1 gene polymorphism may play a significant role in the increase of susceptibility of obesity and contribute to identify the cardiovascular risk in young adults. © Georg Thieme Verlag KG Stuttgart · New York.

  2. The glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol overcomes the MDR1-P-glycoprotein and MRP1-mediated multidrug resistance in acute myeloid leukemia cells.

    Science.gov (United States)

    Ascione, Alessandro; Cianfriglia, Maurizio; Dupuis, Maria Luisa; Mallano, Alessandra; Sau, Andrea; Pellizzari Tregno, Francesca; Pezzola, Silvia; Caccuri, Anna Maria

    2009-07-01

    There has been an ever growing interest in the search for new anti-tumor compounds that do not interact with MDR1-Pgp and MRP1 drug transporters and so circumvent the effect of these proteins conferring multidrug resistance (MDR) and poor prognosis in AML patients. We have investigated the cytotoxic activity of the strong glutathione S-transferase (GST) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on AML (HL60) cell lines. Functional drug efflux studies and cell proliferation assays were performed on both sensitive and MDR AML (HL60) cells after incubation with NBDHEX. Moreover, the mode of cell death (apoptosis vs. necrosis) as well as the correlation between NBDHEX susceptibility and GST activity or Bcl-2 expression was investigated. NBDHEX is not a substrate of either MDR1-Pgp or MRP1 efflux pumps; in fact, it is not only cytotoxic toward the parental HL60 cell line, but also overcomes the MDR phenotype of its HL60/DNR and HL60/ADR variants. The data herein reported show that NBDHEX mediates efficient killing of both MDR1-Pgp and MRP1 over-expressing AML cells. Therefore, this drug can potentially be used as an effective agent for treating MDR in AML patients.

  3. Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers.

    Science.gov (United States)

    Pham, Ben; Miranda, Ana; Allinson, Graeme; Nugegoda, Dayanthi

    2017-09-01

    The toxicity of two organophosphorus insecticides, chlorpyrifos (CPF), malathion (MAL), and one carbamate insecticide, methomyl (METH), to the yabby (Cherax destructor) was assessed by measuring cholinesterase (AChE, BChE), Glutathione S-Transferase (GST) and Na + /K + ATPase activity after 96h of exposure. Yabbies exposed to all three insecticides at 2 and 5µgL -1 exhibited significant AChE, BChE, GST and Na + /K + ATPase inhibition. Based on these enzyme inhibition tests, the toxicity of the three insecticides to C. destructor was CPF > MAL > METH. After 14 days of recovery the yabbies enzymatic activities of AChE, BChE, GST and Na + /K + ATPase was measured. Recovery of The enzyme activity recovery was faster after the exposure to METH than for the yabbies exposed to CPF and MAL. Slow recovery of enzyme activity could affect the physical activities of organisms and produce indirect effects on populations if such crayfish are less able to elude predators or search for food. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    Science.gov (United States)

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Polimorfismos das isoformas M1, T1 e P1 da glutationa S-transferase e associação com os aspectos clínico-patológicas no carcinoma colorretal Polymorphism of glutathione S-transferase M1, T1 and P1 and association with clinicopathological aspects in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Poliana L Ansolin

    2010-09-01

    Full Text Available As variáveis clínico-patológicas são importantes fatores que possam estar associados à progressão da neoplasia e, conseqüentemente, ao prognóstico da doença. As glutationas S-Transferases GSTM1, GSTT1 e GSTP1 são enzimas da segunda fase de biotransformação que atuam na destoxificação de uma ampla variedade de agentes exógenos incluindo os carcinógenos. Os genes GSTM1, GSTT1 e GSTP1 são polimórficos em humanos e suas variantes têm sido associadas, em algumas populações, ao aumento dos riscos de neoplasia, entre elas o carcinoma colorretal. Neste estudo retrospectivo 50 biópsias de pacientes com carcinoma colorretal do Rio Grande do Sul foram analisadas os polimorfismos nos genes GSTM1, GSTT1 e GSTP1 por PCR multiplex e RFLP, quanto às variáveis clínico-patológicas: localização, estadiamento e diferenciação. Não foram encontrados valores p significativo nas variáveis: estadiamento (p=0,28, p=0,93 e p=0,67, diferenciação (p=0,70 e p=0,37 e localização (p= 0,23. p= 0,58 e p= 0,60 respectivamente e o presença do polimorfismos dos genes GSTM1, GSTT1 e GSTP1 nas variáveis estadiamento e localização. A única variável clínico-patológica que apresentou valor significativo na diferenciação do CCR foi o polimorfismo do gene GSTP1 Ile/val e val/val (p= 0,046 entretanto, mais pesquisas são necessárias para confirmar estes achados ,visto que, esses resultados podem ter sido influenciados pelo número reduzido de biópsias analisadas.The clinical and pathological variables are important factors that may be associated with tumor progression and consequently, the prognoses of the disease. The glutathione S-Transferases GSTM1, GSTT1 and GSTP1 are enzymes from the second phase II of biotransformation that work in the detoxificatin pathways of a wide range of exogen agents including the carcinogens. The GSTM1, GSTT1 and GSTP1 genes are polymorphic in humans and their variants have been related in some populations an

  6. CYTOGENETIC EFFECTS OF TICK-BORNE TRANSMITTED CO- OR MONOINFECTIONS DEPENDING ON THE VARIANTS OF GLUTATHIONE-S-TRANSFERASE GENES (GSTM1 OR GSTT1 IN THE PATIENT’S GENOTYPE

    Directory of Open Access Journals (Sweden)

    N. N. Ilyinskikh

    2017-01-01

    Full Text Available Aim is to assess repeatedly cytogenetic effects of co- or monoinfection caused by Lyme borreliosis and tick-borne encephalitis during the acute and convalescent periods of the disease depending on variants of glutathione-S-transferase (GSTM1 or GSTT1 genes in the patient’s genotype. Material and methods: The study included 186 patients and 166 healthy (control residents of the north of the Tomsk and Tyumen regions, who were examined by clinical, laboratory and cytogenetic methods (micronucleus analysis. Among the 186 examined patients, Lyme borreliosis was diagnosed in 65 individuals, tick-borne encephalitis was in 59 patients, and coinfection was found in 62 individuals. The material for the study (smears of buccal cells was obtained repeatedly during admission of patients to treatment, and also after 1 week, 1, 3 and 6 months. Polymerase chain reaction was used to analyze the alleles of the GSTM1 and GSTT1 genes. Results: significant increase in the frequency of micronucleated buccal cells in patients with coinfection, as compared with the groups of control and patients with monoinfection. The significantly increased frequency of micronucleated cells was associated with the mutant inactive alleles of the GSTM1(0/0 and GSTT1(0/0 genes. If the patients were carriers of the mutant allele of the GSTM1(0/0 gene, the cytogenetic instability could persist for half a year. It was found that chronic arthritis in the Lyme borreliosis patients was associated with a long persistence of an increased frequency of micronucleated cells. Conclusion: Significant differences in the frequency and the lasting of persistence of micronucleated cells between groups of patients with coinfection and monoinfections were found. The most significant increase in those parameters was detected in the coinfected patients in whose genotype contained non-active forms of the GSTM1(0/0 and GSTT1(0/0 genes.

  7. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study

    Directory of Open Access Journals (Sweden)

    Brydøy Marianne

    2007-12-01

    Full Text Available Abstract Background To assess the impact of polymorphisms in Glutathione S-transferase (GST -P1, -M1, and -T1 on self-reported chemotherapy-induced long-term toxicities in testicular cancer survivors (TCSs. Methods A total of 238 TCSs, who had received cisplatin-based chemotherapy at median twelve years earlier, had participated in a long-term follow-up survey which assessed the prevalence of self-reported paresthesias in fingers/toes, Raynaud-like phenomena in fingers/toes, tinnitus, and hearing impairment. From all TCSs lymphocyte-derived DNA was analyzed for the functional A→G polymorphism at bp 304 in GSTP1, and deletions in GST-M1 and GST-T1. Evaluation of associations between GST polymorphisms and self-reported toxicities included adjustment for prior treatment. Results All six evaluated toxicities were significantly associated with the cumulative dose of cisplatin and/or bleomycin. Compared to TCSs with either GSTP1-AG or GSTP1-AA, the 37 TCSs with the genotype GSTP1-GG, were significantly less bothered by paresthesias in fingers and toes (p = 0.039, OR 0.46 [0.22–0.96] and p = 0.023, OR 0.42 [0.20–0.88], respectively, and tinnitus (p = 0.008, OR 0.33 [0.14–0.74]. Furthermore, absence of functional GSTM1 protected against hearing impairment (p = 0.025, OR 1.81 [1.08–3.03]. Conclusion In TCSs long-term self-reported chemotherapy-induced toxicities are associated with functional polymorphisms in GSTP1 and GSTM1. Hypothetically, absence of GST-M1 leaves more glutathione as substrate for the co-expressed GST-P1. Also intracellular inactivation of pro-apoptotic mediators represents a possible explanation of our findings. Genotyping of these GSTs might be a welcomed step towards a more individualized treatment of patients with metastatic testicular cancer.

  8. Increased N7-methyldeoxyguanosine DNA adducts after occupational exposure to pesticides and influence of genetic polymorphisms of paraoxonase-1 and glutathione S-transferase M1 and T1.

    Science.gov (United States)

    Gómez-Martín, Antonio; Altakroni, Bashar; Lozano-Paniagua, David; Margison, Geoffrey P; de Vocht, Frank; Povey, Andrew C; Hernández, Antonio F

    2015-06-01

    There are concerns about genetic risks associated with long-term exposure to pesticides as these compounds may damage DNA, resulting in mutations that eventually lead to cancer, neurological, and reproductive adverse health effects. This study assessed DNA damage in intensive agricultural workers exposed to pesticides by determining the levels of N7-methyldeoxyguanosine (N7-MedG), an adduct known to be a robust biomarker of recent exposure to chemical methylating agents. A cohort of 39 plastic greenhouse workers was assessed for changes in lymphocyte DNA N7-MedG levels between low level and high level exposures during the course of a spraying season. The contributions of genetic polymorphisms of the pesticide-metabolizing enzymes paraoxonase-1 (PON1) and the glutathione S-transferases, GSTM1 and GSTT1, on N7-MedG levels and other potential confounders were also assessed. N7-MedG increased in the period of high pesticide exposure as compared to the low exposure period (0.23 and 0.18 µmol N7-MedG/mol dG for the unadjusted and adjusted linear mixed models, P = 0.02 and 0.08, respectively). Significant decreased levels of erythrocyte acetylcholinesterase and plasma cholinesterase were observed in the high versus low exposure period in both the unadjusted (2.85 U/g hemoglobin and 213.13 U/L, respectively) and adjusted linear mixed models (2.99 U/g hemoglobin and 230.77 U/L, respectively), indicating pesticide intake. In intensive agriculture workers, higher pesticide exposure increased DNA alkylation levels, further demonstrating the genotoxicity of pesticides in man. In addition, pesticide-exposed individuals with inherited susceptible metabolic genotypes (particularly, null genotype for GSTM1 and the PON1 192R allele) appear to have an increased risk of genotoxic DNA damage. Environ. Mol. Mutagen. 56:437-445, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  9. Genetic deficiency of human class mu glutathione S-transferase isoenzymes in relation to the urinary excretion of the mercapturic acids of Z- and E-1,3-dichloropropene

    NARCIS (Netherlands)

    Vos, R M; van Welie, R.T.H.; Peters, W H; Evelo, Chris T.; Boogaards, J J; Vermeulen, N P; van Bladeren, P.J.

    1991-01-01

    Mononuclear lymphocytes were isolated from the blood of 12 individuals, who had been exposed to the vapour of the soil fumigant 1,3-dichloropropene (DCP). Western blot experiments were performed on the crude lymphocyte homogenates, using a monoclonal antibody against human hepatic glutathione

  10. Glutathione S-transferases as risk factors in prostate cancer

    DEFF Research Database (Denmark)

    Autrup, Judith; Thomassen, L.H.; Olsen, J.H.

    1999-01-01

    of cancer. In a case-control study (153 cases and 288 controls) the effect of these genetic polymorphisms on the risk of prostate cancer was investigated. Homozygote deletion of either GSTM1 or GSTT1 was not associated with a statistically significant increased risk, odds ratio (OR) 1.3; 95% confidence...... that lack either GSTM1 or GSTT1 activity had a slightly higher risk of prostatic cancer than smokers expressing the genes, OR 1.4 (95% CI 0.6-3.3) and 1.6 (0.6-3.9), respectively. Our results show that differences in enzymes involved in the metabolism of carcinogens slightly modify prostate cancer risk...

  11. RESEARCH ARTICLE Glutathione S-Transferase P1 Gene ...

    Indian Academy of Sciences (India)

    Navya

    2017-03-13

    Mar 13, 2017 ... and environmental backgrounds, the variations in population structures may accord for such differences highlighting the value of ethnic-specific studies for population stratification. Considering the g.341C>T SNP and CAD risk, the C/T genotype conferred 5.8-fold increased risk for developing CAD and has ...

  12. The association between glutathione S-transferase P1 ...

    African Journals Online (AJOL)

    Methods: Fifty patients with bronchial asthma and fifty normal control subjects were enrolled in this study and were subjected to asthma questionnaire, spirometric studies, conventional polymerase chain reaction (PCR) with enzyme digestion to determine GSTP1 genotype, serum immunoglobulin E (IgE) measurement and ...

  13. Genetic Polymorphism Of Glutathione-S-Transferase And ...

    African Journals Online (AJOL)

    Chronic tobacoo smoking is a major risk factor in the development of. COPD. However, it is estimated that only 10-20% of chronic heavy smokers will develop symptomatic COPD. This indicates the possible contribution of environmental or genetic cofactors to the development of COPD in smokers. The present work aimed ...

  14. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Elevated levels of GST activity have been reported in organophosphate, organochlorine and pyrethroid resistant mosquitoes. Particulary ... To date different GST enzymes structurally conserved have been identified suggesting that they may have an important role on common pathways of compound detoxification. In this ...

  15. Inhibition of glutathione S-transferases (GSTs) activity from cowpea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... resistant insect strains, toxic residues in foods and humans; workers' safety and high cost of procurements. (Adedire, 2003). These have necessisated research on the use of alternative eco-friendly insect pest control methods amongst which are the use of plant product. *Corresponding author. E-mail: ...

  16. Polymorphism of Cytochrome p450, Glutathione-S-Transferase and ...

    African Journals Online (AJOL)

    Recently indoor air pollution and dietary factors have been implicated in the causation of lung Cancer development. Accumulating evidences have highlighted that ... This review will focus on major recent advances in the molecular study of the origins and biology of lung cancer. Keywords: Lung Cancer, Cytochrome p-450, ...

  17. Glutathione S-transferase P1 gene polymorphisms and susceptibility ...

    Indian Academy of Sciences (India)

    matched and ethnicity-matched healthy controls (n = 200) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of g.313A>G and ...

  18. Molecular characterization of zeta class glutathione S-transferases ...

    Indian Academy of Sciences (India)

    The PbGSTZ1 gene was isolated from cDNA, whereas PbGSTZ2 was isolated from genomic DNA. ... Biology, Balikesir University, 10145 Balikesir, Turkey; Department of Biology, Aksaray University, 68100 Aksaray, Turkey; Department of Biological Sciences, Middle East Technical University (ODTU), 06800 Ankara, Turkey ...

  19. Glutathione S-transferase P1 gene polymorphisms and susceptibility ...

    Indian Academy of Sciences (India)

    M. A. Bhat

    2017-11-28

    Nov 28, 2017 ... diet, advanced age, smoking, hypertension, diabetes mel- litus and dyslipidemia are associated with increased risk of CAD. In addition, oxidative stress has been regarded as one of the well-established patho-physiological mecha- nisms that contribute to the pathogenesis and progression of CAD (Dhalla ...

  20. Cloning and expression of a tomato glutathione S- transferase (GST ...

    African Journals Online (AJOL)

    In this study, ShGSTU1 was cloned into plasmid pET-28a, efficiently expressed in Escherichia coli upon isopropyl-β-D-1-thiogalactopyronoside (IPTG) induction, purified with Ni2+ affinity chromatography and biochemically characterized. The results show that the optimal conditions for the expression of recombinant ...

  1. Short Communication: Erythrocyte Glutathione S-transferase Activity ...

    African Journals Online (AJOL)

    Malarious Male Human Volunteers Administered with Five Antimalarial Drugs. ... results of these findings suggested the capability of these drugs to bind to the human erythrocyte GST, accompanied with raised oxidant stress of the erythrocytes.

  2. The association between glutathione S-transferase P1 ...

    African Journals Online (AJOL)

    Mahmoud I. Mahmoud

    2011-08-10

    Aug 10, 2011 ... ase chain reaction (PCR) with enzyme digestion to determine GSTP1 genotype, serum immuno- globulin E (IgE) measurement and .... conjunctivitis and (2) total serum IgE level > 100 IU/ml. Pa- tients were diagnosed as ... coded data for typing and spelling mistakes. Finally, analysis and interpretation of ...

  3. Glutathione Conjugation

    Science.gov (United States)

    Shimabukuro, R. H.; Frear, D. S.; Swanson, H. R.; Walsh, W. C.

    1971-01-01

    The primary factor for atrazine selectivity in corn (Zea mays) is the activity of a soluble enzyme, glutathione S-transferase, which detoxifies atrazine by catalyzing the formation of an atrazine-glutathione conjugate (GS-atrazine). The nonenzymatic, benzoxazinone-catalyzed hydrolysis of atrazine to hydroxyatrazine contributed to the total resistance of corn to atrazine, but the nonenzymatic detoxication pathway does not seem to be essential for resistance. All corn lines investigated, except for susceptible GT112, rapidly detoxified atrazine by glutathione conjugation. Only GT112 had low glutathione S-transferase activity. Hydroxyatrazine was found in significant quantities only when atrazine was introduced initially into the roots. The amount of hydroxyatrazine formed was nearly equal for susceptible GT112 and most of the resistant corn lines investigated. This investigation indicates that some plants protect themselves against toxic organic halide compounds with a mechanism similar to that known to exist in animals. PMID:5543779

  4. Glutathione.

    Science.gov (United States)

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.

  5. Nuclear translocation of glutathione transferase omega is a progression marker in Barrett's esophagus

    DEFF Research Database (Denmark)

    Piaggi, Simona; Marchi, Santino; Ciancia, Eugenio

    2009-01-01

    Barrett's esophagus (BE) represents a major risk factor for esophageal adenocarcinoma (AC). For this reason, patients with BE are subjected to a systematic endoscopic surveillance to detect initial evolution towards non-invasive neoplasia (NiN) and cancer, that eventually occurs only in a small...... fraction of BE patients. This study was aimed to investigate the possible role of glutathione-S-transferase-omega 1 (GSTO1), a recently discovered member of the glutathione-S-transferase family, as a progression marker in the Barrett's disease in order to improve the diagnosis of Ni......N in BE and to understand the mechanisms of the progression from BE to AC. We investigated the expression and subcellular localization of GSTO1 in biopsies from patients with BE and in human cancer cell lines subjected to heath shock treatment. A selective nuclear localisation of GSTO1 was found in 16/16 biopsies with low...

  6. Analysis of glutathione S-transferase M1 and glutathione S-transferase T1 gene polymorphisms suggests age-related relationships in a northern Italian population.

    Science.gov (United States)

    Santovito, Alfredo; Cervella, Piero; Burgarello, Claudio; Bigatti, Maria Paola; Sella, Gabriella; Delpero, Massimiliano

    2008-12-01

    The present work attempts to determine the distribution of GSTM1 and GSTT1 genotype and allele frequencies in a sample of northern Italian population, and to examine the age-related association of these polymorphisms. The frequencies of the deleted GSTM1 and GSTT1 genotypes were 0.357 and 0.169, respectively. GSTT1 null-genotype frequency found in this work further confirms data obtained in previous studies of Italian populations, while for GSTM1 deletion our sample showed a significantly lower-frequency value with respect to other Italian and European populations, with exception of the Greek. No significant differences occurred between men and women in the frequency of each gene, which could suggest that, in the studied sample, there were no sex differences in susceptibility to diseases and in detoxifying enzymes such as GSTs. In order to analyze the relationship between GSTT1 and GSTM1 gene polymorphisms and age, the sample was subdivided into four age groups: 1-30 years (n = 101); 31-50 years (n = 160); 51-79 years (n = 144) and 80-100 years (n = 58). This age-related analysis showed a decreasing gradient of GSTs null genotypes between younger and older groups, with the 80-100 age group showing a significantly lower frequency of GSTT1 null, GSTM1 null and GSTT1/GSTM1 double null genotypes with respect to the younger group.

