WorldWideScience

Sample records for glutamate-induced membrane depolarization

  1. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Science.gov (United States)

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    Science.gov (United States)

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  3. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  4. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  5. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  6. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  7. Neuroprotective effects of α-iso-cubebenol on glutamate-induced neurotoxicity.

    Science.gov (United States)

    Park, Sun Young; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2015-09-01

    α-Iso-cubebenol is a natural compound isolated from Schisandra chinensis, and is reported to have beneficial bioactivity including anti-inflammatory and anti-tumor activities. Glutamate-induced oxidative neuronal damage has been implicated in a variety of neurodegenerative disorders. Here we investigated the mechanisms of α-iso-cubebenol protection of mouse hippocampus-derived neuronal cells (HT22 cells) from apoptotic cell death induced by the major excitatory neurotransmitter, glutamate. Pretreatment with α-iso-cubebenol markedly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase), in a dose-dependent manner. α-Iso-cubebenol significantly reduced glutamate-induced intracellular reactive oxygen species and calcium accumulation. Strikingly, α-iso-cubebenol inhibited glutamate-induced mitochondrial depolarization, which releases apoptosis-inducing factor from mitochondria. α-Iso-cubebenol also suppressed glutamate-induced phosphorylation of extracellular-signal-regulated kinases. Furthermore, α-iso-cubebenol induced CREB phosphorylation and Nrf-2 nuclear accumulation and increased the promoter activity of ARE and CREB in HT22 cells. α-Iso-cubebenol also upregulated the expression of phase-II detoxifying/antioxidant enzymes such as HO-1 and NQO1. Subsequent studies revealed that the inhibitory effects of α-iso-cubebenol on glutamate-induced apoptosis were abolished by small interfering RNA-mediated knockdown of CREB and Nrf-2. These findings suggest that α-iso-cubebenol prevents excitotoxin-induced oxidative damage to neurons by inhibiting apoptotic cell death, and might be a potential preventive or therapeutic agent for neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  9. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes.

    Science.gov (United States)

    Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H

    2001-03-09

    Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.

  10. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  11. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  12. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    Science.gov (United States)

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  13. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells

    Directory of Open Access Journals (Sweden)

    Gábor J. Szebeni

    2017-10-01

    Full Text Available Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549, hepatocellular carcinoma (HepG2 and pancreatic cancer cell line (PANC-1. Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER and the up-regulation of ER stress-related unfolded protein response (UPR genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  14. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells.

    Science.gov (United States)

    Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G

    2017-10-07

    Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  15. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  16. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    Science.gov (United States)

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding.

  18. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  19. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells.

    Science.gov (United States)

    Lv, Chao; Yuan, Xing; Zeng, Hua-Wu; Liu, Run-Hui; Zhang, Wei-Dong

    2017-11-15

    Cinnamaldehyde is a main ingredient of cinnamon oils from the stem bark of Cinnamomum cassia, which has been widely used in food and traditional herbal medicine in Asia. In the present study, the neuroprotective effects and the potential mechanisms of cinnamaldehyde against glutamate-induced oxidative stress in PC12 cells were investigated. Exposure to 4mM glutamate altered the GSH, MDA levels and SOD activity, caused the generation of reactive oxygen species, resulted in the induction of oxidative stress in PC12 cell, ultimately induced cell death. However, pretreatment with cinnamaldehyde at 5, 10 and 20μM significantly attenuated cell viability loss, reduced the generation of reactive oxygen species, stabilised mitochondrial membrane potential (MMP), decreased the release of cytochrome c and limited the activities of caspase-9 and -3. In addition, cinnamaldehyde also markedly increased Bcl-2 while inhibiting Bax expression,and decreased the LC3-II/LC3-I ratio. These results indicate that cinnamaldehyde exists a potential protective effect against glutamate-induced oxidative stress and apoptosis in PC12 cells. Copyright © 2017. Published by Elsevier B.V.

  20. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    International Nuclear Information System (INIS)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H.

    2007-01-01

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 μM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 μM. Short-term exposure to sanguinarine (> 0.5 μM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 μM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 μM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death

  1. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF.

    Science.gov (United States)

    Brown, Sean G; Publicover, Stephen J; Mansell, Steven A; Lishko, Polina V; Williams, Hannah L; Ramalingam, Mythili; Wilson, Stuart M; Barratt, Christopher L R; Sutton, Keith A; Da Silva, Sarah Martins

    2016-06-01

    Are significant abnormalities in outward (K(+)) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K(+) channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K(+) channels in human spermatozoa or the incidence and functional consequences of K(+) channel defects. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca(2+) influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K(+) signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. Patch clamp electrophysiology was used to assess outward (K

  2. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  3. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    Science.gov (United States)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  4. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    International Nuclear Information System (INIS)

    Bridelli, M G; Capelletti, R; Mora, C

    2013-01-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100–300 K (type I) and 100–285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (a w  = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH 2 /CH 3 , PO 2 − and C=O) absorption bands as a function of increasing hydration level were monitored and discussed. (paper)

  5. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  6. Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance.

    Science.gov (United States)

    Verstraeten, Natalie; Knapen, Wouter Joris; Kint, Cyrielle Ines; Liebens, Veerle; Van den Bergh, Bram; Dewachter, Liselot; Michiels, Joran Elie; Fu, Qiang; David, Charlotte Claudia; Fierro, Ana Carolina; Marchal, Kathleen; Beirlant, Jan; Versées, Wim; Hofkens, Johan; Jansen, Maarten; Fauvart, Maarten; Michiels, Jan

    2015-07-02

    Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction.

    Science.gov (United States)

    Kim, Mi Hye; Min, Ju-Sik; Lee, Joon Yeop; Chae, Unbin; Yang, Eun-Ju; Song, Kyung-Sik; Lee, Hyun-Shik; Lee, Hong Jun; Lee, Sang-Rae; Lee, Dong-Seok

    2017-04-27

    Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.

  8. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    Science.gov (United States)

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  10. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  11. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  12. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Romain Helleringer

    2017-11-01

    Full Text Available During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD. Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

  13. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  14. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u...

  15. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway.

    Science.gov (United States)

    Son, Tae Gen; Kawamoto, Elisa M; Yu, Qian-Sheng; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta

    2013-04-19

    Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity. Published by Elsevier Inc.

  16. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Xiaohui Bai

    2016-01-01

    Full Text Available Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family.

  17. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    Science.gov (United States)

    Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian

    2016-01-01

    Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345

  18. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  19. Curcumin Protects Neurons from Glutamate-Induced Excitotoxicity by Membrane Anchored AKAP79-PKA Interaction Network

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2015-01-01

    Full Text Available Now stimulation of AMPA receptor as well as its downstream pathways is considered as potential central mediators in antidepressant mechanisms. As a signal integrator which binds to AMPA receptor, A-kinase anchoring protein 79-(AKAP79- PKA complex is regarded as a potential drug target to exert neuroprotective effects. A well-tolerated and multitarget drug curcumin has been confirmed to exert antidepressant-like effects. To explore whether AKAP79-PKA complex is involved in curcumin-mediated antiexcitotoxicity, we detected calcium signaling, subcellular location of AKAP79-PKA complex, phosphorylation of glutamate receptor, and ERK and AKT cascades. In this study, we found that curcumin protected neurons from glutamate insult by reducing Ca2+ influx and blocking the translocation of AKAP79 from cytomembrane to cytoplasm. In parallel, curcumin enhanced the phosphorylation of AMPA receptor and its downstream pathways in PKA-dependent manner. If we pretreated cells with PKA anchoring inhibitor Ht31 to disassociate PKA from AKAP79, no neuroprotective effects were observed. In conclusion, our results show that AKAP79-anchored PKA facilitated the signal relay from AMPA receptor to AKT and ERK cascades, which may be crucial for curcumin-mediated antiexcitotoxicity.

  20. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  1. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    International Nuclear Information System (INIS)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-01-01

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  2. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  3. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-01-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: →PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. →PQQ inhibited glutamate-induced Ca 2+ influx and caspase-3 activity. →PQQ reduced glutamate-induced increase in ROS production. →PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. →PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  4. Effects of aromatic amino acids on glutamate-induced neuronal cell death

    International Nuclear Information System (INIS)

    Zafar, Z.; Sumners, C.

    2005-01-01

    Glutamate accumulation is believed to lead to overstimulation of glutamate receptors which results in neuronal death. The protective effects of aromatic amino acids on glutamate induced neuronal cell death were examined using rat cerebral cortical neurons. Neuronal death is quantified by measuring lactate dehydrogenase (LDH) using a spectrophotometric microtiter plate reader (ELISA reader). Neuronal cells were incubated with varying doses of glutamate plus or minus the aromatic amino acid D-Phenylalanine (D-Phe) for different time periods to observe protection against cytotoxicity. Percent cytotoxicity was seen to follow a dose dependent rise with increasing concentrations of glutamate, reaching a plateau at around 100 -500 uM glutamate. Lower levels of cytotoxicity were achieved with cell exposed to D-Phe and Dibromo tyrosine (DBrT). 48-hour experimental runs were also carried out to further investigate the mode of action of D-Phe. It was found that the difference between cytotoxicity levels of control cells and protected cells was higher over longer time. (author)

  5. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    Science.gov (United States)

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1993-01-01

    differences in the mode of action of the two depolarizing stimuli were reflected in the properties of the increase in [Ca++]i elicited by 55 mM K+ and 100 microM glutamate, respectively. The K(+)-induced increase in [Ca++]i was reduced by both verapamil and Ca(++)-free media whereas the corresponding...... neurotransmitter glutamate (100 microM). Both depolarizing stimuli exerted prompt increases in the release of preloaded [3H]GABA as well as in [Ca++]i. However, the basic properties of transmitter release and the increase in [Ca++]i under a variety of conditions were different during stimulation with K...... was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  7. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  8. Depolarization on Earth-space paths

    Science.gov (United States)

    1981-01-01

    Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.

  9. Anti-glycophorin C induces mitochondrial membrane depolarization and a loss of extracellular regulated kinase 1/2 protein kinase activity that is prevented by pretreatment with cytochalasin D: implications for hemolytic disease of the fetus and newborn caused by anti-Ge3.

    Science.gov (United States)

    Micieli, Jonathan A; Wang, Duncheng; Denomme, Gregory A

    2010-08-01

    Anti-glycophorin C (GPC), blood group antibodies of which cause hemolytic disease of the fetus and newborn (HDFN), is a potent inhibitor of erythroid progenitor cell growth. The cellular mechanism for growth inhibition has not been characterized. K562 cells were incubated in the presence of either anti-GPC, an immunoglobulin G isotype control, an inhibitor of actin polymerization called cytochalasin D with anti-GPC, or cytochalasin D alone. The JC-1 cationic dye was used to detect mitochondrial depolarization and the activity of the mitogen-activated protein kinases was assessed by Western blotting. Anti-GPC inhibits the activity of extracellular regulated kinase (ERK)1/2 within 10 minutes but does not alter the activity of p38 or c-Jun N-terminal kinase. After 24 hours there was a significant loss of mitochondrial membrane potential compared to isotype control–treated cells. Both the ERK1/2 inhibition and the loss of mitochondrial potential were prevented by pretreatment with cytochalasin D. A cell surface antibody can cause anemia by altering the signaling pathways in erythroid cells by promoting depolarization of mitochondria via cytoskeletal rearrangement. The observation that neonates with anti-GPC HDFN are unresponsive to erythropoietin can be explained by the antibody inhibiting a protein kinase through which this hematopoietic growth factor achieves its effects.

  10. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  11. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    Science.gov (United States)

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10

  12. Effects of Angelica Oil and the Isolated Butylphthalides on Glutamate-induced Neurotoxicity in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Lu-Si Liu

    2017-03-01

    Full Text Available Angelica sinensis contains a large amount of essential oil (angelica oil, which is rich in phthalide derivatives with a lot of bioactivities. In vitro activity screening of angelica oil from the roots of A. sinensis found that it had concentration-dependent effect on glutamate-induced injury in PC12 cells. Further phytochemical investigation on this angelica oil led to the isolation of nine butylphthalides (1 –9 including two new compounds (1 and 2. Their structures were elucidated by extensive spectroscopic analyses. It is noteworthy that most of the isolated butylphthalides also displayed protective activity at low concentrations and cytotoxicity at high concentrations. These results imply that angelica oil and its main chemical components have protective effect for injured neurons only in appropriate concentration range.

  13. Quantum Stackelberg Duopoly Game in Depolarizing Channel

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang Leman

    2008-01-01

    In this paper, we investigate the quantum Stackelberg duopoly (QSD) game in the noise environment with the depolarizing channel expressed by the Kraus-operator representation. It is found that the presence of the damping in the depolarizing channel always leads to the decrease of the quantities of the moves and payoffs of the two players in the QSD game. It is indicated that under certain conditions the first-mover advantage in the QSD game can be weakened due to the presence of the damping in the depolarizing channel.

  14. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha, also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6 and human neuroblastoma (IMR-32 cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  16. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    DEFF Research Database (Denmark)

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species...

  17. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  18. First Observation of a Snake Depolarizing Resonance

    International Nuclear Information System (INIS)

    Phelps, R.; Anferov, V.; Blinov, B.; Crandell, D.; Koutin, S.; Krisch, A.; Liu, T.; Ratner, L.; Wong, V.; Chu, C.; Lee, S.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.; von Przewoski, B.; Sato, H.

    1997-01-01

    Using a 104MeV stored polarized proton beam and a full Siberian snake, we recently found evidence for a so-called open-quotes snakeclose quotes depolarizing resonance. A full Siberian snake forces the spin tune ν s to be a half integer. Thus, if the vertical betatron tune ν y is set near a quarter integer, then the ν s =n±2ν y second-order snake resonance can depolarize the beam. Indeed, with a full Siberian snake, we found a deep depolarization dip when ν y was equal to 4.756; moreover, when ν y was changed to 4.781, the deep dip disappeared and the polarization was preserved. copyright 1997 The American Physical Society

  19. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  20. Alkaloids from the hook-bearing branch of Uncaria rhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death

    Science.gov (United States)

    Qi, Wen; Yue, Si-Jia; Sun, Jia-Hong; Simpkins, James W.; Zhang, Lin; Yuan, Dan

    2015-01-01

    One new alkaloid, 4-geissoschizine N-oxide methyl ether (1), was isolated from the EtOH extract of the hook-bearing branch of Uncaria rhynchophylla, together with 10 known alkaloids, 3-epi-geissoschizine methyl ether (2) isolated from U. rhynchophylla for the first time, geissoschizine methyl ether (3), 4-hirsuteine N-oxide (4), hirsuteine (5), hirsutine (6), 3α-dihydro-cadambine (7), 3β-isodihydro-cadambine (8), cadambine (9), strictosamide (10), and akuammigine (11). The structures were elucidated by spectroscopic methods including UV, ESI-QTOF MS, NMR, and circular dichroism experiments. Neuroprotective effects of 1–9 were investigated against 3 mM glutamate-induced HT22 cell death. The activity assay showed that 2, 3, 5, and 6 exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, only weak neuroprotective activities were observed for 1, 4, 7, 8, and 9. PMID:24899363

  1. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    International Nuclear Information System (INIS)

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases

  2. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    Science.gov (United States)

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-07-11

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases.

  3. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China); Guo, T.Q. [School of Life Sciences, Jilin University, Changchun (China); Wang, Z.Y. [State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun (China); Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J. [School of Life Sciences, Jilin University, Changchun (China); Zhang, X.L. [Faculty of ScienceNational University of Singapore (Singapore); Liu, Y. [School of Life Sciences, Jilin University, Changchun (China); Teng, L.S. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China)

    2014-07-25

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

  4. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  5. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  6. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care

    DEFF Research Database (Denmark)

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk

    2017-01-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly r...

  7. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  8. A scattering model for rain depolarization

    Science.gov (United States)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  9. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  10. Correction of Depolarizing Resonances in ELSA

    Science.gov (United States)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  11. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  12. μ+ depolarization in AlGd alloys

    International Nuclear Information System (INIS)

    Kohn, S.; Brown, J.A.; Heffner, R.H.; Huang, C.Y.; Kitchens, T.A. Jr.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1979-01-01

    The μ + depolarization rate in dilute AlGd alloys containing 50 and 450 atomic ppm Gd was measured in a transverse field of 80 Oe over the temperature range 6-300 K. For both alloys, Λ increased dramatically above 200 K, reaching values of 0.69 and 0.93 μs -1 , respectively, near room temperature. The results are interpreted as providing evidence for a thermally-activated trapping mechanism. (Auth.)

