WorldWideScience

Sample records for glutamate transport process

  1. Interactions of NH4+ and L-glutamate with NO3- transport processes of non-mycorrhizal Fagus sylvatica roots

    NARCIS (Netherlands)

    Kreuzwieser, J; Herschbach, C; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    The processes of NO3- uptake and transport and the effects of NH4+ or L-glutamate on these processes were investigated with excised non-mycorrhizal beech (Fagus sylvatica L,) roots, NO3- net uptake followed uniphasic Michaelis-Menten kinetics in a concentration range of 10 mu M to 1 mM with an

  2. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  3. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  4. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.H.; van Wamelen, D.J.; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the

  5. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  6. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    Science.gov (United States)

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  7. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters

    OpenAIRE

    Verdon, Grégory; Oh, SeCheol; Serio, Ryan N; Boudker, Olga

    2014-01-01

    eLife digest Molecules of glutamate can carry messages between cells in the brain, and these signals are essential for thought and memory. Glutamate molecules can also act as signals to build new connections between brain cells and to prune away unnecessary ones. However, too much glutamate outside of the cells kills the brain tissue and can lead to devastating brain diseases. In a healthy brain, special pumps called glutamate transporters move these molecules back into the brain cells, where...

  8. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  10. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  11. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  12. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  13. On the potential role of glutamate transport in mental fatigue

    Directory of Open Access Journals (Sweden)

    Hansson Elisabeth

    2004-11-01

    Full Text Available Abstract Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+ in humans suffering from

  14. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina

    NARCIS (Netherlands)

    Vandenbranden, C. A.; Yazulla, S.; Studholme, K. M.; Kamphuis, W.; Kamermans, M.

    2000-01-01

    Glutamate is the major excitatory neurotransmitter in the retina of vertebrates. Electrophysiological experiments in goldfish and salamander have shown that neuronal glutamate transporters play an important role in the clearance of glutamate from cone synaptic clefts. In this study, the localization

  15. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  16. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  17. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  18. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    Science.gov (United States)

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  19. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Science.gov (United States)

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  20. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  1. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  2. Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism

    OpenAIRE

    Deng, Jiao; Li, Jiejie; Li, Liaoliao; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2013-01-01

    Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young a...

  3. Pre-Ischemic Treadmill Training for Prevention of Ischemic Brain Injury via Regulation of Glutamate and Its Transporter GLT-1

    Directory of Open Access Journals (Sweden)

    Jingchun Guo

    2012-07-01

    Full Text Available Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1 protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.

  4. Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian R; Holm, Rikke; Vilsen, Bente

    2016-01-01

    , in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether...... the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter......+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i...

  5. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat.

    Science.gov (United States)

    Deng, Jiao; Zhang, Fu-Xing; Pang, You-Wang; Li, Jin-Lian; Li, Yun-Qing

    2006-07-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1-3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidin-biotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  6. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat

    Institute of Scientific and Technical Information of China (English)

    Jiao DENG; Fu-Xing ZHANG; You-Wang PANG; Jin-Lian LI; Yun-Qing LI

    2006-01-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1~3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidinbiotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  7. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    Science.gov (United States)

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  8. Generalised additive modelling approach to the fermentation process of glutamate.

    Science.gov (United States)

    Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping

    2011-03-01

    In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  9. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Potapenko, Evgeniy S; Biancardi, Vinicia C; Zhou, Yiqiang; Stern, Javier E

    2012-08-01

    Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.

  11. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  12. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.

    Science.gov (United States)

    Ruan, Yi; Miyagi, Atsushi; Wang, Xiaoyu; Chami, Mohamed; Boudker, Olga; Scheuring, Simon

    2017-02-14

    Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii , sodium/aspartate symporter Glt Ph , suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted Glt Ph at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.

  13. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.

    Directory of Open Access Journals (Sweden)

    Turgut Bastug

    Full Text Available Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+ ions, one H(+ and the counter-transport of one K(+ ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph, whose three dimensional structure is known is also coupled to three Na(+ ions but only two Na(+ ion binding sites have been observed in the crystal structure of Glt(Ph. In order to fully utilize the Glt(Ph structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph and accurately determine the number and location of Na(+ ions coupled to transport. Several sites have been proposed for the binding of a third Na(+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph and reveal a new site for the third Na(+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+ ion in Glt(Ph and EAAT1.

  14. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats

    International Nuclear Information System (INIS)

    Kane, E.S.

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses. (author)

  15. 4,4-Dimethyl- and diastereomeric 4-hydroxy-4-methyl-(2S)-glutamate analogues display distinct pharmacological profiles at ionotropic glutamate receptors and excitatory amino acid transporters

    DEFF Research Database (Denmark)

    Bunch, Lennart; Pickering, Darryl S; Gefflaut, Thierry

    2009-01-01

    this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures......Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether...

  16. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.

    Science.gov (United States)

    Martin, Keith R G; Levkovitch-Verbin, Hana; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Quigley, Harry A

    2002-07-01

    High levels of glutamate can be toxic to retinal ganglion cells. Effective buffering of extracellular glutamate by retinal glutamate transporters is therefore important. This study was conducted to investigate whether glutamate transporter changes occur with two models of optic nerve injury in the rat. Glaucoma was induced in one eye of 35 adult Wistar rats by translimbal diode laser treatment to the trabecular meshwork. Twenty-five more rats underwent unilateral optic nerve transection. Two glutamate transporters, GLAST (EAAT-1) and GLT-1 (EAAT-2), were studied by immunohistochemistry and quantitative Western blot analysis. Treated and control eyes were compared 3 days and 1, 4, and 6 weeks after injury. Optic nerve damage was assessed semiquantitatively in epoxy-embedded optic nerve cross sections. Trabecular laser treatment resulted in moderate intraocular pressure (IOP) elevation in all animals. After 1 to 6 weeks of experimental glaucoma, all treated eyes had significant optic nerve damage. Glutamate transporter changes were not detected by immunohistochemistry. Western blot analysis demonstrated significantly reduced GLT-1 in glaucomatous eyes compared with control eyes at 3 days (29.3% +/- 6.7%, P = 0.01), 1 week (55.5% +/- 13.6%, P = 0.02), 4 weeks (27.2% +/- 10.1%, P = 0.05), and 6 weeks (38.1% +/- 7.9%, P = 0.01; mean reduction +/- SEM, paired t-tests, n = 5 animals per group, four duplicate Western blot analyses per eye). The magnitude of the reduction in GLT-1 correlated significantly with mean IOP in the glaucomatous eye (r(2) = 0.31, P = 0.01, linear regression). GLAST was significantly reduced (33.8% +/- 8.1%, mean +/- SEM) after 4 weeks of elevated IOP (P = 0.01, paired t-test, n = 5 animals per group). In contrast to glaucoma, optic nerve transection resulted in an increase in GLT-1 compared with the control eye (P = 0.01, paired t-test, n = 15 animals). There was no significant change in GLAST after transection. GLT-1 and GLAST were significantly

  17. Expression of vesicular glutamate transporters in peripheral vestibular structures and vestibular nuclear complex of rat.

    Science.gov (United States)

    Zhang, F X; Pang, Y W; Zhang, M M; Zhang, T; Dong, Y L; Lai, C H; Shum, D K Y; Chan, Y S; Li, J L; Li, Y Q

    2011-01-26

    Glutamate transmission from vestibular end organs to central vestibular nuclear complex (VNC) plays important role in transferring sensory information about head position and movements. Three isoforms of vesicular glutamate transporters (VGLUTs) have been considered so far the most specific markers for glutamatergic neurons/cells. In this study, VGLUT1 and VGLUT2 were immunohistochemically localized to axon terminals in VNC and somata of vestibular primary afferents in association with their central and peripheral axon endings, and VGLUT1 and VGLUT3 were co-localized to hair cells of otolith maculae and cristae ampullaris. VGLUT1 and VGLUT2 defined three subsets of Scarpa's neurons (vestibular ganglionic neurons): those co-expressing VGLUT1 and VGLUT2 or expressing only VGLUT2, and those expressing neither. In addition, many neurons located in all vestibular subnuclei were observed to contain hybridized signals for VGLUT2 mRNA and a few VNC neurons, mostly scattered in medial vestibular nucleus (MVe), displayed VGLUT1 mRNA labelling. Following unilateral ganglionectomy, asymmetries of VGLUT1-immunoreactivity (ir) and VGLUT2-ir occurred between two VNCs, indicating that the VNC terminals containing VGLUT1 and/or VGLUT2 are partly of peripheral origin. The present data indicate that the constituent cells/neurons along the vestibular pathway selectively apply VGLUT isoforms to transport glutamate into synaptic vesicles for glutamate transmission. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate.

    Directory of Open Access Journals (Sweden)

    Anatoli Y Kabakov

    Full Text Available Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS. Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM and high (300-1200 μM glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might

  19. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats.

    Science.gov (United States)

    Alasmari, Fawaz; Bell, Richard L; Rao, P S S; Hammad, Alaa M; Sari, Youssef

    2018-07-01

    Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats. Copyright © 2018. Published by Elsevier Inc.

  20. The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion

    Directory of Open Access Journals (Sweden)

    Monica eJenstad

    2013-12-01

    Full Text Available Intercellular communication is pivotal in optimising and synchronising cellular responses to keep internal homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS, glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine (GGG cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, proteins involved in the CNS in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32 and Slc38 and physiology of hormone secretion in islets of Langerhans.

  1. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain

    DEFF Research Database (Denmark)

    Kristensen, P J; Gegelashvili, G; Munro, G

    2017-01-01

    -regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.......BACKGROUND: Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which......, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS: Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain...

  2. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  3. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from......Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate...... the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y(+)LAT2 facilitate the exchange of neutral amino...

  4. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  5. Involvement of spinal glutamate transporter-1 in the development of mechanical allodynia and hyperalgesia associated with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Shi J

    2016-11-01

    Full Text Available Jinshan Shi,1,* Ke Jiang,2,* Zhaoduan Li,3 1Department of Anesthesiology, Guizhou Provincial People’s Hospital, 2Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 3Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Little is known about the effects of the development of type 2 diabetes on glutamate homeostasis in the spinal cord. Therefore, we quantified the extracellular levels of glutamate in the spinal cord of Zucker diabetic fatty (ZDF rats using in vivo microdialysis. In addition, protein levels of glutamate transporter-1 (GLT-1 in the spinal cord of ZDF rats were measured using Western blot. Finally, the effects of repeated intrathecal injections of ceftriaxone, which was previously shown to enhance GLT-1 expression, on the development of mechanical allodynia and hyperalgesia as well as on basal extracellular level of glutamate and the expression of GLT-1 in the spinal cord of ZDF rats were evaluated. It was found that ZDF rats developed mechanical hyperalgesia and allodynia, which were associated with increased basal extracellular levels of glutamate and attenuated levels of GLT-1 expression in the spinal cord, particularly in the dorsal horn. Furthermore, repeated intrathecal administrations of ceftriaxone dose-dependently prevented the development of mechanical hyperalgesia and allodynia in ZDF rats, which were correlated with enhanced GLT-1 expression without altering the basal glutamate levels in the spinal cord of ZDF rats. Overall, the results suggested that impaired glutamate reuptake in the spinal cord may contribute to the development of neuropathic pains in type 2 diabetes. Keywords: diabetes, peripheral neuropathy, spinal cord, Zucker diabetic fatty rats, glutamate, glutamate transporter-1

  6. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake

    DEFF Research Database (Denmark)

    Colleoni, Simona; Jensen, Anders Asbjørn; Landucci, Elisa

    2008-01-01

    on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest...

  7. Astrocytes and Glutamate Homoeostasis in Alzheimer's Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Magdalena Kulijewicz-Nawrot

    2013-09-01

    Full Text Available Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system. Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease. AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex. Here, we analyzed the expression of GS (glutamine synthetase and GLT-1 (glutamate transporter-1 in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD. GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3 of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals in parallel with a reduced expression of GS (determined by Western blots, which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.

  8. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes.

    Science.gov (United States)

    Unichenko, Petr; Myakhar, Olga; Kirischuk, Sergei

    2012-04-01

    Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal. Copyright © 2012 Wiley Periodicals, Inc.

  9. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  10. Near field transport processes

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1991-01-01

    In repositories for nuclear waste there are many processes which will be instrumental in corroding the canisters and releasing the nuclides. Based on experiences from studies on the performance of repositories and on an actual design the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix as well as in the mobile water is an important transport process but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include gas generation by iron corrosion and alpha-radiolysis. (au) (19 refs., 2 figs.)

  11. Analogies between respiration and a light-driven proton pump as sources of energy for active glutamate transport in Halobacterium halobium

    Science.gov (United States)

    Belliveau, J. W.; Lanyi, J. K.

    1977-01-01

    Halobacterium halobium is known to contain sheets of bacteriorhodopsin, a pigment which upon exposure to light undergoes cyclic protonation and deprotonation, resulting in net H(+) translocation. In this paper, experiments were conducted to test H. halobium cell envelope vesicles for respiration-induced glutamate uptake. It is shown that glutamate transport in H. halobium cell envelope vesicles can occur as a result of respiration, as well as light acting on bacteriorhodopsin. Glutamate transport can be energized by the oxidation of dimethyl phenylenediamine, and the properties of the transport system are entirely analogous to those observed with illumination as the source of energy. In the case of respiration-dependent glutamate transport, the transportation is also driven by a Na(+) gradient, thereby confirming the existence of a single glutamate transport system independent of the source of energy. The analogy observed is indirect evidence that the cytochrome oxidase of H. halobium functions as a H(+) pump.