  7. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    The aim of this study was to establish the level of water quality impairment along a mine effluent receiving river, Pote River in Zimbabwe, using Oreochromis niloticus (Nile tilapia) as an indicator organism. Glutathione-S-transferase (GST) enzyme and heat shock protein (HSP 70) expression in the stomach tissue of Nile ...

  8. Purification and biochemical characterization of a novel glutathione ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    dinitrobenzene as a substrate. ..... purification of GST enzyme from other insect species, which were from 3 to 26% in Hyphantria .... Glutathione S-transferases from the larval gut of the silkworm. Bombyx mori: cDNA cloning, gene ...

  9. Erythrocyte Glutathione S-transferase Activity of Non-Malarious Male ...

    African Journals Online (AJOL)

    Hilaire

    Cameroon Journal of Experimental Biology 2009 Vol. 05 N° 02, 112-116. ... GST activity from the inhibitory action of the drugs. The results of these findings suggested the capability of these drugs to bind to the human erythrocyte GST, accompanied with ... of the five antimalarial drugs constituted the control sample analysis.

  10. Glutathione S-transferases YcYfetus and YcYc - kinetic and inhibitor ...

    African Journals Online (AJOL)

    1991-03-16

    transferases YcYfetus and YcYc were com- pared. The catalytic efficiency of the fetal iso-enzyme with cumene hydroperoxide as substrate was approximately four times higher than the other. The effects of the non-substrate.

  11. Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk.

    NARCIS (Netherlands)

    Logt, E.M.J. van der; Bergevoet, S.M.; Roelofs, H.M.J.; Hooijdonk, Z. van; Morsche, R.H.M. te; Wobbes, Th.; Kok, J.B. de; Nagengast, F.M.; Peters, W.H.M.

    2004-01-01

    Colorectal cancer (CRC) is one of the most common malignancies in the Western world showing an increasing incidence, and has been associated with genetic and lifestyle factors. Individual susceptibility to CRC may be due partly to variations in detoxification capacity in the gastrointestinal tract.

  12. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  13. Bisubstrate Kinetics of Glutathione S-Transferase: A Colorimetric Experiment for the Introductory Biochemistry Laboratory

    Science.gov (United States)

    Stefanidis, Lazaros; Scinto, Krystal V.; Strada, Monica I.; Alper, Benjamin J.

    2018-01-01

    Most biochemical transformations involve more than one substrate. Bisubstrate enzymes catalyze multiple chemical reactions in living systems and include members of the transferase, oxidoreductase, and ligase enzyme classes. Working knowledge of bisubstrate enzyme kinetic models is thus of clear importance to the practicing biochemist. However,…

  14. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and ...

    African Journals Online (AJOL)

    Moyassar Ahmad Zaki

    2014-04-18

    Apr 18, 2014 ... rose gel. PCR products representing GSTM1 and GSTT1 posi- tive genotypes yielded bands of 215 and 480 bp, respectively, while the internal positive control (CYP1A1) PCR product band corresponded to 312bp. Such genotyping approach did. Gene polymorphisms and risk of type 2 diabetes mellitus. 75 ...

  15. Association of glutathione-S-transferase P1 (GSTP1)-313 A>G gene ...

    African Journals Online (AJOL)

    Afaf Elsaid

    2015-05-14

    May 14, 2015 ... Peer review under responsibility of Ain Shams University. The Egyptian Journal of Medical Human Genetics (2015) 16, 361–365. HOSTED BY. Ain Shams University. The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com · http://dx.doi.org/10.1016/j.ejmhg.2015.04.005.

  16. Glutathione S-Transferase M1 and T1 Null Genotype Frequency ...

    Indian Academy of Sciences (India)

    Bluebird

    2017-10-25

    Oct 25, 2017 ... prevalence of GSTM1 null genotype among the Caucasians, Asian and Africans was 47~57%, 42~54% and. 16~36% ..... respect to the frequency distribution while compared with other tribal groups from India, Africa and Brazil. We have found a ... Conflict of interest: We declare no conflict of interest.

  17. Glutathione S-transferase (GST) activity as a biomarker in ecological ...

    African Journals Online (AJOL)

    The behaviour and fate of pesticides in the environment will determine their impact on both humans and non-target organisms. Biochemical biomarkers are increasingly used in ecological risk assessment to identify the incidence of exposure to and effects caused by xenobiotics. This study was undertaken to investigate the ...

  18. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans

    Science.gov (United States)

    2012-09-01

    disease states affiliated with altered iron homeostasis. There are many effectors of cellular iron concentration such as diet, malabsorption, Helicobacter ... pylori infection, drug interference, and hemorrhage.14 Variants of hepcidin, considered the main regulator of iron homeostasis, as well as its...Researchers did not have access to medical history data, only age/gender of each sample. The limited demographic information is presented in Table 1

  19. Glutathione S-transferase genotype and p53 mutations in adenocarcinoma of the small intestine

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth Nørum; Kaerlev, L; Stubbe Teglbjaerg, P

    2003-01-01

    investigated a possible interaction between the lack of GSTM1 enzyme activity and the carcinogenic compounds of tobacco smoke. Based on the theory that certain carcinogens cause specific point mutations in the p53 gene we analysed by single strand conformation polymorphism (SSCP) and sequencing, p53 exon 5...... an odds ratio of 4.8; 95% confidence interval (CI) (0.6-38.7) for ASI as compared to smokers who expressed GSTM1. No similar association between alcohol consumption and ASI was found. No p53 mutations in exon 5-8 were found in these samples, but the method may not be sensitive enough to identify smaller...... differences. Thus p53 does not seem to be the target of carcinogens acting in the small intestine....

  20. The effect of glutathione S-transferase gene polymorphisms on susceptibility to uterine myoma

    Directory of Open Access Journals (Sweden)

    Salva Sadat Mostafavi Dehraisi

    2015-01-01

    Conclusion: The findings suggest that the GSTM1 and GSTT1 genetic polymorphisms are associated with the development of endometriosis in Iranian women which is in agreement with previous results obtained in other populations. However, the ethnic variations of polymorphisms should be evaluated in detail and differences should be incorporated into investigations of susceptibility variants for this disease.

  1. Role of glutathione S-transferase P-1 (GSTP-1 gene polymorphism in COPD patients

    Directory of Open Access Journals (Sweden)

    Tarek F. El-Gazzar

    2016-10-01

    Conclusion: There is a significant association between GSTP1 gene polymorphism and the development of COPD, and smoking have a role in GSTP1 gene polymorphism. The polymorphism has no relation to disease severity.

  2. Glutathione S-transferase M1 and T1 null genotype frequency ...

    Indian Academy of Sciences (India)

    PREM CHANDRA SUTHAR

    2018-03-24

    Mar 24, 2018 ... specifically Sirohi district, in and around Abu Road area in. 24 villages which comprises of the 'Bhakkar Patta'. They are divided into Rajput Garasia ...... to have associated with various types of cancers, infertil- ity, type-2 diabetes, chronic kidney disease, coronary artery disease, endometriosis and many ...

  3. Glutathione S-transferases YcYfetus and YcYc - kinetic and inhibitor ...

    African Journals Online (AJOL)

    1991-03-16

    Mar 16, 1991 ... enzyme. It is therefore attractive to suggest that should a similar situation arise in 11;110, this resistance to peroxidase inhibition may play a role in preventing ..... EFFECT OF KCI CONCENTRATION ON ACROLEIN. INHIBITION OF GSH PEROXIDASE ACTIVITY. Acrolein. KCI. " concentration concentration.

  4. Increase of gluthatione S-transferase, carboxyl esterase and carbonyl reductase in Fasciola hepatica recovered from triclabendazole treated sheep.

    Science.gov (United States)

    Scarcella, S; Solana, M V; Fernandez, V; Lamenza, P; Ceballos, L; Solana, H

    2013-10-01

    Fasciolasis is a zoonotic parasitic disease caused by Fasciola hepatica and its control is mainly based on the use of triclabendazole (TCBZ). Parasite resistance to different anthelmintics is growing worldwide, including the resistance of F. hepatica to TCBZ. In the present work we evaluate "in vivo" the activity of xenobiotic metabolizing enzymes of phase I (carboxyl esterases) and phase II (glutathione S-transferases and carbonyl reductases) recovered of flukes from sheep treated with TCBZ. All three enzymes showed increased activity in TCBZ flukes returning 60h post-treatment at similar to baseline unexposed flukes. TCBZ action may induce secondary oxidative stress, which may explain the observed increment in activities of the analyzed enzymes as a defensive mechanism. The enzymes analyzed are candidates to participate actively in the development of resistance at TCBZ in F. hepatica. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...... knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes....

  6. Reduced glutathione as a persistence indicator of alien plants of the Amelancheir family

    Directory of Open Access Journals (Sweden)

    L. G. Dolgova

    2009-04-01

    Full Text Available It was proved that glutathione is an important indicator of the vegetation condition and persistence. According to the amount of glutathione the studied mespilus species are adapted to the environmental conditions. Increase of the glutathione amount is caused by some abiotic factors, e.g. temperature. Some differences of the glutathione content may be explained by the plants species patterns.

  7. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  8. The PEF family proteins sorcin and grancalcin interact in vivo and in vitro

    DEFF Research Database (Denmark)

    Hansen, Christian; Tarabykina, Svetlana; la Cour, Jonas Marstrand

    2003-01-01

    The penta-EF hand (PEF) family of calcium binding proteins includes grancalcin, peflin, sorcin, calpain large and small subunits as well as ALG-2. Systematic testing of the heterodimerization abilities of the PEF proteins using the yeast two-hybrid and glutathione S-transferase pull-down assays...... be a way to regulate and fine tune processes mediated by calcium binding proteins of the penta-EF hand type....

  9. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  10. Liver Melanomacrophages and Gluthation S-Transferase Activity in Leptodactylus chaquensis (ANURA, LEPTODACTYLIDAE as Biomarkers of Oxidative Stress Due to Chlorpyrifos Exposition

    Directory of Open Access Journals (Sweden)

    Ivan Huespe

    2017-05-01

    Full Text Available We quantified and compared the hepatic melanomacrophage (MM and glutathione S-transferase (GST enzyme activity (two oxidative stress biomarkers in the liver of Leptodatylus chaquensis adults (Anura, Leptodactylidae collected in a rice field (CA in San Javier department, Santa Fe (Argentina, seven days after the application of chlorpyrifos and in a reference site (SR. The histological analysis revealed a significant amount (p = 0.028 and area occupied by MM (p = 0.017 in livers of CA compared to SR. Furthermore, a significant inhibition of GST activity was recorded in the CA frogs compared to the SR (p = 0.030. The histopathological and enzymatic effects provide evidences of ecotoxicological risk for anurans in rice field with CPF application.

  11. Activity-Based Probes for Isoenzyme- and Site-Specific Functional Characterization of Glutathione S -Transferases

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Ethan G. [Chemical Biology and Exposure; Killinger, Bryan J. [Chemical Biology and Exposure; Nair, Reji N. [Chemical Biology and Exposure; Sadler, Natalie C. [Chemical Biology and Exposure; Volk, Regan F. [Chemical Biology and Exposure; Purvine, Samuel O. [Chemical Biology and Exposure; Shukla, Anil K. [Chemical Biology and Exposure; Smith, Jordan N. [Chemical Biology and Exposure; Wright, Aaron T. [Chemical Biology and Exposure

    2017-11-01

    Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “H site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.

  12. In vivo potentiation of 1,2-dibromoethane hepatotoxicity by ethanol through inactivation of glutathione-s-transferase.

    Science.gov (United States)

    Aragno, M; Tamagno, E; Danni, O; Chiarpotto, E; Biasi, F; Scavazza, A; Albano, E; Poli, G; Dianzani, M U

    1996-01-05

    In the rat, a single ethanol (EtOH) pretreatment (2.5 g/kg b.w., per os) was able to strongly enhance the cytotoxicity of 1,2-dibromoethane (DBE)(87 mg/kg b.w., per os). The principal metabolic routes of DBE involve both oxidative and conjugative transformations. Microsomal cytochrome P450 content and dimethyl nitrosamine demethylase activity were not changed, while a significant loss of cytosolic total GSH-transferase was observed in rats killed 6 h after EtOH pretreatment. Pretreatment with methylpyrazole, an inhibitor of alcohol-dehydrogenase prevented the effects provoked by ethanol. The major EtOH metabolite, acetaldehyde. seemed thus to play a fundamental role in the mechanism responsible for the potentiation of DBE toxicity mediated by EtOH. To further support this hypothesis, disulfiram (75 mg/kg b.w.), an inhibitor of aldehyde dehydrogenase, was given i.p. to rats. When DBE was administered to disulfiram- and EtOH-pretreated rats, a marked increase of liver cytolysis was shown and cytosolic GSH-transferase activity was further inhibited if compared to that induced by EtOH treatment alone. The results are consistent with the hypothesis that EtOH given to rats increases DBE liver toxicity because its major metabolite, acetaldehyde, reduces the DBE conjugates to GSH transferase, with consequent shift of DBE metabolism to the oxidative route and accumulation of reactive oxidative intermediates no longer effectively conjugated with GSH.

  13. Association of glutathione S-transferase M1 and T1 gene polymorphisms and oxidative stress markers in preterm labor.

    Science.gov (United States)

    Mustafa, M D; Pathak, Rahul; Ahmed, Tanzeel; Ahmed, Rafat S; Tripathi, A K; Guleria, Kiran; Banerjee, B D

    2010-09-01

    Oxidative stress and related gene polymorphism may be associated with the etiology of preterm labor (PTL). The present study was designed to investigate association of GSTM1 and GSTT1 gene polymorphisms with PTL and their relationship with oxidative stress markers. Sixty cases of PTL and sixty three subjects of full term labor (FTL) were included in the study. Multiplex PCR was performed for GSTM1 and GSTT1 genes polymorphism and oxidative stress markers were analyzed. MDA and 8-OHdG levels were increased, while GSH was decreased in PTL than FTL subjects. Frequency of GSTM1-/GSTT1-(null) was significantly higher in PTL in comparison to FTL (p=0.028, OR=3.4). Subjects with GSTM1-/GSTT1+, GSTM1+/GSTT1-, GSTM1-/GSTT1- have significant differences of oxidative stress markers as compared to GSTM1+/GSTT1+ genotype. GSTM1-/GSTT1- (null) genotype may be one of the associated genetic factor for the increased risk of PTL. Copyright (c) 2010 The Canadian Society of Clinical Chemsits. Published by Elsevier Inc. All rights reserved.

  14. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro

    DEFF Research Database (Denmark)

    Hansen, Tina Vicky Alstrup; Fryganas, Christos; Acevedo, Nathalie

    2016-01-01

    the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV...

  15. The impact of smoking on clinical features of Behçet's disease patients with glutathione S-transferase polymorphisms.

    Science.gov (United States)

    Özer, H T E; Günesaçar, R; Dinkçi, S; Özbalkan, Z; Yildiz, F; Erken, E

    2012-01-01

    Various cancer studies have suggested that polymorphism of GSTM1 may influence the ability to detoxify chemicals in cigarette smoke. In the present study the effect of smoking on clinical features of Behçet's disease were investigated in patients having GST-M1 and/or -T1 null polymorphisms. Ninety-seven patients meeting International Study Group Criteria for Behçet's disease (63 male, 34 female) and 172 healthy controls (94 male, 78 female) were included into the study. GST-M1 and -T1 polymorphisms were investigated using polymerase chain reaction-restriction fragment length polymorphism technique. Frequency of GSTM1- and/or GSTT1-null polymorphisms were comparable between the Behçet and the control groups. Smoking patients with GSTM1 null-polymorphism have decreased risk of developing papulopustuler lesions (OR=0.227 [0.063-0.818], χ2=5.463, p=0.019). Non-smoking patients with GSTM1 null-polymorphism has increased risk for having chronic arthritis (OR=5.988 [0.845-43.478]) but smoking patients with GSTM1 null-polymorphism have decreased risk (OR=0.741 [0.593-0.926]). GSTT1 null-polymorphism is associated with the presence of venous insufficiency (χ2=6.273, p=0.012, OR=2.740 [1.224-6.135]); smoking further increases the risk (χ2=7.840, OR=3.333 [1.412-7.874], p=0.005). GSTM1 null-polymorphism seemed to effect development of large vessel vasculitis (OR=1.158 [0.981-1.367], χ2=4.760, p=0.029). Male smoker Behçet patients even have more risk (OR=1.250 [0.971-1.610]). Several manifestations of Behçet's disease may be influenced by smoking, and this effect can be augmented in patients carrying GST gene polymorphism, which code enzymes crucial for the detoxification of chemicals.

  16. Cytochrome P450-mediated bioactivation of mefenamic acid to quinoneimine intermediates and inactivation by human glutathione S-transferases

    NARCIS (Netherlands)

    Venkataraman, Harini; Den Braver, Michiel W.; Vermeulen, Nico P E; Commandeur, Jan N M

    2014-01-01

    Mefenamic acid (MFA) has been associated with rare but severe cases of hepatotoxicity, nephrotoxicity, gastrointestinal toxicity, and hypersensitivity reactions that are believed to result from the formation of reactive metabolites. Although formation of protein-reactive acylating metabolites by

  17. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman

    2004-01-01

    Measurement of urinary excretion of the benzene metabolites S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) has been proposed for assessing benzene exposure, in workplaces with relatively high benzene concentrations. Excretion of S-PMA and t,t-MA in underground workers...... the last shift of the week. Personal benzene exposure was 114 +/- 35 mug/m(3) in surface workers (n = 15) and 190 +/- 50 mug/m(3) in underground workers (n = 15) in measurements made prior to the study. We found t,t-MA excretion to be significantly higher in underground workers after the end of shifts 1...... of benzene metabolites as biomarkers for assessment of exposure at modest levels and warrant for further investigations of health risks of occupational benzene exposure in shale oil mines....

  18. The biochemical adaptations of spotted wing drosophila (Diptera: Drosophilidae) to fresh fruits reduced fructose concentrations and glutathione-S transferase activities

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive and economically damaging pest in Europe and North America, because the females have a serrated ovipositor enabling them to infest ripening almost all small fruits before harvest. Also flies are strongly attracted to fresh fruits rath...

  19. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock.

    OpenAIRE

    Chen, C F; Chen, Y; Dai, K; Chen, P L; Riley, D J; Lee, W H

    1996-01-01

    A gene encoding a new heat shock protein that may function as a molecular chaperone for the retinoblastoma protein (Rb) was characterized. The cDNA fragment was isolated by using the yeast two-hybrid system and Rb as bait. The open reading frame of the longest cDNA codes for a protein with substantial sequence homology to members of the hsp90 family. Antibodies prepared against fusions between glutathione S-transferase and portions of this new heat shock protein specifically recognized a 75-k...

  20. Nuclear glutathione.

    Science.gov (United States)

    García-Giménez, José Luis; Markovic, Jelena; Dasí, Francisco; Queval, Guillaume; Schnaubelt, Daniel; Foyer, Christine H; Pallardó, Federico V

    2013-05-01

    Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as "redox sensor" at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Evidence for formation of an S-[2-(N7-guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2-dibromoethane to DNA.

    OpenAIRE

    Ozawa, N; Guengerich, F P

    1983-01-01

    The carcinogen 1,2-dibromoethane and reduced glutathione (GSH) were irreversibly bound to calf thymus DNA in equimolar amounts when in vitro incubations were carried out in the presence of GSH S-transferase. In studies carried out with isolated hepatocytes, equimolar amounts of 1,2-dibromoethane and endogenous GSH were also bound to intracellular DNA and RNA and extracellular DNA. These findings support the hypothesis that the major interaction of 1,2-dibromoethane with DNA involves covalent ...

  2. Glutathione S-transferase PI (GST-PI) mRNA expression and DNA methylation is involved in the pathogenesis and prognosis of NSCLC.