  13. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  14. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  15. Depolarization affects lateral microdomain structure of yeast plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Herman, P.; Večeř, J.; Opekarová, Miroslava; Veselá, Petra; Jančíková, I.; Zahumenský, J.; Malínský, Jan

    2015-01-01

    Roč. 282, č. 3 (2015), s. 419-434 ISSN 1742-464X R&D Projects: GA ČR GAP205/12/0720 Institutional support: RVO:68378041 Keywords : gel microdomains * lipid order * transmembrane potential Subject RIV: EA - Cell Biology Impact factor: 4.237, year: 2015

  16. Estimating Depolarization with the Jones Matrix Quality Factor

    Science.gov (United States)

    Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans

    2017-11-01

    Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.

  17. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells. Exposure (30 min) of energy deprived cells to L-glutamate (1-100 microM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 microM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine). Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 microM (EC100) L-glutamate with the rank order (EC50 in microM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole](101)>RX82 1002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors. Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding. In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10-12 microM at 0 mV. It is concluded that imidazol(ine) drugs and agmatine are

  18. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    Science.gov (United States)

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  19. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  20. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  1. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri......-contusional cortex in 32 patients who underwent surgical treatment for TBI. Prospective electrocorticography was performed during neurointensive care with retrospective analysis of hourly nursing chart data. Recordings were 84 hr (median) per patient and 2,503 hr in total. In 17 patients (53%), 280 spreading...... depolarizations (spreading depressions and peri-infarct depolarizations) were observed. Depolarizations occurred in a bimodal pattern with peak incidence on days 1 and 7. The probability of a depolarization occurring increased significantly as a function of declining mean arterial pressure (MAP; R(2) = 0.78; p...

  2. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  3. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  4. Strong Resilience of Topological Codes to Depolarization

    Directory of Open Access Journals (Sweden)

    H. Bombin

    2012-04-01

    Full Text Available The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3% when noise correlations are taken into account. Remarkably, this result agrees within error bars with the result for a different class of codes—topological color codes—where the mapping yields interesting new types of interacting eight-vertex models.

  5. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  6. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  7. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    DEFF Research Database (Denmark)

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...

  8. Depolarization Lidar Determination of Cloud-Base Microphysical Properties

    NARCIS (Netherlands)

    Donovan, D.P.; Klein Baltink, H; Henzing, J. S.; de Roode, S.R.; Siebesma, A.P.

    2016-01-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud

  9. Depolarization of ultracold neutrons during their storage in material bottles

    International Nuclear Information System (INIS)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U.

    2003-01-01

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to ∼(1-2)x10 -5 per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed

  10. Depolarization of ultracold neutrons during their storage in material bottles

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U

    2003-07-14

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to {approx}(1-2)x10{sup -5} per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed.

  11. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    Science.gov (United States)

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. © 2015 Wiley Periodicals, Inc.

  12. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    Science.gov (United States)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  14. STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm. In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle,refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  15. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry

    International Nuclear Information System (INIS)

    Li, Weiqi; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Liu, Shiyuan

    2016-01-01

    Noticeable depolarization effects are observed in the measurement of the air using an in-house developed dual rotating-compensator Mueller matrix ellipsometer. We demonstrate that these depolarization effects are essentially artifacts and mainly induced when the compensator with wavelength-dependent optical properties is integrated with the finite bandwidth detector. We define a general formula to represent the actual Mueller matrix of the compensator by taking into account the depolarization artifacts. After incorporating this formula into the system model, a correction method is further proposed, and consequently, improved accuracy can be achieved in the Mueller matrix measurement. (paper)

  16. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  17. Protective Effect of Water Extracted Spirulina maxima on Glutamate-induced Neuronal Cell Death in Mouse Hippocampal HT22 Cell.

    Science.gov (United States)

    Lee, Hyeon Yong; Ryu, Ga Hee; Choi, Woon Yong; Yang, Woo Seung; Lee, Hyeon Woo; Ma, Choong Je

    2018-01-01

    Spirulina maxima was used as important nutritional source in the Aztec civilization because it is rich in proteins and vitamins. It contains various antioxidants such as phycocyanin and flavonoids. Based on abundant antioxidants, S. maxima is known to possess anti-inflammatory effect, especially on neuronal cells. S. maxima was extracted in water and contain of phycocyanin was identified by high-performance liquid chromatography. Cell viability test was performed with treatment of S. maxima extract. After, oxidative stress-related mechanisms were evaluated by detecting the accumulation of reactive oxygen species (ROS) and Ca 2+ influx, and decrease of mitochondrial membrane potential (MMP) level. Then, the glutathione (GSH) related assays were conducted. The water extracted S. maxima exerted the neuroprotective activity by attenuating the ROS and Ca 2+ formation, maintaining the MMP level, and protecting the activity of the antioxidant enzymes by increasing reduced GSH against oxidative stress compared to control. The results suggested that water extracted S. maxima showed powerful neuroprotective effect through the mechanism related to antioxidant activity, able to preventing the radical-mediated cell death. Water extracted Spirulina maxima contains C-phycocyaninWater extracted Spirulina maxima exerts neuroprotective effect on HT22 cellTo investigate the protective mechanisms, reactive oxygen species, Ca 2+ , mitochondrial membrane potential, Glutathione-related assays were performed. Abbreviations used: ROS: Reactive oxygen species; MMP: Mitochondrial membrane potential; GSH: Glutathione; GSSG: Glutathione disulfide, oxidized glutathione; GPx: Glutathione peroxidase; GR: Glutathione reductase; DMEM: Dulbecco's modified Eagle's medium; FBS: Fetal bovine serum; DCF-DA: 2',7'-dichlorofluorescein diacetate; PBS: Phosphate buffered serum; Rho 123: Rhodamine 123; NADPH: Nicotinamide adenine dinucleotide phosphate; DTNB: 5,5'-dithiobis-2-nitrobenzoic acid, Ellman

  18. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Possible Depolarization Mechanism due to Low Beta Squeeze

    International Nuclear Information System (INIS)

    Ranjbar, V.; Luccio, A.; Bai, M.

    2008-01-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at ν s0 ± nν x - ν z l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements

  20. Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dong-Sung Lee

    2014-07-01

    Full Text Available Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2 and increased the promoter activity of antioxidant response elements (ARE in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease.

  1. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Directory of Open Access Journals (Sweden)

    Nushrat Sharmin Ani

    2016-01-01

    Full Text Available Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant’s leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p<0.01 inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p<0.01 suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker at 10 mg/kg significantly (p<0.05 reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  2. Neuroprotective effect of prenylated arylbenzofuran and flavonoids from morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells.

    Science.gov (United States)

    Seo, Kyeong-Hwa; Lee, Dae-Young; Jeong, Rak-Hun; Lee, Dong-Sung; Kim, Young-Eon; Hong, Eock-Kee; Kim, Youn-Chul; Baek, Nam-In

    2015-04-01

    A prenylated arylbenzofuran and six flavonoids were isolated from the fruits of Morus alba L. through silica gel, octadecyl silica gel, and Diaion HP-20 column chromatography. Based on the nuclear magnetic resonance, mass spectrometry, and infrared spectroscopic data, the chemical structures of the compounds were determined to be artoindonesianin O (1), isobavachalcone (2), morachalcone A (3), quercetin (4), astragalin (5), isoquercetin (6), and rutin (7). The isolated compounds were evaluated for protection of HT22-immortalized hippocampal cells against glutamate-induced oxidative stress. Compounds 1 and 3 exhibited protective effects with EC(50) values of 19.7±1.2 and 35.5±2.1 μM, respectively. The major compounds 1-3 and 7 were quantified using liquid chromatography/mass spectrometry analysis and were determined to be 1.88±2.1, 1.90±1.8, 0.78±1.5, and 37.29±2.2 mg/kg, respectively, in the ethanol extract of M. alba L. fruits.

  3. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    Directory of Open Access Journals (Sweden)

    Marion SB

    2014-03-01

    Full Text Available Sarah B Marion, Allen W MangelRTI Health Solutions, Research Triangle Park, NC, USAAbstract: For decades, it was believed that the diameter of gastrointestinal smooth muscle cells is sufficiently narrow, and that the diffusion of calcium across the plasma membrane is sufficient, to support contractile activity. Thus, depolarization-triggered release of intracellular calcium was not believed to be operative in gastrointestinal smooth muscle. However, after the incubation of muscle segments in solutions devoid of calcium and containing the calcium chelator ethylene glycol tetraacetic acid, an alternative electrical event occurred that was distinct from normal slow waves and spikes. Subsequently, it was demonstrated in gastrointestinal smooth muscle segments that membrane depolarization associated with this alternative electrical event triggered rhythmic contractions by release of intracellular calcium. Although this concept of depolarization-triggered calcium release was iconoclastic, it has now been demonstrated in multiple gastrointestinal smooth muscle preparations. On the basis of these observations, we investigated whether a rhythmic electrical and mechanical event would occur in aortic smooth muscle under the same calcium-free conditions. The incubation of aortic segments in a solution with no added calcium plus ethylene glycol tetraacetic acid induced a fast electrical event without corresponding tension changes. On the basis of the frequency of these fast electrical events, we pursued, contrary to what has been established dogma for more than three centuries, the question of whether the smooth muscle wall of the aorta undergoes rhythmic activation during the cardiac cycle. As with depolarization-triggered contractile activity in gastrointestinal smooth muscle, it was “well known” that rhythmic activation of the aorta does not occur in synchrony with the heartbeat. In a series of experiments, however, it was demonstrated that rhythmic

  4. Spin Depolarization due to Beam-Beam Interaction in NLC

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kathleen A

    2001-01-04

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  5. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  6. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  7. Effect of ouabain on the gamma-[3H]aminobutyric acid uptake and release in the absence of Ca(+)+ and K(+)-depolarization

    International Nuclear Information System (INIS)

    Santos, M.S.; Goncalves, P.P.; Carvalho, A.P.

    1990-01-01

    The effect of ouabain on the uptake of tritiated [ 3 H]GABA and on its release in the absence of Ca(+)+ was studied in brain cortex synaptosomes. Ouabain, in the absence of Ca(+)+ and K(+)-depolarization, induces the release of [ 3 H]GABA with half-maximal effect occurring at a concentration of about 7 X 10(-6) M. Parallel measurements of the effects of ouabain on the [ 3 H]GABA uptake and the Na+,K(+)-adenosine triphosphatase activity show that ouabain inhibits both mechanisms and that the half-maximal effect also occurs at about the same ouabain concentration. Although [ 3 H]GABA release is stimulated by ouabain, it appears that the inhibition of [ 3 H]GABA uptake is due to a direct effect on the uptake mechanism, inasmuch as the initial velocity of the process is inhibited by ouabain. Ouabain requires extracellular Na+ for [ 3 H]GABA release and for membrane depolarization and, in the absence of Na+, ouabain does not cause either [ 3 H]GABA release or membrane depolarization. No significant changes in the Na+ gradients occur under conditions which permit release of [ 3 H]GABA, but the Na+,K(+)-adenosine triphosphatase activity is inhibited, which may be responsible for membrane depolarization, which in turn may cause [ 3 H]GABA release or inhibit its uptake

  8. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent

    International Nuclear Information System (INIS)

    Magliola, L.; Jones, A.W.

    1987-01-01

    The purpose of this study was to investigate the factors controlling membrane permeability to potassium of smooth muscle cells from rat aorta stimulated by depolarization. The increase 42 K+ efflux (change in the rate constant) induced by depolarization (application of high concentrations of potassium chloride) was inhibited significantly by the calcium antagonists diltiazem and nisoldipine. Parallel inhibitory effects on contraction were observed. Diltiazem also inhibited potassium-stimulated 36 Cl- efflux. The addition of 25-150 mM KCl to normal physiologic solution stimulated 42 K+ efflux in a concentration-dependent manner. Diltiazem suppressed potassium-stimulated 42 K+ efflux approximately 90% at 25 mM KCl and approximately 40% at 150 mM KCl. The ability of nisoldipine to inhibit 42 K+ efflux also diminished as the potassium chloride concentration was elevated. The component of efflux that was resistant to calcium antagonists probably resulted from a decrease in the electrochemical gradient for potassium. Cellular water did not change during potassium addition. Substitution of 80 and 150 mM KCl for sodium chloride produced cellular swelling and enhanced potassium-stimulated 42 K+ efflux compared with potassium chloride addition. The addition of sucrose to prevent cellular swelling reduced efflux response to potassium substitution toward that of potassium addition. A hypoosmolar physiologic solution produced an increase in the 42 K+ efflux and a contracture that were both prevented by the addition of sucrose. We concluded that the depolarization-mediated 42 K+ efflux has three components: one is calcium dependent; a second is dependent on cellular volume; and a third is resistant to inhibition by calcium antagonists

  9. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.

    Science.gov (United States)

    Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G

    2014-09-10

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.

  10. The problem of radiative depolarization in the 'Siberian Snake'

    International Nuclear Information System (INIS)

    Schwitters, R.

    1979-01-01

    As pointed out by Derbenev and Kondratenko and by the LEP Study Group, a 'Siberian Snake' may be a convenient method for providing longitudinally polarized beams at LEP. The author shows that at the highest LEP energies (approximately>60 GeV) synchrotron radiation with spin-flip may depolarize the beams. (Auth.)

  11. Depolarization temperature and piezoelectric properties of Na1/2 ...

    Indian Academy of Sciences (India)

    1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a morphotropic ...

  12. Depolarization temperature and piezoelectric properties of TiO3 ...

    Indian Academy of Sciences (India)

    WINTEC

    2TiO3–Na1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a ...

  13. Twomey effect in subtropical stratocumulus clouds from UV depolarization lidar

    NARCIS (Netherlands)

    de Graaf, M.; Brown, Jessica; Donovan, D.P.; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.

    2018-01-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo

  14. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage

    NARCIS (Netherlands)

    Hamming, Arend M.; Wermer, Marieke J. H.; Rudrapatna, S. Umesh; Lanier, Christian; van Os, Hine J. A.; van den Bergh, Walter M.; Ferrari, Michel D.; van der Toorn, Annette; van den Maagdenberg, Arn M. J. M.; Stowe, Ann M.; Dijkhuizen, Rick M.

    Spreading depolarizations may contribute to delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage, but the effect of spreading depolarizations on brain lesion progression after subarachnoid hemorrhage has not yet been assessed directly. Therefore, we tested the hypothesis that

  15. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) antioxidant pathway.

    Science.gov (United States)

    Gao, Wenqi; Xiao, Changyi; Hu, Jun; Chen, Biaoxin; Wang, Chunyan; Cui, Bangping; Deng, Pengyi; Yang, Jian; Deng, Zhifang

    2018-04-18

    Qing brick tea (QBT), traditional and popular beverage for Chinese people, is an important post-fermentation dark tea. Our present study was performed to investigate the ameliorative effects of QBT aqueous extract on metabolic syndrome (Mets) in monosodium glutamate-induced obese mice and the potential mechanisms. Monosodium glutamate-induced obese mice were used to evaluate the anti-Mets effects of QBT. Content levels of malonaldehyde (MDA), reactive oxygen species (ROS) and protein carbonylation, antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) in the skeletal muscle were assessed by commercial kits, respectively. Western blot and Q-PCR were used to detect the expressions of Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) signaling pathway and downstream antioxidant factors. In addition, activity of AKT signaling and expression of glucose transporter type 4 (GLUT4) in the skeletal muscle were investigated by western blot. QBT treatment limited gain of body weight, waistline and LEE index, improved insulin resistance and glucose intolerance, reduced lipid level in MSG mice. Content levels of MDA, ROS and protein carbonylation in skeletal muscle of QBT group were significantly improved compared to those of MSG mice. The antioxidant enzyme activities of SOD, GPx, CAT, and GR were increased in skeletal muscle of MSG mice intervened with QBT. After 20-week QBT treatment, Nrf2 signaling pathway and downstream antioxidant factors were both increased in the skeletal muscle. In addition, QBT treatment improved insulin signaling by preferentially augmenting AKT signaling, as well as increased the protein expression of GLUT4 in the skeletal muscle. Our results showed that QBT intake was effective in protecting monosodium glutamate-induced obese mice against metabolic syndrome and involved in the Nrf2 signaling pathway in the skeletal muscle. Copyright © 2018

  16. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation

    Science.gov (United States)

    Yu, Alec; Zhu, Wandi; Silva, Jonathan R.; Ruben, Peter C.

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation. PMID:28898267

  17. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation.

    Directory of Open Access Journals (Sweden)

    Colin H Peters

    Full Text Available E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.

  18. Spreading depolarizations occur in human ischemic stroke with high incidence

    DEFF Research Database (Denmark)

    Dohmen, C.; Sakowitz, O.W.; Fabricius, M.