  12. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice

    Directory of Open Access Journals (Sweden)

    Luis F. González

    2017-10-01

    Full Text Available Abstract Background Obsessive–compulsive disorder (OCD is a severe neuropsychiatric condition affecting 1–3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze and compulsivity (marble burying, as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD. Results Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Conclusions Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.

  13. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  14. α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model.

    Science.gov (United States)

    Jung, Kyoung In; Kim, Jie Hyun; Park, Chan Kee

    2015-10-15

    Excitotoxicity, glutamate-induced toxic effects to retinal ganglion cells (RGCs), is one of several mechanisms of RGC loss suggested in glaucoma. In this study, we focused on the role of glutamate transporter of glial cells as well as N-methyl-d-aspartate (NMDA) receptor with regard to glutamate toxicity in glaucoma. We also investigated whether α2-adrenoceptor activation could modulate glutamate transporters and NMDA receptors in a chronic ocular hypertension model. Brimonidine 0.15% was administered topically to the eyes of experimental glaucoma and control animals twice daily. After 8 weeks of intraocular pressure (IOP) elevation, staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) revealed an increase in the ganglion cell layer, and the number of TUNEL-positive cells was reduced by brimonidine treatment (P<0.05). Animals with experimentally induced glaucoma exhibited an increase in retinal stress marker glial fibrillary acidic protein (GFAP) immunoreactivity; brimonidine treatment reduced GFAP. Excitatory amino acid transporter 1(EAAT1) expression remained stable throughout the period of chronic ocular hypertension. α2-Adrenergic treatment upregulated EAAT1 protein levels (P<0.05). NMDA receptor (GluN1) expression was stimulated by chronic elevation of IOP, and GluN1-positive cells in ganglion cell layer were co-localized with TUNEL staining. Brimonidine administration suppressed GluN1 levels (P<0.05). These results indicate that brimonidine decreased RGC apoptosis, upregulating EAAT1 and downregulating NMDA receptors. We suggest that topical brimonidine treatment may decrease the glutamate excitotoxicity through modulation of glutamate transporter and NMDA receptor in glaucoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and

  16. Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma

    NARCIS (Netherlands)

    Münch, C.; Penndorf, A.; Schwalenstöcker, B.; Troost, D.; Ludolph, A. C.; Ince, P.; Meyer, T.

    2001-01-01

    A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human

  17. Functional modulation of the glutamate transporter variant GLT1b by the PDZ domain protein PICK1

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Borre, Lars; Braunstein, Thomas H

    2013-01-01

    The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulato...

  18. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    Science.gov (United States)

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  19. Supraspinal and spinal effects of L-trans-PDC, an inhibitor of glutamate transporter, on the micturition reflex in rats.

    Science.gov (United States)

    Honda, Masashi; Yoshimura, Naoki; Hikita, Katsuya; Hinata, Nobuyuki; Muraoka, Kuniyasu; Saito, Motoaki; Chancellor, Michael B; Takenaka, Atsushi

    2013-09-01

    Glutamate is a major excitatory transmitter in the central nervous system, controlling lower urinary tract function. Five types of glutamate transporters such as GLAST (EAAT1), GLT-1 (EAAT2), EAAC-1 (EAAT3), EAAT4, and EAAT5 have been cloned so far. In the current study we tested whether L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC), a non-selective inhibitor of glutamate transporters that increases endogenous glutamate concentration, can affect the micturition reflex in urethane anesthetized rats. Continuous cystometrograms (CMG, 0.04 ml/min infusion rate) were performed in two groups of urethane-anesthetized rats. A group of 18 rats was used for intrathecal administration of 1-10 µg of L-trans-PDC via an intrathecal catheter. In the second group of 18 rats, 1-10 µg of L-trans-PDC were administered intracerebroventricularly via a catheter inserted into the lateral ventricle. Micturition parameters were recorded and compared before and after drug administration. Intrathecal administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. Intracerebroventricular administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) also increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. The current results show that, in urethane-anesthetized rats, suppression of glutamate transporters by L-trans-PDC has an inhibitory effect on the micturition reflex at supraspinal and spinal sites, possibly via activation of glutamate-mediated inhibitory pathways. Copyright © 2012 Wiley Periodicals, Inc.

  20. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats. An autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Kane, E S [University of Massachusetts Medical School, Worcester, MA (USA). Dept. of Anatomy

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses.

  1. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  2. Expression and distributeion of 'high affinity' glutamate transporters GLT1, GLAST, EAAC and of GCPII in the rat peripheral nervous system

    Czech Academy of Sciences Publication Activity Database

    Carozzi, V. A.; Canta, A.; Oggioni, N.; Ceresa, C.; Marmiroli, P.; Konvalinka, Jan; Zoia, Ch.; Bossi, M.; Ferrarese, C.; Tredici, G.; Cavaletti, G.

    2008-01-01

    Roč. 213, č. 4 (2008), s. 539-546 ISSN 0021-8782 Institutional research plan: CEZ:AV0Z40550506 Keywords : glutamate * glutamate transporters * immunoblotting * immunohistochemistry * peripheral nervous system Subject RIV: CE - Biochemistry Impact factor: 2.063, year: 2008

  3. Roles and regulation of brain glutamate transporters in normal and pathological brain function

    International Nuclear Information System (INIS)

    O'Shea, R.D.

    2001-01-01

    Full text: Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS. Synaptically released Glu acts on both ionotropic (iGluR) and metabotropic receptors, and excessive iGluR activation results in neuronal death (termed excitotoxicity). Removal of Glu from the synapse is thus critical for normal transmission and to prevent excitotoxicity, and is performed exclusively by a family of excitatory amino acid transporters (EAATs, also known as glutamate transporters). Disregulation of Glu transport may contribute to the pathogenesis of many neurodegenerative conditions, and altered expression or function of EAATs has been identified in a number of these pathologies. These studies investigated the functional and pathological effects of EAAT inhibitors in vitro, and developed a novel screening assay for compounds with activity at EAATs. Astrocytic EAATs are responsible for the majority of Glu uptake in brain, so preparations containing both astrocytes and neurones are required to analyse the contribution of EAATs to neuroprotection. Organotypic hippocampal cultures (OHCs), which exhibit many of the features of the intact CNS, were prepared from 11-14 day old Sprague Dawley rats (anaesthetised with halothane). Hippocampal slices (350 μm thick) were maintained on culture well inserts in chemically defined medium. After 2 weeks, cultures were treated with EAAT inhibitors for 3-7 days in the presence or absence of 300 μM Glu. Treatment with most EAAT inhibitors resulted in cell death that was proportional to the Glu concentration in the medium. In contrast, (2S,3S,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III), a competitive substrate at EAATs (and possibly an antagonist at the kainate subtype of iGluR), appeared to be neuroprotective: increased Glu was not toxic in the presence of this drug. These results demonstrate the sensitivity of OHCs to inhibition of Glu uptake, highlighting the importance of EAATs in preventing excitotoxicity. Since modulation of

  4. Synaptosomal transport of radiolabel from N-acetyl-aspartyl-(/sup 3/H)glutamate suggests a mechanism of inactivation of an excitatory neuropeptide

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, R D; Ory-Lavollee, L; Thompson, R C; Coyle, J T

    1986-10-01

    This study was undertaken to explore in synaptosomal preparations the disposition of N-acetyl-aspartyl-glutamate (NAAG), an endogenous acidic dipeptide neurotransmitter candidate. Radiolabel from N-acetyl-aspartyl(/sup 3/H)glutamate was taken up rapidly into an osmotically sensitive compartment by rat brain synaptosomal preparations in a sodium-, temperature-, and time-dependent manner. HPLC analysis of the accumulated radiolabel indicated that the bulk of the tritium cochromatographed with glutamic acid and not with NAAG. In contrast, (/sup 14/C)NAAG, labeled on the N-terminal acetate, was not taken up by the synaptosomal preparation. All effective inhibitors of synaptosomal, Na+-dependent (/sup 3/H)glutamate uptake were found to exhibit similar potency in inhibiting uptake of tritium derived from (/sup 3/H)NAAG. However, certain alpha-linked acidic dipeptides, structurally similar to NAAG, as well as the potent convulsant quisqualic acid inhibited synaptosomal transport of (/sup 3/H)NAAG but were ineffective as inhibitors of (/sup 3/H)glutamate transport. Together with a demonstration of disparities between the regional accumulation of radiolabel from (/sup 3/H)NAAG and high-affinity (/sup 3/H)glutamate uptake, these data suggest the presence in brain of a specific peptidase targeting carboxy-terminal glutamate-containing dipeptides that may be coupled to the Na+-dependent glutamate transporter. These findings provide a possible mechanism for NAAG inactivation subsequent to its release from nerve endings.

  5. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment.

    Directory of Open Access Journals (Sweden)

    Lucio A Ramos-Chávez

    2015-02-01

    Full Text Available Inorganic arsenic (iAs is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH, which is the main antioxidant in the central nervous system. In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females.

  6. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    Science.gov (United States)

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  7. Electroacupuncture Confers Antinociceptive Effects via Inhibition of Glutamate Transporter Downregulation in Complete Freund's Adjuvant-Injected Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    Full Text Available When we evaluated changes of glial fibrillary acidic protein (GFAP and two glutamate transporter (GTs by immunohistochemistry, expression of GFAP showed a significant increase in complete Freund's adjuvant (CFA-injected rats; however, this expression was strongly inhibited by electroacupuncture (EA stimulation. Robust downregulation of glutamate-aspartate transporter (GLAST and glutamate transporter-1 (GLT-1 was observed in CFA-injected rats; however, EA stimulation resulted in recovery of this expression. Double-labeling staining showed co-localization of a large proportion of GLAST or GLT-1 with GFAP. Using Western blot, we confirmed protein expression of two GTs, but no differences in the mRNA content of these GTs were observed. Because EA treatment resulted in strong inhibition of CFA-induced proteasome activities, we examined the question of whether thermal sensitivities and GTs expression could be regulated by proteasome inhibitor MG132. CFA-injected rats co-treated with EA and MG132 showed a significantly longer thermal sensitivity, compared with CFA-injected rats with or without MG132. Both EA and MG132 blocked CFA-induced GLAST and GLT-1 downregulation within the spinal cord. These results provide evidence for involvement of GLAST and GLT-1 in response to activation of spinal astrocytes in an EA antinociceptive effect. Antinociceptive effect of EA may be induced via proteasome-mediated regulation of spinal GTs.

  8. The accessibility in the external part of the TM5 of the glutamate transporter EAAT1 is conformationally sensitive during the transport cycle.

    Directory of Open Access Journals (Sweden)

    Xiuping Zhang

    Full Text Available BACKGROUND: Excitatory amino acid transporter 1 (EAAT1 is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM 5 of the EAAT1 are not clear yet. METHODOLOGY/PRINCIPAL FINDINGS: We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. V(max of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA. CONCLUSIONS/SIGNIFICANCE: All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.

  9. Effects of surface functionalization of hydrophilic NaYF4 nanocrystals doped with Eu3+ on glutamate and GABA transport in brain synaptosomes

    Science.gov (United States)

    Sojka, Bartlomiej; Kociołek, Daria; Banski, Mateusz; Borisova, Tatiana; Pozdnyakova, Natalia; Pastukhov, Artem; Borysov, Arsenii; Dudarenko, Marina; Podhorodecki, Artur

    2017-08-01

    Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.

  10. A critical role of glutamate transporter type 3 in the learning and memory of mice.

    Science.gov (United States)

    Wang, Zhi; Park, Sang-Hon; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2014-10-01

    Hippocampus-dependent learning and memory are associated with trafficking of excitatory amino acid transporter type 3 (EAAT3) to the plasma membrane. To assess whether this trafficking is an intrinsic component of the biochemical responses underlying learning and memory, 7- to 9-week old male EAAT3 knockout mice and CD-1 wild-type mice were subjected to fear conditioning. Their hippocampal CA1 regions, amygdalae and entorhinal cortices were harvested before, or 30 min or 3 h after the fear conditioning stimulation. We found that EAAT3 knockout mice had worse contextual and tone-related learning and memory than did the wild-type mice. The expression of EAAT3, glutamate receptor (GluR)1 and GluR2 in the plasma membrane and of phospho-GluR1 (at Ser 831) and phospho-CaMKII in the hippocampus of the wild-type mice was increased at 30 min after the fear conditioning stimulation. Similar biochemical changes occurred in the amygdala. Fear conditioning also increased the expression of c-Fos and activity-regulated cytoskeleton-associated protein (Arc) in the CA1 regions and of Arc in the entorhinal cortices of the wild-type mice. These biochemical responses were attenuated in the EAAT3 knockout mice. These results suggest that EAAT3 plays a critical role in learning and memory. Our results also provide initial evidence that EAAT3 may have receptor-like functions to participate in the biochemical reactions underlying learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal.