    Science.gov (United States)

    Grimminger, Peter P; Maus, Martin K H; Schneider, Paul M; Metzger, Ralf; Hölscher, Arnulf H; Sugita, Hirofumi; Danenberg, Peter V; Alakus, Hakan; Brabender, Jan

    2012-10-01

    The aim of this study was to investigate the relevance of mRNA expression and DNA methylation of GST-PI in tumor and non-tumor lung tissue from NSCLC patients in terms of prognostic and pathogenetic value of this biomarker. Quantitative real-time PCR was used to measure mRNA expression and DNA methylation of GST-PI in paired tumor (T) and non-tumor (N) lung tissue of 91 NSCLC patients. Of all 91 patients 49% were stage I, 21% stage II and 30% stage IIIA. Forty-seven percent of the patients had squamous cell carcinoma, 36% adenocarcinoma and 17% large cell carcinoma. All patients were R0 resected. GST-PI mRNA expression could be measured in 100% in both (T and N) tissues; GST-PI DNA methylation was detected in 14% (N) and 14% (T). The median GST-PI mRNA expression in N was 7.83 (range: 0.01-19.43) and in T 13.15 (range: 0.01-116.8; p≤0.001). The median GST-PI methylation was not significantly different between T and N. No associations were seen between the mRNA expression or DNA methylation levels and clinical or histopathologic parameters such as gender, age, TNM stage, tumor histology and grading. The median survival of the investigated patients was 59.7 years (the median follow-up was 85.9 months). High GST-PI DNA methylation was significantly associated with a worse prognosis (p=0.041, log rank test). No correlation was found between the GST-PI DNA methylation levels and the correlating mRNA expression levels. GST-PI mRNA expression seems to be involved in the pathogenesis of NSCLC. High levels of GST-PI DNA methylation in tumor tissue of NSCLC patients have a potential as a biomarker identifying subpopulations with a more aggressive tumor biology. Quantitation of GST-PI DNA methylation may be a useful method to identify patients with a poor prognosis after curative resection and who will benefit from intensive adjuvant therapy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India.

    Science.gov (United States)

    Nandi, Abhijit; Jyoti; Singh, Harkirat; Singh, Nirbhay Kumar

    2015-05-01

    Larval packet test was used for assessment of resistance status against cypermethrin and deltamethrin in Hyalomma anatolicum and Rhipicephalus microplus from various districts of Punjab (India). Among the various field isolates of H. anatolicum susceptible status was recorded against cypermethrin in all isolates, whereas against deltamethrin resistance status (level I-III) was recorded. In R. microplus lower resistance levels (I-II) were recorded against cypermethrin in comparison to deltamethrin (level I-IV). Quantitative analysis of general esterase activity revealed a range of 4.21 ± 0.46 to 6.05 ± 0.55 and 2.23 ± 0.23 to 2.66 ± 0.24 µmol/min/mg protein for α- and β-esterase activity, respectively, in different field isolates of H. anatolicum and the increase in comparison to susceptible was not significant (P > 0.05). In contrast to H. anatolicum, the α- and β-esterase activity in all field isolates (except Jalandhar) of R. microplus was higher (range of 3.89 ± 0.26 to 10.85 ± 0.47 and 1.75 ± 0.08 to 5.87 ± 0.29 µmol/min/mg protein, respectively) (P GST) activity in field isolates of H. anatolicum and R. microplus was in the range of 0.01 ± 0.001 to 0.03 ± 0.001 and 0.02 ± 0.0003 to 0.03 ± 0.001 mM/mg/min. The enzyme ratios (α-and β-esterase and GST) and RR95 against deltamethrin of H. anatolicum isolates were correlated (P < 0.05), whereas in R. microplus only α-and β-esterase and RR50 against deltamethrin were correlated (P < 0.05).

  4. Chromosomal aberrations in humans induced by urban air pollution: influence of DNA repair and polymorphisms of glutathione S-transferase M1 and N-acetyltransferase 2

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, H; Gamborg, M O

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  5. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jing-Jing [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Dai, Yuan-Chang [Department of Pathology, Chiayi Christian Hospital, Chiayi, Taiwan (China); Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Chan, Hong-Lin [Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, Yi-Wen, E-mail: ywlss@mail.ncyu.edu.tw [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China)

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1 downregulation in the urothelia may be a biomarker of bladder carcinogenesis.

  6. Sublethal toxic effects and induction of glutathione S-transferase by short chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Bláha, Luděk; Vršková, D.; Šimková, K.; Maršálek, Blahoslav

    2006-01-01

    Roč. 75, č. 1 (2006), s. 115-122 ISSN 0001-7213 R&D Projects: GA ČR(CZ) GA525/03/0367 Institutional research plan: CEZ:AV0Z60050516 Keywords : developmental toxicity * FETAX * SCCPs Subject RIV: EF - Botanics Impact factor: 0.491, year: 2006

  7. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: A HuGE review

    DEFF Research Database (Denmark)

    Engel, Lawrence S.; Taioli, Emanuela; Pfeiffer, Ruth

    2002-01-01

    ,444 controls) and adjusting for age, sex, and race produced similar results. There was no evidence of multiplicative interaction between the GSTM1 null genotype and ever smoking in relation to bladder cancer, although there was a suggestion of additive interaction (additive interaction = 0.45, 95% CI: -0.03, 0...... results in a lack of GSTM1 enzyme activity. Most studies examining the relation between bladder cancer and GSTM1 have reported an increased risk associated with a lack of GSTM1 activity. The authors performed meta- and pooled analyses of published and unpublished, case-control, genotype-based studies...

  8. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression

    NARCIS (Netherlands)

    Hoen, P.A.; Rosema, B.S.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Manoharan, M.; van Berkel, T.J.; Biessen, E.A.; Bijsterbosch, M.K.

    2002-01-01

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  9. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression.

    NARCIS (Netherlands)

    Hoen, P.A.; Rosema, B.S.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Manoharan, M.; van Berkel, T.J.; Biessen, E.A.; Bijsterbosch, M.K.

    2002-01-01

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  10. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression

    NARCIS (Netherlands)

    ’t Hoen, Peter a.C; Rosema, Bram-Sieben; Commandeur, Jan N M; Vermeulen, Nico P E; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Eric A L; Bijsterbosch, Martin K

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  11. A glutathione S-transferase with activity towards cis-1,2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45

    NARCIS (Netherlands)

    van Hylckama Vlieg, J.E T; Kingma, J; van den Wijngaard, A.J.; Janssen, D.B.

    Rhodococcus sp. strain AD45 was isolated from an enrichment culture on isoprene (2-methyl-1,3-butadiene). Isoprene-grown cells of strain AD45 oxidized isoprene to 3,4-epoxy-3-methyl-1-butene, cis-1,2 dichloroethene to cis-1,2-dichloroepoxyethane, and trans-1,2-dichloroethene to

  12. Role of glutathione S transferase polymorphism in COPD with special reference to peoples living in the vicinity of the open cast coal mine of Assam.

    Directory of Open Access Journals (Sweden)

    Tapan Dey

    Full Text Available BACKGROUND: COPD may develop due to variation in the functioning of antioxidants along with smoking and environmental factors in genetically susceptible individuals. Since there are different views about the antioxidants responsible for detoxifying xenobiotic compound in the human body whose functional variation may lead to obstructive disease, this associative study has been taken up between GST gene polymorphism and COPD in populations exposed to coal dusts. METHODS: Genotypes of the 70 COPD patients and 85 non COPD patients were determined by PCR based methods followed by multiplex PCR of GSTT1 and GSTM1 genes taking albumin gene as a control. Suspended particulate analyses were determined through the Respirable Dust sampler along with the FTIR analysis of the dust samples from the glass microfiber filters. RESULTS: Dust sampling analysis reveals higher level of respirable suspended particulate matter, non respirable particulate matter, SO2 and NO2 present in air of the study site. FTIR analysis also suggests a higher concentration of organic silicone and aliphatic C-F compounds present in air of the study site and when spirometry was done, low lung function was observed among most of the subjects. GSTM1 null type was significantly associated with low lung function in smoker groups and the presence of at least one active allele (either GSTM1/GSTT1 seemed to have a protective role in the development of COPD. CONCLUSIONS: GSTM1 (null genotype appeared to be a risk factor for lower lung function in smokers living in the vicinity of coal mines. Apart from polluted environment and genetic susceptibility, mixed coal dust exposure rich in organic silicone and aliphatic C-F compounds also appears to be a factor for the low lung function.

  13. Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya

    NARCIS (Netherlands)

    Vermeulen, M.; Boerboom, A.M.M.J.F.; Blankvoort, B.M.G.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Vaes, W.H.J.

    2009-01-01

    Isothiocyanates are electrophiles that are able to induce phase II biotransformation enzyme gene expression via an electrophile-responsive element (EpRE) in the gene regulatory region. To study the potency of different isothiocyanates to induce the expression of EpRE-regulated genes, a Hepa-1c1c7

  14. Expression profile of eight glutathione S-transferase genes in Crassostrea ariakensis after exposure to DSP toxins producing dinoflagellate Prorocentrum lima.

    Science.gov (United States)

    Zou, Ying; Wei, Xiao-Meng; Weng, Hui-Wen; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong

    2015-10-01

    In this study, changes in eight GSTs mRNA level including GST-α, GST-σ, GST-ω, GST-π, GST-μ, GST-ρ, GST-θ and microsomal GST (mGST) in the oyster Crassostrea ariakensis after exposure to Prorocentrum lima have been evaluated by quantitative real-time PCR. Additionally, the contents of five GST isoforms were detected by ELISA. After exposure to P. lima at density of 2 × 10(5) cells/L, mGST mRNA significantly increased in gill, while GST-σ was induced in digestive gland. After exposure to P. lima at density of 2 × 10(6) cells/L, GST-ω and mGST expressions increased in gill, whereas GST-α and GST-σ were induced in digestive gland. The GST content and activity in oysters exposed to P. lima also showed a different pattern when the different isoforms and organs were compared. After exposure to P. lima (2 × 10(6) cell/L), GST-π increased in gill but decreased in digestive gland. The total GST enzyme activity increased in gill, while remained unchanged in digestive gland. These various regulation of GST gene expressions indicated that the GSTs isoenzymes might play divergent physiological roles in the detoxification of DSP toxins in C. ariakensis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effect of cigarette smoke and arsenic exposure on urothelial carcinoma risk is modified by glutathione S-transferase M1 gene null genotype

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2013-01-15

    Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain risk factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.

  16. Evaluation of antioxidant and antimicrobial activity of seaweed ( Sargassum sp.) extract: A study on inhibition of glutathione-S-transferase Activity

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, J.K.; Rath, S.K.; Jena, K.B.; Rathod, V.K.; Thatoi, H.

    , and minerals (5,6). In recent years considerable work has been done on natural products for the presence of nontoxic antioxidants that could be used in chemotherapy. Marine algae are being used as food supplement (7), source of vitamins (8), and as food... additives (9). Gustafson et al. (10) reported anti-HIV activity of Lyngbya langerheimii and Phormidium tenure. Furthermore, National Facility for Marine Cyanobacteria has reported its use for treating a number of noxious effluents containing organophosphorus...

  17. The effect of cigarette smoke and arsenic exposure on urothelial carcinoma risk is modified by glutathione S-transferase M1 gene null genotype

    International Nuclear Information System (INIS)

    Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-01-01

    Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain risk factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.

  18. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Prakash M. Gopalakrishnan [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2011-02-15

    In this study, we report the identification and characterization of 13 cytosolic GST genes in Chironomus riparius from Expressed Sequence Tags (ESTs) database generated using pyrosequencing. Comparative and phylogenetic analyses were undertaken with Drosophila melanogaster and Anopheles gambiae GSTs and 3 Delta, 4 Sigma, 1 each in Omega, Epsilon, Theta, Zeta and 2 unclassified classes of GSTs were identified and characterized. The relative mRNA expression levels of all of the C. riparius GSTs (CrGSTs) genes under different developmental stages were varied with low expression in the larval stage. The antioxidant role of CrGSTs was studied by exposing fourth instar larvae to a known oxidative stress inducer Paraquat and the relative mRNA expression to different concentrations of cadmium (Cd) and silver nanoparticles (AgNPs) for various time intervals were also studied. All the CrGSTs showed up- or down regulation to varying levels based upon the concentration, and duration of exposure. The highest mRNA expression was noticed in Delta3, Sigma4 and Epsilon1 GST class in all treatments. These results show the role of CrGST genes in defense against oxidative stress and its potential as a biomarker to Cd and AgNPs exposure.

  19. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  20. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins

    International Nuclear Information System (INIS)

    Ballatori, Nazzareno; Hammond, Christine L.; Cunningham, Jennifer B.; Krance, Suzanne M.; Marchan, Rosemarie

    2005-01-01

    The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions

  1. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs and C-12 alkane (dodecane in Xenopus laevis Frog Embryos

    Directory of Open Access Journals (Sweden)

    B. Burýšková

    2006-01-01

    Full Text Available Short chain chlorinated paraffins (SCCPs are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12 and non-chlorinated n-alkane (dodecane, C-12 in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX. Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both chemicals caused up to 11% mortality. On the other hand, we observed developmental malformations and reduced embryo growth at 5 mg/l and higher concentrations. However, the effects were not related to chlorination pattern as both SCCPs and dodecane induced qualitatively similar effects. SCCPs also significantly induced phase II detoxification enzyme glutathione S-transferase (GST in Xenopus laevis embryos even at 0.5 mg/L, and this biomarker might be used as another early warning of chronic toxic effects. Our results newly indicate significant developmental toxicity of both SCCPs and n-dodecane to aquatic organisms along with inductions of specific biochemical toxicity mechanisms.

  2. Crystallization and preliminary X-ray crystallographic study of the extracellular domain of the 4-1BB ligand, a member of the TNF family

    International Nuclear Information System (INIS)

    Byun, Jung-Sue; Kim, Dong-Uk; Ahn, Byungchan; Kwon, Byoung Se; Cho, Hyun-Soo

    2005-01-01

    The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. The 4-1BB ligand, a member of the tumour necrosis factor (TNF) family, is an important co-stimulatory molecule that plays a key role in the clonal expansion and survival of CD8+ T cells. Signalling through binding of the 4-1BB ligand and 4-1BB has been reported to enhance CD8+ T-cell expansion and protect activated CD8+ T cells from death. The 4-1BB ligand is an integral protein expressed on activated antigen-presenting cells. The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from these crystals to 2.8 Å resolution and the crystals belong to space group C2, with unit-cell parameters a = 114.6, b = 73.8, c = 118.50 Å, β = 115.5°

  3. EFEK POLIMORFISME GENA GSTP-1 TERHADAP AKTIVITAS GLUTATION S-TRANSFERASE (GST PADA INDIVIDU TERPAPAR LOGAM BERAT TIMBAL (Effect of GSTP-1 Gene Polymorphismson Glutation S- Transferase (GST Activity in Heavy Metals Lead-Exposed Individual

    Directory of Open Access Journals (Sweden)

    Hernayanti Hernayanti

    2015-11-01

    Full Text Available ABSTRAK Gena GSTP-1 merupakan penghasil enzim glutation S- transferase (GST, yang berfungsi dalam proses detoksifikasi senyawa toksik di hati. Faktor keberadaan polimorfisme gena GSTP-1 akan menyebabkan penurunan ekspresi GST, sehingga proses detoksifikasi terhadap senyawa toksik akan terhambat. Kerentanan terhadap paparan senyawa toksik pada manusia akan meningkat apabila dijumpai polimorfisme gena. Salah satu senyawa toksik yang dapat menghambat aktivitas GST adalah timbal (Pb, terutama dalam bentuk tetra ethyl lead (TEL. Tujuan penelitian adalah untuk mengetahui pengaruh polimorfisme gena GSTP-1 terhadap aktivitas GST pada individu terpapar Pb, yang diwakili pekerja bengkel mobil. Faktor keberadaan polimorfisme gena individu ditentukan dengan metode PCR-RFLP dan enzim restriksi BsmA1. Parameter yang diukur adalah kadar Pb dan aktivitas GST. Analisis molekuler gena GSTP-1 dilakukan secara deskriptif. Data kadar Pb dan aktivitas GST dianalisis dengan uji t independent. Hasil analisis gena GSTP-1 dari 40 orang subyek kasus setelah dilakukan digesti dengan enzim BsmA1, ditemukan sebanyak 10 orang individu dengan polimorfisme Ile105Val gena GSTP 1 atau sekitar 25% dengan genotip Ile-Val, sedangkan 30 orang atau 75% ditemukan tanpa polimorfisme dengan genotip Ile-Ile. Pita DNA individu dengan polimorfisme terpotong menjadi 3 fragmen sepanjang 176, 91 dan 85 pp (mutan heterozygot, sedangkan tanpa polimorfisme terletak pada 176 bp. Subyek kasus dengan polimorfisme gena GSTP-1 memiliki kadar Pb lebih tinggi dan aktivitas GST lebih rendah dibandingkan individu non polimorfisme. Telah terbukti bahwa polimorfisme gena GSTP-1 menyebabkan penurunan ekspresi enzim GST. Pada individu terpapar Pb dengan polimorfisme gena GSTP-1 memiliki aktivitas GST lebih rendah dibandingkan individu tanpa polimorfisme. ABSTRACT GSTP-1 gene regulates the expression of gluthation S-transferase enzyme, which role in detoxification of toxicant on liver. If the polymorphisms

  4. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Serum glutathione transferase does not respond to indole-3-carbinol: A pilot study

    Directory of Open Access Journals (Sweden)

    Daniel R McGrath

    2010-05-01

    Full Text Available Daniel R McGrath1, Hamid Frydoonfar2, Joshua J Hunt3, Chris J Dunkley3, Allan D Spigelman41Ipswich Hospital, Ipswich, UK; 2Hunter Pathology Service, New South Wales; 3Royal Newcastle Centre, Newcastle; 4St Vincent’s Clinical School, Sydney, AustraliaBackground: Despite the well recognized protective effect of cruciferous vegetables against various cancers, including human colorectal cancers, little is known about how this effect is conferred. It is thought that some phytochemicals found only in these vegetables confer the protection. These compounds include the glucosinolates, of which indole-3-carbinol is one. They are known to induce carcinogen-metabolizing (phase II enzymes, including the glutathione S-transferase (GST family. Other effects in humans are not well documented. We wished to assess the effect of indole-3-carbinol on GST enzymes.Methods: We carried out a placebo-controlled human volunteer study. All patients were given 400 mg daily of indole-3-carbinol for three months, followed by placebo. Serum samples were tested for the GSTM1 genotype by polymerase chain reaction. Serum GST levels were assessed using enzyme-linked immunosorbent assay and Western Blot methodologies.Results: Forty-nine volunteers completed the study. GSTM1 genotypes were obtained for all but two volunteers. A slightly greater proportion of volunteers were GSTM1-positive, in keeping with the general population. GST was detected in all patients. Total GST level was not affected by indole-3-carbinol dosing compared with placebo. Although not statistically significant, the GSTM1 genotype affected the serum GST level response to indole-3-carbinol.Conclusion: Indole-3-carbinol does not alter total serum GST levels during prolonged dosing.Keywords: pilot study, colorectal cancer, glutathione transferase, human, indole-3-carbinol

  6. Preliminary study on the monitoring of glutathione S-tranferase activity toward styrene oxide by electromigration methods

    Czech Academy of Sciences Publication Activity Database

    Šišková, Z.; Glatz, O.; Kahle, Vladislav

    2005-01-01

    Roč. 28, č. 12 (2005), s. 1357-1362 ISSN 1615-9306 R&D Projects: GA AV ČR IBS4031201; GA ČR GA203/03/1125 Institutional research plan: CEZ:AV0Z40310501 Keywords : glutathione S-transferase * styrene oxide * micellar electrokinetic capillary chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.829, year: 2005

  7. Evidence for the formation of Michael adducts from reactions of (E,E)-muconaldehyde with glutathione and other thiols.