    2008-01-01

    Objective: Cortical spreading depression (CSD) and periinfarct depolarization (PID) have been shown in various experimental models of stroke to cause secondary neuronal damage and infarct expansion. For decades it has been questioned whether CSD or PID occur in human ischemic stroke. Here, we...... potential change spreading between adjacent channels was accompanied by transient depression of ECoG activity. In PID, a slow potential change spread between neighboring channels despite already established suppression of ECoG activity. Most CSDs and PIDs appeared repetitively in clusters. CSD or PID...... was observed in all but two patients. In these two patients, the electrode strip had been placed over infarcted tissue, and accordingly, no local ECoG or recurrent transient depolarization activity occurred throughout the observation period. Interpretation: CSD and PID occurred spontaneously with high...

  19. Linear theory of beam depolarization due to vertical betatron motion

    International Nuclear Information System (INIS)

    Chao, A.W.; Schwitters, R.F.

    1976-06-01

    It is well known that vertical betatron motion in the presence of quantum fluctuations leads to some degree of depolarization of a transversely polarized beam in electron-positron storage rings even for energies away from spin resonances. Analytic formulations of this problem, which require the use of simplifying assumptions, generally have shown that there exist operating energies where typical storage rings should exhibit significant beam polarization. Due to the importance of beam polarization in many experiments, we present here a complete calculation of the depolarization rate to lowest order in the perturbing fields, which are taken to be linear functions of the betatron motion about the equilibrium orbit. The results are applicable to most high energy storage rings. Explicit calculations are given for SPEAR and PEP. 7 refs., 8 figs

  20. Piezoelectric effect in polarized and electrically depolarized ferrotextures

    International Nuclear Information System (INIS)

    Luchaninov, A.G.; Shil'nikov, A.V.; Shuvalov, L.A.

    1999-01-01

    Piezoelectric moduli were calculated for ferroelectric textures in the states with the greatest possible (in terms of symmetry) polarization and the zero polarization (obtained from the former by electrical depolarization). The calculations were performed for the textures of crystals of the classes 2, 3, 4, 6, mm2, 3m, 4mm,and 6mm. The experimental results for lead zirconate-titanate- and barium-titanate-based piezoelectric ceramic are reported

  1. Beam-beam depolarization in SPEAR and PEP

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this note some approximate estimates are made of depolarization due to beam-beam forces in SPEAR and PEP, using the results of a calculation by Kondratenko. The model assumes head-on collisions between bunches of Gaussian distribution in the transverse directions; the force on the weak-beam particle is taken to be a δ-function at the interaction point. 1 ref

  2. Scattering and depolarization of polarized neutrons in ferrofluids

    International Nuclear Information System (INIS)

    Balasoiu, M.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Y.V.

    1999-01-01

    On the SPN - 1 polarized neutron spectrometer at IBR -2 high - flux pulsed rector there were carried out preliminary measurements on transmission and polarization of a neutron beam passing through a magnetic colloidal system of Fe 3 O 4 particles in transformer oil and dodecane carriers. It was found that in the ferrofluids with magnetite particles exist, dependent on the particle volume concentration and the magnitude of the external magnetic field, effects of depolarization and nuclear - magnetic small angle scattering. (author)

  3. On the polarization and depolarization of the electromagnetic waves

    International Nuclear Information System (INIS)

    Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Cecchi-Pestellini, Cesare

    2005-01-01

    We discuss a general description of the polarization of monochromatic electromagnetic waves that proves useful when the customary description in terms of Stokes parameters does not apply. We also show how this description can be exploited to study the depolarization of linearly polarized waves in the interior of porous model cosmic dust grains. The results that we discuss may affect our understanding of several problems that are relevant for astrobiology

  4. Atrioventricular depolarization differences identify coronary artery anomalies in Kawasaki disease.

    Science.gov (United States)

    Cortez, Daniel; Sharma, Nandita; Jone, Pei-Ni

    2017-03-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease in children. Signal average electrocardiogram changes in patients during the acute phase of KD with coronary artery anomalies (CAA) include depolarization changes. We set out to determine if 12-lead-derived atrioventricular depolarization differences can identify CAA in patients with KD. A blinded, retrospective case-control study of patients with KD was performed. Deep Q waves, corrected QT-intervals (QTc), spatial QRS-T angles, T-wave vector magnitudes (RMS-T), and a novel parameter for assessment of atrioventricular depolarization difference (the spatial PR angle) and a two dimensional PR angle were assessed. Comparisons between groups were performed to test for significant differences. One hundred one patients with KD were evaluated, with 68 having CAA (67.3%, mean age 3.6 ± 3.0 years, 82.6% male), and 32 without CAA (31.7%, mean age 2.7 ± 3.2 years, 70.4% male). The spatial PR angle significantly discriminated KD patients with CAA from those without, 59.7° ± 31.1° versus 41.6° ± 11.5° (p differences, measured by the spatial or two dimensional PR angle differentiate KD patients with CAA versus those without. © 2016 Wiley Periodicals, Inc.

  5. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  6. Contribution of α-adrenoceptors to depolarization and contraction evoked by continuous asynchronous sympathetic nerve activity in rat tail artery

    Science.gov (United States)

    Brock, J A; McLachlan, E M; Rayner, S E

    1997-01-01

    The effects of continuous but asynchronous nerve activity induced by ciguatoxin (CTX-1) on the membrane potential and contraction of smooth muscle cells have been investigated in rat proximal tail arteries isolated in vitro. These effects have been compared with those produced by the continuous application of phenylephrine (PE).CTX-1 (0.4 nM) and PE (10 μM) produced a maintained depolarization of the arterial smooth muscle that was almost completely blocked by α-adrenoceptor blockade. In both cases, the depolarization was more sensitive to the selective α2-adrenoceptor antagonist, idazoxan (0.1 μM), than to the selective α1-adrenoceptor antagonist, prazosin (0.01 μM).In contrast, the maintained contraction of the tail artery induced by CTX-1 (0.2 nM) and PE (2 and 10 μM) was more sensitive to prazosin (0.01) μM, than to idazoxan (0.01 μM). In combination, these antagonists almost completely inhibited contraction to both agents.Application of the calcium channel antagonist, nifedipine (1 μM), had no effect on the depolarization induced by either CTX-1 or PE but maximally reduced the force of the maintained contraction to both agents by about 50%.We conclude that the constriction of the tail artery induced by CTX-1, which mimics the natural discharge of postganglionic perivascular axons, is due almost entirely to α-adrenoceptor activation. The results indicate that neuronally released noradrenaline activates more than one α-adrenoceptor subtype. The depolarization is dependent primarily on α2-adrenoceptor activation whereas the contraction is dependent primarily on α1-adrenoceptor activation. The links between α-adrenoceptor activation and the voltage-dependent and voltage-independent mechanisms that deliver Ca2+ to the contractile apparatus appear to be complex. PMID:9113373

  7. Influence of thermal reduced depolarization on a repetition-frequency laser amplifier and compensation

    Institute of Scientific and Technical Information of China (English)

    Xin-ying Jiang; Xiong-wei Yan; Zhen-guo Wang; Jian-gang Zheng; Ming-zhong Li; Jing-qin Su

    2015-01-01

    Thermal stress can induce birefringence in a laser medium, which can cause depolarization of the laser. The depolarization effect will be very severe in a high-average-power laser. Because the depolarization will make the frequency doubling efficiency decline, it should be compensated. In this paper, the thermal characteristics of two kinds of materials are analyzed in respect of temperature, thermal deformation and thermal stress. The depolarization result from thermal stress was simulated. Depolarization on non-uniform pumping was also simulated, and the compensation method is discussed.

  8. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  9. Nicotine-evoked cytosolic Ca2+ increase and cell depolarization in capillary endothelial cells of the bovine adrenal medulla

    Directory of Open Access Journals (Sweden)

    RAÚL VINET

    2009-01-01

    Full Text Available Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs respond to acetylcholine (ACh with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23. The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.

  10. Overcoming weak intrinsic depolarizing resonances with energy-jump

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alessi, J.G.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances

  11. Thermally stimulated depolarization currents in ThO2

    International Nuclear Information System (INIS)

    Campos, L.L.

    1979-01-01

    Thermally Stimulated Depolarization Currents (TSDC) have been detected in polycrystalline samples of ThO 2 in the temperature range 100K - 350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances with trapping at grain boundaries. Moreover the density of charges carriers released from trapping sites, upon heating the cooled previously dc biased specimen, decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic nuclear oxides [pt

  12. Concentration depolarization of luminescence of Eu3+-doped glasses

    International Nuclear Information System (INIS)

    Bodunov, E.N.; Lebedev, V.P.; Malyshev, V.A.; Przheuskij, A.K.

    1989-01-01

    Experimental study of concentrational depolarization luminescence (CDL) of phosphate and germanate glasses, containing Eu 3+ ions, has been carried out. On the basis of three-body self-consistent approximation the theory of CDL is conceived, which takes into account Eu-Eu interaction of higher multipolarities. By comparing the theory with the experiment energy transfer radii for Eu-Eu dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are determined. The attempt to discriminate Eu-Eu interaction types in the studied range of Eu 3+ ion concentration change has failed owing to law accuracy of luminescence emittance anisotropy measurement

  13. Neutron depolarization effects in a high-Tc superconductor (abstract)

    Science.gov (United States)

    Nunes, A. C.; Pickart, S. J.; Crow, L.; Goyette, R.; McGuire, T. R.; Shinde, S.; Shaw, T. M.

    1988-11-01

    Using the polarized beam small-angle neutron scattering spectrometer at the Rhode Island Nuclear Science Center Reactor, we have observed significant depolarization of a neutron beam by passage through polycrystalline high-Tc superconductors, specifically 123 Y-Ba-Cu-O prepared and characterized at the IBM Watson Research Center. We believe that this technique will prove useful in studying aspects of these materials, such as the penetration depth of shielding currents, the presence and structure of trapped flux vortices, and grain size effects on the supercurrent distribution in polycrystalline samples. The two samples showed sharp transitions at 87 and 89 K, and have been studied at temperatures of 77 K; the second sample has also been studied at 4 K. The transition to the superconducting state was monitored by the shift in resonant frequency of a coil surrounding the sample. No measurable depolarization was observed in either sample at 77 K in both the field-cooled and zero-field-cooled states, using applied fields of 0 (nominal), 54, and 1400 Oe. This negative result may be connected with the fact that the material is still in the reversible region as indicated by susceptibility measurements, but it allows an estimate of the upper bound of possible inhomogeneous internal fields, assuming a distance scale for the superconducting regions. For the 10-μm grain size suggested by photomicrographs, this upper bound for the field turns out to be 1.2 kOe, which seems reasonable. At 4 K a significant depolarization was observed when the sample was cooled in low fields and a field of 1400 Oe was subsequently applied. This result suggests that flux lines are penetrating the sample. Further investigations are being carried out to determine the field and temperature dependence of the depolarization, and attempts will be made to model it quantitatively in terms of possible internal field distributions. We are also searching for possible diffraction effects from ordered vortex

  14. Depolarization of fluorescence of polyatomic molecules in noble gas solvents

    Science.gov (United States)

    Blokhin, A. P.; Gelin, M. F.; Kalosha, I. I.; Matylitsky, V. V.; Erohin, N. P.; Barashkov, M. V.; Tolkachev, V. A.

    2001-10-01

    The collisional depolarization of fluorescence is studied for p-quarterphenyl (PQP) in He, Ar, Xe solvents, under pressures ranging from zero to nearly atmospheric. The results are interpreted within the Keilson-Storer model of the orientational relaxation and smooth rigid body collision dynamics. This allows us to estimate the rate of the angular momentum scrambling due to encounters of PQP with its partners. The collisions are shown to be neither strong nor weak, so that the averaged number of encounters giving rise to the PQP angular momentum randomization equals to 33 (PQP-He), 4.5 (PQP-Ar), and 2.1 (PQP-Xe).

  15. Analysis of spin depolarizing effects in electron storage rings

    International Nuclear Information System (INIS)

    Boege, M.

    1994-05-01

    In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)

  16. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  17. Calibration procedure and wavelength correction for neutron depolarization experiments

    International Nuclear Information System (INIS)

    Roest, W.; Rekveldt, M.T.

    1992-01-01

    The neutron polarimeter, for which an extended calibration procedure is described here, enables one to investigate magnetic properties of materials. Such an investigation is carried out by offering a polarized neutron beam in the x-, y- and z-direction successively and, after transmission through the sample, by analysing the polarization in all three directions. The result is a 3x3 depolarization matrix. After the polarizer, the neutron beam has a polarization along the z-direction. Two coil systems creating a magnetic field in the yz-plane perpendicular to the beam direction provide the possibility to direct the polarization in the x-, y- and z-direction by means of Larmor precession of the polarization in these fields. New research areas, where small depolarization effects together with considerable polarization rotation are measured, have caused a need for more accuracy in, and better knowledge of the calibration of the polarimeter. The calibration procedure use up to now and the improvements made on it are described. (orig.)

  18. The relationship between the apparent diffusion coefficient measured by magnetic resonance imaging, anoxic depolarization, and glutamate efflux during experimental cerebral ischemia.

    Science.gov (United States)

    Harris, N G; Zilkha, E; Houseman, J; Symms, M R; Obrenovitch, T P; Williams, S R

    2000-01-01

    A reduction in the apparent diffusion coefficient (ADC) of water measured by magnetic resonance imaging (MRI) has been shown to occur early after cerebrovascular occlusion. This change may be a useful indicator of brain tissue adversely affected by inadequate blood supply. The objective of this study was to test the hypothesis that loss of membrane ion homeostasis and depolarization can occur simultaneously with the drop in ADC. Also investigated was whether elevation of extracellular glutamate ([GLU]e) would occur before ADC changes. High-speed MRI of the trace of the diffusion tensor (15-second time resolution) was combined with simultaneous recording of the extracellular direct current (DC) potential and on-line [GLU]e from the striatum of the anesthetized rat. After a control period, data were acquired during remote middle cerebral artery occlusion for 60 minutes, followed by 30 minutes of reperfusion, and cardiac arrest-induced global ischemia. After either focal or global ischemia, the ADC was reduced by 10 to 25% before anoxic depolarization occurred. After either insult, the time for half the maximum change in ADC was significantly shorter than the corresponding DC potential parameter (P potential and did not peak until much later after either ischemic insult. This study demonstrates that ADC changes can occur before membrane depolarization and that high [GLU]e has no involvement in the early rapid ADC decrease.

  19. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  20. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  1. Linear Depolarization of Lidar Returns by Aged Smoke Particles

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    We use the numerically exact (superposition) T-matrix method to analyze recent measurements of the backscattering linear depolarization ratio (LDR) for a plume of aged smoke at lidar wavelengths ranging from 355 to 1064 nm. We show that the unique spectral dependence of the measured LDRs can be modeled, but only by assuming expressly nonspherical morphologies of smoke particles containing substantial amounts of nonabsorbing (or weakly absorbing) refractory materials such as sulfates. Our results demonstrate that spectral backscattering LDR measurements can be indicative of the presence of morphologically complex smoke particles, but additional (e.g., passive polarimetric or bistatic lidar) measurements may be required for a definitive characterization of the particle morphology and composition.

  2. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  3. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  4. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells

    International Nuclear Information System (INIS)

    Hermans, M.P.; Schmeer, W.; Henquin, J.C.

    1987-01-01

    Mouse islets were used to test the hypothesis that the B cell membrane must be depolarized for acetylcholine to increase insulin release. The resting membrane potential of B cells (at 3 mM glucose) was slightly decreased (5 mV) by acetylcholine, but no electrical activity appeared. This depolarization was accompanied by a Ca-independent acceleration of 86 Rb and 45 Ca efflux but no insulin release. When the B cell membrane was depolarized by a stimulatory concentration of glucose (10 mM), acetylcholine potentiated electrical activity, accelerated 86 Rb and 45 Ca efflux, and increased insulin release. This latter effect, but not the acceleration of 45 Ca efflux, was totally dependent on extracellular Ca. If glucose-induced depolarization of the B cell membrane was prevented by diazoxide, acetylcholine lost all effects but those produced at low glucose. In contrast, when the B cell membrane was depolarized by leucine or tolbutamide (at 3 mM glucose), acetylcholine triggered a further depolarization with appearance of electrical activity, accelerated 86 Rb and 45 Ca efflux, and stimulated insulin release. Acetylcholine produced similar effects (except for electrical activity) in the presence of high K or arginine which, unlike the above test agents, depolarize the B cell membrane by a mechanism other than a decrease in K+ permeability. Omission of extracellular Ca abolished the releasing effect of acetylcholine under all conditions but only partially decreased the stimulation of 45 Ca efflux. The results show thus that acetylcholine stimulation of insulin release does not result from mobilization of cellular Ca but requires that the B cell membrane be sufficiently depolarized to reach the threshold potential where Ca channels are activated. This may explain why acetylcholine alone does not initiate release but becomes active in the presence of a variety of agents

  5. Depolarization due to the resonance tail during a fast resonance jump

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1980-01-01

    The mechanism of depolarization due to a fast resonance jump is studied. The dominant effect for cases of interest is not dependent on the rate of passage through resonance, but rather on the size of the resonance jump as compared to the width, epsilon, of the resonance. The results are applied to a calculation of depolarization in the AGS at Brookhaven National Laboratory

  6. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.