    Science.gov (United States)

    Kim, Ronald; Sepulveda-Orengo, Marian T; Healey, Kati L; Williams, Emily A; Reissner, Kathryn J

    2018-01-01

    Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  13. Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance

    Directory of Open Access Journals (Sweden)

    Christopher B. Divito

    2017-05-01

    Full Text Available Excitatory amino acid transporters (EAATs are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3 and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or “leak” channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

  14. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  15. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons.

    Science.gov (United States)

    Eastwood, S L; Harrison, P J

    2005-03-01

    Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.

  16. Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain

    DEFF Research Database (Denmark)

    Gegelashvili, Georgi; Bjerrum, Ole Jannik

    2017-01-01

    , anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic...

  17. Lysine and glutamate transport in the erythrocytes of common brushtail possum, Tammar Wallaby and eastern grey, kangaroo.

    Science.gov (United States)

    Ogawa, E; Kuchel, P W; Agar, N S

    1998-04-01

    It was recently coincidentally discovered, using 1H NMR spectroscopy, that the erythrocytes of two species of Australian marsupials, Tammar Wallaby (Macropus eugenii) and Bettong (Bettongia penicillata), contain relatively high concentrations of the essential amino acid lysine (Agar NS, Rae CD, Chapman BE, Kuchel PW. Comp Biochem Physiol 1991;99B:575-97). Hence, in the present work the rates of transport of lysine into the erythrocytes from the Common Brushtail Possum (Dactylopsilia trivirgata) and Eastern Grey Kangaroo (Macropus giganteus) (which both have low lysine concentrations), and Tammar Wallaby were studied, to explore the mechanistic basis of this finding. The concentration-dependence of the uptake was studied with lysine alone and in the presence of arginine, which may be a competitor of the transport in some species. In relation to GSH metabolism, glutamate uptake was determined in the presence and absence of Na+. The data was analysed to yield estimates of the maximal velocity (Vmax) and the Km in each of the species. Erythrocytes from Tammar Wallaby lacked saturable lysine transport in contrast to the other two species. The glutamate uptake was normal in all three animals for adequate GSH biosynthesis.

  18. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate.

    Science.gov (United States)

    Liu, Chunbo; Pan, Feng; Li, Yun

    2016-07-29

    Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.

  19. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period.

    Science.gov (United States)

    Balázsfi, Diána; Farkas, Lívia; Csikota, Péter; Fodor, Anna; Zsebők, Sándor; Haller, József; Zelena, Dóra

    2016-07-01

    Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.

  20. Differential expression of glutamate transporters EAAT1 and EAAT2 in mice deficient for PACAP-type I receptor.

    Science.gov (United States)

    Zink, M; Schmitt, A; Henn, F A; Gass, P

    2004-12-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.

  1. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  2. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  3. GLAST But Not Least—Distribution, Function, Genetics and Epigenetics of l-Glutamate Transport in Brain—Focus on GLAST/EAAT1

    Czech Academy of Sciences Publication Activity Database

    Šerý, Omar; Sultana, N.; Kashem, M. A.; Pow, D. W.; Balcar, V. J.

    2015-01-01

    Roč. 40, č. 12 (2015), s. 2461-2472 ISSN 0364-3190 R&D Projects: GA MZd NT14504 Institutional support: RVO:67985904 Keywords : alcoholism * glutamate transport * polymorphism Subject RIV: ED - Physiology Impact factor: 2.472, year: 2015

  4. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  5. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from...... and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases......, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters...

  6. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Bronac Flanagan

    2018-04-01

    Full Text Available The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  7. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  8. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    Science.gov (United States)

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  9. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  10. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  11. Estrone-1-sulphate (E1S) has impact on the kinetics parameters of transporter mediated taurine and glutamate influx in Caco-2 cells

    DEFF Research Database (Denmark)

    Steffansen, Bente; El-Sayed, F

    Previously, we have suggested estrone-1-sulfate (E1S) to be intercalated into the phospholipid membrane 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC). The overall hypothesis of the present study was that E1S intercalation in the cell membrane of Caco-2 cells may changes the functionality...... of membrane transporters. The aim was therefore to investigate if addition of E1S to the growth medium of Caco-2 cells before but not during the influx study, change the kinetic parameters of transporter-mediated influx of taurine and glutamate by respective TAUT and EAAT transporters. The results show that 4...

  12. Introduction to the Glutamate-Glutamine Cycle.

    Science.gov (United States)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  13. Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor.

    Science.gov (United States)

    Hinson, Shannon R; Clift, Ian C; Luo, Ningling; Kryzer, Thomas J; Lennon, Vanda A

    2017-05-23

    Aquaporin-4 (AQP4) water channel-specific IgG distinguishes neuromyelitis optica (NMO) from multiple sclerosis and causes characteristic immunopathology in which central nervous system (CNS) demyelination is secondary. Early events initiating the pathophysiological outcomes of IgG binding to astrocytic AQP4 are poorly understood. CNS lesions reflect events documented in vitro following IgG interaction with AQP4: AQP4 internalization, attenuated glutamate uptake, intramyelinic edema, interleukin-6 release, complement activation, inflammatory cell recruitment, and demyelination. Here, we demonstrate that AQP4 internalization requires AQP4-bound IgG to engage an astrocytic Fcγ receptor (FcγR). IgG-lacking Fc redistributes AQP4 within the plasma membrane and induces interleukin-6 release. However, AQP4 endocytosis requires an activating FcγR's gamma subunit and involves astrocytic membrane loss of an inhibitory FcγR, CD32B. Interaction of the IgG-AQP4 complex with FcγRs triggers coendocytosis of the excitatory amino acid transporter 2 (EAAT2). Requirement of FcγR engagement for internalization of two astrocytic membrane proteins critical to CNS homeostasis identifies a complement-independent, upstream target for potential early therapeutic intervention in NMO.

  14. The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    International Nuclear Information System (INIS)

    Fitsanakis, Vanessa A.; Aschner, Michael

    2005-01-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and γ-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb

  15. Electroacupuncture preconditioning-induced neuroprotection may be mediated by glutamate transporter type 2

    OpenAIRE

    Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi

    2013-01-01

    Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for 5 consecutive days. They were subjected to a...

  16. Electroacupuncture preconditioning-induced neuroprotection may be mediated by glutamate transporter type 2.

    Science.gov (United States)

    Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi

    2013-10-01

    Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for five consecutive days. They were subjected to a 120-min middle cerebral arterial occlusion (MCAO) at 24h after the last electroacupuncture. Neurological outcome was assessed 2days after the MCAO. Brain tissues were harvested at 24h after the last electroacupuncture for Western blotting. Rats subjected to electroacupuncture at the Baihui acupoint had smaller brain infarct volumes and better neurological deficit scores than control rats. Electroacupuncture increased EAAT type 2 (EAAT2) in the cerebral cortex, tended to increase EAAT3 in the hippocampus, and had no effect on EAAT type 1 expression. Dihydrokainate, an EAAT2 inhibitor, worsened the neurological outcome of rats with electroacupuncture pretreatment. Electroacupuncture pretreatment at the Baihui acupoint increased EAAT2 in the cerebral cortex and improved the neurological outcome of EAAT3 knockout mice. Together, our results suggest that EAAT2 may mediate the electroacupuncture preconditioning-induced neuroprotection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  18. Inhibitory effect of glutamic acid on the scale formation process using electrochemical methods.

    Science.gov (United States)

    Karar, A; Naamoune, F; Kahoul, A; Belattar, N

    2016-08-01

    The formation of calcium carbonate CaCO3 in water has some important implications in geoscience researches, ocean chemistry studies, CO2 emission issues and biology. In industry, the scaling phenomenon may cause technical problems, such as reduction in heat transfer efficiency in cooling systems and obstruction of pipes. This paper focuses on the study of the glutamic acid (GA) for reducing CaCO3 scale formation on metallic surfaces in the water of Bir Aissa region. The anti-scaling properties of glutamic acid (GA), used as a complexing agent of Ca(2+) ions, have been evaluated by the chronoamperometry and electrochemical impedance spectroscopy methods in conjunction with a microscopic examination. Chemical and electrochemical study of this water shows a high calcium concentration. The characterization using X-ray diffraction reveals that while the CaCO3 scale formed chemically is a mixture of calcite, aragonite and vaterite, the one deposited electrochemically is a pure calcite. The effect of temperature on the efficiency of the inhibitor was investigated. At 30 and 40°C, a complete scaling inhibition was obtained at a GA concentration of 18 mg/L with 90.2% efficiency rate. However, the efficiency of GA decreased at 50 and 60°C.

  19. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  20. Expression of Glutamate and GABA during the Process of Rat Retinal Synaptic Plasticity Induced by Acute High Intraocular Pressure

    International Nuclear Information System (INIS)

    Zhou, Lihong; Huang, Jufang; Wang, Hui; Luo, Jia; Zeng, Leping; Xiong, Kun; Chen, Dan

    2013-01-01

    Acute high intraocular pressure (HIOP) can induce plastic changes of retinal synapses during which the expression of the presynaptic marker synaptophysin (SYN) has a distinct spatiotemporal pattern from the inner plexiform layer to the outer plexiform layer. We identified the types of neurotransmitters in the retina that participated in this process and determined the response of these neurotransmitters to HIOP induction. The model of acute HIOP was established by injecting normal saline into the anterior chamber of the rat eye. We found that the number of glutamate-positive cells increased successively from the inner part to the outer part of the retina (from the ganglion cell layer to the inner nuclear layer to the outer nuclear layer) after HIOP, which was similar to the spatiotemporal pattern of SYN expression (internally to externally) following HIOP. However, the distribution and intensity of GABA immunoreactivity in the retina did not change significantly at different survival time post injury and had no direct correlation with SYN expression. Our results suggested that the excitatory neurotransmitter glutamate might participate in the plastic process of retinal synapses following acute HIOP, but no evidence was found for the role of the inhibitory neurotransmitter GABA

  1. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  2. A Novel Corynebacterium glutamicum l-Glutamate Exporter.

    Science.gov (United States)

    Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2018-03-15

    Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to

  3. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  4. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  5. Intrathecal infusion of a Ca(2+)-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS.

    Science.gov (United States)

    Yin, Hong Z; Tang, Darryl T; Weiss, John H

    2007-10-01

    Elevated extracellular glutamate, resulting from a loss of astrocytic glutamate transport capacity, may contribute to excitotoxic motor neuron (MN) damage in ALS. Accounting for their high excitotoxic vulnerability, MNs possess large numbers of unusual Ca(2+)-permeable AMPA channels (Ca-AMPA channels), the activation of which triggers mitochondrial Ca(2+) overload and strong reactive oxygen species (ROS) generation. However, the causes of the astrocytic glutamate transport loss remain unexplained. To assess the role of Ca-AMPA channels on the evolution of pathology in vivo, we have examined effects of prolonged intrathecal infusion of the Ca-AMPA channel blocker, 1-naphthyl acetylspermine (NAS), in G93A transgenic rat models of ALS. In wild-type animals, immunoreactivity for the astrocytic glutamate transporter, GLT-1, was particularly strong around ventral horn MNs. However, a marked loss of ventral horn GLT-1 was observed, along with substantial MN damage, prior to onset of symptoms (90-100 days) in the G93A rats. Conversely, labeling with the oxidative marker, nitrotyrosine, was increased in the neuropil surrounding MNs in the transgenic animals. Compared to sham-treated G93A animals, 30-day NAS infusions (starting at 67+/-2 days of age) markedly diminished the loss of both MNs and of astrocytic GLT-1 labeling. These observations are compatible with the hypothesis that activation of Ca-AMPA channels on MNs contributes, likely in part through oxidative mechanisms, to loss of glutamate transporter in surrounding astrocytes.

  6. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  7. The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells

    DEFF Research Database (Denmark)

    Cuesta, Elena Pedraz; Christensen, Sandra; Jensen, Anders A.

    2015-01-01

    affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability...... was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-β-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [(3)H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration...... and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments CRC cell death induced by SN38, while attenuating that induced by oxaliplatin. These findings may point...

  8. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  9. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  10. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Rockoff EC

    2014-09-01

    Full Text Available Emily C Rockoff,1 Pooja Balaram,1 Jon H Kaas1,2 1Department of Psychology, 2Department of Cell and Molecular Biology, Vanderbilt University, Nashville, TN, USA Abstract: Blobs are a modular component of the primary visual cortex (area 17 of all primates, but not of other mammals closely related to primates. They are characterized as an even distribution of patches, puffs, or blobs of dense cytochrome oxidase (CO expression in layer III of area 17, and are now known to differ from surrounding, nonblob cortex in thalamic, intrinsic, and extrastriate connections. Previous studies have also recognized a blob-like pattern of myelin-dense patches in layer III of area 17 of primates, and more recently the vesicular glutamate transporter (VGLUT-2 isoform of the VGLUT family has been found to selectively distribute to layer III patches in a similar blob-like pattern. Here, we sought to determine if the blob-like patterns all identify the same modular structures in area 17 of primates by staining alternate brain sections cut parallel to the surface of area 17 of a prosimian primate (Otolemur garnettii for CO, myelin, and VGLUT2. By aligning the sections from the three preparations, we provide clear evidence that the three preparations all identify the same modular blob structures. The results provide a further understanding of the functional nature of the blobs by demonstrating that their higher level of CO activity is related to thalamic inputs from the lateral geniculate nucleus that use VGLUT2 as their main glutamate transporter, and via myelinated axons. Keywords: columns, modules, visual cortex, primates, prosimians

  11. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  12. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  13. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST

    DEFF Research Database (Denmark)

    Karlsson, Rose-Marie; Adermark, Louise; Molander, Anna

    2012-01-01

    mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating...... rotarod, alcohol-induced hypothermia, and loss of righting reflex. Extracellular glutamate was measured using microdialysis, and striatal slice electrophysiology was carried out to examine plasticity of the cortico-striatal pathway as a model system in which adaptations to the constitutive GLAST deletion...... deletion of GLAST unexpectedly results in markedly reduced alcohol consumption and preference, associated with markedly reduced alcohol reward. Endocannabinoid signaling appears to be down-regulated upstream of the CB1 receptor as a result of the GLAST deletion, and is a candidate mechanism behind...