    Science.gov (United States)

    Henderson, Alistair P; Bleasdale, Christine; Delaney, Kirsty; Lindstrom, Andrew B; Rappaport, Stephen M; Waidyanatha, Suramya; Watson, William P; Golding, Bernard T

    2005-10-01

    Glutathione induces the rapid isomerization of (Z,Z)-muconaldehyde to (E,E)-muconaldehyde via (E,Z)-muconaldehyde, probably via reversible Michael addition of the thiol to one of the enal moieties of the muconaldehyde. Reactions of (E,E)-muconaldehyde with glutathione (in the presence and absence of equine glutathione S-transferase), phenylmethanethiol, N-acetyl-l-cysteine, and N-acetyl-l-cysteine methyl ester were investigated using mass spectrometric techniques. In each case, evidence was obtained for the formation of Michael adducts, e.g., reaction between (E,E)-muconaldehyde and glutathione gave 4-glutathionyl-hex-2-enedial and 3,4-bis-glutathionyl-hexanedial. These experiments suggest that (Z,Z)-muconaldehyde, a putative metabolite of benzene, could lead to the long established urinary metabolite of benzene, (E,E)-muconic acid, via glutathione-mediated isomerization to (E,E)-muconaldehyde.

  8. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  9. Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases.

    Science.gov (United States)

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  10. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  11. The effect of excimer laser keratectomy on corneal glutathione-related enzymes in rabbits.

    Science.gov (United States)

    Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Ozgür; Yis, Nilgün Safak; Hasanreisoglu, Berati

    2003-04-01

    Glutathione related enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Excimer laser is a very useful tool for the treatment of refractive errors and removing superficial corneal opacities. Previous studies have shown that excimer laser may initiate free radical formation in the cornea. In the present study, we evaluated the effect of excimer laser keratectomy on corneal glutathione-related enzyme activities in rabbits. Animals were divided into five groups, and all groups were compared with the controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy (PRK) (group 3), traditional PRK (group 4) and deep traditional PRK (group 5). Corneal glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) activities were measured after 24h. Corneal GPx and GR activities significantly decreased only in group 5 (p < 0.05) but GST activities significantly decreased in all groups when compared with the control group (p < 0.05). In conclusion, excimer laser inhibits the glutathione dependent defense system in the cornea, this effect becomes more prominent after high doses of excimer laser energy and antioxidants may be useful to reduce free radical mediated complications.

  12. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress.

    Science.gov (United States)

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Karim, Roselina; Ahmed, Waqas; Kaka, Ubedullah; Ahmad, Shakeel; Dewanjee, Saikat; Jaafar, Hawa Z E; Zia-Ul-Haq, M

    2015-09-18

    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase. Animals; 30 rats (Sprague Dawley) were divided in three groups and oxidative stress was induced using mild dose of potassium bromate. The groups were on their respective diets (iso-caloric diets for a period of 56 days) i.e. control and two experimental diets containing N. sativa fixed (4%) and essential (0.3%) oils. The activities of enzymes involved in glutathione redox system and myeloperoxidase (MPO) were analyzed. The experimental diets modulated the activities of enzymes i.e. glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (PNigella sativa fixed and essential oil are effective in improving the antioxidant indices against potassium bromate induced oxidative stress.

  13. Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.

    Science.gov (United States)

    Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena

    2017-05-01

    Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.

  14. Reactions of benzene oxide with thiols including glutathione.

    Science.gov (United States)

    Henderson, Alistair P; Barnes, Martine L; Bleasdale, Christine; Cameron, Richard; Clegg, William; Heath, Sarah L; Lindstrom, Andrew B; Rappaport, Stephen M; Waidyanatha, Suramya; Watson, William P; Golding, Bernard T

    2005-02-01

    S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is

  15. The role of glutathione transferases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ćorić Vesna

    2016-01-01

    Full Text Available Mounting evidence suggest that members of the subfamily of cytosolic glutathione S-transferases (GSTs possess roles far beyond the classical glutathione-dependent enzymatic conjugation of electrophilic metabolites and xenobiotics. Namely, monomeric forms of certain GSTs are capable of forming protein: protein interactions with protein kinases and regulate cell apoptotic pathways. Due to this dual functionality of cytosolic GSTs, they might be implicated in both the development and the progression of renal cell carcinoma (RCC. Prominent genetic heterogeneity, resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as a valuable indicator for predicting the risk of cancer development. Namely, GSTs are involved in the biotransformation of several compounds recognized as risk factors for RCC. The most potent carcinogen of polycyclic aromatic hydrocarbon diol epoxides, present in cigarette smoke, is of benzo(apyrene (BPDE, detoxified by GSTs. So far, the relationship between GST genotype and BPDE-DNA adduct formation, in determining the risk for RCC, has not been evaluated in patients with RCC. Although the association between certain individual and combined GST genotypes and RCC risk has been debated in a the literature, the data on the prognostic value of GST polymorphism in patients with RCC are scarce, probably due to the fact that the molecular mechanism supporting the role of GSTs in RCC progression has not been clarified as yet.

  16. Occupational Allergy to Peach (Prunus persica) Tree Pollen and Potential Cross-Reactivity between Rosaceae Family Pollens.

    Science.gov (United States)

    Jiang, Nannan; Yin, Jia; Mak, Philip; Wen, Liping

    2015-10-01

    Orchard workers in north China are highly exposed to orchard pollens, especially peach and other Rosaceae family pollens during pollination season. The aim of this study was to investigate whether occupational allergy to peach tree pollen as a member of Rosaceae family is IgE-mediated and to evaluate the cross-reactivity among Rosaceae family pollens. Allergen skin test and conjunctival challenge test were performed; enzyme linked immune-sorbent assay (ELISA), inhibiting ELISA, western immunoblotting and inhibiting western immunoblotting were done with Rosaceae family orchard pollens, including peach, apricot, cherry, apple and pear tree pollens. Mass spectrometry was also performed to probe the main allergen component and cross-reactive protein. Sensitizations to peach pollen were found in both skin test and conjunctival challenge in the patients. Serum specific IgE to three pollens (peach, apricot and cherry) were detected through ELISA. When peach pollen used as solid phase, ELISA inhibition revealed other four kinds of pollens capable of inducing partial to strong inhibitions (45% to 87%), with the strongest inhibition belonging to apricot pollen (87%). Western blotting showed predominant IgE binding to a 20 KD protein among these pollens, which appeared to be a cross-reactive allergen component through western blotting inhibition. It was recognized as a protein homologous to glutathione s-transferase 16 from Arabidopsis thaliana. Peach and other Rosaceae family tree pollen may serve as a potential cause of IgE mediated occupational respiratory disease in orchard workers in north China.

  17. with glutathione reduced (GSH)

    Indian Academy of Sciences (India)

    Unknown

    try involving 4f–4f transitions on Nd(III) and glutathione reduced (GSH) in the absence and presence of. Zn(II) have been carried out in aquated ... transition spectra of Pr(III) with lysozyme by using energy interaction parameters to ... DMF and dioxane of A/R grade from Qualigens. The absorption spectra were recorded on a ...

  18. Membrane accessibility of glutathione

    DEFF Research Database (Denmark)

    Garcia, Alvaro; Eljack, Nasma D; Sani, Marc-Antoine

    2015-01-01

    Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate...... structural mechanism of how the Na(+),K(+)-ATPase could be regulated by glutathione....

  19. Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.

    Science.gov (United States)

    Burns, Erin E; Keith, Barbara K; Refai, Mohammed Y; Bothner, Brian; Dyer, William E

    2017-08-01

    Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of

  20. Improved diagnostic performance of a commercial anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione S-transferase fusion protein as antigen

    Science.gov (United States)

    This study tested the hypothesis that removal of maltose binding protein from recombinant antigen used for plate coating would improve the specificity of Anaplasma antibody competitive ELISA. Three hundred and eight sera with significant MBP antibody binding (=30%I) in Anaplasma negative herds was 1...

  1. Copy number variation in glutathione-S-transferase T1 and M1 predicts incidence and 5-year survival from prostate and bladder cancer, and incidence of corpus uteri cancer in the general population

    DEFF Research Database (Denmark)

    Nørskov, M S; Frikke-Schmidt, R; Bojesen, S E

    2011-01-01

    were, respectively, 1.5 (0.7-3.2) and 2.0 (0.9-4.3) for GSTM1*1/0 and GSTM1*0/0 versus GSTM1*1/1. The HR for death after bladder cancer diagnosis was 1.9 (1.0-3.7) for GSTM1*0/0 versus GSTM1*1/0. In conclusion, exact CNV in GSTT1 and GSTM1 predict incidence and 5-year survival from prostate and bladder...... and for death after prostate cancer diagnosis were, respectively, 1.2 (0.8-1.8) and 1.2 (0.6-2.1) for GSTT1*1/0, and 1.8 (1.1-3.0) and 2.2 (1.1-4.4) for GSTT1*0/0 versus GSTT1*1/1. In women, the cumulative incidence of corpus uteri cancer increased with decreasing GSTT1 copy numbers (trend=0.04). The HRs...... for corpus uteri cancer were, respectively, 1.8 (1.0-3.2) and 2.2 (1.0-4.6) for GSTT1*1/0 and GSTT1*0/0 versus GSTT1*1/1. Finally, the cumulative incidence of bladder cancer increased, and the cumulative 5-year survival decreased, with decreasing GSTM1 copy numbers (P=0.03-0.05). The HRs for bladder cancer...

  2. Glutathione S-transferase (GSTM1, GSTT1) gene polymorphisms, maternal gestational weight gain, bioimpedance factors and their relationship with birth weight: a cross-sectional study in Romanian mothers and their newborns.

    Science.gov (United States)

    Mărginean, Claudiu; Bănescu, Claudia Violeta; Mărginean, Cristina Oana; Tripon, Florin; Meliţ, Lorena Elena; Iancu, Mihaela

    2017-01-01

    The aim of this study was to assess the relationship between mother-child GSTM1, GSTT1 gene polymorphisms, maternal weight gain, maternal bioimpedance parameters and newborn's weight, in order to identify the factors that influence birth weight. We performed a cross-sectional study on 405 mothers and their newborns, evaluated in an Obstetrics and Gynecology Tertiary Hospital from Romania. Newborns whose mothers had the null genotype of GSTT1 gene polymorphism were more likely to gain a birth weight of >3 kg, compared to newborns whose mothers had the T1 genotype (odds ratio - OR: 2.14, 95% confidence interval - CI: [1.03; 4.44]). Also, the null genotype of GSTM1 gene polymorphism in both mothers and newborns was associated with a higher birth weight. Gestational weight gain was positively associated with newborn's birth weight (pbirth weight of more than 3 kg (p=0.006 and p=0.037). The null genotype of GSTT1 gene polymorphism in mothers and the null genotype of GSTM1 in mothers and newborns had a positive effect on birth weight. Also, increased maternal fat mass and basal metabolism rate were associated with increased birth weight. We conclude that maternal GSTM1÷GSTT1 gene polymorphisms present an impact on birth weight, being involved in the neonatal nutritional status. The clinical relevance of our study is sustained by the importance of identifying the factors that influence birth weight, which can be triggers for childhood obesity.

  3. Arsenic-related skin lesions and glutathione S-transferase P1 A1578G (lle105Val) polymorphism in two ethnic clans exposed to indoor combustion of high arsenic coal in one village

    Energy Technology Data Exchange (ETDEWEB)

    Lin, G.F.; Du, H.; Chen, J.G.; Lu, H.C.; Guo, W.C.; Meng, H.; Zhang, T.B.; Zhang, X.J.; Lu, D.R.; Golka, K.; Shen, J.H. [Chinese Academy of Sciences, Shanghai (China)

    2006-12-15

    A total of 2402 patients with arsenic-related skin lesions, such as hyperkeratosis, hyperpigmentation or hypopigmentation, or even skin cancer in a few villages in Southwest Guizhou Autonomous Prefecture, China represent a unique case of endemic arsenism related with indoor combustion of high arsenic coal. This study aimed to investigate the cluster of arsenism cases and the possible relevant factors including GSTP1 polymorphism in two clans of different ethnic origin living in one village for generations. Arsenism morbidity in Miao clan P was significantly lower than in the neighbouring Han clan G1 (5.9 vs. 32.7%, odds ratio (OR)=0.13, 95% confidence interval (CI): 0.06-0.27, P < 0.0001). No sex differences were confirmed inside both clans. Analyses of the environmental samples indicated that Miao clan P members were exposed to higher amounts of arsenic via inhalation and food ingestion. Hair and urine samples also proved a higher arsenic body burden in ethnic Miao individuals. No corresponding differences by sex were found. Higher frequencies of combined mutant genotype G/G1578 and A/G1578 (OR=4.72, 95% CI: 2.34-9.54, P < 0.0001) and of mutant allele G1578 (OR=3.22, 95% CI: 2.00-5.18, P < 0.0001) were detected in diagnosed arsenism patients than in non-diseased individuals. The Miao individuals showed a lower percentage of combined mutant genotypes (30.6 vs. 52.7%, OR=0.40, 95% CI: 0.19-0.84, P=0.015) as well as of mutant allele G1578 (OR=0.46, 95% CI: 0.24-0.88, P=0.017) than their Han neighbours. Conclusions Genetic predisposition influences dermal arsenism toxicity. The GSTP1 A1578G (IIe105Val) status might be a susceptibility factor for arsenic-related skin lesions.

  4. The crucial protective role of glutathione against tienilic acid hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Nishiya, Takayoshi; Mori, Kazuhiko; Hattori, Chiharu; Kai, Kiyonori; Kataoka, Hiroko; Masubuchi, Noriko; Jindo, Toshimasa; Manabe, Sunao

    2008-01-01

    To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] and phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses

  5. Glutathione transferase activity and oocyte development in copepods exposed to toxic phytoplankton

    DEFF Research Database (Denmark)

    Kozlowsky-Suzuki, Betina; Koski, Marja; Hallberg, Eric

    2009-01-01

    to exposure to toxic diets. No relationship was found between GGE and CST activity. Our results refute the hypothesis that toxic diets, provided at ecologically relevant levels, would induce cellular mechanisms in copepods regarding GST activity. GST activity thus seems to play no role in detoxification......Organisms present a series of cellular mechanisms to avoid the effects of toxic compounds. Such mechanisms include the increase in activity of detoxification enzymes [e.g., 7-ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST)I, which could explain the low retention of ingested...... toxins generally observed in copepods. In addition, decreasing gross growth efficiency (GGE) of copepods with increasing concentration of toxic diets could be caused either by a high expenditure coping with toxins (e.g., increase in the activity of detoxification enzymes) or by a deterioration...

  6. Polymorphic expression of glutathione transferases A1, M1, P1 and T1 in epithelial ovarian cancer: a Serbian case-control study.

    Science.gov (United States)

    Pljesa, Igor; Berisavac, Milica; Simic, Tatjana; Pekmezovic, Tatjana; Coric, Vesna; Suvakov, Sonja; Stamatovic, Ljiljana; Matic, Marija; Gutic, Bojana; Milenkovic, Sanja; Pljesa-Ercegovac, Marija; Savic-Radojevic, Ana

    2017-01-01

    Since several studies have proposed that epithelial ovarian cancer should not be considered as a single disease entity and that it results from an accumulation of genetic changes, we aimed to assess the polymorphic expression of major cytosolic glutathione S-transferases (GSTM1, T1, A1 and P1) with respect to ovarian cancer susceptibility and aggressiveness. This case-control study was conducted on 93 newly diagnosed epithelial ovarian cancer patients and 178 healthy matched controls. The multiplex polymerase chain reaction (PCR) was used to detect homozygous deletions of GSTM1 and GSTT1 genes. Analysis of the single nucleotide polymorphism (SNP) GSTA1 C69T was performed using PCR-restriction fragment length polymorphism (RFLP), while for SNP GSTP1 Ile105Val real-time PCR was used. No significant association to ovarian cancer risk was found for individual GSTM1, GSTA1 and GSTP1 genotypes (p>0.05). However, the carriers of GSTT1-active genotype were at 2-fold higher risk of ovarian cancer development (95%CI: 1.00-4.01, p=0.049), which was even more elevated in the subgroup of patients with positive family history of cancer. Moreover, the frequency of all three GST genotypes that might be associated to ovarian cancer risk (GSTT1-active, GSTA1-active and GSTP1-referent) was significantly higher in patients than in the control group (p=0.042). Even more, patients who were carriers of combination of these three genotypes represented over 64% of the total number of patients within any of the International Federation of Gynecology and Obstetrics (FIGO) stages of ovarian cancer. This study provides supportive evidence that GSTs might affect both susceptibility and progression of ovarian cancer.

  7. Glutathione S-conjugates as prodrugs to target drug-resistant tumors

    Directory of Open Access Journals (Sweden)

    Emma E. Ramsay

    2014-08-01

    Full Text Available Living organisms are continuously exposed to xenobiotics. The major phase of enzymatic detoxification in many species is the conjugation of activated xenobiotics to reduced glutathione (GSH catalyzed by the glutathione-S-transferase (GST. It has been reported that some compounds, once transformed into glutathione S-conjugates, enter the mercapturic acid pathway whose end products are highly reactive and toxic for the cell responsible for their production. The cytotoxicity of these GSH conjugates depends essentially on GST and γ-glutamyl transferases (γGT, the enzymes which initiate the mercapturic acid synthesis pathway. Numerous studies support the view that the expression of GST and γGT in cancer cells represents an important factor in the appearance of a more aggressive and resistant phenotype. High levels of tumor GST and γGT expression were employed to selectively target tumor with GST- or γGT-activated drugs. This strategy, explored over the last two decades, has recently been successful using GST-activated nitrogen mustard (TLK286 and γGT-activated arsenic-based (GSAO and Darinaparsin prodrugs confirming the potential of GSH-conjugates as anticancer drugs.

  8. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis.

    Science.gov (United States)

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level.

  9. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Directory of Open Access Journals (Sweden)

    M D Tofazzal Hossain

    Full Text Available The glutathione transferase (GST superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  10. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Wilczek, Grazyna; Babczynska, Agnieszka; Augustyniak, Maria; Migula, Pawel

    2004-01-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex

  11. Taurine, glutathione and bioenergetics.

    Science.gov (United States)

    Hansen, Svend Høime; Grunnet, Niels

    2013-01-01

    Biochemistry textbook presentations of bioenergetics and mitochondrial function normally focus on the chemiosmotic theory with introduction of the tricarboxylic acid cycle and the electron transport chain, the proton and electrical gradients and subsequent oxidative phosphorylation and ATP-production by ATP synthase. The compound glutathione (GSH) is often mentioned in relation to mitochondrial function, primarily for a role as redox scavenger. Here we argue that its role as redox pair with oxidised glutathione (GSSG) is pivotal with regard to controlling the electrical or redox gradient across the mitochondrial inner-membrane. The very high concentration of taurine in oxidative tissue has recently led to discussions on the role of taurine in the mitochondria, e.g. with taurine acting as a pH buffer in the mitochondrial matrix. A very important consequence of the slightly alkaline pH is the fact that the NADH/NAD(+) redox pair can be brought in redox equilibrium with the GSH redox pair GSH/GSSG.An additional consequence of having GSH as redox buffer is the fact that from the pH dependence of its redox potential, it becomes possible to explain that the mitochondrial membrane potential has been observed to be independent of the matrix pH. Finally a simplified model for mitochondrial oxidation is presented with introduction of GSH as redox buffer to stabilise the electrical gradient, and taurine as pH buffer stabilising the pH gradient, but simultaneously establishing the equilibrium between the NADH/NAD(+) redox pair and the redox buffer pair GSH/GSSG.

  12. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...... and the protonation of glutathione thiolate. An algorithm for the analysis of this type of reaction by ITC was developed and showed that the interaction is enthalpy driven with a large entropy penalty. The applicability of the method was verified by a mass spectrometry-based approach, which gave a standard reduction...