    2009-01-01

    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  7. Simple non-Markovian microscopic models for the depolarizing channel of a single qubit

    International Nuclear Information System (INIS)

    Fonseca Romero, K M; Lo Franco, R

    2012-01-01

    The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.

  8. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  9. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Science.gov (United States)

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  10. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross

    2011-01-01

    , although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10......Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct...... current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown...

  11. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  12. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    Science.gov (United States)

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or

  13. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    Science.gov (United States)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  14. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  15. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  16. Thermally stimulated depolarization currents in the natural fluorite

    International Nuclear Information System (INIS)

    Valerio, Mario Ernesto Giroldo

    1986-01-01

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R s 3+ -F i - ). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author)

  17. Speed of disentanglement in multiqubit systems under a depolarizing channel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Lin, E-mail: flzhang@tju.edu.cn; Jiang, Yue; Liang, Mai-Lin, E-mail: mailinliang@yahoo.com.cn

    2013-06-15

    We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants is derived. The speed is enhanced by the three-tangle which is the entanglement among the three qubits, but reduced by the two-qubit correlations outside the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce the speed of disentanglement of the remaining qubit in the system, and even can retrieve the entanglement partially. For the k-qubit systems in an arbitrary superposition of Greenberger–Horne–Zeilinger state and W state, the speed depends almost entirely on the amount of the negativity when k increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the Greenberger–Horne–Zeilinger-type states is inversely proportional to k, and the one of the W states approaches 1/√(k)

  18. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi, P G [CNR-Istituto per i Processi Chimico-Fisici, sezione Messina, Salita Sperone, Contrada Papardo, I-98158 Faro Superiore, Messina (Italy); Lopes, M; Deturche, R; Julien, C; Barchiesi, D; Chapelle, M Lamy de la [Institut Charles Delaunay-CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP2060, 10010 Troyes (France)

    2008-05-28

    We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.

  19. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L

    2009-01-01

    by the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine. This restored electrocorticographic activity. CONCLUSIONS: These anecdotal electrocorticographic findings suggest that ketamine has an inhibitory effect on spreading depolarizations in humans. This is of potential interest for future...

  20. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  1. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    International Nuclear Information System (INIS)

    Anferov, V.A.

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society

  2. A review of depolarization modeling for earth-space radio paths at frequencies above 10 GHz

    Science.gov (United States)

    Bostian, C. W.; Stutzman, W. L.; Gaines, J. M.

    1982-01-01

    A review is presented of models for the depolarization, caused by scattering from raindrops and ice crystals, that limits the performance of dual-polarized satellite communication systems at frequencies above 10 GHz. The physical mechanisms of depolarization as well as theoretical formulations and empirical data are examined. Three theoretical models, the transmission, attenuation-derived, and scaling models, are described and their relative merits are considered.

  3. Dibucaine mitigates spreading depolarization in human neocortical slices and prevents acute dendritic injury in the ischemic rodent neocortex.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on

  4. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  5. Characterization of ventricular depolarization and repolarization changes in a porcine model of myocardial infarction.

    Science.gov (United States)

    Romero, Daniel; Ringborn, Michael; Demidova, Marina; Koul, Sasha; Laguna, Pablo; Platonov, Pyotr G; Pueyo, Esther

    2012-12-01

    In this study, several electrocardiogram (ECG)-derived indices corresponding to both ventricular depolarization and repolarization were evaluated during acute myocardial ischemia in an experimental model of myocardial infarction produced by 40 min coronary balloon inflation in 13 pigs. Significant changes were rapidly observed from minute 4 after the start of coronary occlusion, achieving their maximum values between 11 and 22 min for depolarization and between 9 and 12 min for repolarization indices, respectively. Subsequently, these maximum changes started to decrease during the latter part of the occlusion. Depolarization changes associated with the second half of the QRS complex showed a significant but inverse correlation with the myocardium at risk (MaR) estimated by scintigraphic images. The correlation between MaR and changes of the downward slope of the QRS complex, [Formula: see text], evaluated at the two more relevant peaks observed during the occlusion, was r = -0.75, p evolution, respectively. Repolarization changes, analyzed by evaluation of ST segment elevation at the main observed positive peak, also showed negative, however non-significant correlation with MaR: r = -0.34, p = 0.28. Our results suggest that changes evaluated in the latter part of the depolarization, such as those described by [Formula: see text], which are influenced by R-wave amplitude, QRS width and ST level variations simultaneously, correlate better with the amount of ischemia than other indices evaluated in the earlier part of depolarization or during the ST segment.

  6. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation...

  7. Currents of thermally stimulated depolarization in CaIn2S4 single crystals

    International Nuclear Information System (INIS)

    Tagiev, B.G.; Tagiev, O.B.; Dzhabbarov, R.B.; Musaeva, N.N.

    1996-01-01

    The results of investigation into currents of thermally stimulated depolarization in CaIn 2 S 4 monocrystals are presented for the first time. Spectra of thermally stimulated depolarization for In-CaIn S4 -In structures are measured under T=99 K at various rates of heat, times of polarization and times of expectation following switching off of electrical field up to beginning of measurements of shorting. The main parameters of capture cross section, partial factor, concentration of traps, are determined. It is determined that one may observed a biomolecular mechanism with a strong secondary capture in CaIn 2 S 4 monocrystals. 9 refs.; 4 figs

  8. A stochastic model of depolarization enhancement due to large energy spread in electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1988-10-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of isolated spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA and LEP, at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  9. Analytic calculation of depolarization due to large energy spread in high-energy electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1989-08-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA, TRISTAN, and LEP at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  10. Beam depolarization and gain saturation in neodymium rods with a diameter of 85 mm

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V N; Ugodenko, A A

    1990-04-01

    Depolarization and gain saturation were investigated in rod amplifiers using phosphate and silicate Nd glasses 85 mm in diameter and 300 mm in length at a pulse duration of 35 ns. Total depolarization losses over the rod cross section were measured for various radial distributions of the small-signal gain. For the phosphate glass the losses amounted to 3-6 percent; for the silicate glass, they amounted to 4-7 percent. Saturation energy densities of 4.5 + or - 0.4 and 8.0 + or - 0.7 J/sq cm were obtained for the phosphate and silicate glass, respectively. 8 refs.

  11. Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain

    DEFF Research Database (Denmark)

    Jeffcote, Toby; Hinzman, Jason M; Jewell, Sharon L

    2014-01-01

    be detected using intra-cortical electrodes, opening the way for electrode insertion via burr hole. METHODS: Animal work was carried out on adult Sprague-Dawley rats in a laboratory setting to investigate the feasibility of recording depolarization events. Subsequently, 8 human patients requiring craniotomy...... for craniotomy. The method provides a new investigative tool for the evaluation of the contribution of these events to secondary brain injury in human patients.......BACKGROUND: Spreading depolarization events following ischemic and traumatic brain injury are associated with poor patient outcome. Currently, monitoring these events is limited to patients in whom subdural electrodes can be placed at open craniotomy. This study examined whether these events can...

  12. Measurement of the depolarization rate of positive muons in copper and aluminium

    International Nuclear Information System (INIS)

    Gauster, W.B.; Heffner, R.H.; Huang, C.Y.; Hutson, R.L.; Leon, M.; Parkin, D.M.; Schillaci, M.E.; Triftshaeuser, W.; Wampler, W.R.

    1977-01-01

    Positive muon spin rotation experiments for polycrystalline Cu and Al from 19 K to temperatures near the melting points are reported. At low temperatures, the depolarization associated with localization of the muons at octahedral interstitial sites is seen in Cu, while in Al only slight depolarization is observed below 250 K. At high temperatures, no evidence for trapping of positive muons at vacancies in thermal equilibrium is found for either metal. It is concluded that the muons either diffuse too slowly to find vacancies or, if they do find vacancies, are bound too weakly to remain trapped. (author)

  13. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1993-01-01

    was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  14. Characterization of a light-controlled anion channel in the plasma membrane of mesophyll cells of pea

    NARCIS (Netherlands)

    Elzenga, J.T.M.; Volkenburgh Van, E

    In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp

  15. Neutron depolarization measurements of HoCo2 near the magnetic phase transition

    International Nuclear Information System (INIS)

    Kraan, W.

    1976-09-01

    The magnetic phase transition in HoCo 2 at zero applied field is investigated. The Landau theory of magnetic phase transition is discussed. The experimental technique for neutron depolarization measurements in the temperature range 65-90 K is described

  16. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  17. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  18. Neutron depolarization study of static and dynamic magnetic properties of ferromagnets

    International Nuclear Information System (INIS)

    Stuesser, N.

    1986-01-01

    In this thesis neutron depolarization experiments are performed on amorphous and crystalline ferromagnetic materials. The subjects studied are concerned with 'domain structure in magnetically weak uniaxial amorphous ferromagnetic ribbons', 'static critical behaviour at the ferromagnetic-paramagnetic phase transition', 'small magnetic anisotropy in nickel near T c ', and 'magnetization reversal in conducting ferromagnets'. 87 refs.; 37 figs.; 3 tabs

  19. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Science.gov (United States)

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine.

  20. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  1. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    Science.gov (United States)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  2. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  3. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. On the nature of the fast depolarization of muons in condensed nitrogen

    International Nuclear Information System (INIS)

    Duginov, V.N.; Grebinnik, V.G.; Kirillov, B.F.

    1990-01-01

    Temperature dependences of the depolarization rate, the muon precession initial amplitude and phase in liquid and crystalline nitrogen with the oxygen content of 10 -6 have been measured. It has been shown that muon spin relaxation parameters in nitrogen do not change at the reduction of the oxygen impurity content from 0.7x10 -4 to 10 -6 . The fast depolarization of muons in condensed nitrogen is apparently due to the formation of muonium atoms. The muon precession initial phase has been measured as a function of the perpendicular magnetic field to determine the state of short-lived muonium in nitrogen. It has been determined that muonium in nitrogen is in an excited state. 14 refs.; 3 figs

  5. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  6. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance

    DEFF Research Database (Denmark)

    de Paoli, Frank Vincenzo; Ørtenblad, Niels; Pedersen, Thomas Holm

    2010-01-01

    Studies on rats have shown that lactic acid can improve excitability and function of depolarized muscles. The effect has been related to the ensuing reduction in intracellular pH causing inhibition of muscle fibre Cl- channels. Since, however, several carboxylic acids with structural similarities...... to lactate can inhibit muscle Cl- channels it is possible that lactate per se can increase muscle excitability by exerting a direct effect on these channels. We therefore examined effects of lactate on the function of intact muscles and skinned fibres together with effects on pH and Cl- conductance....... In muscles where extracellular compound action potentials (M-waves) and tetanic force response to excitation were reduced by 82±4 and 83±2 %, respectively, by depolarization with 11 mM extracellular K+, both M-waves and force exhibited an up to 4-fold increase when 20 mM lactate was added. This effect...

  7. Neutron depolarization study of internal stresses in amorphous Fe40Ni40B20

    International Nuclear Information System (INIS)

    de Jong, M.; Sietsma, J.; Rekveldt, M.T.; van den Beukel, A.

    1997-01-01

    The magnetic domain structure of amorphous ferromagnets with nonzero magnetostriction is mainly determined by the internal stress state because of the magneto-elastic coupling. The stress and field dependence of the domain structure contains important information on the internal stresses in the material. The three-dimensional neutron depolarization technique has been used to study the stress- and field-dependence of the bulk domain structures in both as-quenched and annealed ribbons of the metallic glass Fe 40 Ni 40 B 20 . A three-layer domain structure model corresponding to compressive and tensile internal stresses is presented to explain the measured data. The influence of surface roughness on the interpretation of neutron depolarization measurements in amorphous ribbons is discussed. Finally, the internal stress relaxation due to the annealing is explained in terms of the viscous behaviour of the glass. copyright 1997 American Institute of Physics

  8. Quantum key distribution with several intercept-resend attacks via a depolarizing channel

    International Nuclear Information System (INIS)

    Dehmani, Mustapha; Errahmani, Mohamed; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2012-01-01

    The disturbance effect of a depolarizing channel on the security of the quantum key distribution of the four-state BB84 protocol, with multiple sequential intercept-resend attacks of many eavesdroppers, has been studied. The quantum bit error rate and the mutual information are computed for an arbitrary number N of eavesdroppers. It is found that the quantum error rate decreases with increasing the depolarizing parameter p characterizing the noise of the channel. For p tr of p below which the information is secure and otherwise the information is not secure. The value of p tr decreases with increasing the number of attacks. In contrast, for p ⩾ 0.165, the information is not secure independently of the number of eavesdroppers. Phase diagrams corresponding to the secure—unsecure information are also established. (paper)

  9. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  10. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  11. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  12. Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents

    Science.gov (United States)

    Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.

    2011-06-01

    LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.

  13. Collisional broadening of depolarized spectral lines of hydrogen gases at low temperatures

    International Nuclear Information System (INIS)

    Hout, K.D. van den.

    1978-01-01

    Experimental results are presented for the collisional broadening and shift of H 2 , D 2 and HD rotational Raman and depolarized Rayleigh lines at various temperatures between 25 K and 300 K. These are then discussed within the context of current theoretical concepts. For a few temperatures the line broadening cross sections are also reported as a function of the ortho-para composition for H 2 and D 2 . (C.F.)

  14. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  15. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  16. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    Science.gov (United States)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  17. Effects of in vitro hypoxia on depolarization-stimulated accumulation of inositol phosphates in synaptosomes

    International Nuclear Information System (INIS)

    Huang, H.M.; Gibson, G.E.

    1989-01-01

    The effects of potassium and in vitro histotoxic hypoxia on phosphatidylinositol turnover in rat cortical synaptosomes were determined. [2- 3 H] Inositol prelabelled rat synaptosomes were prepared from cerebral cortex slices that had been incubated with [2- 3 H] inositol. Depolarization with 60 mM KCl increased [2- 3 H] inositol phosphates in a time dependent manner. Depolarization with 60 mM KCl increased [2- 3 H]inositol trisphosphate transiently at 5 s. K + induced rapid formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhance sium-stimulate [2 3 H]inositol bisphosphate and maintained an elevated level for at least 5 min. K + stimulated gradual formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhanced potassium-stimulated [2- 3 H] inositol bisphosphate formation. However, 30 min of hypoxia impaired potassium-stimulated accumulation of [2- 3 H]inositol phosphates. The effects of histotoxic hypoxia were all dependent upon calcium in the medium and on K + -depolarization. Thus, hypoxia altered the K + induced accumulation of inositol phosphates in prelabelled synaptosomes in a time dependent, biphasic manner that was calcium dependent

  18. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  19. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  20. Ferroelectric behavior of a lead titanate nanosphere due to depolarization fields and mechanical stresses

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Landeta, J.; Lascano, I.

    2017-07-01

    A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)

  1. Effect of secretin and inhibitors of HCO3-/H+ transport on the membrane voltage of rat pancreatic duct cells

    DEFF Research Database (Denmark)

    Novak, I; Pahl, C

    1993-01-01

    depolarized the basolateral membrane voltage, Vbl, by up to 35 mV (n = 37); a half-maximal response was obtained at 3 x 10(-11) mol/l. In unstimulated ducts a decrease in the luminal Cl- concentration (120 to 37 mmol/l) had a marginal effect on Vbl, but after maximal secretin stimulation it evoked a 14 +/- 2......), respectively. The fractional resistance of the basolateral membrane (FRbl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22 +/- 1 to 11 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)...

  2. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    Science.gov (United States)

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  5. Accuracy of depolarization and delay spread predictions using advanced ray-based modeling in indoor scenarios

    Directory of Open Access Journals (Sweden)

    Mani Francesco

    2011-01-01

    Full Text Available Abstract This article investigates the prediction accuracy of an advanced deterministic propagation model in terms of channel depolarization and frequency selectivity for indoor wireless propagation. In addition to specular reflection and diffraction, the developed ray tracing tool considers penetration through dielectric blocks and/or diffuse scattering mechanisms. The sensitivity and prediction accuracy analysis is based on two measurement campaigns carried out in a warehouse and an office building. It is shown that the implementation of diffuse scattering into RT significantly increases the accuracy of the cross-polar discrimination prediction, whereas the delay-spread prediction is only marginally improved.

  6. Depolarization corrections to the coercive field in thin-film ferroelectrics

    International Nuclear Information System (INIS)

    Dawber, M; Chandra, P; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 μm to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  7. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  8. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors

    International Nuclear Information System (INIS)

    Zhuchenko, N.K.; Yagud, R.Z.