  14. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  15. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  16. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera.

    Science.gov (United States)

    Démares, Fabien; Drouard, Florian; Massou, Isabelle; Crattelet, Cindy; Lœuillet, Aurore; Bettiol, Célia; Raymond, Valérie; Armengaud, Catherine

    2014-09-01

    Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  18. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  19. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...

  20. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Meeker, Kole D; Meabon, James S; Cook, David G

    2015-01-01

    The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.

  1. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc

    2013-12-05

    It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.

  2. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  3. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  4. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  5. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    DEFF Research Database (Denmark)

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species...

  6. Lentiviral Delivery of a Vesicular Glutamate Transporter 1 (VGLUT1)-Targeting Short Hairpin RNA Vector Into the Mouse Hippocampus Impairs Cognition

    NARCIS (Netherlands)

    King, Madeleine V.; Kurian, Nisha; Qin, Si; Papadopoulou, Nektaria; Westerink, Ben H. C.; Cremers, Thomas I.; Epping-Jordan, Mark P.; Le Poul, Emmanuel; Ray, David E.; Fone, Kevin C. F.; Kendall, David A.; Marsden, Charles A.; Sharp, Tyson V.

    Glutamate is the principle excitatory neurotransmitter in the mammalian brain, and dysregulation of glutamatergic neurotransmission is implicated in the pathophysiology of several psychiatric and neurological diseases. This study utilized novel lentiviral short hairpin RNA (shRNA) vectors to target

  7. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    Science.gov (United States)

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  8. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  9. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  10. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  11. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  12. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    Science.gov (United States)

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an

  13. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  14. Incorporating security into the transportation planning process.

    Science.gov (United States)

    2009-03-01

    The transportation system is an important network established to ensure the mobility of people and goods between destinations. In addition, it also serves a vital role in responding to disasters, and therefore deserves special attention when those di...

  15. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  16. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  17. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.

    Science.gov (United States)

    Patel, Anant B; de Graaf, Robin A; Rothman, Douglas L; Behar, Kevin L

    2015-07-01

    γ-Aminobutyric acid (GABA) clearance from the extracellular space after release from neurons involves reuptake into terminals and astrocytes through GABA transporters (GATs). The relative flows through these two pathways for GABA released from neurons remains unclear. This study determines the effect of tiagabine, a selective inhibitor of neuronal GAT-1, on the rates of glutamate (Glu) and GABA metabolism and GABA resynthesis via the GABA-glutamine (Gln) cycle. Halothane-anesthetized rats were administered tiagabine (30 mg/kg, i.p.) and 45 min later received an intravenous infusion of either [1,6-(13)C2]glucose (in vivo) or [2-(13)C]acetate (ex vivo). Nontreated rats served as controls. Metabolites and (13)C enrichments were measured with (1)H-[(13)C]-nuclear magnetic resonance spectroscopy and referenced to their corresponding endpoint values measured in extracts from in situ frozen brain. Metabolic flux estimates of GABAergic and glutamatergic neurons were determined by fitting a metabolic model to the (13)C turnover data measured in vivo during [1,6-(13)C2]glucose infusion. Tiagabine-treated rats were indistinguishable (P > 0.05) from controls in tissue amino acid levels and in (13)C enrichments from [2-(13)C]acetate. Tiagabine reduced average rates of glucose oxidation and neurotransmitter cycling in both glutamatergic neurons (↓18%, CMR(glc(ox)Glu): control, 0.27 ± 0.05 vs. tiagabine, 0.22 ± 0.04 µmol/g/min; ↓11%, V(cyc(Glu-Gln)): control 0.23 ± 0.05 vs. tiagabine 0.21 ± 0.04 µmol/g/min and GABAergic neurons (↓18-25%, CMR(glc(ox)GABA): control 0.09 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min; V(cyc(GABA-Gln)): control 0.08 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min), but the changes in glutamatergic and GABAergic fluxes were not significant (P > 0.10). The results suggest that any reduction in GABA metabolism by tiagabine might be an indirect response to reduced glutamatergic drive rather than direct compensatory effects. © 2015 Wiley

  18. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  19. Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site

    DEFF Research Database (Denmark)

    Løland, Claus Juul; Norregaard, L; Gether, U

    1999-01-01

    , high affinity Zn(2+)-binding site. To achieve further insight into the tertiary organization of hDAT, we set out to identify additional residues involved in Zn(2+) binding and subsequently to engineer artificial Zn(2+)-binding sites. Ten aspartic acids and glutamic acids, predicted...

  20. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  1. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  2. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  3. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  4. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  5. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  6. Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Munyaka, Ann Wambui; Verlinde, Philippe; Mukisa, Ivan Muzira; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-04-14

    The folate poly-gamma-glutamate profile, their concentrations, and hydrolysis by endogenous gamma-glutamyl hydrolase (GGH) were evaluated in broccoli, carrot and tomato. Further studies on the effect of time and temperature on folate poly-gamma-glutamate hydrolysis and stability were carried out in broccoli since this vegetable showed the highest long-chain and total folate poly-gamma-glutamate concentration. The evolution of l-ascorbic acid, total phenols and Trolox equivalent antioxidant capacity (TEAC) values was evaluated in parallel. Upon thermal inactivation of GGH prior to crushing, it was observed that broccoli, carrot and tomato contained poly-gamma-glutamates with one to seven glutamate residues but differed in the predominant poly-gamma-glutamates. Crushing of raw broccoli, carrot and tomato resulted in significant poly-gamma-glutamate profile changes in broccoli and carrot (indicating GGH-catalyzed hydrolysis) but not in tomato. In this study, the actual crushing of raw broccoli matrix had a greater effect on folate poly-gamma-glutamate hydrolysis than incubation conditions (0-30 min at 25-55 degrees C). During treatments at 25-140 degrees C, folate retention was higher at 80 and 100 degrees C than at the other temperatures. A similar trend in thermal stability was observed for folates, vitamin C, total phenols and TEAC value, an indication that conditions that result in endogenous antioxidants degradation might also result in folate degradation.

  7. Strategies for Processing Semen from Subfertile Stallions for Cooled Transport.

    Science.gov (United States)

    Varner, Dickson D

    2016-12-01

    Subfertility can be a confusing term because some semen of good quality can have reduced fertility following cooled transport if the semen is processed in an improper manner. General procedures aimed at processing stallion semen for cooled transport are well described. An array of factors could exist in reduced fertility of cool-transported semen. This article focuses on centrifugation techniques that can be used to maximize sperm quality of stallions whose semen is intended for cooled transport. Clinical cases are also provided for practical application of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  9. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  10. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  11. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  12. The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells

    International Nuclear Information System (INIS)

    Pedraz-Cuesta, Elena; Christensen, Sandra; Jensen, Anders A.; Jensen, Niels Frank; Bunch, Lennart; Romer, Maria Unni; Brünner, Nils; Stenvang, Jan; Pedersen, Stine Falsig

    2015-01-01

    Colorectal cancer (CRC) is a leading cause of cancer death globally and new biomarkers and treatments are severely needed. Here, we employed HCT116 and LoVo human CRC cells made resistant to either SN38 or oxaliplatin, to investigate whether altered expression of the high affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability and glutathione content. Results were evaluated using one- and two-way ANOVA and Students two-tailed t-test, as relevant. In SN38-resistant HCT116 and LoVo cells, SLC1A1 expression was down-regulated ~60 % and up-regulated ~4-fold, respectively, at both mRNA and protein level, whereas SLC1A3 protein was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-β-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [ 3 H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration-dependently augmented loss of cell viability induced by SN38, while strongly counteracting that induced by oxaliplatin, in both HCT116 and LoVo cells. This reflected neither altered expression of the oxaliplatin transporter Cu 2+ -transporter-1 (CTR1), nor changes in cellular reduced glutathione (GSH), although HCT116 cell resistance per se correlated with increased cellular GSH. DL-TBOA did not significantly alter cellular levels of p21, cleaved PARP-1, or phospho-Retinoblastoma protein, yet altered SLC1A1 subcellular localization, and reduced chemotherapy-induced p53 induction. SLC1A1 expression and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments

  13. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  14. The impact of transport processes standardization on supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Maciej Stajniak

    2016-03-01

    Full Text Available Background: During continuous market competition, focusing on the customer service level, lead times and supply flexibility is very important to analyze the efficiency of logistics processes. Analysis of supply chain efficiency is one of the fundamental elements of controlling analysis. Transport processes are a key process that provides physical material flow through the supply chain. Therefore, in this article Authors focus attention on the transport processes efficiency. Methods: The research carried out in the second half of 2014 year, in 210 enterprises of the Wielkopolska Region. Observations and business practice studies conducted by the authors, demonstrate a significant impact of standardization processes on supply chain efficiency. Based on the research results, have been developed standard processes that have been assessed as being necessary to standardize in business practice. Results: Based on these research results and observations, authors have developed standards for transport processes by BPMN notation. BPMN allows authors to conduct multivariate simulation of these processes in further stages of research. Conclusions: Developed standards are the initial stage of research conducted by Authors in the assessment of transport processes efficiency. Further research direction is to analyze the use efficiency of transport processes standards in business practice and their impact on the effectiveness of the entire supply chain.

  15. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  16. Statewide and Metropolitan Transportation Planning Processes : a TPCB Peer Exchange

    Science.gov (United States)

    2016-04-20

    This report highlights key recommendations and noteworthy practices identified at Statewide and Metropolitan Transportation Planning Processes Peer Exchange held on September 9-10, 2015 in Shepherdstown, West Virginia. This event was sponsored ...

  17. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  18. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  19. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  20. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  1. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  2. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  3. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  4. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  5. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  6. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  7. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  8. The role of glutamine transport in metabolism in the brain cortical tissue slice

    International Nuclear Information System (INIS)

    Hare, N.; Bubb, W.A.; Rae, C.; Broeer, S.

    2001-01-01

    The widely accepted 'glutamate/glutamine cycle' holds that glutamate released as a neurotransmitter in the brain is taken up by surrounding astrocytes, converted to neuro-inactive glutamine and transported back to neurons for reconversion to glutamate. Little, however, is known about the role of glutamine transport in this process. The situation is complicated by the fact that glutamine is transported by a variety of general amino-acid transporters of low specificity. The role of these transporters in flux of glutamine through the glutamate/glutamine cycle was investigated by 13 C NMR monitoring of the flux of C from [3- 13 C]L-lactate in guinea pig cortical tissue slices in the presence of competitive inhibitors of the A-type(α-(methylamino)isobutyrate; MeAIB) and N-type (histidine) transporters. The presence of each inhibitor (10 mM) produced no significant decrease in total metabolite pool size but resulted in a significant decrease in flux of [ 13 C] into the neurotransmitters glutamate and GABA and also into glutamine and alanine. The factional enrichment of glutamate and GABA was also significantly lower. By contrast there was no effect on the amount of [ 13 C] incorporated into aspartate isotopomers which may represent a predominantly astrocyte-labelled pool. These results are consistent with involvement of glutamine transporters in the recycling of synaptic glutamate by demonstrating partial blockage of incorporation of [ 13 C] label into neuronal metabolites

  9. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  10. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  11. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  12. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  13. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  14. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  15. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  16. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  17. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  18. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  19. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  20. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  1. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  2. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  3. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  4. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  5. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  6. Monosodium Glutamate Toxicity

    African Journals Online (AJOL)

    Dr Olaleye

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic .... wherein the right hemisphere, was preserved for histology and fixed in 10% ... Biochemical Assays: The left hemisphere of the brain samples was ...... development in male and female rats. Exp Physiol.

  7. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    Science.gov (United States)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  8. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  9. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer.

    Science.gov (United States)

    Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk

    2012-10-01

    (4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.

  10. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 2

    International Nuclear Information System (INIS)

    Wilke, A.; Simon, O.; Bergner, H.

    1984-01-01

    40 rats with a body weight of 100 g received 7 semisynthetic diets with different contents of glutamic acid and one diet contained whole-egg. A L-amino acid mixture corresponding to the pattern of egg protein was the protein source of the semisynthetic diets. Glutamic acid was supplemented succesively from 0 to 58 mol-% of the total amino acid content. On the 8th day of the experimental feeding the animals were labelled by subcutaneous injection of 14 C-glutamic acid. Subsequently the CO 2 and the 14 CO 2 excretion were measured for 24 hours. In this period 64 to 68 % of the injected radioactivity were recovered as 14 CO 2 . The curve pattern of 14 CO 2 excretion indicates two different processes of 14 CO 2 formation. One characterizing the direct degradation of glutamic acid to CO 2 with a high rate constant and a second one with a lower rate constant characterizing the 14 CO 2 formation via metabolites of glutamic acid. 77 % of the total 14 CO 2 excretion in 24 hours resulted from the direct oxidation of glutamic acid and 23 % from the oxidation of intermediates. When 14 CO 2 formation was measured 10 to 24 hours after injection of 14 C-glutamic acid a positive correlation to the content of glutamic acid in the diet was observed. The intestinal tissue contributes considerably to the catabolization of glutamic acid, however, there seems to exist an upper limit for this capacity. (author)

  11. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  12. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  13. Nonlinear closure relations theory for transport processes in nonequilibrium systems

    International Nuclear Information System (INIS)

    Sonnino, Giorgio

    2009-01-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  14. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  15. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    Science.gov (United States)

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects.