  13. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  14. Glutathione-Indole-3-Acetonitrile Is Required for Camalexin Biosynthesis in Arabidopsis thaliana[W][OA

    Science.gov (United States)

    Su, Tongbing; Xu, Juan; Li, Yuan; Lei, Lei; Zhao, Luo; Yang, Hailian; Feng, Jidong; Liu, Guoqin; Ren, Dongtao

    2011-01-01

    Camalexin, a major phytoalexin in Arabidopsis thaliana, consists of an indole ring and a thiazole ring. The indole ring is produced from Trp, which is converted to indole-3-acetonitrile (IAN) by CYP79B2/CYP79B3 and CYP71A13. Conversion of Cys(IAN) to dihydrocamalexic acid and subsequently to camalexin is catalyzed by CYP71B15. Recent studies proposed that Cys derivative, not Cys itself, is the precursor of the thiazole ring that conjugates with IAN. The nature of the Cys derivative and how it conjugates to IAN and subsequently forms Cys(IAN) remain obscure. We found that protein accumulation of multiple glutathione S-transferases (GSTs), elevation of GST activity, and consumption of glutathione (GSH) coincided with camalexin production. GSTF6 overexpression increased and GSTF6-knockout reduced camalexin production. Arabidopsis GSTF6 expressed in yeast cells catalyzed GSH(IAN) formation. GSH(IAN), (IAN)CysGly, and γGluCys(IAN) were determined to be intermediates within the camalexin biosynthetic pathway. Inhibitor treatments and mutant analyses revealed the involvement of γ-glutamyl transpeptidases (GGTs) and phytochelatin synthase (PCS) in the catabolism of GSH(IAN). The expression of GSTF6, GGT1, GGT2, and PCS1 was coordinately upregulated during camalexin biosynthesis. These results suggest that GSH is the Cys derivative used during camalexin biosynthesis, that the conjugation of GSH with IAN is catalyzed by GSTF6, and that GGTs and PCS are involved in camalexin biosynthesis. PMID:21239642

  15. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Su, Tongbing; Xu, Juan; Li, Yuan; Lei, Lei; Zhao, Luo; Yang, Hailian; Feng, Jidong; Liu, Guoqin; Ren, Dongtao

    2011-01-01

    Camalexin, a major phytoalexin in Arabidopsis thaliana, consists of an indole ring and a thiazole ring. The indole ring is produced from Trp, which is converted to indole-3-acetonitrile (IAN) by CYP79B2/CYP79B3 and CYP71A13. Conversion of Cys(IAN) to dihydrocamalexic acid and subsequently to camalexin is catalyzed by CYP71B15. Recent studies proposed that Cys derivative, not Cys itself, is the precursor of the thiazole ring that conjugates with IAN. The nature of the Cys derivative and how it conjugates to IAN and subsequently forms Cys(IAN) remain obscure. We found that protein accumulation of multiple glutathione S-transferases (GSTs), elevation of GST activity, and consumption of glutathione (GSH) coincided with camalexin production. GSTF6 overexpression increased and GSTF6-knockout reduced camalexin production. Arabidopsis GSTF6 expressed in yeast cells catalyzed GSH(IAN) formation. GSH(IAN), (IAN)CysGly, and γGluCys(IAN) were determined to be intermediates within the camalexin biosynthetic pathway. Inhibitor treatments and mutant analyses revealed the involvement of γ-glutamyl transpeptidases (GGTs) and phytochelatin synthase (PCS) in the catabolism of GSH(IAN). The expression of GSTF6, GGT1, GGT2, and PCS1 was coordinately upregulated during camalexin biosynthesis. These results suggest that GSH is the Cys derivative used during camalexin biosynthesis, that the conjugation of GSH with IAN is catalyzed by GSTF6, and that GGTs and PCS are involved in camalexin biosynthesis.

  16. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  17. Transcriptome Analysis and Identification of Major Detoxification Gene Families and Insecticide Targets in Grapholita Molesta (Busck) (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Guo, Yanqiong; Chai, Yanping; Zhang, Lijun; Zhao, Zhiguo; Gao, Ling-Ling; Ma, Ruiyan

    2017-01-01

    The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is an important pest of most stone and pome fruits and causes serious damage to the fruit industry worldwide. This insect pest has been primarily controlled through the application of insecticides; as a result, G. molesta has developed resistance to many different types of insecticides. To identify detoxification genes, we have, de novo, sequenced the transcriptome of G. molesta (Lepidoptera: Tortricidae) and yielded 58,970 unigenes of which 26,985 unigenes matched to known proteins. In total, 2,040 simple sequence repeats have been identified. The comprehensive transcriptome data set has permitted us to identify members of important gene families related to detoxification in G. molesta, including 77 unigenes of putative cytochrome P450s, 28 of glutathione S-transferases, 46 of Carboxylesterases, and 31 of insecticide targets. Orthologs of some of these unigenes have shown to play a pivotal role in insecticide resistance in other insect species and those unigenes likely have similar functions in G. molesta. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.

    Science.gov (United States)

    Mathieu, Yann; Prosper, Pascalita; Buée, Marc; Dumarçay, Stéphane; Favier, Frédérique; Gelhaye, Eric; Gérardin, Philippe; Harvengt, Luc; Jacquot, Jean-Pierre; Lamant, Tiphaine; Meux, Edgar; Mathiot, Sandrine; Didierjean, Claude; Morel, Mélanie

    2012-11-09

    Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.

  19. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2'-(glutathion-S-yl)-deschloro-diclofenac.

    Science.gov (United States)

    Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2014-01-25

    Reactive metabolites have been suggested to play a role in the idiosyncratic hepatotoxicity observed with diclofenac (DF). By structural identification of the GSH conjugates formed after P450-catalyzed bioactivation of DF, it was shown that three types of reactive intermediates were formed: p-benzoquinone imines, o-imine methide and arene-oxide. Recently, detection of 2'-(glutathion-S-yl)-deschloro-diclofenac (DDF-SG), resulting from chlorine substitution, suggested the existence of a fourth type of P450-dependent reactive intermediate whose inactivation by GSH is completely dependent on presence of glutathione S-transferase. In this study, fourteen recombinant cytochrome P450s and three flavin-containing monooxygenases were tested for their ability to produce oxidative DF metabolites and their corresponding GSH conjugates. Concerning the hydroxymetabolites and their GSH conjugates, results were consistent with previous studies. Unexpectedly, all tested recombinant P450s were able to form DDF-SG to almost similar extent. DDF-SG formation was found to be partially independent of NADPH and even occurred by heat-inactivated P450. However, product formation was fully dependent on both GSH and glutathione-S-transferase P1-1. DDF-SG formation was also observed in reactions with horseradish peroxidase in absence of hydrogen peroxide. Because DDF-SG was not formed by free iron, it appears that DF can be bioactivated by iron in hemeproteins. This was confirmed by DDF-SG formation by other hemeproteins such as hemoglobin. As a mechanism, we propose that DF is subject to heme-dependent one-electron oxidation. The resulting nitrogen radical cation, which might activate the chlorines of DF, then undergoes a GST-catalyzed nucleophilic aromatic substitution reaction in which the chlorine atom of the DF moiety is replaced by GSH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites.

    Science.gov (United States)

    Gan, Jinping; Harper, Timothy W; Hsueh, Mei-Mann; Qu, Qinling; Humphreys, W Griffith

    2005-05-01

    A sensitive and quantitative method was developed for the estimation of reactive metabolite formation in vitro. The method utilizes reduced glutathione (GSH) labeled with a fluorescence tag as a trapping agent and fluorescent detection for quantitation. The derivatization of GSH was accomplished by reaction of oxidized glutathione (GSSG) with dansyl chloride to form dansylated GSSG. Subsequent reduction of the disulfide bond yielded dansylated GSH (dGSH). Test compounds were incubated with human liver microsomes in the presence of dGSH and NADPH, and the resulting mixtures were analyzed by HPLC coupled with a fluorescence detector and a mass spectrometer for the quantitation and mass determination of the resulting dGSH adducts. The comparative chemical reactivity of dGSH vs GSH was investigated by monitoring the reaction of each with 1-chloro-2,4-dinitrobenzene or R-(+)-pulegone after bioactivation. dGSH was found to be equivalent to GSH in chemical reactivity toward both thiol reactive molecules. dGSH did not serve as a cofactor for glutathione S-transferase (GST)-mediated conjugation of 3,4-dichloronitrobenzene in incubations with either human liver S9 fractions or a recombinant GST, GSTM1-1. Reference compounds were tested in this assay, including seven compounds that have been reported to form GSH adducts along with seven drugs that are among the most prescribed in the current U.S. market and have not been reported to form GSH adducts. dGSH adducts were detected and quantitated in incubations with all seven positive reference compounds; however, there were no dGSH adducts observed with any of the widely prescribed drugs. In comparison with existing methods, this method is sensitive, quantitative, cost effective, and easy to implement.

  1. Efficacy of free glutathione and niosomal glutathione in the treatment ...

    African Journals Online (AJOL)

    Acetaminophen (APAP) administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH) (200mg/kg), niosomal GSH (14 mg/kg) and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine) ...

  2. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  3. Glutathione-dependent detoxifying enzymes in rainbow trout liver: Search for specific biochemical markers of chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    Petrivalsky, M. [Masaryk Univ., Brno (Czech Republic). Faculty of Science; Machala, M.; Nezveda, K. [Veterinary Research Inst., Brno (Czech Republic); Piacka, V. [Research Inst. of Fish Culture and Hydrobiology, Vodnany (Czech Republic); Svobodova, Z. [Research Inst. of Fish Culture and Hydrobiology, Vodnany (Czech Republic)]|[Univ. of Veterinary and Pharmaceutical Sciences, Brno (Czech Republic); Drabek, P. [Univ. of Veterinary and Pharmaceutical Sciences, Brno (Czech Republic)

    1997-07-01

    Activities of trout liver microsomal glutathione S-transferase (GST) and a series of cytosolic glutathione-dependent detoxifying enzymes were determined after a single intraperitoneal treatment with phenobarbital, 2,2-bis (p-chlorophenyl)-1,1-dichloroethane (p,p{prime}-DDE), 2,3-dimethoxynaphthoquinone (NQ), or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This study aimed to find xenobiotic-specific parameters applicable as biochemical markers of the impacts of the prototypal xenobiotics. The effects of xenobiotics on cytosolic GST activities were substrate dependent. The rate of conjugation of p-nitrobenzyl chloride was significantly induced by higher doses of p,p{prime}-DDE or NQ. The conjugation of ethacrynic acid was enhanced by phenobarbital, p,p{prime}-DDE, and NQ. The GST activity against 1,2-epoxy-3-(p-nitrophenoxy)propane was induced only by phenobarbital and by lower doses of p,p{prime}-DDE. The cytosolic GST activity, measured with 1-chloro-2,4-dinitrobenzene as a substrate, was only weakly increased by phenobarbital, TCDD, higher doses of p,p{prime}-DDE, or by NQ at the lowest dose of 1 mg/kg. Although the latter activity is frequently used as a biomarker in ecotoxicology, various factors (including its weak inducibility) indicate that this biochemical parameter is probably not a suitable indicator of contamination in fish. Similarly, cytosolic glutathione peroxidase was not affected by the prototypal xenobiotics and appeared to be an unsuitable bioindicator of oxidative impacts of the tested compounds. On the other hand, microsomal GST activity was nonspecifically increased by phenobarbital, NQ, TCDD, and high doses of p,p{prime}-DDE. Glutathione reductase, another potential biomarker of oxidative stress, was induced by phenobarbital, NQ, and, to a lesser extent, p,p{prime}-DDE; therefore it appeared to be a less sensitive indicator to the exposure to prototypal xenobiotics than the microsomal GST.

  4. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    Jan 26, 2012 ... It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione ... Key words: Gallium nitrate, reduced glutathione (GSH), whole blood, plasma, cytosolic fraction (CF), oxidized ..... DMSA effect on gallium arsenide induced pathological liver injury in rats.

  5. Adducts of Oxylipin Electrophiles to Glutathione Reflect a 13 Specificity of the Downstream Lipoxygenase Pathway in the Tobacco Hypersensitive Response

    Science.gov (United States)

    Davoine, Céline; Falletti, Olivier; Douki, Thierry; Iacazio, Gilles; Ennar, Najla; Montillet, Jean-Luc; Triantaphylidès, Christian

    2006-01-01

    The response to reactive electrophile species (RES) is now considered as part of the plant response to pathogen and insect attacks. Thanks to a previously established high-performance liquid chromatography tandem mass spectrometry methodology, we have investigated the production of oxylipin RES adducts to glutathione (GSH) during the hypersensitive response (HR) of plants. We have observed that RES conjugation to GSH in tobacco (Nicotiana tabacum) leaves is facile and nonspecific. In cryptogein-elicited tobacco leaves, we show that the oxylipin RES adducts to GSH are produced in correlation with GSH consumption, increase in glutathione S-transferase activity, and the appearance of the cell death symptoms. In this model, the adducts arise mainly from the downstream 13 lipoxygenase (LOX) metabolism, although the induced 9 LOX pathway leads massively to the accumulation of upstream metabolites. The main adducts were obtained from 2-hexenal and 12-oxo-phytodienoic acid. They accumulate transiently as 1-hexanol-3-GSH, a reduced adduct, and 12-oxo-phytodienoic acid-GSH, respectively. RES conjugation does not initiate cell death but explains part of the GSH depletion that accompanies HR cell death. The nature of these GSH conjugates shows the key role played by the 13 LOX pathway in RES signaling in the tobacco HR. PMID:16500992

  6. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  7. Metabolic Activation of the Antibacterial Agent Triclocarban by Cytochrome P450 1A1 Yielding Glutathione Adducts

    Science.gov (United States)

    Muvvala, Jaya B.; Morin, Dexter; Buckpitt, Alan R.; Hammock, Bruce D.; Rice, Robert H.

    2014-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with 14C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3′-glutathionyl-4′-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with 14C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species. PMID:24733789

  8. Genome-wide analysis of the GST gene family in Gossypium hirsutum L.

    Science.gov (United States)

    Xu, Lei; Chen, Wen; Si, Guo-Yang; Huang, Yi-Yuan; Lin, Yi; Cai, Yong-Ping; Gao, Jun-Shan

    2017-08-20

    Glutathione-S-transferase (GST) is a ubiquitous multi-functional protein superfamily that plays important roles in plant primary and secondary metabolism, stress and intercellular signal transduction. Concomitantly, it also functions as a ligand in the metabolism of plant hormones and substance transport. In order to understand the GST gene family in upland cotton (Gossypium hirsutum L.), herein we analyzed the species, evolutionary relationship, physical location, gene structure, conserved motifs and expression patterns. We identified 70 GST genes in the whole genome of upland cotton, and divided them into U, F, T, Z, EF1Bγ and TCHQD groups by phylogenetic tree and gene structure analyses. The gene mapping analysis indicated that the GST genes were on every chromosome except chromosome AD/At2, AD/At4, AD/At5, AD/Dt5 and AD/Dt10. Moreover, the GST gene cluster appeared on four chromosomes (AD/At9, AD/Dt7, AD/Dt12 and AD/Dt13). qRT-PCR assays showed that eight genes (GhGSTF2-9) were expressed in the root, stem, leave and fiber of different developmental stages while GhGSTF1 might be a pseudogene. Combining qRT-PCR and bioinformatic analysis, we speculated that GhGSTF8 might be involved in the transport and accumulation of proanthocyanidins/anthocyanins; GhGSTF4, 6 and 9 might play roles in regulating the growth and stress response of upland cotton; the function of GhGSTF2, 3, 5 and 7 remains to be further investigated. Our work provides a theoretical basis for further studies on the molecular evolution and function of the GST gene family in upland cotton.

  9. Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila.

    Science.gov (United States)

    Enya, Sora; Yamamoto, Chikana; Mizuno, Hajime; Esaki, Tsuyoshi; Lin, Hsin-Kuang; Iga, Masatoshi; Morohashi, Kana; Hirano, Yota; Kataoka, Hiroshi; Masujima, Tsutomu; Shimada-Niwa, Yuko; Niwa, Ryusuke

    2017-12-01

    Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo ( nobo ), encoding a glutathione S -transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ -glutamylcysteine synthetase catalytic subunit ( Gclc ) gene in the fruit fly Drosophila melanogaster Gclc encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete Gclc loss-of-function leads to drastic GSH deficiency in the larval body fluid. Gclc mutant animals show a larval-arrest phenotype. Ecdysteroid titer in Gclc mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, Gclc mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to nobo loss-of-function animals. On the other hand, Gclc mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, Gclc mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in Gclc mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected

  10. Glutathione in plants: an integrated overview.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Chaouch, Sejir; Han, Yi; Neukermans, Jenny; Marquez-Garcia, Belen; Queval, Guillaume; Foyer, Christine H

    2012-02-01

    Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.

  11. Impaired glutathione synthesis in schizophrenia

    DEFF Research Database (Denmark)

    Gysin, René; Kraftsik, Rudolf; Sandell, Julie

    2007-01-01

    Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit...... of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.......002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P schizophrenia in two...

  12. Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes

    International Nuclear Information System (INIS)

    Kuo, W.-H.; Chou, F.-P.; Young, S.-C.; Chang, Y.-C.; Wang, C.-J.

    2005-01-01

    Geniposide, an iridoid glycoside isolated from the fruit of Gardenia jasminoides Ellis, has biological capabilities of detoxication, antioxidation, and anticarcinogenesis. We have recently found that geniposide possesses a potential for detoxication by inducing GST activity and the expression of GST M1 and GST M2 subunits. In this study, the signaling pathway of geniposide leading to the activation of GSH S-transferase (GST) was investigated. Primary cultured rat hepatocytes were treated with geniposide in the presence or absence of mitogen-activated protein kinase (MAPK) inhibitors and examined for GST activity, expression of GST M1 and M2 subunits, and protein levels of MAPK signaling proteins. Western blotting data demonstrated that geniposide induced increased protein levels of GST M1 and GST M2 (∼1.76- and 1.50-fold of control, respectively). The effect of geniposide on the increased protein levels of GST M1 and GST M2 was inhibited by the MEK-1 inhibitor PD98059, but not by other MAPK inhibitors. The GST M1 and GST M2 transcripts as determined by RT-PCR and GST activity were also inhibited concurrently by the MEK-1 inhibitor PD98059. The protein levels of up- and down-stream effectors of the MEK-1, including Ras, Raf, and Erk1/2, and the phosphorylation state of Erk1/2 were found to be induced by geniposide, indicating a two-phase influence of geniposide. The results suggest that geniposide induced GST activity and the expression of GST M1 and GST M2 acting through MEK-1 pathway by activating and increasing expression of Ras/Raf/MEK-1 signaling mediators

  13. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  14. Hepatic and extrahepatic synthesis and disposition of dinitrophenyl-S-glutathione in bile duct-ligated rats.

    Science.gov (United States)

    Villanueva, Silvina S M; Ruiz, María L; Soroka, Carol J; Cai, Shi-Ying; Luquita, Marcelo G; Torres, Adriana M; Sánchez Pozzi, Enrique J; Pellegrino, José M; Boyer, James L; Catania, Viviana A; Mottino, Aldo D

    2006-08-01

    The ability of the kidney and small intestine to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for the multidrug resistance-associated proteins (Mrps), was assessed in bile duct-ligated (BDL) rats 1, 7, and 14 days after surgery, using an in vivo perfused jejunum model with simultaneous urine collection. A single i.v. dose of 30 micromol/kg b.wt. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its glutathione conjugate DNP-SG and dinitrophenyl cysteinyl glycine derivative, which is the result of gamma-glutamyl-transferase action on DNP-SG, were determined in urine and intestinal perfusate by high-performance liquid chromatography. Intestinal excretion of these metabolites was unchanged at day 1, and decreased at days 7 and 14 (-39% and -33%, respectively) after surgery with respect to shams. In contrast, renal excretion was increased by 114%, 150%, and 128% at days 1, 7, and 14. Western blot studies revealed decreased levels of apical Mrp2 in liver and jejunum but increased levels in renal cortex from BDL animals, these changes being maximal between days 7 and 14. Assessment of expression of basolateral Mrp3 at day 14 postsurgery indicated preserved levels in renal cortex, duodenum, jejunum, distal ileum, and colon. Analysis of expression of glutathione-S-transferases alpha, mu, and pi, as well as activity toward CDNB, indicates that formation of DNP-SG was impaired in liver, preserved in intestine, and increased in renal cortex. In conclusion, increased renal tubular conversion of CDNB to DNP-SG followed by subsequent Mrp2-mediated secretion into urine partially compensates for altered liver function in experimental obstructive cholestasis.