    1993-01-01

    Neutron depolarization measurements in the mixed state of both high-T c and low-T c weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo 6 S 8 and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields

  9. The use of thermally stimulated depolarization currents to study grain growth in ceramic thorium dioxide

    International Nuclear Information System (INIS)

    Muccillo, R.; Campos, L.L.

    1979-01-01

    Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt

  10. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  11. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  12. Altered contractile responses of arteries from spontaneously hypertensive rat: The role of endogenous mediators and membrane depolarization

    Czech Academy of Sciences Publication Activity Database

    Bencze, Michal; Behuliak, Michal; Vavřínová, Anna; Zicha, Josef

    2016-01-01

    Roč. 166, Dec 1 (2016), s. 46-53 ISSN 0024-3205 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : femoral artery * SHR * vascular contractility * adrenergic contraction * tyramine * propranolol * neuropeptide Y Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.936, year: 2016

  13. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  14. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    Science.gov (United States)

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  15. Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering

    Science.gov (United States)

    Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.

    2018-06-01

    The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles

  16. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  17. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  18. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  19. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  20. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    International Nuclear Information System (INIS)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-01-01

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, λ=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc

  1. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    Science.gov (United States)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  2. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-07-15

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, {lambda}=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc.

  3. Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO-3/CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9 mV, as also observed...

  4. Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach.

    Science.gov (United States)

    Romero, Daniel; Ringborn, Michael; Laguna, Pablo; Pahlm, Olle; Pueyo, Esther

    2011-01-01

    Diagnosis and risk stratification of patients with acute coronary syndromes can be improved by adding information from the depolarization phase (QRS complex) to the conventionally used ST-T segment changes. In this study, ischemia-induced changes in the main three slopes of the QRS complex, upward ( ℑ(US)) and downward ( ℑ(DS) ) slopes of the R wave as well as the upward ( ℑ(TS)) slope of the terminal S wave, were evaluated as to represent a robust measure of pathological changes within the depolarization phase. From ECG recordings both in a resting state (control recordings) and during percutaneous coronary intervention (PCI)-induced transmural ischemia, we developed a method for quantification of ℑ(US), ℑ(DS), and ℑ(TS) that incorporates dynamic ECG normalization so as to improve the sensitivity in the detection of ischemia-induced changes. The same method was also applied on leads obtained by projection of QRS loops onto their dominant directions. We show that ℑ(US), ℑ(DS), and ℑ(TS) present high stability in the resting state, thus providing a stable reference for ischemia characterization. Maximum relative factors of change ( ℜ(ℑ)) during PCI were found in leads derived from the QRS loop, reaching 10.5 and 13.7 times their normal variations in the control for ℑ(US) and ℑ(DS), respectively. For standard leads, the relative factors of change were 6.01 and 9.31. The ℑ(TS) index presented a similar behavior to that of ℑ(DS). The timing for the occurrence of significant changes in ℑ(US) and ℑ(DS) varied with lead, ranging from 30 s to 2 min after initiation of coronary occlusion. In the present ischemia model, relative ℑ(DS) changes were smaller than ST changes in most leads, however with only modest correlation between the two indices, suggesting they present different information about the ischemic process. We conclude that QRS slopes offer a robust tool for evaluating depolarization changes during myocardial ischemia.

  5. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    Science.gov (United States)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  6. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Dreier, Jens P

    2009-01-01

    Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals...... of the inverse filter was validated by its ability to recover both simulated and real low-frequency input test signals. The inverse filter was then applied to AC-coupled ECoG recordings from five patients who underwent invasive monitoring after aneurysmal subarachnoid hemorrhage. For 117 SPCs, the inverse filter...

  7. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    Czech Academy of Sciences Publication Activity Database

    Slezák, Ondřej; Yasuhara, R.; Lucianetti, Antonio; Vojna, David; Mocek, Tomáš

    2015-01-01

    Roč. 17, č. 6 (2015), s. 1-8, č. článku 065610. ISSN 2040-8978 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : stress-induced birefringence * thermal depolarization * high-power lasers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.847, year: 2015

  8. Measurement of the broadening and depolarization of a Gaussian beam to transmit in fog water

    International Nuclear Information System (INIS)

    Serrano, G.; Reynoso, E; Davila, J. A.

    2012-01-01

    In this paper, we develop a controlled experimental environment in the laboratory, a waterproof camera where it will introduce artificial fog and become a beam of linearly polarized Gaussian laser light, creating sprawl, broadening and depolarization is studied with a system capable of measuring such phenomena. Most studies on dispersion have focused on the lobes of backscattering, however the correct conditions with the incident light beam a substantial fraction of light is scattered in the forward direction forming a widened light lobe. With this light lobe formed could be studied with extreme precision many factors such as the existence of single or multiple scattering and the amount by which this is carried out. This is of great importance in the estimation of lidar returns because these foundations can learn important information such as extinction and backscatter coefficients, particulate pollutants in the atmosphere and thus understand the operation model of nature. (Author)

  9. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  10. Adiabatic Siberian snake turn-on and acceleration through depolarizing resonances

    International Nuclear Information System (INIS)

    Koulsha, A.V.; Anferov, V.A.; Baiod, R.

    1993-01-01

    The authors plan to install in the IUCF Cooler Ring a rampable partial (30%) Siberian snake to test if the spin polarization is preserved during adiabatic turn-on. They also plan to use this ramped snake to accelerate polarized protons to 370 MeV while passing through two depolarizing resonances. The Siberian snake will consist of two small rampable warm solenoids placed symmetrically on either side of the exciting cold 2 T·m solenoid which would run dc at about 0.5 T·m. Ramping each warm magnet from about -0.25T·m to + 0.25 T·m. Recent experiments showed that turning on the snake in 100 msec at 370 MeV causes no serious beam loss

  11. Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be

    International Nuclear Information System (INIS)

    Baker, M.P.

    1975-01-01

    The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude

  12. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels.

    Directory of Open Access Journals (Sweden)

    Vesna Cvetkovic-Lopes

    Full Text Available In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs could be involved. As canonical transient receptor channels (TRPCs are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90% of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.

  13. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  14. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  15. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  16. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    International Nuclear Information System (INIS)

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-01-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 μM) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 μM veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 μM dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 μM) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated

  17. Spreading depolarization-modulating drugs and delayed cerebral ischemia after subarachnoid hemorrhage : A hypothesis-generating retrospective clinical study

    NARCIS (Netherlands)

    Hamming, Arend M.; Mulder, Inge A.; Gathier, Celine S.; van den Bergh, Walter M.; Dankbaar, Jan Willem; Hoff, Reinier G.; Vandertop, W. Peter; Verbaan, Dagmar; Ferrari, Michel D.; Rinkel, Gabriel J. E.; Algra, Ale; Wermer, Marieke J. H.

    2016-01-01

    Background: Delayed cerebral ischemia (DCI) occurs in approximately one-third of patients with aneurysmal subarachnoid hemorrhage (aSAH). A proposed underlying mechanism for DCI is spreading depolarization (SD). Our aim was to, retrospectively, investigate the influence of the use of SD-modulating

  18. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors.

    Science.gov (United States)

    Huang, Shang-Cheng; Dai, Yu-Wen E; Lee, Yen-Hsien; Chiou, Lih-Chu; Hwang, Ling-Ling

    2010-08-01

    An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.

  19. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Poulsen, Allan K.; Brasen, Jens Christian

    2007-01-01

    We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found...... studies showed that glycolytic oscillations perturb the mitochondrial membrane potential and that the mitochondria do not have any controlling effect on the dynamics of glycolysis under these conditions. Depolarization of the mitochondrial membrane by addition of FCCP quenched mitochondrial membrane...... potential oscillations and delocalized DiOC(2)(3), while glycolysis continued to oscillate unaffected....

  20. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  1. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an I h current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  2. Depolarization-dependent 45Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    International Nuclear Information System (INIS)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr.

    1990-01-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain

  3. Depolarization-dependent sup 45 Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr. (Univ. of North Carolina, Chapel Hill (USA))

    1990-08-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain.

  4. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  5. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  6. Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar

    Science.gov (United States)

    McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

    2011-12-01

    Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011

  7. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  8. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

    Science.gov (United States)

    Clementi, Emily A; Marks, Laura R; Roche-Håkansson, Hazeline; Håkansson, Anders P

    2014-02-17

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial

  9. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  10. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  11. Magnetic particles studied with neutron depolarization and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Rosman, R.

    1991-01-01

    Materials containing magnetic single-domain particles, referred to as 'particulate media', have been studied using neutron depolarization (ND) and small-angle neutron scattering (SANS). In a ND experiment the polarization vector of a polarized neutron beam is analyzed after transmission through a magnetic medium. Such an analysis in general yields the correlation length of variations in magnetic induction along the neutron path (denoted 'magnetic correlation length'), mean orientation of these variations and mean magnetic induction. In a SANS experiment, information about nuclear and magnetic inhomogeneities in the medium is derived from the broadening of a generally unpolarized neutron beam due to scattering by these inhomogeneities. Spatial and magnetic microstructure of a variety of particulate media have been studied using ND and/or SANS, by determination of the magnetic or nuclear correlation length in these media in various magnetic states. This thesis deals with the ND theory and its application to particulate media. ND and SANS experiments on a variety of particulate media are discussed. (author). 178 refs., 97 figs., 8 tabs

  12. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  13. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Romero, M. F. de; Duque, Z.; Rinco, O. T. de; Perez, O.; Araujo, I.

    2003-01-01

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H 2 S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H 2 S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  14. Dynamic neutron depolarization system for the investigation of time dependent magnetic effects

    International Nuclear Information System (INIS)

    Hammer, J.; Badurek, G.; Rauch, H.

    1978-01-01

    To study magnetic after-effects in ferro- and superparamagnetic materials within a range of about 100 μs - 10s a so-called dynamic neutron depolarization system has been developed that is currently installed at the polarized beam facility of the TRIGA Mark II reactor, Vienna. It allows to measure the time dependence of the polarization change of an initially fully polarized neutron beam on its transmission through a sample exposed to a pulsed magnetic field. A split-pair coil mounted directly on the nitrogen shield of a specially designed helium/nitrogen bath cryostat can be energized up to a maximal induction of 0.25T at a slope of about 10 3 Ts -1 . Sample temperatures in the ranges of 4.2-15K and 77-120K can be established. In order to minimize eddy currents the coil suspension as well as the sample holder are sliced radially. The maximal repetition frequency of the field pulses is 100 Hz which is the upper limit of the multiscaler system we use for a synchronized registration of the beam polarization. First measurements are dealing with the superparamagnetic system Cu-1%Co where single domain cobalt precipitations are expected to give rise to relaxation phenomena well observable with this method. (author)

  15. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation.

    Science.gov (United States)

    Hannon, Eilis; Chand, Annisa N; Evans, Mark D; Wong, Chloe C Y; Grubb, Matthew S; Mill, Jonathan

    2015-07-01

    Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm), although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506) to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type Ca V 1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  16. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  17. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  18. Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists

    Directory of Open Access Journals (Sweden)

    S. G. Shlykov

    2014-02-01

    Full Text Available Influence of calmodulin antagonists on mitochondrial membrane potential was investigated using­ a flow cytometry method, confocal microscopy and fluorescent potential-sensitive probes TMRM and MTG. Influence of different concentrations of calmodulin antagonists on mitochondrial membrane potential was studied using flow cytometry method and a fraction of myometrium mitochondria of unpregnant rats. It was shown that 1-10 µМ calmidazolium gradually reduced mitochondria membrane potential. At the same time 10-100 µМ trifluope­razine influenced as follows: 10 µМ – increased polarization, while 100 µМ – caused almost complete depolarization of mitochondrial membranes. In experiments which were conducted with the use of confocal microscopy method and myometrium cells it was shown, that MTG addition to the incubation medium­ led to the appearance of fluorescence signal in a green range. Addition of the second probe (ТМRM resulted in the appearance of fluorescent signal in a red range. Mitochondrial membrane depolarization by 1µМ СССР or 10 mМ NaN3 was accompanied by the decline of “red” fluo­rescence intensity, “green” fluorescence was kept. The 10-15 minute incubation of myometrium cells in the presen­ce 10 µМ calmidazolium or 100 µМ trifluoperazine was accompanied by almost complete decrease of the TMRM fluorescent signal. Thus, with the use of potential-sensitive fluorescent probes TMRM and MTG it was shown, that calmodulin antagonists modulate mitochondrial membrane potential of myometrium cells.

  19. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    Science.gov (United States)

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  20. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons.

    Science.gov (United States)

    Goldie, Belinda J; Dun, Matthew D; Lin, Minjie; Smith, Nathan D; Verrills, Nicole M; Dayas, Christopher V; Cairns, Murray J

    2014-08-01

    Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    Science.gov (United States)

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  2. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    International Nuclear Information System (INIS)

    Ly, A.M.; Michaelis, E.K.

    1991-01-01

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [ 14 C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [ 14 C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA + led to a transient increase in the influx of the lipid-permeable anion probe S 14 CN - . These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the ∼69-kDa protein in the function of these ion channels

  3. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2017-10-01

    Full Text Available Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  4. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    Science.gov (United States)

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  5. Thermally stimulated depolarization currents in the natural fluorite; Correntes de despolarizacao termicamente estimuladas na fluorita natural

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Mario Ernesto Giroldo

    1986-12-31

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R{sub s}{sup 3+} -F{sub i}{sup -}). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author) 60 refs., 41 figs., 1 tab.

  6. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  7. Thermally stimulated depolarization currents in the natural fluorite; Correntes de despolarizacao termicamente estimuladas na fluorita natural

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Mario Ernesto Giroldo

    1987-12-31

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R{sub s}{sup 3+} -F{sub i}{sup -}). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author) 60 refs., 41 figs., 1 tab.

  8. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Science.gov (United States)

    Hübel, Niklas; Hosseini-Zare, Mahshid S; Žiburkus, Jokūbas; Ullah, Ghanim

    2017-10-01

    Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  9. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  10. Polyhydroxybutyrate Targets Mammalian Mitochondria and Increases Permeability of Plasmalemmal and Mitochondrial Membranes

    Science.gov (United States)

    Elustondo, Pia A.; Angelova, Plamena R.; Kawalec, Michał; Michalak, Michał; Kurcok, Piotr; Abramov, Andrey Y.; Pavlov, Evgeny V.

    2013-01-01

    Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle. PMID:24086638

  11. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  12. Electrical characterization of polymer matrix — TiO2 filler composites through isothermal polarization / depolarization currents and I-V tests

    Science.gov (United States)

    Stavrakas, Ilias; Triantis, Dimos; Hloupis, George; Moutzouris, Konstantinos

    2014-04-01

    Specimens of polymer matrix — ceramic TiO2 filler composites were prepared. The contribution of the filler content on the electrical conductivity and energy storage properties of the samples was examined. I-V and Isothermal Polarization/Depolarization Current (IPC/IDC) measurements were conducted. Dc conductivity values directly calculated from the I-V curves exhibited excellent agreement with corresponding values derived from the IPC/IDC recordings. Standard models were employed for fitting the IPC/IDC data. In specific, the short and the very long depolarization times were fitted by use of power laws of different slopes, while the intermediate depolarization times were fitted as a sum of three exponential decays. The present study reveals a strong dependence of the depolarization and polarization processes, as well as of the dc conductivity, on the filler concentration.

  13. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    Science.gov (United States)

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.

  16. Monosodium glutamate induced testicular lesions in rats (histological study

    Directory of Open Access Journals (Sweden)

    Aisha D. Alalwani

    2014-12-01

    Conclusions: MSG may have some deleterious effects on the testes of Wistar rats and by extension may contribute to the causes of male infertility. Thus, it is important to reconsider the usage of MSG as a flavor enhancer.

  17. Pharmacological exploration of the resting membrane potential reserve

    DEFF Research Database (Denmark)

    van der Heyden, Marcel A G; Jespersen, Thomas

    2016-01-01

    as well as by exchangers and pumps. This review will focus on the relative and regulated contribution of IK1, IK,ACh and IK,Ca, and on pharmacological modification of the channels underlying these currents in respect to the resting membrane potential, Na(+) channel availability and atrial......The cardiac action potential arises and spreads throughout the myocardium as a consequence of highly organized spatial and temporal expression of ion channels conducting Na(+), Ca(2+) or K(+) currents. The cardiac Na(+) current is responsible for the initiation and progression of the action...... potential. Altered Na(+) current has been found implicated in a number of different arrhythmias, including atrial fibrillation. In the atrium, the resting membrane potential is more depolarized than in the ventricles, and as cardiac Na(+) channels undergo voltage-dependent inactivation close...

  18. Dynamics of Membrane Potential Variation and Gene Expression Induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    Bricchi, Irene; Bertea, Cinzia M.; Occhipinti, Andrea; Paponov, Ivan A.; Maffei, Massimo E.

    2012-01-01

    Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former

  19. Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    Denny Milakara

    2017-01-01

    Full Text Available In many cerebral grey matter structures including the neocortex, spreading depolarization (SD is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.