  16. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  17. ASTROCYTIC CONTROL OF BIOSYNTHESIS AND TURNOVER OF THE NEUROTRANSMITTERS GLUTAMATE AND GABA

    Directory of Open Access Journals (Sweden)

    Arne eSchousboe

    2013-08-01

    Full Text Available Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis. Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase (PC, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA – glutamine cycle the operation of which involves the enzymes glutamine synthetase (GS and glutaminase (PAG together with the plasma membrane transporters for glutamate, GABA and glutamine. The distribution of these proteins between neurons and astrocytes determines the efficacy of the cycle and it is of particular importance that GS is exclusively expressed in astrocytes. It should be kept in mind that the operation of the cycle is associated with movement of ammonia nitrogen between the two cell types and different mechanisms which can mediate this have been proposed.This review is intended to delineate the above mentioned processes and to discuss quantitatively their relative importance in the homeostatic mechanisms responsible for the maintenance of optimal conditions for the respective neurotransmission processes to operate.

  18. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  19. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  20. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    Science.gov (United States)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  1. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  2. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Directory of Open Access Journals (Sweden)

    Lin Yanhua

    2012-02-01

    Full Text Available Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD and retinitis pigmentosa (RP, are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2 subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD. We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1 and postsynaptic density protein 95 (PSD-95, were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.

  3. Simulation of business processes of processing and distribution of orders in transportation

    Directory of Open Access Journals (Sweden)

    Ольга Ігорівна Проніна

    2017-06-01

    Full Text Available Analyzing modern passenger transportation in Ukraine, we can conclude that with the increasing number of urban population the necessity to develop passenger traffic, as well as to improve the quality of transport services is increasing too. The paper examines the three existing models of private passenger transportation (taxi: a model with the use of dispatching service, without dispatching service model and a mixed model. An algorithm of getting an order, processing it, and its implementation according to the given model has been considered. Several arrangements schemes that characterize the operation of the system have been shown in the work as well. The interrelation of the client making an order and the driver who receives the order and executes it has been represented, the server being a connecting link between the customer and the driver and regulating the system as a whole. Business process of private passenger transportation without dispatching service was simulated. Basing on the simulation results it was proposed to supplement the model of private transportation by the making advice system, as well as improving the car selection algorithm. Advice system provides the optimum choice of the car, taking into account a lot of factors. And it will also make it possible to use more efficiently the specific additional services provided by the drivers. Due to the optimization of the order handling process it becomes possible to increase the capacity of the drivers thus increasing their profits. Passenger transportation without the use of dispatching service has some weak points and they were identified. Application of the system will improve transport structure in modern conditions, and improve the transportation basing on modern operating system

  4. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  5. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  6. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  7. The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) by inhibiting caspase-3 mediated inactivation of GLT-1a.

    Science.gov (United States)

    Goursaud, Stéphanie; Focant, Marylène C; Berger, Julie V; Nizet, Yannick; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2011-10-01

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.

  8. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  9. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  10. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe and...

  11. Integrating climate change into the transportation planning process : final report

    Science.gov (United States)

    2008-07-01

    The objective of this study is to advance the practice and application of transportation planning among state, regional, and local transportation planning agencies to successfully meet growing concerns about the relationship between transportation an...

  12. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  13. Transport Infrastructure in the Process of Cataloguing Brownfields

    Science.gov (United States)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  14. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  15. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  16. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  17. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  18. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  19. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all......). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were...

  20. Analysis of suspended solids transport processes in primary settling tanks.

    Science.gov (United States)

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  1. Use of GIS technologies to facilitate the transportation project programming process.

    Science.gov (United States)

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  2. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  3. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  4. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  5. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  6. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  7. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  8. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  9. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao

    2011-03-01

    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  10. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  11. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  12. A Cloud Computing Model for Optimization of Transport Logistics Process

    Directory of Open Access Journals (Sweden)

    Benotmane Zineb

    2017-09-01

    Full Text Available In any increasing competitive environment and even in companies; we must adopt a good logistic chain management policy which is the main objective to increase the overall gain by maximizing profits and minimizing costs, including manufacturing costs such as: transaction, transport, storage, etc. In this paper, we propose a cloud platform of this chain logistic for decision support; in fact, this decision must be made to adopt new strategy for cost optimization, besides, the decision-maker must have knowledge on the consequences of this new strategy. Our proposed cloud computing platform has a multilayer structure; this later is contained from a set of web services to provide a link between applications using different technologies; to enable sending; and receiving data through protocols, which should be understandable by everyone. The chain logistic is a process-oriented business; it’s used to evaluate logistics process costs, to propose optimal solutions and to evaluate these solutions before their application. As a scenario, we have formulated the problem for the delivery process, and we have proposed a modified Bin-packing algorithm to improve vehicles loading.

  13. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  14. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana.

    Science.gov (United States)

    Walch-Liu, Pia; Liu, Lai-Hua; Remans, Tony; Tester, Mark; Forde, Brian G

    2006-08-01

    The roots of many plant species are known to use inorganic nitrogen, in the form of , as a cue to initiate localized root proliferation within nutrient-rich patches of soil. We report here that, at micromolar concentrations and in a genotype-dependent manner, exogenous l-glutamate is also able to elicit complex changes in Arabidopsis root development. l-Glutamate is perceived specifically at the primary root tip and inhibits mitotic activity in the root apical meristem, but does not interfere with lateral root initiation or outgrowth. Only some time after emergence do lateral roots acquire l-glutamate sensitivity, indicating that their ability to respond to l-glutamate is developmentally regulated. Comparisons between different Arabidopsis ecotypes revealed a remarkable degree of natural variation in l-glutamate sensitivity, with C24 being the most sensitive. The aux1-7 auxin transport mutant had reduced l-glutamate sensitivity, suggesting a possible interaction between l-glutamate and auxin signaling. Surprisingly, two loss-of-function mutants at the AXR1 locus (axr1-3 and axr1-12) were hypersensitive to l-glutamate. A pharmacological approach, using agonists and antagonists of mammalian ionotropic glutamate receptors, was unable to provide evidence of a role for their plant homologs in sensing exogenous glutamate. We discuss the mechanism of l-glutamate sensing and the possible ecological significance of the observed l-glutamate-elicited changes in root architecture.

  15. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  16. Features, Events, and Processes in UZ and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  17. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  18. Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid Production▿

    OpenAIRE

    Nakamura, Jun; Hirano, Seiko; Ito, Hisao; Wachi, Masaaki

    2007-01-01

    Corynebacterium glutamicum is a biotin auxotroph that secretes l-glutamic acid in response to biotin limitation; this process is employed in industrial l-glutamic acid production. Fatty acid ester surfactants and penicillin also induce l-glutamic acid secretion, even in the presence of biotin. However, the mechanism of l-glutamic acid secretion remains unclear. It was recently reported that disruption of odhA, encoding a subunit of the 2-oxoglutarate dehydrogenase complex, resulted in l-gluta...

  19. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lara Hwa

    2017-03-01

    Full Text Available Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.

  20. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  1. 23 CFR Appendix A to Part 450 - Linking the Transportation Planning and NEPA Processes

    Science.gov (United States)

    2010-04-01

    ... quality, and biology). Senior managers at transportation and partner agencies can arrange a variety of... strengthened link of the transportation planning and NEPA processes. Formal and informal mentoring on an intra...

  2. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  3. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  4. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  5. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  6. Delay functions in trip assignment for transport planning process

    Science.gov (United States)

    Leong, Lee Vien

    2017-10-01

    In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future

  7. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina

    2004-01-01

    assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured...

  8. Influence of the glutamic acid content of the diet on the catabolisc rate of labelled glutamic acid in rats. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Wilke, A.; Simon, O.; Wolf, E.

    1984-01-01

    Male rats received in 8 groups of 10 animals each for a period of 7 days 7 synthetic diets and one semisynthetic diet on maintenance requirement level. A L-amino acid mixture corresponding to the pattern of egg protein without glutamic acid was the protein source of the synthetic diets. Glutamic acid was supplemented successively from 0 to 58 mol-% of the total amino acid content. The crude protein source of diet 8 was whole-egg powder. On the 8th day of experiment 5 animals per group were labelled by intragastric infusion with 14 C-glutamic acid. During the following 24 hours the excretion of CO 2 and 14 CO 2 was measured. Throughout the experimental feeding body weight was relative constant, however, when the synthetic diets were fed it was necessary to increase the daily amount of energy from 460 to 480 kJ/kg/sup 0.67/. The relative 14 CO 2 excretion within 24 hours was 68-75 % of the dose. However, the main part of the amount of radioactivity excreted during 24 hours was already found after 4 to 6 hours. Exponential functions calculated from the data of cumulative 14 CO 2 excretion suggest the existence of a fast process of 14 CO 2 formation directly from 14 C-glutamic acid, reaching a plateau within 2 hours and a slow process of oxidation of intermediates of glutamic acid metabolism, causing a continued 14 CO 2 formation even after 24 hours. The oxidation of 14 C-glutamic acid to CO 2 decreased 2 to 14 hours after labelling if the glutamic acid content of the diet increased. The same was found for the specific radioactivity of 14 CO 2 . A storage of intermediates of glutamic acid before degradation was assumed. (author)

  9. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  10. Progress in fuel processing for PEMFC systems for transport applications

    Energy Technology Data Exchange (ETDEWEB)

    Dams, A J; Hayter, P R; Moore, S C

    1998-07-01

    Wellman CJB Limited has been developing fuel processors for PEMFC systems for transport applications using a range of feedstocks. Feedstocks that can be processed to produce a hydrogen-rich gas stream suitable for use with a PEMFC include methanol, gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel. The basic fuel processor is a steam reformer combined with a selective carbon monoxide oxidation stage. Depending on the nature of the liquid feedstock, other process steps will be required such as vaporizer, desulfurizer, pre-reformer and high and low temperature shift reactors. Work on methanol reforming has been specifically targeted at a PEMFC driven passenger car as part of a multinational European Community JOULE programme called MERCATOX. The objective is to develop and test a compact and fast response methanol reformer and gas clean-up unit to meet a car manufacturer's specification. The method of construction is to coat a methanol reforming catalyst onto one side of a metal corrugated plate. On the other side is a coated combustion catalyst which burns fuel cell off-gas to provide the endothermic heat for the methanol reforming reaction. A number of these plates are assembled in a compact unit ensuring good heat transfer. The gas clean-up unit is similarly constructed with a selective oxidation catalyst on one side and a thermal fluid on the other. Initial tests have indicated a superior performance to conventional packed bed reformers in terms of response and start-up time. Steam reforming of gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel has been demonstrated on a bench scale (0.5kW). The process steps commence with vaporization (except for LPG), desulfurization (except for dimethylether), prereforming, reforming, low and high temperature shift and selective oxidation. A simple technology demonstrator has shown that a hydrogen-rich mixture (75% hydrogen, 25% carbon dioxide) with less than 2ppm carbon monoxide can be

  11. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  12. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  13. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  14. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  15. Elucidating the Roles of Transport Processes in Glucosinolate Distribution

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen

    Glucosinolates are plant defense compounds characteristic of the economically important plant family of Brassicaceae, which comprises crops as oilseed rape, cabbage, broccoli and the model plant Arabidopsis thaliana (Arabidopsis). Recently, two Arabidopsis glucosinolate transporters, GTR1 and GTR2...

  16. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  17. Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3

    Directory of Open Access Journals (Sweden)

    Johannes eZimmermann

    2015-09-01

    Full Text Available The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3 is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamatergic neurons has been demonstrated, the interplay between VGLUT3 and the neuron’s characteristic neurotransmitter transporter, particularly in the case of GABAergic neurons, at the synaptic and vesicular level is less clear. In this study, we explore how exogenous expression of VGLUT3 in striatal GABAergic neurons affects the packaging and release of glutamate and GABA in synaptic vesicles. We found that VGLUT3 expression in isolated, autaptic GABAergic neurons leads to action potential evoked release of glutamate. Under these conditions, glutamate and GABA could be packaged together in single vesicles release either spontaneously or asynchronously. However, the presence of glutamate in GABAergic vesicles did not affect uptake of GABA itself, suggesting a lack of synergy in vesicle filling for these transmitters. Finally, we found postsynaptic detection of glutamate released from GABAergic terminals difficult when bona fide glutamatergic synapses were present, suggesting that co-released glutamate cannot induce postsynaptic glutamate receptor clustering.

  18. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  19. Structure-Function Relationship of Transporters in the Glutamate–Glutamine Cycle of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Mariko Kato Hayashi

    2018-04-01

    Full Text Available Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.