  15. Peran Glutathion pada Kegagalan Terapi Klorokuin

    Directory of Open Access Journals (Sweden)

    Ika Puspa Sari

    2014-06-01

    Full Text Available Malaria adalah penyakit tropik mematikan dan mengancam 200-300 juta jiwa di dunia. WHO menyatakan, terdapat lebih dari 2 juta kematian akibat malaria setiap tahunnya. Walaupun insiden malaria cenderung menetap sejak akhir tahun 1990, resistensi obat antimalaria akibat penggunaanberlebihan menjadi masalah global. Penelitian terakhir menyatakan bahwa mekanisme resistensi antimalaria dipengaruhi peningkatan glutation intra-eritrosit di eritrosit yang terinfeksi. Peran glutathion pada Plasmodium terhadap resistensi klorokuin penting diketahui, terutama untuk dijadikan sebagai prospek target obat dalam eradikasi malaria. Pengetahuan akan karakteristik dan peran glutathion diharapkan dapat menjelaskan informasi penting mengenai fungsi dan hubungan antara glutathion dengan parasit malaria. Kata kunci: malaria, Plasmodium, resistensi, glutathion

  16. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... S-Transferase T1, M1, and P1 in a Subset of Children with Autism. Spectrum Disorder in Lagos, Nigeria. Y Oshodi, O ... of the antioxidants or excessive generation of ROS. ROS are usually produced during normal ... are classified into eight classes, including α (alpha), m. (mu), k (kappa), o (omega), p (pi), ...

  17. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  18. Glutathione, cell proliferation and differentiation | Ashtiani | African ...

    African Journals Online (AJOL)

    All organisms require an equivalent source for living. Reduced glutathione is the most abundant thiol containing protein in mammalian cells and organs. Glutathione was discovered by Hopkins in 1924 who published his findings in JBC. It is a three peptide containing glutamic acid, cystein and glycin and is found in reduced ...

  19. Sulfur mustard resistant keratinocytes obtained elevated glutathione levels and other changes in the antioxidative defense mechanism.

    Science.gov (United States)

    Rothmiller, Simone; Schröder, Sarah; Strobelt, Romano; Wolf, Markus; Wang, Jin; Jiang, Xiqian; Worek, Franz; Steinritz, Dirk; Thiermann, Horst; Schmidt, Annette

    2017-11-26

    Sulfur mustard (SM) is a potent blistering chemical warfare agent, which was first used in 1917. Despite the Chemical Weapons Convention, a use was recently reported in Syria in 2015. This emphasizes the importance to develop countermeasures against chemical warfare agents. Despite intensive research, there is still no antidote or prophylaxis available against SM. The newly developed SM-resistant keratinocyte cell line HaCaT/SM was used to identify new target structures for drug development, particularly the adaptations in protective measures against oxidative stress. For this purpose, glutathione (GSH) and NAD(P)H levels, the effect of glutathione S-transferase (GST) inhibition as well as activation and expression of Nrf2, GST, glutamate cysteine ligase (GCL) and glutathione-disulfide reductase (GSR) as well as multi-drug resistance (MDR) proteins 1, 3 and 5 were investigated. The HaCaT/SM cells showed not only a better survival after treatment with SM or cytostatic drugs, but also hydrogen peroxide (H 2 O 2 ). They exhibit more GSH even after SM treatment. Nrf2 levels were significantly lower. Inhibition of GST led to significantly decreased, activation to slightly higher IC 50 values after SM treatment and a lower expression of GST was observed. The cells also expressed less GCLC and GSR. Expression of MDR1, MDR3 and MDR5 was higher under control conditions, but less stimulated by SM treatment. An increased NADP + /NADPH ratio as well as higher NAD + levels were shown. In summary, an improved response of the resistant cell line to oxidative stress was observed. The underlying mechanisms are elevated GSH levels as well as lower expression of Nrf2 and its targets GCLC and GST as well as GSR and MDR1, MDR3 and MDR5. GST is an especially interesting target because its inhibition already induced a significant SM sensitivity. SM resistance also caused redox equivalent level differences. Taken together, these findings provide further insight into the mechanism of SM

  20. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Theodossis A. Theodossiou

    2017-08-01

    Full Text Available The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT. MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4 than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1, mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH by buthionine sulfoximine (BSO, largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies.

  1. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    International Nuclear Information System (INIS)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-01-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 ± 1.24 ug/L) and hair mercury levels (0.49 ± 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5′), or both (SEPP1 3′UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: ► We explore the influence of 15 polymorphisms on urine and hair Hg levels. ► Urine and hair Hg levels in dental professionals were similar to the US population. ► GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. ► Accumulation of Hg in hair following exposure from fish was modified by genotype. ► GSTP1, GSS

  2. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Jaclyn M.; Wang, Yi [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gillespie, Brenda [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Werner, Robert [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 (United States); Franzblau, Alfred [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Basu, Niladri, E-mail: niladri@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  3. A regulatory review for products containing glutathione

    Directory of Open Access Journals (Sweden)

    Nur Hidayah Abd Rahim

    2016-01-01

    Full Text Available Glutathione is a potent antioxidant as well as has important role for DNA synthesis and repair, protein synthesis, amino acid transport, and enzyme activation. Besides this, Glutathione products are now mainly selling as whitening agent which are mainly marketing through social media (Facebook and different websites. Information is not available whether glutathione product are following the regulatory guidelines of National Pharmaceutical Control Bureau of Malaysia (NPCB for selling, advertisement and promotion. This review was carried out by extracting information about glutathione from scientific database using PubMed, Cochrane Library and Embase. Analysis of the available information, case example of glutathione products showed that a brand of glutathione (Glutacaps HQ did not show the product's registration number from NPCB, and also did not show the name, address, contact number of the advertiser, and even not found the name of the manufacture. Without providing the above mentioned information, the product is selling and promoting through social media (fb which is not allowed by the NPCB guidelines part 4.14. So far, only two clinical trials were conducted on glutathione supplementation for 4 weeks duration. There was no serious or systematic adverse effects reported in clinical trials. As the two clinic trials resulted contradictory outcomes, further studies needed for conformation of the clinic benefits of glutathione. Otherwise, random use of glutathione may be risk for the health of the people. Besides, the marketer mainly promoting glutathione as the skin whitening beauty product instead of using as health supplement, it may cause additional and serious risk to the users as the manufacturer not providing sufficient information about the product, its registration number, manufacturing company, etc.

  4. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, S. [University Grants Commission, New Delhi (India); Dept. of Physiology, Calcutta Univ. (India); Chatterjee, A.K. [Dept. of Physiology, Calcutta Univ. (India)

    2001-11-01

    Arsenic is a potent toxin, carcinogen and modulator of antioxidant defense system. In this study, male rats of Wistar strain, maintained on either 18% or 6% protein (casein) diet, received an acute i.p. exposure to sodium arsenite (As{sup 3+}) at its LD{sub 50} dose (15.86 mg/kg body weight). One hour after the arsenic exposure, glutathione (GSH) concentration was significantly depleted and lipid peroxidation was increased. A relationship between any two of tissue arsenic concentrations, GSH levels and lipid peroxidation values was observed only for liver when the proportional changes of respective parameters in either of the dietary groups of animals were compared. This suggests that, in liver, arsenic metabolism appears dependant upon the GSH concentration. Acute arsenic exposure significantly increased the glutathione peroxidase (GPx) activity in liver of both dietary groups and in kidney of only the 18% protein-fed group of animals. The glutathione-S-transferase (GST) activity significantly decreased in liver of the 18% protein-fed animals while GST increased in kidney of both the 18% and the 6% protein-fed groups. No significant change in glutathione reductase (GR) or glucose-6-phosphate dehydrogenase (G6PDH) activity was observed. In the present investigation, liver as a whole seems to be more affected in terms of GSH level and GST activity. The mode of responses of GPx and GR activities as well as the unaltered G6PDH activity might result in arsenic-induced GSH depletion and increase in lipid peroxidation. The animals of the 6% protein-fed group, appeared to be affected less in terms of tissue arsenic concentration, lipid peroxidation, GSH level and GST activity. (orig.)

  5. Corneal endothelial glutathione after photodynamic change

    International Nuclear Information System (INIS)

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-01-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system

  6. A mathematical model of glutathione metabolism

    Directory of Open Access Journals (Sweden)

    James S Jill

    2008-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

  7. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

    Science.gov (United States)

    Sonni, Francesca; Clark, Andrew C; Prenzler, Paul D; Riponi, Claudio; Scollary, Geoffrey R

    2011-04-27

    Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine.

  8. The Roles of Glutathione Peroxidases during Embryo Development

    Science.gov (United States)

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis

  9. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock.

    Science.gov (United States)

    Chen, C F; Chen, Y; Dai, K; Chen, P L; Riley, D J; Lee, W H

    1996-09-01

    A gene encoding a new heat shock protein that may function as a molecular chaperone for the retinoblastoma protein (Rb) was characterized. The cDNA fragment was isolated by using the yeast two-hybrid system and Rb as bait. The open reading frame of the longest cDNA codes for a protein with substantial sequence homology to members of the hsp90 family. Antibodies prepared against fusions between glutathione S-transferase and portions of this new heat shock protein specifically recognized a 75-kDa cellular protein, hereafter designated hsp75, which is expressed ubiquitously and located in the cytoplasm. A unique LxCxE motif in hsp75, but not in other hsp90 family members, appears to be important for binding to the simian virus 40 T-antigen-binding domain of hypophosphorylated Rb, since a single mutation changing the cysteine to methionine abolishes the binding. In mammalian cells, Rb formed complexes with hsp75 under two special physiological conditions: (i) during M phase, when the envelope that separates the nuclear and cytoplasmic compartments broke down, and (ii) after heat shock, when hsp75 moved from its normal cytoplasmic location into the nucleus. In vitro, hsp75 had a biochemical activity to refold denatured Rb into its native conformation. Taken together, these results suggest that Rb may be a physiological substrate for the hsp75 chaperone molecule. The discovery of a heat shock protein that chaperones Rb identifies a mechanism, in addition to phosphorylation, by which Rb is regulated in response to progression of the cell cycle and to external stimuli.

  10. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  11. Glutathione in Cancer Cell Death

    International Nuclear Information System (INIS)

    Ortega, Angel L.; Mena, Salvador; Estrela, Jose M.

    2011-01-01

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

  12. The antioxidant master glutathione and periodontal health

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Bains

    2015-01-01

    Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.

  13. An alternative easy method for antibody purification and analysis of protein-protein interaction using GST fusion proteins immobilized onto glutathione-agarose.

    Science.gov (United States)

    Zalazar, L; Alonso, C A I; De Castro, R E; Cesari, A

    2014-01-01

    Immobilization of small proteins designed to perform protein-protein assays can be a difficult task. Often, the modification of reactive residues necessary for the interaction between the immobilized protein and the matrix compromises the interaction between the protein and its target. In these cases, glutathione-S-transferase (GST) is a valuable tag providing a long arm that makes the bait protein accessible to the mobile flow phase of the chromatography. In the present report, we used a GST fusion version of the 8-kDa protein serine protease inhibitor Kazal-type 3 (SPINK3) as the bait to purify anti-SPINK3 antibodies from a rabbit crude serum. The protocol for immobilization of GST-SPINK3 to glutathione-agarose beads was modified from previously reported protocols by using an alternative bifunctional cross-linker (dithiobis(succinimidyl propionate)) in a very simple procedure and by using simple buffers under physiological conditions. We concluded that the immobilized protein remained bound to the column after elution with low pH, allowing the reuse of the column for alternative uses, such as screening for other protein-protein interactions using SPINK3 as the bait.

  14. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit.

    Science.gov (United States)

    Gallé, Agnes; Csiszár, Jolán; Secenji, Maria; Guóth, Adrienn; Cseuz, László; Tari, Irma; Györgyey, János; Erdei, László

    2009-11-15

    Total glutathione S-transferase (GST, EC 2.5.1.18) and glutathione peroxidase (GPOX) activity were measured spectrophotometrically in Triticum aestivum cv. MV Emese and cv. Plainsman (drought tolerant) and cv. GK Elet and Cappelle Desprez (drought-sensitive) flag leaves under control and drought stress conditions during the grain-filling period, in order to reveal possible roles of different GST classes in the senescence of flag leaves. Six wheat GSTs, members of 3 GST classes, were selected and their regulation by drought and senescence was investigated. High GPOX activity (EC 1.11.1.9) was observed in well-watered controls of the drought-tolerant Plainsman cultivar. At the same time, TaGSTU1B and TaGSTF6 sequences, investigated by real-time PCR, showed high-expression levels that increased with time, indicating that the gene products of these genes may play important roles in monocarpic senescence of wheat. Expression of these genes was also induced by drought stress in all of the four investigated cultivars, but extremely high transcript amounts were detected in cv. Plainsman. Our data indicate genotypic variations of wheat GSTs. Expression levels and early induction of two senescence-associated GSTs under drought during grain filling in flag leaves correlated with high yield stability.

  15. Sistema Glutation-S-Transferase como fator prognóstico no carcinoma papilífero da tireoide GST genes expression as prognostic factor in papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    Antonio Jose Gonçalves

    2009-01-01

    Full Text Available OBJETIVO: Analisar se existe relação entre os fatores moleculares dos genes GTS e a mortalidade dos pacientes com câncer de tireoide dado pelo índice AMES de prognóstico clínico. MÉTODOS: Foram coletadas amostras da tireoide de 66 pacientes com carcinoma papilífero (53 mulheres e 13 homens, de modo a permitir extração do material genético das enzimas. Foram constituídos dois grupos, segundo os fatores prognósticos clínicos de alto e baixo risco, de acordo a classificação AMES. Cada grupo foi avaliado pela presença ou não do genótipo nulo para as enzimas estudadas, correlacionando-os com os fatores prognósticos clínicos (AMES. RESULTADOS: Foram analisados os resultados de 17 doentes com alto risco (grupo A e 49 com baixo (grupo B. Todas combinações de genótipos do GSTT1 e GSTM1 foram encontrados. O genótipo nulo dos dois genes do grupo de alto risco foi encontrado em 5,8% e no de baixo risco em 6,1%. CONCLUSÃO: A presença ou deleção dos genes GST (GSTT1 e GSTM1 não são bom fatores prognósticos no câncer papilífero da tireoide.PURPOSES: Analyze the relationship between the AMES classification and molecular factors from Glutation-S-Transferase System, specifically the GSTT1 and GSTM1 in patients with well differentiated thyroid cancer. METHODS: Samples of thyroid tissue of 66 patients with papillary thyroid carcinoma were obtained (53 women and 13 men. Patients were divided in two groups (high and low risk according to the AMES classification. In each group, presence of the null genotype of both GST enzymes system was studied. These results were compared with the AMES classification. Samples were obtained in the operating room immediately after thyroidectomy, placed in cryotubes, immersed in liquid nitrogen and stored in a freezer at -80ºC. DNA of this enzymes was extracted by the fenol-cloroformium method. RESULTS: There were 17 high risk patients and 49 low risk patients. The null genotype of the high risk group

  16. Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins.

    Directory of Open Access Journals (Sweden)

    Kristen E Whalen

    Full Text Available BACKGROUND: Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. PRINCIPAL FINDINGS: Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A(2 (PGA(2 as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA(2 were also the most potent inhibitors. In vivo estimates of PGA(2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA(2 and operating at or near physiological capacity. SIGNIFICANCE: The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This

  17. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  18. Glutathione Metabolism and Parkinson’s Disease

    OpenAIRE

    Smeyne, Michelle; Smeyne, Richard Jay

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how...

  19. Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin.

    Directory of Open Access Journals (Sweden)

    Bruno Maras

    Full Text Available Currently available therapies for candidiasis are based on antifungal drugs belonging to azole and echinocandin families that interfere with different aspects of fungal metabolism. These drugs, beyond their specific effects, elicit also a cellular stress including an unbalance of redox state that is counteracted not only utilizing antioxidant species but also increasing the outcome export by transporters to detoxify the internal environment. These cellular actions are both based on the cytosolic concentration of reduced glutathione (GSH. In this paper we investigated the effects of two antifungal drugs fluconazole and micafungin on the redox state of the cell in C. albicans to understand if the resistance to these drugs is accompanied by variation of glutathione metabolism. Analyses of resistant strains showed a marked difference in glutathione contents in strains resistant to fluconazole (CO23RFLC or micafungin (CO23RFK. In CO23RFLC, the total amount of glutathione was more than doubled with respect to CO23RFK thanks to the increased activity of γ-glutamilcysteine synthetase, the key enzyme involved in GSH synthesis. We demonstrated that the GSH increase in CO23RFLC conferred to this strain a clear advantage in counteracting oxidative toxic agents while assignment of other roles, such as a more efficient elimination of the drug from the cell, should be considered more speculative. As far as MCFG resistance is concerned, from our data a role of glutathione metabolism in supporting this condition is not evident. Overall our data indicate that glutathione metabolism is differently affected in the two resistant strains and that glutathione system may play an important role in the global organization of C.albicans cells for resistance to fluconazole. Such scenario may pave the way to hypothesize the use of oxidant drugs or inhibitors able to deplete reduced glutathione level as a novel approach, for counteracting the resistance to this specific

  20. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    Science.gov (United States)

    2012-01-01

    Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), and carboxyl/cholinesterases (CCE). However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE) technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75%) were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a susceptible strain. Fifteen

  1. Hepatoprotective efficacy of Nigella sativa seeds dietary supplementation against lead acetate-induced oxidative damage in rabbit - Purification and characterization of glutathione peroxidase.

    Science.gov (United States)

    El-Far, Ali H; Korshom, Mahdy A; Mandour, Abdelwahab A; El-Bessoumy, Ashraf A; El-Sayed, Yasser S

    2017-05-01

    Lead (Pb) is a toxic ubiquitous environmental pollutant that induces hepatotoxicity in both animals and humans. The ability of Nigella saliva seeds (NSS) in ameliorating lead acetate (PbAc)-induced hepatic oxidative damage was investigated using a rabbit model. Forty New Zealand rabbits were given feed and water ad libitum. They were allocated randomly into four groups: control; PbAc (5g/L drinking water); NSS (20g/kg diet) and NSS+PbAc groups. After two months, liver samples were collected and analyzed for malondialdehyde (MDA), glutathione (GSH), glutathione S-transferase (GST) and glutathione peroxidase (GPx) contents. Purification and characterization of GPx were also evaluated. PbAc exposure significantly (p<0.05) increased MDA (lipid peroxidation biomarker) and reduced the GSH levels and the GST and GPx activities. Concurrently supplemented NSS significantly (p<0.05) decreased MDA levels and restored the GSH, GST, and GPx contents successfully. Electrophoretically, the homogeneous GPx preparation from the liver had a specific activity of 30.44 U/mg protein and a yield of 1.31%. The K m values for cumene hydroperoxide were 4.76μM in control, PbAc and NSS+PbAc groups, and 4.09μM in NSS group. The GPx reaction had a temperature optimum 40°C, pH optimum 8 and molecular weight 21 kDa. The obtained data indicated the potent efficacy of NSS against PbAc-induced oxidative stress; that was mediated through induction and activation of antioxidants, particularly GPx and scavenging free radicals. Moreover, the purified hepatic GPx is characterized as a selenoprotein (Se-GPx). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.

    Science.gov (United States)

    Zulkifli, Mohammad; Bachhawat, Anand Kumar

    2017-05-16

    The proton gradient acts as the driving force for the transport of many metabolites across fungal and plant plasma membranes. Identifying the mechanism of proton relay is critical for understanding the mechanism of transport mediated by these transporters. We investigated two strategies for identifying residues critical for proton-dependent substrate transport in the yeast glutathione transporter, Hgt1p, a member of the poorly understood oligopeptide transporter family of transporters. In the first strategy, we tried to identify the pH-independent mutants that could grow at higher pH when dependant on glutathione transport. Screening a library of 269 alanine mutants of the transmembrane domains (TMDs) along with a random mutagenesis strategy yielded two residues (E135K on the cusp of TMD2 and N710S on TMD12) that permitted growth on glutathione at pH 8.0. Further analysis revealed that these residues were not involved in proton symport even though they conferred better transport at a higher pH. The second strategy involved a knowledge-driven approach, targeting 31 potential residues based on charge, conservation and location. Mutation of these residues followed by functional and biochemical characterization revealed E177A, Y193A, D335A, Y374A, H445A and R554A as being defective in proton transport. Further analysis enabled possible roles of these residues to be assigned in proton relay. The implications of these findings in relation to Hgt1p and the suitability of these strategic approaches for identifying such residues are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Erythrocyte potassium and glutathione polymorphism determination ...