  20. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation

    Directory of Open Access Journals (Sweden)

    Eilis Hannon

    2015-07-01

    Full Text Available Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm, although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506 to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  1. Right precordial-directed electrocardiographical markers identify arrhythmogenic right ventricular cardiomyopathy in the absence of conventional depolarization or repolarization abnormalities.

    Science.gov (United States)

    Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G

    2017-10-13

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.

  2. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  3. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  4. Identification of antifungal H+-ATPase inhibitors with effect on the plasma membrane potential

    DEFF Research Database (Denmark)

    Kjellerup, Lasse; Gordon, Sandra; Cohrt, Karen O'Hanlon

    2017-01-01

    to depolarize the membrane and inhibit extracellular acidification in intact fungal cells, concomitant with a significant increase in intracellular ATP levels. Collectively, we suggest these effects may be a common feature for Pma1 inhibitors. Additionally, the work uncovered a dual mechanism for the previously......The plasma membrane H(+)-ATPase (Pma1) is an essential fungal protein and a proposed target for new antifungal medications. A small-molecule library containing ∼191,000 commercially available compounds was screened for inhibition of S. cerevisiae plasma membranes containing Pma1. The overall hit...... identified cationic peptide BM2, revealing fungal membrane disruption in addition to Pma1 inhibition. The methods presented here provide a solid platform for the evaluation of Pma1-specific inhibitors in a drug development setting. The present inhibitors could serve as a starting point for the development...

  5. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  6. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  7. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Science.gov (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  8. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    Science.gov (United States)

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  9. Potassium accumulation by the glial membrane pump as revealed by membrane potential recording from isolated rabbit retinal Müller cells.

    Science.gov (United States)

    Reichenbach, A; Nilius, B; Eberhardt, W

    1986-01-30

    Müller (glial) cells were isolated from rabbit retinae by papaine and mechanical dissociation. In a special perfusion chamber, the cells were penetrated with a recording electrode. When high-K+ solutions were applied into the environment of the cells by means of a second micropipette, the cell membrane depolarized strongly. During prolonged application of high-K+ solutions, however, there occurred a marked repolarization, and after cessation of high-K+ application, a strong hyperpolarization was observed. Both effects disappeared under the influence of ouabain, suggesting the accumulation of intracellular K+ by an active membrane pump. The data were used for calculation of the membrane's Na+:K+ permeability ratio, the intracellular K+ concentration, the pump rate and the mean pump site density. The calculated values are in good agreement with published data from mammalian astrocytes and are compared with those from amphibian Müller cells.

  10. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  11. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  12. Determination of proton-nucleon analyzing powers and spin-rotation-depolarization parameters at 500 MeV

    International Nuclear Information System (INIS)

    Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.

    1986-01-01

    500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions

  13. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Marko Kostic

    2015-10-01

    Full Text Available Mitochondrial Ca2+ overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1 function, implicated in Parkinson disease, inhibits the mitochondrial Na+/Ca2+ exchanger (NCLX, leading to impaired mitochondrial Ca2+ extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLXS258D prevents mitochondrial Ca2+ overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca2+ transport regulatory pathway that protects against mitochondrial Ca2+ overload. Because mitochondrial Ca2+ dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.

  14. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Oxytocin Depolarizes Fast-Spiking Hilar Interneurons and Induces GABA Release onto Mossy Cells of the Rat Dentate Gyrus

    Science.gov (United States)

    Harden, Scott W.; Frazier, Charles J.

    2016-01-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005

  16. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    Science.gov (United States)

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Depolarization in Delivering Public Services? Impacts of Minimum Service Standards (MSS on the Quality of Health Services in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Roudo

    2016-03-01

    Full Text Available Abstract. Some scholars argue that decentralization policy tends to create polarization, i.e. an increase of inequality/disparity among districts. To deal with this problem, Minimum Service Standards (MSS were introduced as a key strategy in decentralizing Indonesia. In this research, we tried to find out through MSS performance measurements whether imposing standards can be effective in a decentralized system by seeking its impacts on polarization/depolarization in the delivery of public services, specifically in the health sector. This question is basically a response to the common criticism that decentralization is good to create equality between central government and local governments but often does not work to achieve equality among local governments. Using self-assessment data from a sample of 54 districts from 534 districts in Indonesia, from 2010 to 2013, we found that the existence of depolarization in the delivery of public services could potentially occur among regions by reducing the gap between their public service performance and the targets of MSS. We acknowledge that there are weaknesses in the validity of the self-assessment data, caused by a lack of knowledge and skills to execute the self-assessment according to the official guidelines, by the overrating of target achievements, as well as the lack of data from independent sources to confirm the self-assessment outcomes. We also acknowledge that differences in financial capacity are still the main determinant why one district is more successful in achieving the MSS targets compared to other districts. Keywords. Decentralization, Public Service, Minimum Standard Service

  18. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  20. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  1. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    Science.gov (United States)

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  2. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    Science.gov (United States)

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  3. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  4. K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks

    DEFF Research Database (Denmark)

    Jurkat-Rott, Karin; Weber, Marc-André; Fauler, Michael

    2009-01-01

    Normal resting potential (P1) of myofibers follows the Nernst equation, exhibiting about -85 mV at a normal extracellular K(+) concentration ([K(+)](o)) of 4 mM. Hyperpolarization occurs with decreased [K(+)](o), although at [K(+)](o)

  5. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Souček, Karel; Sheard, M. A.; Chramostová, Kateřina; Andrysík, Zdeněk; Hofmanová, Jiřina; Kozubík, Alois

    2006-01-01

    Roč. 30, č. 1 (2006), s. 81-89 ISSN 0145-2126 R&D Projects: GA ČR(CZ) GA524/03/0766 Institutional research plan: CEZ:AV0Z50040507 Keywords : human myeloid leukemia * DMSO * apoptosis Subject RIV: BO - Biophysics Impact factor: 2.483, year: 2006

  6. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  7. Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

    Science.gov (United States)

    Oron, Y; Gillo, B; Gershengorn, M C

    1988-06-01

    Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

  8. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  9. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  10. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5 +/- 1.0 mV (n = 149). It was investigated whether the effect of HCO3- was due to a Na+-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively...... was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO3(-)-free and HCO3(-)-containing solution was -0.8 and -2.6 mV, respectively. The equivalent...... short circuit current (Isc) under similar conditions was 26 and 50 microA . cm-2. The specific transepithelial resistance (Rte) was 88 omega cm2. In control solutions the PD across the basolateral membrane (PDbl) was -63 +/- 1 mV (n = 314). Ouabain (3 mmol/l) depolarized PDbl by 4.8 +/- 1.1 mV (n = 6...

  11. Voltage dependence of a stochastic model of activation of an alpha helical S4 sensor in a K channel membrane

    Science.gov (United States)

    Vaccaro, S. R.

    2011-09-01

    The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.

  12. Studies concerning the interaction between local anesthetics and lipid membrane by phosphorus-31, deuterium and proton NMR; Estudo da interacao entre anestesicos locais e membranas lipidicas por ressonancia magnetica de fosforo ({sup 31} P), deuterio ({sup 2} H) e proton ({sup 1} H)

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Eneida de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Bioquimica; Jarrell, Harold C. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Biological Sciences; Schreier, Shirley [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1993-12-31

    Local anesthetics block the conduction of nervous stimulus by impeding the entrance of sodium ion and the consequently depolarization of the nervous membrane. The action mechanism of local anesthetics, however, is not fully understood yet. In the present work the interaction between local anesthetics and membranes are studied by the perspective of lipid phase perturbation using NMR to elucidate the mechanism. Results are presented and discussed 5 refs., 1 fig., 1 tab.

  13. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.

    Science.gov (United States)

    Duchen, M R; Biscoe, T J

    1992-05-01

    1. In the accompanying paper (Duchen & Biscoe, 1992) we have described graded changes in autofluorescence derived from mitochondrial NAD(P)H in type I cells of the carotid body in response to changes of PO2 over a physiologically significant range. These observations suggest that mitochondrial function in these cells is unusually sensitive to oxygen and could play a role in oxygen sensing. We have now explored further the relationships between hypoxia, mitochondrial membrane potential (delta psi m) and [Ca2+]i. 2. The fluorescence of Rhodamine 123 (Rh 123) accumulated within mitochondria is quenched by delta psi m. Mitochondrial depolarization thus increases the fluorescence signal. Blockade of electron transport (CN-, anoxia, rotenone) and uncoupling agents (e.g. carbonyl cyanide p-trifluoromethoxy-phenylhydrazone; FCCP) increased fluorescence by up to 80-120%, while fluorescence was reduced by blockade of the F0 proton channel of the mitochondrial ATP synthase complex (oligomycin). 3. delta psi m depolarized rapidly with anoxia, and was usually completely dissipated within 1-2 min. The depolarization of delta psi m with anoxia (or CN-) and repolarization on reoxygenation both followed a time course well characterized as the sum of two exponential processes. Oligomycin (0.2-2 micrograms/ml) hyperpolarized delta psi m and abolished the slower components of both the depolarization with anoxia and of the subsequent repolarization. These data (i) illustrate the role of the F1-F0 ATP synthetase in slowing the rate of dissipation of delta psi m on cessation of electron transport, (ii) confirm blockade of the ATP synthetase by oligomycin at these concentrations, and (iii) indicate significant accumulation of intramitochondrial ADP during 1-2 min of anoxia. 4. Depolarization of delta psi m was graded with graded changes in PO2 below about 60 mmHg. The stimulus-response curves thus constructed strongly resemble those for [Ca2+]i and NAD(P)H with PO2. The change in delta

  14. Membrane potential correlates of sensory perception in mouse barrel cortex.

    Science.gov (United States)

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  15. Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: Role in the initiation of sperm motility

    International Nuclear Information System (INIS)

    Gatti, J.L.; Billard, R.; Christen, R.

    1990-01-01

    The ionic dependence of the trout sperm plasma membrane potential was analysed by measuring the accumulation of the lipophilic ions 3 H-tetraphenylphosphonium (TPP) and 14 C-thiocyanate (SCN) following dilution in artificial media isotonic to the seminal fluid. Our data showed that the trout sperm plasma membrane has a mixed conductance: the plasma membrane potential is sensitive upon the transmembrane gradients of K+, Na+, and H+. This potential is negative (less than -40 mV) in a 125 mM choline chloride media (ChM) at pH 8.5. Replacement of choline by sodium has a small depolarizing effect. The membrane potential is about -15 mV in a 125 mM potassium chloride and falls near zero mV only if valinomycin is added. In ChM changing the external pH (pHe) greatly affects the membrane potential: its value rises from less than -40 mV at pHe 9.0 to -17 mV at pHe 5.0. This pH effect is observed also in presence of sodium or potassium. A decrease in the transmembrane proton gradient produced by increasing internal pH without changing pHe induces also a depolarisation of the plasma membrane. In the different media in which trout sperm remain immotile after dilution (media with [K+] greater than 20-40 mM or a pH less than 7.5) the plasma membrane is more depolarized than in media allowing motility, suggesting a relationship between the state of membrane polarization and the intracellular effectors of the axonemal movement

  16. The schizophrenia-associated Kv11.1-3.1 isoform results in reduced current accumulation during repetitive brief depolarizations.

    Directory of Open Access Journals (Sweden)

    Juliane Heide

    Full Text Available Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.

  17. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  18. Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: Thermally stimulated depolarization current study

    International Nuclear Information System (INIS)

    Garg, Maneesha; Quamara, J.K.

    2006-01-01

    High-energy ion irradiation effects on the thermally stimulated depolarization current (Tdc) behaviour of kapton-H samples (12.5 μm) irradiated with 50 MeV Li ion (fluence 5 x 10 4 , 10 5 and 5 x 10 5 ions/cm 2 ) have been investigated. The TSDC spectra of the irradiated samples reveal that the β-peak (appearing around 80-110 deg. C) associated with dipolar relaxation has been significantly affected owing to the demerization of carbonyl groups due to irradiation. The TSDC spectra also reveal a new relaxation process (termed as γ-relaxation) around 30 deg. C, due to increased water absorptivity in irradiated samples. The peak around 200 deg. C (α-peak) associated with space charge relaxation process also shows a behavioural change with ion irradiation. The peak not only shifts towards the higher temperature with increasing fluence but also show an increase in its activation energy (0.33-0.99 eV) with increasing polarizing field. The creation of new deep energy trap centers due to the formation of conjugated bonds after irradiation is responsible for this modification. The Cole-Cole distribution curves show the formation of new sub-polar group with different characteristic relaxation time

  19. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  20. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  2. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  3. Membrane with integrated spacer

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    Many membrane processes are severely influenced by concentration polarisation. Turbulence promoting spacers placed in between the membranes can reduce the diffusional resistance of concentration polarisation by inducing additional mixing. Electrodialysis (ED) used for desalination suffers from

  4. Domain wall motion and magnetization reversal processes in a FeSi picture frame single crystal studied by the time-dependent neutron depolarization technique

    International Nuclear Information System (INIS)

    Schaik, F.J. van.

    1979-01-01

    The three dimensional neutron depolarization technique, which gives detailed information about the static properties of ferromagnetic materials, has been extended to a method by means of which the time dependence of magnetic phenomena can be studied. The measurement of the neutron depolarization against time is made possible by applying a periodical magnetic field on the investigated specimen and by continuous sampling of the transmitted neutron intensity in time channels, which are started synchronously with the applied field. The technique has been used in the study of the magnetic domain structure at room temperature of a (010) [001] picture frame FeSi single crystal (3.5 wt.% Si) with outer dimensions of (15 x 10 x 0.26) mm and a frame width of 2.78 mm. (Auth.)

  5. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  6. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  7. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    Science.gov (United States)

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  8. [Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATPase].

    Science.gov (United States)

    Danylovych, H V; Danylovych, Iu V; Kolomiiets', O V; Kosterin, S O; Rodik, R V; Cherenok, S O; Kal'chenko, V I; Chunikhin, O Iu; Horchev, V F; Karakhim, S O

    2012-01-01

    The influence of supramolecular macrocyclic compounds--calix[4]arenes C-97, C-99, C-107, which are ouabainomymetic high affinity inhibitors of Na+, K(+)-ATPase, on the polarization level of plasmic and mitochondrial membranes of rat uterine smooth muscle cells was investigated. The influence of these compounds on the myocytes characteristic size was studied. By using a confocal microscopy and specific for mitochondrial MitoTracker Orange CM-H2TMRos dye it was proved that the potential-sensitive fluorescent probe DiOC6(3) interacts with mitochondria. Artificial potential collapse of plasmic membrane in this case was modeled by myocytes preincubation with ouabain (1 mM). Further experiments performed using the method of flow cytometry with DiOC6(3) have shown that the compounds C-97, C-99 and C-107 at concentration 50-100 nM caused depolarization of the plasma membrane (at the level of 30% relative to control values) in conditions of artificial collapse of mitochondrial potential by myocytes preincubation in the presence of 5 mM of sodium azide. Under artificial sarcolemma depolarization by ouabain, calixarenes C-97, C-99 and C-107 at 100 nM concentrations caused a transient increase of mitochondrial membrane potential, that is 40% of the control level and lasted about 5 minutes. Calixarenes C-99 and C-107 caused a significant increase in fluorescence of myocytes in these conditions, which was confirmed by confocal microscopy too. It was proved by photon correlation spectroscopy method that the C-99 and C-107 caused an increase of characteristic size of myocytes.

  9. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  10. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  11. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  12. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  13. Measurement of the depolarization in the elastic proton scattering on 1H, 27Al, and 89Y in the low energy range

    International Nuclear Information System (INIS)

    Schmitt, R.

    1986-01-01

    With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de

  14. Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice.

    Science.gov (United States)

    Sigler, Albrecht; Mohajerani, Majid H; Murphy, Timothy H

    2009-07-14

    Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm(2) of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200-500 microm blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.

  15. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  16. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  17. Influence of CO2 on electrophysiology and ionic permeability of the basolateral membrane of frog skin

    International Nuclear Information System (INIS)

    Stoddard, J.S.

    1984-01-01

    When short-circuited epithelia of frog skin bathed in an alkaline Ringer solution equilibrated with room air, are exposed to a Ringer solution equilibrated with 5% CO 2 , inhibition of transepithelial Na + transport is observed accompanied by a marked depolarization of the basolateral membrane voltage as measured with intracellular microelectrodes. To study further the mechanisms involved, basolateral membrane influxes and effluxes of 24 Na, 42 K, and 36 Cl were measured in control and CO 2 -treated isolated epithelia. In control epithelia, studies of the bidirectional 24 Na fluxes confirmed the existence of an important basolateral membrane permeability to Na + . In control epithelia, the apical membranes of the cells were found to be virtually impermeable to Cl - , while basolateral membranes were highly permeable to Cl - . Although CO 2 caused a partial inhibition of pump activity as assessed from decreases of pump-mediated Na + efflux and K + influx, CO 2 caused little or no change of the leak influx of Na + or K + . K + efflux was increased markedly with CO 2 resulting in a net loss of K + from the cells. Cl - influx was increased and Cl - efflux was decreased by CO 2 leading to a net influx of Cl - . Analysis of the data according to criteria involving changes of flux, ionic equilibrium potentials, mass and charge balance restrictions indicated that the principle changes involve a transient decrease in electrical conductance to K + with a concurrent increase in electrical conductance to HCO 3 - (OH - or H + ) of the basolateral membranes of the cells

  18. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  19. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  20. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  1. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  2. A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites.