  20. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    requirements with the aim of maximising accessibility in products and services. A review of ID literature has mainly developed in the arena of product design and design for assistive technology. Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design...... for accessibility or ID in this area. How is accessibility and the needs of users accounted for in rail transport design? This paper analyses interviews with rolling stock producers, operators and design consultancies. These conducted to determine if ID design methods are used explicitly and the extent to which...

  1. Rational design and enantioselective synthesis of (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid - a novel inhibitor at human glutamate transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Bunch, Lennart; Nielsen, Birgitte; Jensen, Anders A.

    2006-01-01

    The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S)-pyroglut......The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S...

  2. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated .gamma.-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

    Czech Academy of Sciences Publication Activity Database

    Borisova, T.; Krisanova, N.; Borysov, A.; Sivko, R.; Ostapchenko, L.; Babič, Michal; Horák, Daniel

    2014-01-01

    Roč. 5, 4 June (2014), s. 778-788 ISSN 2190-4286 R&D Projects: GA MŠk EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : extracellular level * γ-Fe2O3 * glutamate uptake and release Subject RIV: CE - Biochemistry Impact factor: 2.670, year: 2014

  3. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  4. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  5. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  6. Evidence for a role of glutamate as an efferent transmitter in taste buds

    Directory of Open Access Journals (Sweden)

    Anderson Catherine B

    2010-06-01

    Full Text Available Abstract Background Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. Results Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. Conclusions Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.

  7. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  8. System of business-processes management at motor-transport enterprise

    OpenAIRE

    Коgut, Y.

    2010-01-01

    The place of the system of business-processes management at motor-transport enterprise in the general system of management of the enterprise has been substantiated. The subsystems of strategic management, business-processes management of strategic orientation and current activity, processes of enterprise functioning management have been marked out. The system of motor-transport enterprise business-processes management has been formed, which, unlike the existing ones, is based on the system-cy...

  9. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation...

  10. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  11. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  12. Magnetosheath excursion and the relevant transport process at the magnetopause

    Directory of Open Access Journals (Sweden)

    C. L. Cai

    2009-08-01

    Full Text Available A large-amplitude excursion of the magnetosheath (MS in quiet solar wind conditions on 17 March 2004 was recorded simultaneously by the Cluster and TC-1 spacecraft. During this period, the IMF Bz was entirely northward. The coherence between the bow shock motion and magnetopause (MP motion is revealed and the excursion velocities of the bow shock motion are analyzed. In addition, the relevant plasma transport phenomenon in the form of flux fluctuations below the ion gyrofrequency at the MP is exposed and is interpreted as manifestation of the drift instability. Correlated observations on charge accumulation and electrostatic potential perturbation are recorded by electron measurements in high energy regime, and also the eventual cross-field vortex motion in the nonlinear stage and the consequential mass exchange are exhibited. The present investigation gives some new insight into the MS plasma transport mechanism across the subsolar MP region in quiet solar wind conditions during a period of northward IMF.

  13. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  14. Kinetic theory of transport processes in weakly ionized gases

    International Nuclear Information System (INIS)

    Odenhoven, F.J.F. van

    1984-01-01

    A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)

  15. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  16. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  17. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  18. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  19. ATP secretion from nerve trunks and Schwann cells mediated by glutamate.

    Science.gov (United States)

    Liu, Guo Jun; Bennett, Max R

    2003-11-14

    ATP release from rat sciatic nerves and from cultured Schwann cells isolated from the nerves was investigated using an online bioluminescence technique. ATP was released in relatively large amounts from rat sciatic nerve trunks during electrical stimulation. This release was blocked by the sodium channel inhibitor tetrodotoxin and the non-NMDA glutamate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Schwann cells isolated from the nerve trunks did not release ATP when electrically stimulated but did in response to glutamate in a concentration-dependent manner. Glutamate-stimulated ATP release was inhibited by specific non-competitive AMPA receptor antagonist GYKI 52466 and competitive non-NMDA receptor antagonist CNQX. Glutamate-stimulated ATP release was decreased by inhibition of anion transporter inhibitors by furosemide, cystic fibrosis transmembrane conductance regulator by glibenclamide and exocytosis by botulinum toxin A, indicating that anion transporters and exocytosis provide the main secretion mechanisms for ATP release from the Schwann cells.

  20. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  1. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.

    2011-01-01

    and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture....... Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry...

  2. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  3. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  4. Magnetic property effect on transport processes in resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424 (China); Wu, T H, E-mail: pswei@mail.nsysu.edu.tw, E-mail: wux0064@gmail.com [Department of Mechanical Engineering, Yung Ta Institute of Technology and Commerce, Pintong, Taiwan 909 (China)

    2011-08-17

    This study investigates the effects of the Curie temperature and magnetic permeability on transport variables, solute distribution and nugget shapes during resistance spot welding. The Curie temperature is the temperature below which a metal or alloy is ferromagnetic with a high magnetic permeability, and above which it is paramagnetic with a small magnetic permeability. The model proposed here accounts for electromagnetic force, heat generation and contact resistance at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance includes constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that transport variables and nugget shapes can be consistently interpreted from the delay of response time and jump of electric current density as a result of finite magnetic diffusion, rather than through the examination of the variations of dynamic electrical resistance with time. The molten nugget on the faying surface is initiated earlier with increasing magnetic permeability and Curie temperature. A high Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Any means to reduce the Curie temperature or magnetic permeability, such as adjusting the solute content, can be a good way to control weld quality. This study can also be applied to interpret the contact problems encountered in various electronics and packaging technologies, and so on.

  5. Fluorescence imaging of glutamate release in neurons

    International Nuclear Information System (INIS)

    Wang, Ziqiang; Yeung, Edward S.

    1999-01-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to μM levels of glutamate with reasonable response time (∼30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from μM to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy

  6. Whole tree transportation system for timber processing depots

    Science.gov (United States)

    John Lancaster; Tom Gallagher; Tim  McDonald; Dana Mitchell

    2016-01-01

    The growing demand for alternative energy has led those who are interested in producing sustainable energy from renewable timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the re-evaluation of our...

  7. Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism.

    Science.gov (United States)

    Hull, Jonathon; Usmari Moraes, Marcela; Brookes, Emma; Love, Seth; Conway, Myra E

    2018-01-01

    Glutamate is the major excitatory neurotransmitter of the central nervous system, with the branched-chain amino acids (BCAAs) acting as key nitrogen donors for de novo glutamate synthesis. Despite the importance of these major metabolites, their metabolic pathway in the human brain is still not well characterised. The metabolic pathways that influence the metabolism of BCAAs have been well characterised in rat models. However, the expression of key proteins such as the branched-chain α-ketoacid dehydrogenase (BCKD) complex and glutamate dehydrogenase isozymes (GDH) in the human brain is still not well characterised. We have used specific antibodies to these proteins to analyse their distribution within the human brain and report, for the first time, that the E1α subunit of the BCKD is located in both neurons and vascular endothelial cells. We also demonstrate that GDH is localised to astrocytes, although vascular immunolabelling does occur. The labelling of GDH was most intense in astrocytes adjacent to the hippocampus, in keeping with glutamatergic neurotransmission in this region. GDH was also present in astrocyte processes abutting vascular endothelial cells. Previously, we demonstrated that the branched-chain aminotransferase (hBCAT) proteins were most abundant in vascular cells (hBCATm) and neurons (hBCATc). Present findings are further evidence that BCAAs are metabolised within both the vasculature and neurons in the human brain. We suggest that GDH, hBCAT and the BCKD proteins operate in conjunction with astrocytic glutamate transporters and glutamine synthetase to regulate the availability of glutamate. This has important implications given that the dysregulation of glutamate metabolism, leading to glutamate excitotoxicity, is an important contributor to the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  9. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  10. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier

    2015-01-01

    Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with syn......Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization...... with synaptic loss. Since metabolism of glutamate is dependent on interactions between neurons and surrounding astroglia, our results suggest that glutamate neurotransmitter pathways might be impaired in the brain of prenatally stressed rats. To study the effect of prenatal stress on the metabolism...... was not affected it was found that prenatal stress (PS) changed the expression of the transporters, thus, producing a higher level of vesicular vGluT-1 in the frontal cortex (FCx) and elevated levels of GLT1 protein and messenger RNA in the hippocampus (HPC) of adult male PS offspring. We also observed increased...

  11. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  12. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  13. The exergy fields in transport processes: Their calculation and use

    Energy Technology Data Exchange (ETDEWEB)

    Lior, N.; Sarmiento-Darkin, W.; Al-Sharqawi, H.S. [University of Penn, Philadelphia, PA (United States). Dept. of Mechanical Engineering & Applied Mechanics

    2006-04-15

    This paper is a brief review of the method for analyzing the space and time dependent exergy and irreversibility fields in processes. It presents the basic equations, the method for their use, major literature sources, and three examples from the authors' work: flow desiccation, combustion of oil droplets, and combustion of pulverized coal. Conclusions from this Second Law analysis are used to attempt process improvement suggestions.

  14. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  15. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  16. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  17. Formation of the Cycle of Business Processes of Management of Marketing Activity of a Transport Enterprise

    Directory of Open Access Journals (Sweden)

    Horielov Dmytro O.

    2014-02-01

    Full Text Available The article is devoted to problems of organisation of the process of management of marketing activity of an enterprise. It specifies the model of services of a transport enterprise and provides levels of services and their structure: basic, real, expanded, expected and prospective. The article offers to differentiate planning and realisation of the transportation service by its levels, each of which would correspond with a separate business process of management. It reveals specific features of use of instruments of the traditional, internal and interactive marketing in the market of transportation services. It identifies the structure of the object when managing marketing activity of a transportation enterprise. The article uses the Deming cycle to formulate general principles of formation of business processes of management of marketing activity: “Motivation – Plan – Do – Check – Act”. The proposed cycle would ensure continuous improvement of the said business processes of an enterprise in accordance with international quality standards (ISO.

  18. An evaluation of Mexican transportation planning, finance, implementation, and construction processes.

    Science.gov (United States)

    2009-10-01

    This research examined the legal, financial, institutional and policy processes that Mexico uses to plan, finance, : construct, and implement its transportation network. It documents through twelve case studies the state of the : practice in planning...

  19. Magnetic Processing of Structural Components for Transportation Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S. [Metalsa Roanoke, Inc.; del Prado Villasana, J. [Metalsa Roanoke, Inc.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  20. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  1. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle

    2015-01-01

    differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...

  2. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  3. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    Science.gov (United States)

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  4. Transport description of intermediate processes in heavy ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Shivakumar, B.; Shapira, D.

    1986-01-01

    An extension of the diffusion model is proposed in order to describe the intermediate processes and the compound nucleus formation in heavy ion collisions. The model describes the intermediate processes and fusion in terms of the formation and the evolution of a long-lived dinuclear molecular complex (DMC) and its subsequent decay by fragmentation. The colliding ions can be trapped into the pocket of the entrance channel nucleus-nucleus potential and a DMC is formed. This DMC acts as a doorway state towards formation of a completely equilibrated compound nucleus (CN). It evolves through the exchange of nucleons to different dinuclear configurations. At each stage of its evolution, there is a finite probability for direct fragmentation into outgoing channels by thermal penetration over the barrier. The doorway states that do not fragment relax into a CN configuration and are identified as the fusion yield. 8 refs

  5. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  6. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  7. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport.

    Science.gov (United States)

    Borisova, Tatiana; Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

  8. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    Science.gov (United States)

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  9. Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA.

    Science.gov (United States)

    Torres, Felipe Vasconcelos; Hansen, Fernanda; Locks-Coelho, Lucas Doridio

    2013-08-01

    Glutamate concentration at the synaptic level must be kept low in order to prevent excitotoxicity. Astrocytes play a key role in brain energetics, and also astrocytic glutamate transporters are responsible for the vast majority of glutamate uptake in CNS. Experiments with primary astrocytic cultures suggest that increased influx of glutamate cotransported with sodium at astrocytes favors its flux to the tricarboxylic acid cycle instead of the glutamate-glutamine cycle. Although metabolic coupling can be considered an emergent field of research with important recent discoveries, some basic aspects of glutamate metabolism still have not been characterized in brain tissue. Therefore, the aim of this study was to investigate whether the presence of extracellular glutamate is able to modulate the use of glutamate and glucose as energetic substrates. For this purpose, isolated hippocampi of mice were incubated with radiolabeled substrates, and CO2 radioactivity and extracellular lactate were measured. Our results point to a diminished oxidation of glucose with increasing extracellular glutamate concentration, glutamate presumably being the fuel, and might suggest that oxidation of glutamate could buffer excitotoxic conditions by high glutamate concentrations. In addition, these findings were reversed when glutamate uptake by astrocytes was impaired by the presence of (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA). Taken together, our findings argue against the lactate shuttle theory, because glutamate did not cause any detectable increase in extracellular lactate content (or, presumably, in glycolysis), because the glutamate is being used as fuel instead of going to glutamine and back to neurons. Copyright © 2013 Wiley Periodicals, Inc.