    African Journals Online (AJOL)

    Jane

    This research is aimed at determining the erythrocyte potassium and glutathione polymorphisms and also to identify the relationship among the various blood parameters in Saanen x Malta crossbred goat raised in Turkey. The allele gene frequencies of KH and KL associated with the potassium concentration.

  4. Erythrocyte potassium and glutathione polymorphism determination ...

    African Journals Online (AJOL)

    This research is aimed at determining the erythrocyte potassium and glutathione polymorphisms and also to identify the relationship among the various blood parameters in Saanen x Malta crossbred goat raised in Turkey. The allele gene frequencies of KH and KL associated with the potassium concentration were ...

  5. Detoxification, metabolism, and glutathione pathway activity of aflatoxin B1 by dietary lactic acid bacteria in broiler chickens.

    Science.gov (United States)

    Liu, N; Ding, K; Wang, J Q; Jia, S C; Wang, J P; Xu, T S

    2017-10-01

    Lactic acid bacteria (LAB) and the glutathione (GSH) pathway are protective against aflatoxin, but information on the effect of LAB on aflatoxin metabolism and GSH activity in farm animals is scarce. This study aimed to investigate the effects of LAB and aflatoxin B (AFB) on growth performance, aflatoxin metabolism, and GSH pathway activity using 480 male Arbor Acres broiler chickens from d 1 to 35 of age. Diets were arranged in a 2 × 2 factorial design, including AFB at 0 or 40 µg/kg of feed and LAB at 0 or 3 × 10 cfu/kg of feed, and the LAB was a mixture of equal amounts of , , and . The results showed that there were highly significant ( < 0.01) effects of AFB toxicity, LAB protection, and their interaction on ADFI, ADG, and G:F of broilers during d 1 to 35. Compared with the AFB diet, the LAB diet reduced ( < 0.05) the residues of AFB in the liver, kidney, serum, ileal digesta, and excreta on d 14 by 121.5, 80.6, 43.7, 47.0, and 26.5%, respectively, and on d 35 by 40.6, 60.2, 131.7, 37.9, and 32.9%, respectively, whereas the LAB diet increased ( < 0.05) the contents of aflatoxin M, a metabolite of AFB, in the liver, kidney, serum, and ileal digesta on d 14 by 98.2, 154.2, 168.6, 19.1, and 34.1%, respectively, and in the kidney and serum on d 35 by 32.6 and 142.2%, respectively. For the activity of the GSH pathway in the liver and duodenal mucosa, there were significant ( ≤ 0.01) effects of LAB and AFB on reduced GSH, glutathione S-transferases (GST), and glutathione reductase (GR) on d 14 and 35; compared with the control diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 11.6 to 86.1%, and compared with the AFB diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 24.1 to 146.9%. In the liver, there were interactions ( < 0.05) on GSH and GST on d 14 and on GSH on d 35; in the mucosa, interactions were significant ( ≤ 0.01) on GSH and GR on d 14 and on GST on d 35. It can be concluded that LAB is effective in the

  6. Glutathione role in gallium induced toxicity | Ahmad | African Journal ...

    African Journals Online (AJOL)

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and cytosolic fraction).

  7. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  8. GntR family regulator SCO6256 is involved in antibiotic production and conditionally regulates the transcription of myo-inositol catabolic genes in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Yu, Lingjun; Gao, Wenyan; Li, Shuxian; Pan, Yuanyuan; Liu, Gang

    2016-03-01

    SCO6256 belongs to the GntR family and shows 74% identity with SCO6974, which is the repressor of myo-inositol catabolism in Streptomyces coelicolor A3(2). Disruption of SCO6256 significantly enhanced the transcription of myo-inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of SCO2727, SCO6978 and SCO6985, as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the myo-inositol catabolic gene cluster as SCO6974. The expression of SCO6256 was repressed by SCO6974 in minimal medium with myo-inositol as the carbon source, but not in R2YE medium. Glutathione-S-transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of myo-inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of myo-inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of actII-ORF4 and cdaR. SCO6256 bound to the upstream region of cdaR and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (SCO2652, SCO4034, SCO4237 and SCO6377) of SCO6256 were found by screening the genome sequence of Strep. coelicolor A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of myo-inositol catabolic gene transcription and antibiotic production in Strep. coelicolor A3(2).

  9. Structural and chemical characterization of S-[2-(N7-guanyl)-ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane

    International Nuclear Information System (INIS)

    Inskeep, P.B.; Koga, N.; Cmarik, J.L.; Peterson, L.A.; Guengerich, F.P.

    1986-01-01

    Glutathione (GSH) S-transferase catalyzes the reaction of the carcinogen 1,2-dibromoethane (DBE) with DNA, resulting in the formation of a major DNA adduct which can be released by thermal hydrolysis at neutral pH and purified by octadecylsilyl- and propylamino high performance liquid chromatography. This adduct was also the only major liver and kidney DNA adduct isolated from rats treated with [1,2- 14 C]-DBE. Administration of 1,2-dichloroethane to rats also led to the production of this and other DNA adducts. The DNA adduct was assigned the structure S-[2-(N'-guanyl)ethyl]GSH as determined by positive and negative ion mass spectrometry and two-dimensional NMR correlated spectroscopy (COSY). Consistently, the chromatographic characteristics of the adduct could be altered upon treatment with γ-glutamic transpeptidase or pronase. No evidence for in vitro or in vivo guanyl imidazole ring opening was observed under these experimental conditions. Additionally, S-[2-(N 7 -guanyl)ethyl]GSH was found to be stable to further reaction with DNA to generate new DNA adducts. The structure of the isolated adduct is consistent with a proposed bioactivation pathway of DBE which involves enzyme catalyzed conjugation of DBE with GSH followed by attack of the N 7 -position of DNA guanine residues to generate this major adduct. The chemical stability of the adduct suggests that it may be important to the carcinogenicity of this compound

  10. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata).

    Science.gov (United States)

    Richardson, Kristine L; Gold-Bouchot, Gerardo; Schlenk, Daniel

    2009-08-01

    Glutathione s-transferases (GST) play a critical role in the detoxification of exogenous and endogenous electrophiles, as well as the products of oxidative stress. As compared to mammals, GST activity has not been extensively characterized in reptiles. Throughout the globe, most sea turtle populations face the risk of extinction. Of the natural and anthropogenic threats to sea turtles, the effects of environmental chemicals and related biochemical mechanisms, such as GST catalyzed detoxification, are probably the least understood. In the present study, GST activity was characterized in four species of sea turtles with varied life histories and feeding strategies: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Although similar GST kinetics was observed between species, rates of catalytic activities using class-specific substrates show inter- and intra-species variation. GST from the spongivorous hawksbill sea turtle shows 3-4.5 fold higher activity with the substrate 4-nitrobenzylchloride than the other 3 species. GST from the herbivorous green sea turtle shows 3 fold higher activity with the substrate ethacrynic acid than the carnivorous olive ridley sea turtle. The results of this study may provide insight into differences in biotransformation potential in the four species of sea turtles and the possible health impacts of contaminant biotransformation by sea turtles.

  11. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    International Nuclear Information System (INIS)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.; Payton, Scott G.; Zwickl, Joshua

    2007-01-01

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg 2+ ) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg 2+ increased expression of glutathione S-transferase-α1 (GSTα1) but decreased expression of GSTα2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg 2+ . Pretreatment of human proximal tubular (hPT) cells with Hg 2+ caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg 2+ by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg 2+ exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg 2+ -induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg 2+ , TRI, or DCVC are markedly altered by prior exposures

  12. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  13. Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide.

    Science.gov (United States)

    Klinkhammer, Christina; Verlackt, Christof; Śmiłowicz, Dariusz; Kogelheide, Friederike; Bogaerts, Annemie; Metzler-Nolte, Nils; Stapelmann, Katharina; Havenith, Martina; Lackmann, Jan-Wilm

    2017-10-23

    Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.

  14. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity. © 2014 by the Society for Experimental Biology and Medicine.

  15. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  16. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione.

    Science.gov (United States)

    Kalaras, Michael D; Richie, John P; Calcagnotto, Ana; Beelman, Robert B

    2017-10-15

    While mushrooms are the highest dietary source for the unique sulfur-containing antioxidant ergothioneine, little is known regarding levels of the major biological antioxidant glutathione. Thus, our objectives were to determine and compare levels of glutathione, as well as ergothioneine, in different species of mushrooms. Glutathione levels varied >20-fold (0.11-2.41mg/gdw) with some varieties having higher levels than reported for other foods. Ergothioneine levels also varied widely (0.15-7.27mg/gdw) and were highly correlated with those of glutathione (r=0.62, Pmushrooms species. Agaricus bisporus harvested during the third cropping flush contained higher levels of ergothioneine and glutathione compared to the first flush, possibly as a response to increased oxidative stress. This study demonstrated that certain mushroom species are high in glutathione and ergothioneine and should be considered an excellent dietary source of these important antioxidants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of rosella ( Hibiscus sabdariffa L ) extract on glutathione-S ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of rosella (Hibiscus sabdariffa L) extract on glutathione-S-trasferase (GST) activity and its hepatoprotective effect. Methods: A total of 25 rats were divided randomly into 5 groups (5 rats per group). Group I served as the baseline, group II was the negative control group, while groups III, IV and ...

  18. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  19. Hyperoxia and glutathione depletion in the isolated perfused rat liver.

    Science.gov (United States)

    Shattuck, K E; Grinnell, C D; Keeney, S E; Noworyta, K; Rassin, D K

    1997-12-01

    Hepatic stores of glutathione may be depleted by hyperoxic exposure or poor nutritional status. We studied the effects of hyperoxia or hepatic glutathione depletion on bile flow rates, and on biliary concentrations of glutathione and amino acids. Glutathione depletion was induced in vivo by 1) hyperoxic exposure (O2) for 48 hours, 2) inhibition of glutathione synthesis by treatment with buthionine sulfoximine (BSO), 3) a combination of BSO + O2, or 4) inhibition of cysteine synthesis by propargyglycine (PPG). Livers were then isolated and perfused. Glutathione concentrations in bile, liver, and perfusate were significantly decreased by all treatments. Bile flow was significantly decreased in groups treated with BSO or O2 + BSO, and perfusate LDH was increased by O2 + BSO or PPG. Significant changes in biliary amino acid concentrations included decreased sulfur-containing amino acids and increased branched-chain amino acids in groups treated with BSO, PPG, or O2; and increased essential amino acids in groups treated with O2 or PPG. Oxygen exposure or inhibition of glutathione synthesis results in significant decreases in hepatic, perfusate and biliary glutathione concentrations, and increases in biliary amino acids. A decrease in bile flow rate was associated only with the most severe glutathione depletion.

  20. Mathematical modeling of the effects of glutathione on arsenic methylation.

    Science.gov (United States)

    Lawley, Sean D; Yun, Jina; Gamble, Mary V; Hall, Megan N; Reed, Michael C; Nijhout, H Frederik

    2014-05-16

    Arsenic is a major environmental toxin that is detoxified in the liver by biochemical mechanisms that are still under study. In the traditional metabolic pathway, arsenic undergoes two methylation reactions, each followed by a reduction, after which it is exported and released in the urine. Recent experiments show that glutathione plays an important role in arsenic detoxification and an alternative biochemical pathway has been proposed in which arsenic is first conjugated by glutathione after which the conjugates are methylated. In addition, in rats arsenic-glutathione conjugates can be exported into the plasma and removed by the liver in the bile. We have developed a mathematical model for arsenic biochemistry that includes three mechanisms by which glutathione affects arsenic methylation: glutathione increases the speed of the reduction steps; glutathione affects the activity of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated downstream products. The model is based as much as possible on the known biochemistry of arsenic methylation derived from cellular and experimental studies. We show that the model predicts and helps explain recent experimental data on the effects of glutathione on arsenic methylation. We explain why the experimental data imply that monomethyl arsonic acid inhibits the second methylation step. The model predicts time course data from recent experimental studies. We explain why increasing glutathione when it is low increases arsenic methylation and that at very high concentrations increasing glutathione decreases methylation. We explain why the possible temporal variation of the glutathione concentration affects the interpretation of experimental studies that last hours. The mathematical model aids in the interpretation of data from recent experimental studies and shows that the Challenger pathway of arsenic methylation, supplemented by the glutathione effects described above, is sufficient to understand

  1. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  2. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  3. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  4. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  5. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    International Nuclear Information System (INIS)

    Fahmy, Karim; Oertel, Jana; Solioz, M.

    2017-01-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  6. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  7. Decreased oxidized glutathione with aerosolized cyclosporine delivery.

    Science.gov (United States)

    Katz, A; Coran, A G; Oldham, K T; Guice, K S

    1993-06-01

    Cyclosporine immunosuppression remains vital for successful lung transplantation. Cyclosporine also functions as a membrane active biological response modifier and has been noted to have a variable effect on ischemia-reperfusion (I/R) injury in various tissues. Glutathione plays an important role in the endogenous antioxidant defense system; plasma oxidized glutathione (GSSG) levels are useful as a sensitive indicator of in vivo oxidant stress and I/R injury. Lung transplantation results in ischemia, followed by a period of reperfusion, potentially producing functional injury. This study was designed to evaluate the effect of cyclosporine on oxygen radical generation in a model of single-lung transplantation. Single-lung transplantation was performed in 12 mongrel puppies, with animals assigned to receive either intravenous or aerosolized cyclosporine. Arterial blood and bronchoalveolar lavage fluid (BALF) samples were obtained to determine GSSG levels via a spectrophotometric technique. Samples were obtained both prior to and following the revascularization of the transplanted lung. Whole blood and tissue cyclosporine levels were determined via an high-performance liquid chromatography technique 3 hr following the completion of the transplant. Aerosolized cyclosporine administration resulted in greatly decreased arterial plasma and BALF GSSG levels, whole blood cyclosporine levels, and equivalent tissue cyclosporine levels when compared to intravenous cyclosporine delivery. These findings support the hypothesis that the transplanted lung is a source of GSSG production and release into plasma. Additionally, these findings suggest that cyclosporine may have a direct antioxidant effect on pulmonary tissue, with this activity occurring at the epithelial surface, an area susceptible to oxidant injury.

  8. Effects Of Alcohol And Paracetamol On Hepatic Glutathione ...

    African Journals Online (AJOL)

    The effect of paracetamol on hepatic glutathione concentration in rats after chronic alcohol and given intoxication was investigated using biochemical indices. Male albino rats were grouped into five and the different dosage regimens of paracetamol (300 mg/kg) and 12% alcohol. Hepatic glutathione concentration and the ...

  9. Electrolyte ions and glutathione enzymes as stress markers in ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2017-01-04

    Jan 4, 2017 ... Msanda F, El Aboudi A, Peltier JP (2005). Biodiversity and biogeography of Moroccan argan tree communities. Cah. Agric. 4:357-364. Nagalakshmi N, Prasad MNV (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in. Scenedesmus bijugatus. Plant Sci.

  10. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  11. Kinetic analysis of glutathione transferase from rats exposed to sub ...

    African Journals Online (AJOL)

    The effects of lethal and sublethal doses of lead acetate on the induction and kinetic characteristics of glutathione transferase (GST) isozymes in rat liver and kidney were investigated. GST isozymes induction was monitored by the ability of the induced enzyme to conjugate glutathione (GSH) with model GST substrates.

  12. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  13. Stabilization of anthocyanins in blackberry juice by glutathione fortification.

    Science.gov (United States)

    Stebbins, Nathan B; Howard, Luke R; Prior, Ronald L; Brownmiller, Cindi; Mauromoustakos, Andy

    2017-10-18

    Blackberry anthocyanins provide attractive color and antioxidant activity. However, anthocyanins degrade during juice processing and storage, so maintaining high anthocyanin concentrations in berry juices may lead to greater antioxidant and health benefits for the consumer. This study evaluated potential additives to stabilize anthocyanins during blackberry juice storage. The anthocyanin stabilizing agents used were: glutathione, galacturonic acid, diethylenetriaminepentaacetic acid and tannic acid, which were added at a level of 500 mg L -1 . Juice anthocyanin, flavonol, and ellagitannin content and percent polymeric color were measured over five weeks of accelerated storage at 30 °C. Glutathione had the greatest protective effect on total anthocyanins and polymeric color. Therefore a second study was performed with glutathione in combination with lipoic and ascorbic acids in an effort to use antioxidant recycling to achieve a synergistic effect. However, the antioxidant recycling system had no protective effect relative to glutathione alone. Glutathione appears to be a promising blackberry juice additive to protect against anthocyanin degradation during storage.

  14. Protective role of glutathione and glutathione-dependent enzymes in the male reproductive tract of the F-344 rat

    Energy Technology Data Exchange (ETDEWEB)

    Teaf, C.M.

    1985-01-01

    The purposes of this study were fourfold: to quantify GSH concentration and GSH-S-transferase activity in testis and epididymis of the F-344 rat; to screen selected compounds for capacity to depress GSH in male reproductive tissue; to determine the effect of pretreatment with agents which depress testicular/epididymal GSH on the dominant lethal (DL) mutagenic effect of ethyl methanesulfonate (EMS), which undergoes GSH-dependent metabolism; and to investigate the correlation between binding of radiolabelled EMS (/sup 3/H-EMS) and the temporal pattern of EMS-induced germ cell mutations. Cadmium (Cd), at a dosage which did not cause testicular necrosis was not effective in depressing GSH. Buthionine sulfoximine (BSO) depressed testicular and epididymal GSH to a minimum of 40% of concurrent controls in a time- and dose-dependent fashion. 1,2-dibromethane (EDB) depressed epididymal and testicular GSH in a dose-dependent fashion at 2 hours post-injection. Cd and EDB inhibited GSH-S transferase activity in edpididymis but no testis. Pretreatment of male F-344 rats with BSO or EDB potentiated the rate of EMS-induced DL mutations. The rate of /sup 3/H-EMS binding to isolated sperm heads was well correlated with the temporal pattern of DL mutations induced by EMS. BSO and EDB significantly increased /sup 3/H-EMS binding to sperm heads at time points during which potentiation of germ cell mutagenicity was observed. Data from these studies demonstrate that GSH depression is functionally correlated with enhancement of germ cell toxicity, establishing the importance of this biochemical protective mechanism GSH in male reproductive tissue.

  15. Interactions of [alpha,beta]-unsaturated carbonyl compounds with the glutathione-related biotransformation system

    NARCIS (Netherlands)

    Iersel, van M.L.P.S.

    1998-01-01

    Introduction
    Modulation of glutathione-related biotransformation steps may play a role in important phenomena as anticarcinogenicity and multidrug resistance. Glutathione-related biotransformation comprises three main aspects i.e. glutathione, the

  16. Role of exposed aromatic residues in substrate-binding of CBM family 5 chitin-binding domain of alkaline chitinase.

    Science.gov (United States)

    Uni, Fumiya; Lee, Sunmi; Yatsunami, Rie; Fukui, Toshiaki; Nakamura, Satoshi

    2009-01-01

    Chitinase J (ChiJ) from alkaliphilic Bacillus sp. strain J813 has a multidomain structure containing a catalytic domain (CatD), a fibronectin type III like domain (FnIIID) and a chitin-binding domain (ChBD). It has been shown that the ChBD binds to an insoluble chitin and enhances its degradation by the CatD. Further binding study of the ChBD was performed with a glutathione-S-transferase fusion protein. This fusion protein showed binding abilities to insoluble chitin and chitosan. Two surface-exposed aromatic residues (Trp541 and Trp542) were found in the tertiary-structure model of ChBD and targeted for mutational analysis. Single and double mutations of the two aromatic residues decreased the chitin- and chitosan-binding abilities. It was revealed that these residues would be important for substrate-binding of the ChBD.

  17. Comparison of plasma malondialdehyde, glutathione, glutathione peroxidase, hydroxyproline and selenium levels in patients with vitiligo and healthy controls

    Directory of Open Access Journals (Sweden)

    Ozturk I

    2008-01-01

    Full Text Available Background: The etiology and pathophysiologic mechanism of vitiligo are still unclear. The relationship between increased oxidative stress due to the accumulation of radicals and reactive oxygen species and the associated changes in blood and epidermal component of vitiliginous skin have been reported many times. We investigated the possible changes of plasma malondialdehyde, glutathione, selenium, hydroxyproline and glutathione peroxidase activity levels in patients with vitiligo in order to evaluate the relationship between oxidative stress and etiopathogenesis of vitiligo. Materials and Methods: Plasma malondialdehyde, glutathione, hydroxyproline and glutathione peroxidase activity levels were measured by spectrophotometric methods, and HPLC was used for measurement of selenium concentrations. Results: Our results showed increased malondialdehyde, hydroxyproline and glutathione peroxidase activity levels in plasma of vitiligo group ( P < 0.05. Conclusion: Support of antioxidant system via nonenzymatic antioxidant compounds and antioxidant enzymes may be useful to prevent of melanocyte degeneration which occur due to oxidative damage in vitiligo.