    Science.gov (United States)

    Harder, D R; Roman, R J; Gebremedhin, D; Birks, E K; Lange, A R

    1998-12-01

    Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca(2+)-activated K+ channel (KCa) is dependent upon the level of 20-HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse omega-hydroxylation of arachidonic acid and formation of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which 'spills over' during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.

  3. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  4. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  5. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  6. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. Neuronal excitation and permeabilization by 200-ns pulsed electric field: An optical membrane potential study with FluoVolt dye.

    Science.gov (United States)

    Pakhomov, Andrei G; Semenov, Iurii; Casciola, Maura; Xiao, Shu

    2017-07-01

    Electric field pulses of nano- and picosecond duration are a novel modality for neurostimulation, activation of Ca 2+ signaling, and tissue ablation. However it is not known how such brief pulses activate voltage-gated ion channels. We studied excitation and electroporation of hippocampal neurons by 200-ns pulsed electric field (nsPEF), by means of time-lapse imaging of the optical membrane potential (OMP) with FluoVolt dye. Electroporation abruptly shifted OMP to a more depolarized level, which was reached within 10s), so cells remained above the resting OMP level for at least 20-30s. Activation of voltage-gated sodium channels (VGSC) enhanced the depolarizing effect of electroporation, resulting in an additional tetrodotoxin-sensitive OMP peak in 4-5ms after nsPEF. Omitting Ca 2+ in the extracellular solution did not reduce the depolarization, suggesting no contribution of voltage-gated calcium channels (VGCC). In 40% of neurons, nsPEF triggered a single action potential (AP), with the median threshold of 3kV/cm (range: 1.9-4kV/cm); no APs could be evoked by stimuli below the electroporation threshold (1.5-1.9kV/cm). VGSC opening could already be detected in 0.5ms after nsPEF, which is too fast to be mediated by the depolarizing effect of electroporation. The overlap of electroporation and AP thresholds does not necessarily reflect the causal relation, but suggests a low potency of nsPEF, as compared to conventional electrostimulation, for VGSC activation and AP induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  10. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  11. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  12. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  13. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish.

    Science.gov (United States)

    Araque, A; Ferreira, W; Lucas, S; Buño, W

    1992-01-31

    The effects of toxins from venom glands of two south american spiders (Pamphobeteus platyomma and P. soracabae) on glutamatergic excitatory synaptic transmission were studied in the neuromuscular junction of the opener muscle of crayfish. The toxins selectively and reversibly blocked both excitatory postsynaptic currents and potentials in a dose-dependent manner. They also reversibly abolished glutamate-induced postsynaptic membrane depolarization. They had no effect on resting postsynaptic membrane conductance nor on postsynaptic voltage-gated currents. The synaptic facilitation and the frequency of miniature postsynaptic potentials were unaffected by the toxins, indicating that presynaptic events were not modified. Picrotoxin, a selective antagonist of the gamma-aminobutyric acid (GABA)A receptor, did not modify toxin effects. We conclude that both toxins specifically block the postsynaptic glutamate receptor-channel complex.

  14. β-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons.

    Science.gov (United States)

    Lund, Trine M; Obel, Linea F; Risa, Øystein; Sonnewald, Ursula

    2011-08-01

    The ketogenic diet has multiple beneficial effects not only in treatment of epilepsy, but also in that of glucose transporter 1 deficiency, cancer, Parkinson's disease, obesity and pain. Thus, there is an increasing interest in understanding the mechanism behind this metabolic therapy. Patients on a ketogenic diet reach high plasma levels of ketone bodies, which are used by the brain as energy substrates. The interaction between glucose and ketone bodies is complex and there is still controversy as to what extent it affects the homeostasis of the neurotransmitters glutamate, aspartate and GABA. The present study was conducted to study this metabolic interaction in cultured GABAergic neurons exposed to different combinations of (13)C-labeled and unlabeled glucose and β-hydroxybutyrate. Depolarization was induced and the incorporation of (13)C into glutamate, GABA and aspartate was analyzed. The presence of β-hydroxybutyrate together with glucose did not affect the total GABA content but did, however, decrease the aspartate content to a lower value than when either glucose or β-hydroxybutyrate was employed alone. When combinations of the two substrates were used (13)C-atoms from β-hydroxybutyrate were found in all three amino acids to a greater extent than (13)C-atoms from glucose, but only the (13)C contribution from [1,6-(13)C]glucose increased upon depolarization. In conclusion, β-hydroxybutyrate was preferred over glucose as substrate for amino acid synthesis but the total content of aspartate decreased when both substrates were present. Furthermore only the use of glucose increased upon depolarization. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia.

    Directory of Open Access Journals (Sweden)

    Shunichi Sato

    Full Text Available Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3-4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of

  16. Measurement of the depolarization of the reaction 27Al (p vector, p vector.) 27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interactions in the optical potential the depolarization in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials resulted by the fit of those to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al (p vector,psub(o)) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richard, Tepel, and Weidenmueller. Because of the target nucleus 27 Al posesses in the ground state a spin I=5/2 also the possible quadrupole spin flip had to be included in the analysis. This was performed by coupled channel calculations. The depolarization data corrected according to compound contributions and quadrupole effects could now be applied to the study of the spin-spin potentials by means of DWBA calculations. As result it turned out that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. For the addition of a tensor term however no necessity resulted. (orig.) [de

  17. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    Science.gov (United States)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  18. Monitoring voltage-sensitive membrane impedance change using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2010-01-01

    Here we present a new technique to monitor dynamic conformational changes in voltage-sensitive membrane-bound proteins using radio frequency (RF) impedance measurements. Xenopus oocytes were transfected to express ShakerB-IR K(+) ion channels, and step changes in membrane potential were applied using two-electrode voltage clamp (TEVC). Simultaneously, bipolar extracellular electrodes were used to measure the RF electrical impedance across the cell (300 kHz - 1 MHz). RF current will either pass through the media, around the cell, or displace charge across the cell membrane. The change in displacement current in the cell membrane during voltage clamp resulted in measurable RF impedance change. RF impedance change during DC membrane depolarization was significantly greater in ShakerB-IR expressing oocytes than in endogenous controls at 300 kHz, 500 kHz and, to a lesser extent, 1 MHz. Since the RF were too high to modulate ShakerB-IR protein conformational state (e.g. open channel probability), impedance changes are interpreted as reflections of voltage-dependent protein conformation and associated biophysics such as ion-channel dipole interactions, fluctuations in bound water, or charged lipid head-group rotations.

  19. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  20. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors. Issledovanie magnitnykh neodnorodnostej v sverkhprovodnikakh so slabymi svyazyami metodom depolyarizatsii nejtronov

    Energy Technology Data Exchange (ETDEWEB)

    Zhuchenko, N K; Yagud, R Z [AN SSSR, Leningrad (Russian Federation). Inst. Yadernoj Fiziki

    1993-09-01

    Neutron depolarization measurements in the mixed state of both high-T[sub c] and low-T[sub c] weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo[sub 6]S[sub 8] and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields.

  1. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  2. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  3. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  4. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  5. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  6. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  7. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment

    International Nuclear Information System (INIS)

    Fletcher, M.P.

    1986-01-01

    Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3 H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT

  8. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  9. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  10. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  11. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons.

    Science.gov (United States)

    Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret

    2007-10-17

    Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (Pneuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.

  12. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  14. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  15. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  16. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  17. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  18. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  19. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  20. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  1. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  3. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  6. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure

    Science.gov (United States)

    Merlot, Sylvain; Leonhardt, Nathalie; Fenzi, Francesca; Valon, Christiane; Costa, Miguel; Piette, Laurie; Vavasseur, Alain; Genty, Bernard; Boivin, Karine; Müller, Axel; Giraudat, Jérôme; Leung, Jeffrey

    2007-01-01

    Light activates proton (H+)-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO2 to photosynthetic tissues. Light to darkness transition, high CO2 levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H+-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO2 and darkness. The OST2 gene encodes the major plasma membrane H+-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H+-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure. PMID:17557075

  7. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy.

    Science.gov (United States)

    Kress, Alla; Wang, Xiao; Ranchon, Hubert; Savatier, Julien; Rigneault, Hervé; Ferrand, Patrick; Brasselet, Sophie

    2013-07-02

    Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  9. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  10. Zinc and calcium alter the relationship between mitochondrial respiration, ROS and membrane potential in rainbow trout (Oncorhynchus mykiss) liver mitochondria.

    Science.gov (United States)

    Sharaf, Mahmoud S; Stevens, Don; Kamunde, Collins

    2017-08-01

    At excess levels, zinc (Zn) disrupts mitochondrial functional integrity and induces oxidative stress in aquatic organisms. Although much is known about the modulation of Zn toxicity by calcium (Ca) in fish, their interactions at the mitochondrial level have scarcely been investigated. Here we assessed the individual and combined effects of Zn and Ca on the relationship between mitochondrial respiration, ROS and membrane potential (ΔΨ mt ) in rainbow trout liver mitochondria. We tested if cation uptake through the mitochondrial calcium uniporter (MCU) is a prerequisite for Zn- and/or Ca-induced alteration of mitochondrial function. Furthermore, using our recently developed real-time multi-parametric method, we investigated the changes in respiration, ΔΨ mt , and reactive oxygen species (ROS, as hydrogen peroxide (H 2 O 2 )) release associated with Ca-induced mitochondrial depolarization imposed by transient and permanent openings of the mitochondrial permeability transition pore (mPTP). We found that independent of the MCU, Zn precipitated an immediate depolarization of the ΔΨ mt that was associated with relatively slow enhancement of H 2 O 2 release, inhibition of respiration and reversal of the positive correlation between ROS and ΔΨ mt . In contrast, an equitoxic dose of Ca caused transient depolarization, and stimulation of both respiration and H 2 O 2 release, effects that were completely abolished when the MCU was blocked. Contrary to our expectation that mitochondrial transition ROS Spike (mTRS) would be sensitive to both Zn and Ca, only Ca suppressed it. Moreover, Zn and Ca in combination immediately depolarized the ΔΨ mt , and caused transient and sustained stimulation of respiration and H 2 O 2 release, respectively. Lastly, we uncovered and characterized an mPTP-independent Ca-induced depolarization spike that was associated with exposure to moderately elevated levels of Ca. Importantly, we showed the stimulation of ROS release associated with

  11. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  12. Coulometric titrations of bases in propylene carbonate and g-butyrolactone using hydroquinone as the depolarizer and a quinhydrone indicator electrode

    Directory of Open Access Journals (Sweden)

    Z. D. STANIC

    2000-08-01

    Full Text Available The application of hydroquinone for the coulometric generation of hydrogen ions in propylene carbonate (PC and g-butyrolactone (GBL is described. The current-potential curves recorded for theid sepolarizer, titrated bases, indicator and the solvents used showed that the investigated depolarizer is oxidized at lower potentials than the oxidation potentials of other components in the solution. the hydrogen ions generated by the oxidation of hydroquinone were used for the titration of organic bases (triethylamine, n-butylamine, pyridine, quinoline, aniline, N,N’-diphenylguanidine, piperidine, and 2,2’-bipiridine in PC and GBL with visual (Crystal Violet as indicator and potentiometric end-point detection using a quinhydrone electrode as the indicator electrode. The quinhydrone added to the to be analyzed solution served both as a source of hydrogen ions and, together with the immersed platinum electrode, as a quinhydrone electrode. The relative error of the determination of the bases was about 1 %.

  13. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-01-01

    (control: 28.3+/-16.3 mm3 vs. alpha-PBN 23.7+/-7.4 mm3). In the second series of experiments, periinfarct depolarizations (PIDs) were recorded with an extracellular DC electrode at two locations in the ischemic penumbra for the initial 3 h following MCAO. alpha-PBN (100 mg/kg, single dose in conjunction...... with occlusion) significantly reduced the total number (median value of 3 PIDs in the control groups vs. 1 PID in alpha-PBN groups, p...... with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume...

  14. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites

    Science.gov (United States)

    Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing

    2017-12-01

    Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.

  15. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  16. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  17. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  18. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  19. Measurement of the depolarization of the reaction 27Al(p vector,p vector.)27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interaction in the optical potential the depolarisation in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD-magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials was performed by the fitting of these to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al(p vector,p 0 ) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richert, Tepel and Weidenmueller. Because the target nucleus 27 Al possesses in the ground state a spin I=5/2, also the possible quadrupole spin flip had to be included. This was performed by coupled-channel calculations. The respecting compound contributions and quadrupole effects corrected depolarization data could by used for the study of the spin-spin potentials by means of DWBA calculations. As result it was shown that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. (orig.) [de

  20. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  1. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  2. Aquaporin-2 membrane targeting

    DEFF Research Database (Denmark)

    Olesen, Emma T B; Fenton, Robert A

    2017-01-01

    The targeting of the water channel aquaporin-2 (AQP2) to the apical plasma membrane of kidney collecting duct principal cells is regulated mainly by the antidiuretic peptide hormone arginine vasopressin (AVP). This process is of crucial importance for the maintenance of body water homeostasis...... of aquaporin-2 (AQP2) to the apical plasma membrane of collecting duct (CD) principal cells (10, 20). This process is mainly regulated by the actions of AVP on the type 2 AVP receptor (V2R), although the V1a receptor may also play a minor role (26). The V2R is classified within the group of 7-transmembrane....... For example, 1) stimulation with the nonspecific AC activator forskolin increases AQP2 membrane accumulation in a mouse cortical collecting duct cell line [e.g., Norregaard et al. (16)]; 2) cAMP increases CD water permeability (15); 3) the cAMP-activated protein kinase A (PKA) can phosphorylate AQP2 on its...

  3. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  4. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  5. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  6. Membrane accessibility of glutathione

    DEFF Research Database (Denmark)

    Garcia, Almudena; Eljack, N., D.; Sani, ND

    2015-01-01

    Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate...... that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane...

  7. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  8. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  9. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  10. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  11. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  12. Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring.

    Directory of Open Access Journals (Sweden)

    Divya Padmaraj

    Full Text Available A biological microelectromechanical system (BioMEMS device was designed to study complementary mitochondrial parameters important in mitochondrial dysfunction studies. Mitochondrial dysfunction has been linked to many diseases, including diabetes, obesity, heart failure and aging, as these organelles play a critical role in energy generation, cell signaling and apoptosis. The synthesis of ATP is driven by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. We have developed a tool to study the ionic activity of the mitochondria in parallel with dielectric measurements (impedance spectroscopy to gain a better understanding of the properties of the mitochondrial membrane. This BioMEMS chip includes: 1 electrodes for impedance studies of mitochondria designed as two- and four-probe structures for optimized operation over a wide frequency range and 2 ion-sensitive field effect transistors for proton studies of the electron transport chain and for possible monitoring other ions such as sodium, potassium and calcium. We have used uncouplers to depolarize the mitochondrial membrane and disrupt the ionic balance. Dielectric spectroscopy responded with a corresponding increase in impedance values pointing at changes in mitochondrial membrane potential. An electrical model was used to describe mitochondrial sample's complex impedance frequency dependencies and the contribution of the membrane to overall impedance changes. The results prove that dielectric spectroscopy can be used as a tool for membrane potential studies. It can be concluded that studies of the electrochemical parameters associated with mitochondrial bioenergetics may render significant information on various abnormalities attributable to these organelles.

  13. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  14. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L.

    2013-01-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission

  15. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO2-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    Energy Technology Data Exchange (ETDEWEB)

    Summers, W. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Steimke, J. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zahn, Steffen [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO2, followed by the electrolysis of aqueous SO2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO2-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for

  17. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO2-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    International Nuclear Information System (INIS)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-01-01

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy's (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO 2 , followed by the electrolysis of aqueous SO 2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO 2 -depolarized electrolyzer (SDE) and a test facility. Over 40 SDE's were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE's cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL's SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane

  18. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  19. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  20. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  1. Imaging of membranous dysmenorrhea

    Energy Technology Data Exchange (ETDEWEB)

    Rouanet, J.P.; Daclin, P.Y.; Turpin, F.; Karam, R.; Prayssac-Salanon, A. [Dept. of Radiology, C. M. C. Beausoleil, Montpellier (France); Courtieu, C.R. [Dept. of Gynecology, C. M. C. Beausoleil, Montpellier (France); Maubon, A.J. [Dept. of Radiology, C. M. C. Beausoleil, Montpellier (France); Dept. of Radiology, C. H. U. Dupuytren, Limoges (France)

    2001-06-01

    Membranous dysmenorrhea is an unusual clinical entity. It is characterized by the expulsion of huge fragments of endometrium during the menses, favored by hormonal abnormality or drug intake. This report describes a case with clinical, US, and MRI findings before the expulsion. Differential diagnoses are discussed. (orig.)