  10. A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.

    Science.gov (United States)

    Clay, Mackenzie; Monbouquette, Harold G

    2018-02-21

    Simulations conducted with a detailed model of glutamate biosensor performance describe the observed sensor performance well, illustrate the limits of sensor performance, and suggest a path toward sensor optimization. Glutamate is the most important excitatory neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for the monitoring of glutamate signaling in vivo. However, the utility of these sensors currently is limited by their sensitivity and response time. A mathematical model of a typical glutamate biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer of cross-linked glutamate oxidase has been constructed in terms of differential material balances on glutamate, H 2 O 2 , and O 2 in one spatial dimension. Simulations suggest that reducing thicknesses of the permselective polymer and enzyme layers can increase sensitivity ∼6-fold and reduce response time ∼7-fold, and thereby improve resolution of transient glutamate signals. At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and enzyme deactivation likely are masked by mass transfer. However, O 2 -dependence studies show essentially no reduction in signal at the lowest anticipated O 2 concentrations for expected glutamate concentrations in the brain and that O 2 transport limitations in vitro are anticipated only at glutamate concentrations in the mM range. Finally, the limitations of current biosensors in monitoring glutamate transients is simulated and used to illustrate the need for optimized biosensors to report glutamate signaling accurately on a subsecond time scale. This work demonstrates how a detailed model can be used to guide optimization of electroenzymatic sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered using such biosensors.

  11. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  12. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  13. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  14. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Lara, Julio A., E-mail: j.a.sorialara@uva.nl; Bertolini, Luca, E-mail: l.bertolini@uva.nl; Brömmelstroet, Marco te, E-mail: M.C.G.teBrommelstroet@uva.nl

    2015-01-15

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes.

  15. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    International Nuclear Information System (INIS)

    Soria-Lara, Julio A.; Bertolini, Luca; Brömmelstroet, Marco te

    2015-01-01

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes

  16. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    Science.gov (United States)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  17. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  18. Impact of different vertical transport representations on simulating processes in the tropical tropopause layer (TTL)

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, Felix

    2011-07-06

    The chemical and dynamical processes in the tropical tropopause layer (TTL) control the amount of radiatively active species like water vapour and ozone in the stratosphere, and hence turn out to be crucial for atmospheric trends and climate change. Chemistry transport models and chemistry climate models are suitable tools to understand these processes. But model results are subject to uncertainties arising from the parametrization of model physics. In this thesis the sensitivity of model predictions to the choice of the vertical transport representation will be analysed. Therefore, backtrajectories are calculated in the TTL, based on different diabatic and kinematic transport representations using ERA-Interim and operational ECMWF data. For diabatic transport on potential temperature levels, the vertical velocity is deduced from the ERA-Interim diabatic heat budget. For kinematic transport on pressure levels, the vertical wind is used as vertical velocity. It is found that all terms in the diabatic heat budget are necessary to cause transport from the troposphere to the stratosphere. In particular, clear-sky heating rates alone miss very important processes. Many characteristics of transport in the TTL turn out to depend very sensitively on the choice of the vertical transport representation. Timescales for tropical troposphere-to-stratosphere transport vary between one and three months, with respect to the chosen representation. Moreover, for diabatic transport ascent is found throughout the upper TTL, whereas for kinematic transport regions of mean subsidence occur, particularly above the maritime continent. To investigate the sensitivity of simulated trace gas distributions in the TTL to the transport representation, a conceptual approach is presented to predict water vapour and ozone concentrations from backtrajectories, based on instantaneous freeze-drying and photochemical ozone production. It turns out that ozone predictions and vertical dispersion of the

  19. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...... mimics IPC. 2. Rat hearts were studied in a Langendorff preparation perfused with Krebs'-Henseleit solution and subjected to 40 min global no-flow ischaemia, followed by 120 min reperfusion. L-Glutamate (0, 15 and 30 mmol/L) was added to the perfusate during reperfusion of hearts from non-diabetic...

  1. VGLUTs and Glutamate Synthesis—Focus on DRG Neurons and Pain

    Directory of Open Access Journals (Sweden)

    Mariana Malet

    2015-12-01

    Full Text Available The amino acid glutamate is the principal excitatory transmitter in the nervous system, including in sensory neurons that convey pain sensation from the periphery to the brain. It is now well established that a family of membrane proteins, termed vesicular glutamate transporters (VGLUTs, serve a critical function in these neurons: they incorporate glutamate into synaptic vesicles. VGLUTs have a central role both under normal neurotransmission and pathological conditions, such as neuropathic or inflammatory pain. In the present short review, we will address VGLUTs in the context of primary afferent neurons. We will focus on the role of VGLUTs in pain triggered by noxious stimuli, peripheral nerve injury, and tissue inflammation, as mostly explored in transgenic mice. The possible interplay between glutamate biosynthesis and VGLUT-dependent packaging in synaptic vesicles, and its potential impact in various pain states will be presented.

  2. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study...... evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...

  3. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO 2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [ 3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO 2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  4. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  5. A Proactive Complex Event Processing Method for Large-Scale Transportation Internet of Things

    OpenAIRE

    Wang, Yongheng; Cao, Kening

    2014-01-01

    The Internet of Things (IoT) provides a new way to improve the transportation system. The key issue is how to process the numerous events generated by IoT. In this paper, a proactive complex event processing method is proposed for large-scale transportation IoT. Based on a multilayered adaptive dynamic Bayesian model, a Bayesian network structure learning algorithm using search-and-score is proposed to support accurate predictive analytics. A parallel Markov decision processes model is design...

  6. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    and transportation prior to processing and samples with immediate processing and freezing. METHODS: Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed...... and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. RESULTS: For samples taken in the winter, relative...... differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate...

  7. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  8. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Nina B Illarionova

    Full Text Available Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+ co-transporters. This transport is driven by the transmembrane Na(+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+ co-transporters via the 1st intracellular loop.

  9. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  10. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    Science.gov (United States)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  11. In Vitro Analysis of Metabolite Transport Proteins.

    Science.gov (United States)

    Roell, Marc-Sven; Kuhnert, Franziska; Zamani-Nour, Shirin; Weber, Andreas P M

    2017-01-01

    The photorespiratory cycle is distributed over four cellular compartments, the chloroplast, peroxisomes, cytoplasm, and mitochondria. Shuttling of photorespiratory intermediates between these compartments is essential to maintain the function of photorespiration. Specific transport proteins mediate the transport across biological membranes and represent important components of the cellular metabolism. Although significant progress was made in the last years on identifying and characterizing new transport proteins, the overall picture of intracellular metabolite transporters is still rather incomplete. The photorespiratory cycle requires at least 25 transmembrane transport steps; however to date only plastidic glycolate/glycerate transporter and the accessory 2-oxoglutarate/malate and glutamate/malate transporters as well as the mitochondrial transporter BOU1 have been identified. The characterization of transport proteins and defining their substrates and kinetics are still major challenges.Here we present a detailed set of protocols for the in vitro characterization of transport proteins. We provide protocols for the isolation of recombinant transport protein expressed in E. coli or Saccharomyces cerevisiae and the extraction of total leaf membrane protein for in vitro analysis of transporter proteins. Further we explain the process of reconstituting transport proteins in artificial lipid vesicles and elucidate the details of transport assays.

  12. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  13. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  14. Electronic repository and standardization of processes and electronic documents in transport

    Directory of Open Access Journals (Sweden)

    Tomasz DĘBICKI

    2007-01-01

    Full Text Available The article refers to the idea of the use of electronic repository to store standardised scheme of processes between a Logistics Service Provider and its business partners. Application of repository for automatic or semi-automatic configuration of interoperability in electronic data interchange between information systems of differentcompanies based on transport (road, rail, sea and combined related processes. Standardisation includes processes, scheme of cooperation and related to them, electronic messages.

  15. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    Science.gov (United States)

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  16. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John Jr.; Mann, Michael J.A.; Holt, Robert M..; Kriel, Kelly

    2007-01-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods

  17. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  18. The peculiarities of process-based approach realization in transport sector company management

    Science.gov (United States)

    Khripko, Elena; Sidorov, Gennadiy

    2017-10-01

    In the present article we study the phenomena of multiple meaning in understanding process-based management method in construction of transport infrastructure facilities. The idea of multiple meaning is in distortions which appear during reception of the management process paradigm in organizational environment of transport sector. The cause of distortion in process management is organizational resistance. The distortions of management processes are discovered at the level of diffusion among spheres of responsibility, collision in forms of functional, project and process interaction between the owner of the process and its participants. The level of distortion is affected by the attitude towards the result of work which means that process understanding of the result is replaced by the functional one in practice of management. This transfiguration is the consequence of regressive defensive mechanisms of the organizational environment. On the base of experience of forming process management in construction of transport infrastructure facilities company of the issues of diagnostics of various forms of organizational resistance and ways of reducing the destructive influence on managing processes are reviewed.

  19. Glutamate: Tastant and Neuromodulator in Taste Buds.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  20. Connected vehicle impacts on transportation planning technical memorandum #2 : connected vehicle planning processes and products and stakeholder roles and responsibilities.

    Science.gov (United States)

    2015-01-01

    The objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should : be considered across the range of transportation planning processes and products developed by Stat...

  1. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  2. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  3. Spatial Evaluation Approach in the Planning Process of Transport Logistic Terminals

    Directory of Open Access Journals (Sweden)

    Mitja Pavliha

    2006-09-01

    Full Text Available The "state-of-the-art" of the present global European situationis in desperate need for a new approach to development ofurban and rural environment with an interdisciplinary approach,when introducing the elements of transport infrastructureand transport infrastructure landscape into space and environment.In order to reach a decision regarding the location of a certaintransport logistic terminal some constraints (technical andtechnological as well as financial should be considered. Aspart of the process trying to respond to these constraints, associatedprimarily with the traffic conditions at the appointed networklocations, a careful evaluation in respect to cargo flowsand infrastructure connections as well as spatial planningshould be performed.M01phological indicators, which directly and indirectly affectthe structure and the form of the transport infrastructure elements- transport logistic terminals, are extracted and presentedin the paper. At this point, the paper concludes that thelaying down and the evaluation of transport infrastructure elementsare based on two categories of morphological elements:Constructed morphological elements (all constntctionsand their elements, andNatural morphological elements (topography, climate, vegetation,etc..The presented spatial methodology deals with the interactionsbetween the constructed and natural morphological elements- the quality and the characteristics of the design areadded to both groups.Findings and projections acquired on the basis of a spatialevaluation and transport logistic analysis constitute, togetherwith financial-economic assumptions, the basis for elaboratinga business plan - a significant element in the decision-makingprocess regarding the development of a transport logistic terminal.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  5. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  6. Evaluation of transport safety analysis processes of radioactive material performed by a regulatory body

    International Nuclear Information System (INIS)

    Mattar, Patricia Morais

    2017-01-01

    Radioactive substances have many beneficial applications, ranging from power generation to uses in medicine, industry and agriculture. As a rule, they are produced in different places from where they are used, needing to be transported. In order for transport to take place safely and efficiently, national and international standards must be complied with. This research aims to assess the safety analysis processes for the transport of radioactive material carried out by the regulatory body in Brazil, from the point of view of their compliance with the International Atomic Energy Agency (IAEA) standards. The self-assessment methodology named SARIS, developed by the AIEA, was used. The following steps were carried out: evaluation of the Diagnosis and Processes Mapping; responses to the SARIS Question Set and complementary questions; SWOT analysis; interviews with stakeholders and evaluation of a TranSAS mission conducted by the IAEA in 2002. Considering only SARIS questions, processes are 100% adherent. The deepening of the research, however, led to the development of twenty-two improvement proposals and the identification of nine good practices. The results showed that the safety analysis processes of the transport of radioactive material are being carried out in a structured, safe and reliable way but also that there is much opportunity for improvement. The formulation of an action plan, based on the presented proposals, can bring to the regulatory body many benefits. This would be an important step towards convening an external evaluation, providing greater reliability and transparency to the regulatory body´s processes. (author)

  7. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    Science.gov (United States)

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  8. Contribution to the logistic evaluation system in the transportation process in Santo Domingo, Ecuador

    Directory of Open Access Journals (Sweden)

    Rodobaldo Martínez Vivar

    2018-02-01

    Full Text Available Purpose: The objective of the present research is to design and apply a methodology to evaluate the logistics system in the transportation process in a base vehicle fleet, which contributes to decrease the costs of distribution and to increase the performance of the logistics system of the organization. Design/methodology: The proposal of a holistic technology for the management of this process is carried out, which integrates indicators and tools that improve control and decision-making activities in this area. Findings: The application of the procedure developed in the selected organization contributed to the identification of deficiencies related to the availability of the equipment and the needs of the clients, the low technical availability of the automotive plant, the low utilization of the capacity of the freight vehicles, the absence of a plan of measures to diminish the empty routes of the transport and the overconsumption of fuel due to the accomplishment of extra trips. Aspects that contributed to the redesign of some of the main functions of physical distribution such as itinerary planning, selection of means of transport and analysis of operating indicators, aspects that favored the optimization of the number of trips and, consequently, the adequate use of the equipment and the loads to be transported, observing a saving of 15% in the fuel consumption per load transported. Originality: The originality of the present research lies in the combination of different theories and techniques that contribute from a holistic approach to the logistics evaluation of the transportation process, facilitating the optimization of transportation requirements, its operation and maintenance.

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. The issue resolution process in the Civilian Radioactive Waste Transportation Program

    International Nuclear Information System (INIS)

    Holm, J.A.; Denny, S.