  18. Assessment of the impact of xenobiotic pollutants on the marine organisms: Molecular biomarker approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    ., 2005) which are very specific to the exposure to certain type of pollutants and more precisely whose application would benefit from commercial and biotechnological development point of view. Molecular Biomarkers Biomarker can be defined as ‘the... of the glutathione S-transferase (GST) family are composed of many cytosolic, mitochondrial, and microsomal proteins. They catalyze a variety of reactions and accept endogenous and xenobiotic substrates. GSTs catalyse the conjugation of reduced glutathione via...

  19. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Steiger, Matthias G; Patzschke, Anett; Holz, Caterina; Lang, Christine; Causon, Tim; Hann, Stephan; Mattanovich, Diethard; Sauer, Michael

    2017-06-01

    Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Glutathione imbalance in patients with X-linked adrenoleukodystrophy☆

    Science.gov (United States)

    Petrillo, Sara; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Aiello, Chiara; Pujol, Aurora; Cappa, Marco; Bertini, Enrico

    2013-01-01

    Background X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. Methods Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. Results A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. Conclusion Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease. PMID:23768953

  1. Glutathione imbalance in patients with X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Petrillo, Sara; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Aiello, Chiara; Pujol, Aurora; Cappa, Marco; Bertini, Enrico

    2013-08-01

    X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Labor Augmentation with Oxytocin Decreases Glutathione Level

    Directory of Open Access Journals (Sweden)

    Naomi Schneid-Kofman

    2009-01-01

    Full Text Available Objective. To compare oxidative stress following spontaneous vaginal delivery with that induced by Oxytocin augmented delivery. Methods. 98 women recruited prior to labor. 57 delivered spontaneously, while 41 received Oxytocin for augmentation of labor. Complicated deliveries and high-risk pregnancies were excluded. Informed consent was documented. Arterial cord blood gases, levels of Hematocrit, Hemoglobin, and Bilirubin were studied. Glutathione (GSH concentration was measured by a spectroscopic method. Plasma and red blood cell (RBC levels of Malondialdehyde indicated lipid peroxidation. RBC uptake of phenol red denoted cell penetrability. SPSS data analysis was used. Results. Cord blood GSH was significantly lower in the Oxytocin group (2.3±0.55 mM versus 2.55±0.55 mM, =.01. No differences were found in plasma or RBC levels of MDA or in uptake of Phenol red between the groups. Conclusion. Lower GSH levels following Oxytocin augmentation indicate an oxidative stress, though selected measures of oxidative stress demonstrate no cell damage.

  3. Glutathione content in sperm cells of infertile men

    Directory of Open Access Journals (Sweden)

    R. V. Fafula

    2017-04-01

    Full Text Available Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoosper­mics and 33 leucocytospermic were used. The total, oxidized (GSSG and reduced (GSH glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential

  4. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K; Ramachandran, V; Eapen, Susan

    2011-01-21

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and in limiting Cd availability

  5. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  6. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  7. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2012-11-01

    Full Text Available The Zucker diabetic fatty (ZDF rat is a genetic model in which the homozygous (FA/FA male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old rat heart compared to age matched Zucker lean (ZL controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats. An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention.

  8. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    Science.gov (United States)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  9. Import and metabolism of glutathione by Streptococcus mutans.

    Science.gov (United States)

    Sherrill, C; Fahey, R C

    1998-03-01

    Glutathione (gamma-GluCysGly, GSH) is not found in most gram-positive bacteria, but some appear to synthesize it and others, including Streptococcus mutans ATCC 33402, import it from their growth medium. Import of oxidized glutathione (GSSG) by S. mutans 33402 in 7H9 medium was shown to require glucose and to occur with an apparent Km of 18+/-5 microM. GSSG, GSH, S-methylglutathione, and homocysteine-glutathione mixed disulfide (hCySSG) were imported at comparable rates (measured by depletion of substrate in the medium), as was the disulfide of gamma-GluCys. In contrast, the disulfide of CysGly was not taken up at a measurable rate, indicating that the gamma-Glu residue is important for efficient transport. During incubation with GSSG, little GSSG was detected in cells but GSH and gamma-GluCys accumulated during the first 30 min and then declined. No significant intracellular accumulation of Cys or sulfide was found. Transient intracellular accumulation of D/L-homocysteine, as well as GSH and gamma-GluCys, was observed during import of hCySSG. Although substantial levels of GSH were found in cells when S. mutans was grown on media containing glutathione, such GSH accumulation had no effect on the growth rate. However, the presence of cellular GSH did protect against growth inhibition by the thiol-oxidizing agent diamide. Import of glutathione by S. mutans ATCC 25175, which like strain 33402 does not synthesize glutathione, occurred at a rate comparable to that of strain 33402, but three species which appear to synthesize glutathione (S. agalactiae ATCC 12927, S. pyogenes ATCC 8668, and Enterococcus faecalis ATCC 29212) imported glutathione at negligible or markedly lower rates.

  10. Subcellular distribution of glutathione and cysteine in cyanobacteria

    OpenAIRE

    Zechmann, Bernd; Tomašić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-01-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine,...

  11. Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Sasaki, Kengo; Hara, Kiyotaka Y; Kawaguchi, Hideo; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe.

    Science.gov (United States)

    Liu, Chang-Hui; Qi, Feng-Pei; Wen, Fu-Bin; Long, Li-Ping; Liu, Ai-Juan; Yang, Rong-Hua

    2018-01-19

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  13. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  14. Ethnic diversity in a critical gene responsible for glutathione synthesis.

    Science.gov (United States)

    Willis, Alecia S; Freeman, Michael L; Summar, Samantha R; Barr, Frederick E; Williams, Scott M; Dawson, Elliott; Summar, Marshall L

    2003-01-01

    The tripeptide glutathione is an important biomolecule that acts as a scavenger of free radicals and plays a role in a number of other cellular processes. A number of diseases, including Parkinson's disease, cancer, sickle cell anemia, and HIV infection, are thought to involve oxidative stress and depletion of glutathione. The heterodimeric enzyme glutamate cysteine ligase catalyzes the first, rate-limiting step in the de novo synthesis of glutathione. Functional polymorphisms within the gene encoding the subunits of glutamate cysteine ligase have the potential to affect the body's capacity to synthesize glutathione and thus, may affect those diseases in which oxidative stress and glutathione have roles. We undertook systematic screening for polymorphisms within the exons and intronic flanking sequences of the gene encoding the catalytic subunit of glutamate cysteine ligase (GCLC). We identified 11 polymorphisms in GCLC and established allele frequencies for those polymorphisms in a population fitting the demographics of the middle Tennessee area. The nonsynonymous polymorphism C1384T was found only in individuals of African descent. In addition, allele frequencies for three other polymorphisms differ between Caucasians and African-Americans. Understanding these polymorphisms may lead to better understanding of diseases where glutathione is important so that better treatments may be developed.

  15. Do diosgenin ameliorate urinary bladder toxic effect of ...

    African Journals Online (AJOL)

    SWEET

    2012-01-26

    Jan 26, 2012 ... controls, the CP-treated animals underwent significant decrease in the glutathione S-transferase (GST), glutathione reductase (GR) ... GST, glutathione S-transferase; GP, glutathione peroxidase;. CAT, catalase; GSH, reduced ... medicine in the Indian subcontinent to treat diabetes, high cholesterol, wounds ...

  16. Tumor suppressor function of the plasma glutathione peroxidase Gpx3 in colitis-associated carcinoma

    Science.gov (United States)

    Barrett, Caitlyn W.; Ning, Wei; Chen, Xi; Smith, J. Joshua; Washington, Mary K; Hill, Kristina E.; Coburn, Lori A.; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.; Burk, Raymond F.; Williams, Christopher S.

    2012-01-01

    The glutathione peroxidases, a family of selenocysteine-containing redox enzymes, play pivotal roles in balancing the signaling, immunomodulatory and deleterious effects of reactive oxygen species (ROS). The glutathione peroxidase GPX3 is the only extracellular member of this family, suggesting it may defend cells against ROS in the extracellular environment. Notably, GPX3 hypermethylation and underexpression occurs commonly in prostate, gastric, cervical, thyroid and colon cancers. We took a reverse genetics approach to investigate whether GPX3 would augment inflammatory colonic tumorigenesis, a process characterized by oxidative stress and inflammation, comparing Gpx3−/− mice established two-stage model of inflammatory colon carcinogenesis. Gpx3-deficient mice exhibited an increased tumor number, though not size, along with a higher degree of dysplasia. Additionally, they exhibited increased inflammation with redistribution towards pro-tumorigenic M2 macrophage subsets, increased proliferation, hyperactive WNT signaling, and increased DNA damage. To determine the impact of acute gene loss in an established colon cancer line, we silenced GPX3 in human Caco2 cells, resulting in increased ROS production, DNA damage and apoptosis in response to oxidative stress, combined with decreased contact-independent growth. Taken together, our results suggested an immunomodulatory role for GPX3 that limits the development of colitis-associated carcinoma. PMID:23221387

  17. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Albumin-gold-glutathione is a probable auranofin metabolite

    International Nuclear Information System (INIS)

    Shaw, C.F. III; Coffer, M.; Isab, A.A.

    1989-01-01

    The newly licensed gold drug, auranofin ((2,3,4,6-tetra-O-acetyl-β-1-D-gluco-pyranosato-S-)triethylphoshine-gold(I)) crosses cell membranes and enters cells which are inaccessible to parenteral gold drugs. In vivo, the triethylphosphine ligand and gold of auranofin, but not the thio-sugar moiety, accumulate in and subsequently efflux from red blood cells (RBCs). Extracellular albumin increases in the extent of gold efflux and acts as a gold binding site. The rate of efflux is first-order in RBC gold concentration. Studies using RBCs in which labelled [ 14 C]-glutathione is generated in situ incorporation of [ 14 C]- glycine demonstrate that glutathione also effluxes from the RBCs and forms a gold-glutathione-albumin complex. This may be the immunopharmacologically active complex

  19. Glutathione synthesis is compromised in erythrocytes from individuals with HIV

    Directory of Open Access Journals (Sweden)

    Vishwanath eVenketaraman

    2014-04-01

    Full Text Available We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH such as glutathione synthase (GSS, glutamate-cysteine ligase-catalytic subunit (GCLC and glutathione reductase (GSR were significantly reduced in the red blood cells (RBCs isolated from individuals with human immunodeficiency virus (HIV infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals’ is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients’ indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells.

  20. Structural plasticity among glutathione transferase Phi members: natural combination of catalytic residues confers dual biochemical activities.

    Science.gov (United States)

    Pégeot, Henri; Mathiot, Sandrine; Perrot, Thomas; Gense, Frédéric; Hecker, Arnaud; Didierjean, Claude; Rouhier, Nicolas

    2017-08-01

    The glutathione transferase (GST) gene family is divided into 14 classes in photosynthetic organisms. Among them, the Phi class (GSTF) is composed of a large number of genes that are often induced in response to environmental constraints due to their ability to detoxify xenobiotics, to their peroxidase activity and to their involvement in the biosynthesis and/or transport of secondary metabolites. However, the exact functions of GSTFs from many plants including Populus trichocarpa are unknown. Here, following GSTF1 characterization, we have performed a comparative analysis of the seven other GSTFs found in poplar by systematically evaluating the biochemical and enzymatic properties of the corresponding recombinant proteins and of variants mutated for active site residues and by determining the three-dimensional structures of several representatives. Owing to the presence of a cysteine with a pK a value around 5 in their active site, GSTF3, F7, and F8 displayed a thiol transferase activity in addition to the usual glutathione transferase and peroxidase activities. From structural analyses, it appeared that these dual biochemical properties originate from the existence of a certain variability in the β1-α1 loop. This allows positioning of several active site residues at proximity of the glutathione molecule, which itself remains unchanged in GSTF three-dimensional structures. These results highlight the promiscuity of some GSTFs and that changes of active site residues in some isoforms during evolution generated functional diversity by modifying their activity profile. Structural data are available in the PDB under the accession numbers 5EY6, 5F05, 5F06, and 5F07. © 2017 Federation of European Biochemical Societies.

  1. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?

    Science.gov (United States)

    Başak, K; Başak, P Y; Doğuç, D K; Aylak, F; Oğuztüzün, S; Bozer, B M; Gültekin, F

    2017-10-01

    Glutathione-S-transferase (GST) and cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) metabolize and detoxify carcinogens, drugs, environmental pollutants, and reactive oxygen species. Changes of GST expression in tissues and gene mutations have been reported in association with many neoplastic skin diseases and dermatoses. Widely used artificial food coloring additives (AFCAs) also reported to effect primarily behavioral and cognitive function and cause neoplastic diseases and several inflammatory skin diseases. We aimed to identify the changes in expression of GSTs, CYP1A1, and vascular endothelial growth factor (VEGF) in rat skin which were maternally exposed AFCAs. A rat model was designed to evaluate the effects of maternal exposure of AFCAs on skin in rats. "No observable adverse effect levels" of commonly used AFCAs as a mixture were given to female rats before and during gestation. Immunohistochemical expression of GSTs, CYP1A1, and VEGF was evaluated in their offspring. CYP1A1, glutathione S-transferase pi (GSTP), glutathione S-transferase alpha (GSTA), glutathione S-transferase mu (GSTM), glutathione S-transferase theta (GSTT), and VEGF were expressed by epidermal keratinocytes, dermal fibroblasts, sebaceous glands, hair follicle, and subcutaneous striated muscle in the normal skin. CYP1A1, GSTA, and GSTT were expressed at all microanatomical sites of skin in varying degrees. The expressions of CYP1A1, GSTA, GSTT, and VEGF were decreased significantly, while GSTM expression on sebaceous gland and hair follicle was increased. Maternal exposure of AFCAs apparently effects expression of the CYP1A1, GSTs, and VEGF in the skin. This prominent change of expressions might play role in neoplastic and nonneoplastic skin diseases.

  2. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    Science.gov (United States)

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  3. Two novel phospholipid hydroperoxide glutathione peroxidase genes of Paragonimus westermani induced by oxidative stress.

    Science.gov (United States)

    Kim, S-H; Cai, G-B; Bae, Y-A; Lee, E-G; Lee, Y-S; Kong, Y

    2009-04-01

    Phospholipid hydroperoxide glutathione peroxidase (PHGPx; GPx4) plays unique roles in the protection of cells against oxidative stress by catalysing reduction of lipid hydroperoxides. We characterized 2 novel GPx genes from a lung fluke, Paragonimus westermani (designated PwGPx1 and PwGPx2). These single copy genes spanned 6559 and 12 371 bp, respectively, and contained each of 5 intervening introns. The PwGPx2 harboured a codon for Sec and a Sec insertion sequence motif. Proteins encoded by the Paragonimus genes demonstrated a primary structure characteristic to the PHGPx family, including preservation of catalytic and glutathione-binding domains and absence of the subunit interaction domain. Expression of PwGPx1 increased gradually as the parasite matured, whereas that of PwGPx2 was temporally regulated. PwGPx2 was expressed at the basal level from the metacercariae to the 3-week-old juveniles; however, the expression was significantly induced in the 7-week-old immature worms and reached a plateau in the 12-week-old adults and eggs. PwGPx1 and PwGPx2 were largely localized in vitellocytes within vitelline glands and eggs. Oxidative stress-inducible paraquat, juglone and H2O2 substantially augmented the PwGPx1 and PwGPx2 expressions in viable worms by 1.5- to 11-fold. Our results strongly suggested that PwGPxs may actively participate in detoxification of oxidative hazards in P. westermani.

  4. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-01-01

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  5. 21 CFR 862.1365 - Glutathione test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  6. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Key words: Lead acetate, glutathione (GSH), dithiobisdinitrobenzoic acid (DTNB), plasma and cytosolic ... fraction. Control containing 1 ml of venous blood and 1 ml of 0.9%. NaCl solution was also centrifuged for isolation of plasma. The packed cells were .... altered fatty acid composition of membranes?

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... reductase deficiency, or riboflavin deficiency. (b) Classification. Class II (performance standards). [45 FR...

  8. State of the glutathione system at different periods after irradiation

    International Nuclear Information System (INIS)

    Petushok, N.; Trebukhina, R.

    1997-01-01

    The effect of the 3-fold irradiation on the glutatione system was studied. Activation of these system was shown to take place at early terms (1 hour) after irradiation, then it was exhausted that resulted in accumulation of lipid peroxidation products in blood. This phase changes in glutathione system could be correspond to certain stages of stress-syndrome. (author)

  9. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  10. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  11. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sylke Müller

    2015-06-01

    Full Text Available Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.

  12. (Monodora myristica) on reduced glutathione, uric acid levels

    African Journals Online (AJOL)

    This study investigated the effect of the methanolic extract of. Aframomum sceptrum and Monodora myristica on the reduced glutathione (GSH) and uric acid levels in the plasma and liver of streptozotocin (STZ)-induced-diabetic rats. The possible hepatic damage resulting from the administration of the spices was also

  13. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    Lead has been found to have the ability to interfere in the metabolism and biological activities of many proteins. It has also been found that metalloelements have strong affinity for sulfhydryl (-SH) groups in biological molecules including glutathione (GSH) in tissues. Because of these facts, it was of interest to investigate ...

  14. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... proteins. It has also been found that metalloelements have strong affinity for sulfhydryl (-SH) groups in biological molecules including glutathione (GSH) in tissues. Because of these facts, it was of interest to investigate further the interaction of lead acetate [Pb (CH3COO)2] with GSH as a biomarker of toxicity.

  15. DOES GLUTATHIONE PLAY A ROLE IN FREEZING TOLERANCE OF PLANTS

    NARCIS (Netherlands)

    Stuiver, C.E.E.; De Kok, Luit J.; Kuiper, P.J.C.

    1992-01-01

    During low temperature hardening enhanced levels of glutathione (GSH) are generally observed in plant shoots and are often related to the development of freezing tolerance. The present communication shows that there is no direct relation between an increased GSH content and freezing tolerance of

  16. Role of the ascorbate-glutathione cycle during senescence and ...

    African Journals Online (AJOL)

    Programmed cell death is an integral part of normal plant development including leaf senescence. This study investigated the response of some component of ascorbate-glutathione cycle, chlorophylls.a & b, protein content, and membrane leakage during the developmental stages of Phaseolus cotyledons from imbibition till ...

  17. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation.

    Science.gov (United States)

    Dethmers, J K; Meister, A

    1981-12-01

    Glutathione (in the form of GSH) is transported out of cultured human lymphoid cells at rates proportional to the intracellular glutathione levels. Inhibition of glutathione synthesis by buthionine sulfoximine, a potent selective inhibitor of gamma-glutamylcysteine synthetase, leads to exponential decrease in intracellular glutathione, a large fraction of which appears extracellularly, indicating that glutathione turnover is associated with its export. Although cells with 0.09 mM glutathione (4% of controls) were 85% viable, further decrease was associated with marked loss of viability. Cells with 4-5% of control glutathione levels were much more sensitive than control cells to the effects of gamma radiation and of 5,5'-dithiobis(2-nitrobenzoate). Depletion of glutathione by use of buthionine sulfoximine has advantages over other reagents (such as diamide, other oxidizing agents, and diethylmaleate, which affect other cellular components and may increase glutathione disulfide levels) and therefore has potential usefulness in sensitizing cells to the effects of radiation and to therapeutic agents that are detoxified by reactions involving glutathione.

  18. The influence of the technogenic pollution on the system of glutathione of the animals

    Directory of Open Access Journals (Sweden)

    A. K. Mikhailenko

    2009-01-01

    Full Text Available Monitoring the state of the glutathione system in blood of sheep in the area of technogenic pollution revealed the significant changes in the concentration of common glutathione and its fractions (reduced and oxidized.

  19. Effects of reduced glutathion and vitamin c on cisplatin-induced ...