  2. Imaging of membranous dysmenorrhea

    International Nuclear Information System (INIS)

    Rouanet, J.P.; Daclin, P.Y.; Turpin, F.; Karam, R.; Prayssac-Salanon, A.; Courtieu, C.R.; Maubon, A.J.

    2001-01-01

    Membranous dysmenorrhea is an unusual clinical entity. It is characterized by the expulsion of huge fragments of endometrium during the menses, favored by hormonal abnormality or drug intake. This report describes a case with clinical, US, and MRI findings before the expulsion. Differential diagnoses are discussed. (orig.)

  3. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  4. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  5. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological membranes. K Katsov M Müller M Schick. Invited Talks:- Topic 11. Biologically motivated problems (protein-folding models, dynamics at the scale of the cell; biological networks, evolution models, etc.) Volume 64 Issue 6 June 2005 pp ...

  6. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...

  7. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  8. Membrane Transfer Phenomena (MTP)

    Science.gov (United States)

    Mason, Larry

    1996-01-01

    Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.

  9. Extracorporeal membrane oxygenation (ECMO)

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is not a novel therapy in the true sense of the ... Intention-to-treat analysis showed benefit for ECMO, with a relative risk ... no doubt that VV-ECMO is an advance in medical technology, and that.

  10. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  11. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  12. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  13. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  14. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  16. Membrane distillation for milk concentration

    NARCIS (Netherlands)

    Moejes, S.N.; Romero Guzman, Maria; Hanemaaijer, J.H.; Barrera, K.H.; Feenstra, L.; Boxtel, van A.J.B.

    2015-01-01

    Membrane distillation is an emerging technology to concentrate liquid products while producing high quality water as permeate. Application for desalination has been studied extensively the past years, but membrane distillation has also potential to produce concentrated food products like

  17. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  18. From shell to membrane theory

    International Nuclear Information System (INIS)

    Destuynder, P.

    1981-02-01

    A new formulation of the membrane theory is presented in this paper. The assumptions which allow the Budiansky-Sanders' model or the membrane theory to be deduced from the three-dimensional case are pointed out [fr

  19. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  20. Cheap Thin Film Oxygen Membranes

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite...... structure with a crystal size of about 1 to 100 nm, and a method for producing same....

  1. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  2. Membranes suited for immobilizing biomolecules

    NARCIS (Netherlands)

    2009-01-01

    The present invention relates to flow-through membranes suitable for the immobilization of biomols., methods for the prepn. of such membranes and the use of such membranes for the immobilization of biomols. and subsequent detection of immobilized biomols. The invention concerns a flow-through

  3. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    Science.gov (United States)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  4. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  5. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  6. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  7. Membrane microparticles and diseases.

    Science.gov (United States)

    Wu, Z-H; Ji, C-L; Li, H; Qiu, G-X; Gao, C-J; Weng, X-S

    2013-09-01

    Membrane microparticles (MPs) are plasma membrane-derived vesicles shed by various types of activated or apoptotic cells including platelets, monocytes, endothelial cells, red blood cells, and granulocytes. MPs are being increasingly recognized as important regulators of cell-to-cell interactions. Recent evidences suggest they may play important functions not only in homeostasis but also in the pathogenesis of a number of diseases such as vascular diseases, cancer, infectious diseases and diabetes mellitus. Accordingly, inhibiting the production of MPs may serve as a novel therapeutic strategy for these diseases. Here we review recent advances on the mechanism underlying the generation of MPs and the role of MPs in vascular diseases, cancer, diabetes, inflammation, and pathogen infection.

  8. Physics of smectic membranes

    Science.gov (United States)

    Pieranski, P.; Beliard, L.; Tournellec, J.-Ph.; Leoncini, X.; Furtlehner, C.; Dumoulin, H.; Riou, E.; Jouvin, B.; Fénerol, J.-P.; Palaric, Ph.; Heuving, J.; Cartier, B.; Kraus, I.

    1993-03-01

    Due to their layered structure, smectic liquid crystals can form membranes, similar to soap bubbles, that can be spanned on frames. Such smectic membranes have been used extensively as samples in many structural X-ray studies of smectic liquid crystals. In this context they have been considered as very convenient and highly perfect samples but little attention has been paid to the reasons for their existence and to the process of their formation. Our aim here is to address a first list of questions, which are the most urgent to answer. We will also describe experiments and models that have been conceived especially in order to understand the physics of these fascinating systems.

  9. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries. (orig.)

  10. Radiation effects on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Koeteles, G.J.

    1982-11-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries.

  11. Choroidal neovascular membrane

    OpenAIRE

    Bhatt Nitul; Diamond James; Jalali Subhadra; Das Taraprasad

    1998-01-01

    Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose o...

  12. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  13. Membrane Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-30

    The Electrosynthesis Co. Inc. (ESC) was contracted by the Westinghouse Savannah River Company to investigate the long term performance and durability of cell components (anode, membrane, cathode) in an electrochemical caustic recovery process using a simulated SRC liquid waste as anolyte solution. This report details the results of two long-term studies conducted using an ICI FM01 flow cell. This cell is designed and has previously been demonstrated to scale up directly into the commercial scale ICI FM21 cell.

  14. Membrane technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, A

    1990-10-01

    Due to a continuing emphasis on increasing the efficiency of utilizing the Province's electrical energy system, a Membrane Testing and Development Facility (MTDF) has been established at Ontario Hydro Research Division. The MTDF comprises bench-scale and pilot-scale reverse osmosis (RO) and ultrafiltration (UF) systems. RO and UF are membrane separation technologies which with microfiltration (MF) have found numerous industrial applications in wastewater treatment and/or byproduct recovery. Since no phase change is involved in RO and UF, they are more energy efficient separation processes than, say, evaporation or distillation. Initial tests have been carried out to demonstrate the capability of the newly-established MTDF. Bench- and pilot-scale RO treatment, at 4.1 MPa applied pressure, of a simulated nickel plating waste rinse stream was demonstrated. RO membrane rejection efficiencies for nickel were 99+% (in the bench scale test) and 99.9+% (on the pilot scale). Volume reduction factors of about 25 were attained, at purified water flux rates in the range 1 to 1.5 m{sup 3}/m{sup 2} per day. Good correlation was noted between bench-scale and pilot-scale RO test results. Pilot-scale UF of a simulated industrial cutting oil/water waste emulsion at 0.40 MPa gave 99+% oil rejection (pilot scale) at a flux rate of 0.7 m{sup 3}/m{sup 2} per day. A volume reduction of about 5.2 was attained. Overviews of opportunities for membrane separation technology applied to the metal cutting and surface finishing industries, and the food and beverage industry are given. Capabilities (and some present needs) of the MTDF are outlined, with recommendations. 17 refs., 10 figs., 7 tabs.

  15. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  16. Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state.

    Science.gov (United States)

    Wegner, Lars H

    2013-08-01

    Cation selectivity of the cellular membrane of tobacco culture cells (cell line 'bright yellow-2') exposed to pulsed electric fields in the millisecond range was investigated. The whole cell configuration of the patch clamp technique was established on protoplasts prepared from these cells. Ion selectivity of the electroporated membrane was investigated by measuring the reversal potential of currents passing through field-induced pores. To this end the membrane was hyper- or depolarized for 10ms (prepulse); subsequently the voltage was driven to opposite polarity at a constant rate (+40 or -40mV/ms, respectively). The experiment was started by polarizing the membrane to moderately negative or positive voltages (prepulse potential ±150mV) that would not induce pore formation. Subsequently, an extended voltage range was scanned in the porated state of the membrane (prepulse potential ±600mV). IV curves in the porated and the non-porated state (obtained at the same prepulse polarity) were superimposed to determine the voltage at which both curves intersected ('Intersection potential'). Using a modified version of the Goldmann-Hodgkin-Katz equation relative permeabilities to Ca(2+) and various monovalent alkali and organic cations were calculated. Pores were found to be fairly cation selective, with a selectivity sequence determined to be Ca(2+)>Li(+)>Rb(+)≈K(+)≈Na(+)>TEA(+)≈TBA(+)>Cl(-). Relative permeability to monovalent cations was inversely related to the ionic diameter. By fitting a formalism suggested by Dwyer at al. (J. Gen. Physiol. 75 (1980), 469-492) the effective average diameter of field induced pores was estimated to be about 1.8nm. Implications of these results for biotechnology and electroporation theory are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

  18. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  19. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  20. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  1. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  2. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  3. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  4. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  5. Interface depolarization field as common denominator of fatigue and size effect in Pb(Zr0.54Ti0.46)O3 ferroelectric thin film capacitors

    Science.gov (United States)

    Bouregba, R.; Sama, N.; Soyer, C.; Poullain, G.; Remiens, D.

    2010-05-01

    Dielectric, hysteresis and fatigue measurements are performed on Pb(Zr0.54Ti0.46)O3 (PZT) thin film capacitors with different thicknesses and different electrode configurations, using platinum and LaNiO3 conducting oxide. The data are compared with those collected in a previous work devoted to study of size effect by R. Bouregba et al., [J. Appl. Phys. 106, 044101 (2009)]. Deterioration of the ferroelectric properties, consecutive to fatigue cycling and thickness downscaling, presents very similar characteristics and allows drawing up a direct correlation between the two phenomena. Namely, interface depolarization field (Edep) resulting from interface chemistry is found to be the common denominator, fatigue phenomena is manifestation of strengthen of Edep in the course of time. Change in dielectric permittivity, in remnant and coercive values as well as in the shape of hysteresis loops are mediated by competition between degradation of dielectric properties of the interfaces and possible accumulation of interface space charge. It is proposed that presence in the band gap of trap energy levels with large time constant due to defects in small nonferroelectric regions at the electrode—PZT film interfaces ultimately governs the aging process. Size effect and aging process may be seen as two facets of the same underlying mechanism, the only difference lies in the observation time of the phenomena.

  6. Structural stability and depolarization of manganese-doped (Bi₀.₅Na₀.₅){sub 1−x}Ba{sub x}TiO₃ relaxor ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng-Fen [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Tu, Chi-Shun, E-mail: 039611@mail.fju.edu.tw [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Chang, Ting-Lun; Chen, Pin-Yi [Department of Mechanical Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan (China); Chen, Cheng-Sao [Department of Mechanical Engineering, Hwa-Hsia University of Technology, New Taipei City 23567, Taiwan (China); Hugo Schmidt, V. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Anthoniappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2014-10-21

    This work reveals that 0.5 mol. % manganese (Mn) doping in (Bi₀.₅Na₀.₅){sub 1−x}Ba{sub x}TiO₃ (x = 0 and 0.075) solid solutions can increase structural thermal stability, depolarization temperature (T{sub d}), piezoelectric coefficient (d₃₃), and electromechanical coupling factor (kₜ). High-resolution X-ray diffraction and transmission electron microscopy reveal coexistence of rhombohedral (R) R3c and tetragonal (T) P4bm phases in (Bi₀.₅Na₀.₅)₀.₉₂₅Ba₀.₀₇₅TiO₃ (BN7.5BT) and 0.5 mol. % Mn-doped BN7.5BT (BN7.5BT-0.5Mn). (Bi₀.₅Na₀.₅)TiO₃ (BNT) and BN7.5BT show an R − R + T phase transition, which does not occur in 0.5 mol. % Mn-doped BNT (BNT-0.5Mn) and BN7.5BT-0.5Mn. Dielectric permittivity (ε′) follows the Curie-Weiss equation, ε′ = C/(T − T{sub o}), above the Burns temperature (TB), below which polar nanoregions begin to develop. The direct piezoelectric coefficient (d₃₃) and electromechanical coupling factor (kₜ) of BN7.5BT-0.5Mn reach 190 pC/N and 47%.

  7. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy

    Science.gov (United States)

    Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio

    2007-07-01

    The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.

  8. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  9. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  10. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  11. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  12. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  13. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  14. Currents of thermally stimulated depolarization in CaIn{sub 2}S{sub 4} single crystals; Toki termostimulirovannoj depolyarizatsii v monokristallakh CaIN{sub 2}S{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Tagiev, B G; Tagiev, O B; Dzhabbarov, R B; Musaeva, N N [AN Azerbajdzhanskoj SSR, Baku (Azerbaijan). Inst. Fiziki

    1996-10-01

    The results of investigation into currents of thermally stimulated depolarization in CaIn{sub 2}S{sub 4} monocrystals are presented for the first time. Spectra of thermally stimulated depolarization for In-CaIn{sub S4}-In structures are measured under T=99 K at various rates of heat, times of polarization and times of expectation following switching off of electrical field up to beginning of measurements of shorting. The main parameters of capture cross section, partial factor, concentration of traps, are determined. It is determined that one may observed a biomolecular mechanism with a strong secondary capture in CaIn{sub 2}S{sub 4} monocrystals. 9 refs.; 4 figs.

  15. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  16. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  17. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  18. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  19. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  20. Choroidal neovascular membrane

    Directory of Open Access Journals (Sweden)

    Bhatt Nitul

    1998-01-01

    Full Text Available Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose of this review is to briefly outline the current concepts and the management strategy from a clinician′s viewpoint.

  1. Choroidal neovascular membrane.

    Science.gov (United States)

    Bhatt, N S; Diamond, J G; Jalali, S; Das, T

    1998-06-01

    Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose of this review is to briefly outline the current concepts and the management strategy from a clinician's viewpoint.

  2. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting with lipos......Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting...... with liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...

  3. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  4. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  5. Decrumpling membranes by quantum effects

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.

    2001-02-01

    The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/ln L.

  6. Epiretinal membrane surgery

    DEFF Research Database (Denmark)

    Hamoudi, Hassan; Correll Christensen, Ulrik; La Cour, Morten

    2017-01-01

    Purpose: To assess the impact of combined phacoemulsification-vitrectomy and sequential surgery for idiopathic epiretinal membrane (ERM) on refractive error (RE) and macular morphology. Methods: In this prospective clinical trial, we allocated phakic eyes with ERM to (1) cataract surgery and subs......Purpose: To assess the impact of combined phacoemulsification-vitrectomy and sequential surgery for idiopathic epiretinal membrane (ERM) on refractive error (RE) and macular morphology. Methods: In this prospective clinical trial, we allocated phakic eyes with ERM to (1) cataract surgery...... and achieved spherical equivalent); secondary outcomes were best-corrected visual acuity (BCVA), and incidence of cystoid macular oedema (CME) defined as >10% increment of central subfield macular thickness (CSMT). Results: Sixty-two eyes were enrolled. The mean RE showed a small myopic shift of -0.36D in all...... between the groups. Four cases (17%) in the CAT group had resolved visual complaints and improved BCVA after cataract surgery resulting in no need for PPV within the follow-up period. Conclusion: Surgery for idiopathic ERM in phakic eyes with either phaco-vitrectomy or sequential surgery are equal...

  7. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  8. Track membranes, production, properties, applications

    International Nuclear Information System (INIS)

    Oganesjan, Yu.Ts.

    1994-01-01

    The problems of producing track membranes on heavy ion beams of the Flerov Laboratory are considered. The parameters of the running accelerators and equipment for the irradiation of polymer foils are presented. The process of production of track membranes based on different polymeric materials and various applications of the membranes are described. Special attention is given to the principally new applications and devices developed at the Laboratory. This report presents the results obtained by a big group of scientists and engineers working in the field of elaboration, investigation and application of track membranes (author). 21 refs, 20 figs, 1 tab

  9. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  10. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  11. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  12. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  13. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  14. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  15. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  16. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A. [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Institute of Physics of NAS of Azerbaijan, H. Javid ave. 33, Baku AZ-1143 (Azerbaijan); Kargın, Elif Orhan [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Odrinsky, Andrei P. [Institute of Technical Acoustics, National Academy of Sciences of Belarus, Lyudnikov ave. 13, Vitebsk 210717 (Belarus)

    2015-06-14

    Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles

  17. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Mikailzade, Faik A.; Kargın, Elif Orhan; Odrinsky, Andrei P.

    2015-01-01

    Lanthanum-doped high quality TlInS 2 (TlInS 2 :La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS 2 :La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS 2 :La. Thermal treatments of TlInS 2 :La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10 −14 cm 2 , corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS 2 :La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10 −16 cm 2 were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5

  18. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    Science.gov (United States)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  19. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  20. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.