    1987-01-01

    The Civilian Radioactive Waste Management (OCRWM) Program consists of various technical and institutional program activities which engender concern from the general public and from policymakers at federal, state, and local levels. Most familiar are the concerns centered around selection of a site for a repository; however, the transportation portion of the OCRWM program also engenders similar concerns for safety, efficiency and effectiveness. The major Transportation institutional issues were detailed in the Institutional Plan, issued in 1986, and include topics such as liability, defense waste, routing, emergency response, risk identification and mitigation, cash integrity, inspection and enforcement of high-level waste shipments and use of overweight trucks as part of the modal mix. This paper will define the process being used to identify and resolve institutional issues, show how the technical and institutional issues interface and are addressed, and briefly describe four specific activities which illustrate the process of resolving institutional issues in the Transportation program

  11. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  12. Some issues of logistics management applied to the passenger transportation process on suburban routes

    Directory of Open Access Journals (Sweden)

    Тetyana М. Grigorova

    2014-12-01

    Full Text Available Considered are some questions that address the problem of logistic management of suburban transport services. Using the logistic approach to the passenger transportation process management we get possibility to determine the need for consideration of the transport process parameters’ impact on the passengers’ fatigability that affects their productivity in the workplace. Basing on the analysis of the results obtained in-field, we implemented a mathematical description of the functional link between the passenger’s regulatory systems activity index, and the negatively affecting factors. It is revealed that the change in the passenger’s regulatory systems activity index on approaching the suburban line terminal station is described with sufficient accuracy by a non-linear regression equation, which includes as variables the regulatory systems activity index value before approaching to the station, the age of the passenger, the pedestrian walking pace, the time of approaching to the stop station.

  13. Modulation of gene expression of adenosine and metabotropic glutamate receptors in rat's neuronal cells exposed to L-glutamate and [60]fullerene.

    Science.gov (United States)

    Giust, Davide; Da Ros, Tatiana; Martín, Mairena; Albasanz, José Luis

    2014-08-01

    L-Glutamate (L-Glu) has been often associated not only to fundamental physiological roles, as learning and memory, but also to neuronal cell death and the genesis and development of important neurodegenerative diseases. Herein we studied the variation in the adenosine and metabotropic glutamate receptors expression induced by L-Glu treatment in rat's cortical neurons. The possibility to have structural alteration of the cells induced by L-Glu (100 nM, 1 and 10 microM) has been addressed, studying the modulation of microtubule associated protein-2 (MAP-2) and neurofilament heavy polypeptide (NEFH), natively associated proteins to the dendritic shape maintenance. Results showed that the proposed treatments were not destabilizing the cells, so the L-Glu concentrations were acceptable to investigate fluctuation in receptors expression, which were studied by RT-PCR. Interestingly, C60 fullerene derivative t3ss elicited a protective effect against glutamate toxicity, as demonstrated by MTT assay. In addition, t3ss compound exerted a different effect on the adenosine and metabotropic glutamate receptors analyzed. Interestingly, A(2A) and mGlu1 mRNAs were significantly decreased in conditions were t3ss neuroprotected cortical neurons from L-Glu toxicity. In summary, t3ss protects neurons from glutamate toxicity in a process that appears to be associated with the modulation of the gene expression of adenosine and metabotropic glutamate receptors.

  14. A microcomputer controlled data acquisition and processing system to study material transport processes by means of radioactive nuclides

    International Nuclear Information System (INIS)

    Baetz, H.

    1991-01-01

    The availability of efficient and stout computer systems offers many opportunities for shaping measuring and evaluation techniques which are suitable also for studies of material transport processes. The dissertation shows that already with a relatively low expenditure of hardware, the share of software, however, should not be neglected, universal solutions for complex hardware systems are possible which are qualitatively superior to customary systems. In addition to studying material transport processes in industry, for which the presented MEAS has been developed, its suitability for use in radiochemical analyses for the development of new medicines is tested. Furthermore, its application for the continuous determination of surface density profiles is being worked on (stone resistance in power plants) or planned (thickness profiles of tubes for vehicle tires). (orig./HP) [de

  15. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  16. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  17. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  18. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  19. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  20. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  1. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  2. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  3. Effect of nonequipotentiality of magnetic surfaces on the transport processes in a tokamak

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Shasharina, S.G.

    1987-01-01

    The effect of deflection of equipotential from the magnetic surfaces on the transport processes in a tokamak is considered. The values of radial and poloidal electric fields are determined self-consistently, particle and heat fluxes are calculated with regard to these fields. It is shown that in some cases the effect of the poloidal electric field on the current values is very substantial

  4. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  5. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  6. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  7. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan (China); Lu, Cheng-Wei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Wang, Chia-Chuan; Lu, Jyh-Feng [School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China)

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  8. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    International Nuclear Information System (INIS)

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-01-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K + channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca 2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] C ), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na + /Ca 2+ exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca 2+ entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did

  9. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  10. Glutamate and Brain Glutaminases in Drug Addiction.

    Science.gov (United States)

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2017-03-01

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  11. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  12. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  13. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  14. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  15. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  16. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes.

    Science.gov (United States)

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O'Dowd, Diane K; Gross, Steven P

    2014-07-01

    There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.

  17. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  18. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  19. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  20. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  1. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  2. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  3. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Science.gov (United States)

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  4. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  5. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  6. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Directory of Open Access Journals (Sweden)

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  7. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  8. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  9. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  10. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  11. Functional Comparison of the Two Bacillus anthracis Glutamate Racemases▿

    OpenAIRE

    Dodd, Dylan; Reese, Joseph G.; Louer, Craig R.; Ballard, Jimmy D.; Spies, M. Ashley; Blanke, Steven R.

    2007-01-01

    Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and rac...

  12. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  13. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  14. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  15. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  16. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  17. Study of transport processes in soils and plants by microautoradiographic and radioabsorption methods

    International Nuclear Information System (INIS)

    Varro, T.; Gelencser, Judit; Somogyi, G.

    1987-01-01

    The concentration profiles of lead and boron in carrot root and potato tuber were determined at various diffusion times by microradiographic method. The transport process of nutrients, leaf-manures and plant-protecting agents in plants was investigated by radioabsorption method. The influence of the pH of soils and complex-forming agents on the effective diffusion coefficients of nutritives was studied by radioabsorption technique. In soils, the effective diffusion coefficient of the nutrients was found to change in the region of 10 -16 -10 -10 m 2 s -1 . The data of the measurements give valuable information about the transport processes in plants and soils. (author) 9 refs., 4 figs

  18. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills

    OpenAIRE

    Bente, Sonja

    2010-01-01

    In this thesis a model for the complex interactions between deformation, degradation and transport processe in municipal solid waste landfills is presented. Key aspects of the model are a joint continuum mechanical framework and a monolithic solution of the governing equations within the Theory of Porous Media. Interactions are considered by coupling the governing physical fields over the domain of a representative elementary volume via selected state variables. A simplified two-stage degrada...

  19. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    Science.gov (United States)

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  20. Changes in medium radioactivity and composition accompany high-affinity uptake of glutamate and aspartate by mouse brain slices

    International Nuclear Information System (INIS)

    Latzkovits, L.; Neidle, A.; Lajtha, A.

    1984-01-01

    In measurements of high affinity transport in tissue slices, the incubation medium is often treated as an ''infinitely large pool''. External substrate concentrations, even at the micromolar level, are assumed to be constant and metabolic interactions between tissue and medium are neglected. In the present report we describe experiments in which glutamic and aspartic acid uptake by mouse brain slices were studied using techniques that could test these assumptions. Cerebral hemispheres were cut into 0.1 mm sections and about 90 mg of tissue incubated in 10 ml of oxygenated medium. After 45 minutes of equilibration, radioactive substrates were added and the concentrations and specific activities of the amino acids and their metabolites in the medium were determined. During the first 10 min following substrate addition, rapid decreases in glutamic and aspartic acid concentrations in the medium were accompanied by large decreases in specific activity caused by the continuous release of these amino acids from the tissue. In addition, extensive conversion of both substrates to glutamine and the preferential accumulation of this metabolite, in the medium, was found. These results demonstrate that metabolism and release occur simultaneously with uptake during transport experiments in vitro and that these processes can take place in specific tissue compartments. It is therefore necessary to measure the tissue and medium concentration levels of amino acids along with their radioactivity in such experiments, since all three processes (transport, metabolism, and compartmentation) are interrelated in the clearance of amino acids from the incubation medium and probably from the extracellular spaces in vivo as well

  1. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  2. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  3. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  4. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  5. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    Science.gov (United States)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  6. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    International Nuclear Information System (INIS)

    Lan, G; Jiang, J; Li, D D; Yi, W S; Zhao, Z; Nie, L N

    2013-01-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system

  7. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  8. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  9. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  10. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  11. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation.

    Science.gov (United States)

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    Autism and schizophrenia are multi-dimensional spectrum disorders that have substantial phenotypic overlap. This overlap is readily identified in the non-clinical population, and has been conceptualised as Social Disorganisation (SD). This study investigates the balance of excitatory glutamate and inhibitory γ -aminobutyric acid (GABA) concentrations in a non-clinical sample with high and low trait SD, as glutamate and GABA abnormalities are reported across the autism and schizophrenia spectrum disorders. Participants were 18 low (10 females) and 19 high (9 females) SD scorers aged 18 to 40 years who underwent 1 H-MRS for glutamate and GABA+macromolecule (GABA+) concentrations in right and left hemisphere superior temporal (ST) voxels. Reduced GABA+ concentration ( p  = 0.03) and increased glutamate/GABA+ ratio ( p  = 0.003) in the right ST voxel for the high SD group was found, and there was increased GABA+ concentration in the left compared to right ST voxel ( p  = 0.047). Bilateral glutamate concentration was increased for the high SD group ( p  = 0.006); there was no hemisphere by group interaction ( p  = 0.772). Results suggest that a higher expression of the SD phenotype may be associated with increased glutamate/GABA+ ratio in the right ST region, which may affect speech prosody processing, and lead behavioural characteristics that are shared within the autistic and schizotypal spectra.

  12. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...

  13. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  14. Passive water and urea permeability of a human Na(+)-glutamate cotransporter expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Gether, Ulrik; Klærke, Dan Arne

    2002-01-01

    to the K(0.5) value for glutamate activation of transport. The specific inhibitor DL-threo-beta-benzyloxyaspartate (TBOA) reduced the EAAT1-specific L(p) to 72 %. EAAT1 supported passive fluxes of [(14)C]urea and [(14)C]glycerol. The [(14)C]urea flux was increased in the presence of glutamate. The data...... suggest that the permeability depends on the conformational equilibrium of the EAAT1. At positive potentials and in the presence of Na(+) and glutamate, the pore is enlarged and water and urea penetrate more readily. The L(p) was larger when measured with urea or glycerol as osmolytes as compared...... with mannitol. Apparently, the properties of the pore are not uniform along its length. The outer section may accommodate urea and glycerol in an osmotically active form, giving rise to larger water fluxes. The physiological role of EAAT1 for water homeostasis in the central nervous system is discussed....

  15. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative...... was downregulated in hearts from ZDF rats at both the mRNA and protein levels (P diabetic hearts (P obese diabetic rats have......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...

  16. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  18. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  19. Process and appliance for determining the nature of transported substances by measuring the radiations transmitted

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, Ian.

    1980-01-01

    The invention relates to a process for determining the nature of a substance transported, comprising the collimation of the radiation of not less than two energies so that they form beams; the irradiation of the matter transported by the beams, the detection of the non-scattered radiations for the two energies at least, after passing in the transported matter, and the deduction of the nature of the transported matter according to the radiations detected. The radiations are collimated by placing a shield around the gamma source (americium 241 or cesium 137). The detector is protected by a shield so that it prevents any significant interference due to the reactions near the surface provoked by those radiations not of the lowest energy, with detection of those radiations of lesser energy. In a variation, a source of relatively higher energy radiations is placed at a distance from the source of relatively lesser energy radiations. The latter have a component taken from natural ionizing radiation and this component is withdrawn to a predetermined calibration [fr

  20. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  1. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  2. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the

  3. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  4. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  5. Glutamate uptake is important for osmoregulation and survival in the rice pathogen Burkholderia glumae.

    Directory of Open Access Journals (Sweden)

    Yongsung Kang

    Full Text Available Bacteria exhibit an optimal growth rate in culture media with sufficient nutrients at an optimal temperature and pH. In addition, the concentration of solutes plays a critical role in bacterial growth and survival. Glutamate is known to be a major anionic solute involved in osmoregulation and the bacterial cell's response to changes in solute concentration. To determine how glutamate uptake is involved in osmoregulation in the rice bacterial pathogen Burkholderia glumae BGR1, we mutated the gltI gene encoding a periplasmic substrate binding protein of a glutamate transport system to abolish glutamate uptake, and monitored the growth of the gltI null mutant in Luria-Bertani medium. We found that the gltI null mutant showed a slower growth rate than the wild-type strain and experienced hyperosmotic stress resulting in water loss from the cytoplasm in stationary phase. When the incubation time was extended, the mutant population collapsed due to the hyperosmotic stress. The gltI null mutant exhibited loss of adaptability under both hypoosmotic and hyperosmotic stresses. The growth rate of the gltI null mutant was restored to the level of wild-type growth by exogenous addition of glycine betaine to the culture medium, indicating that glycine betaine is a compatible solute in B. glumae. These results indicate that glutamate uptake from the environment plays a key role in osmoregulation in B. glumae.

  6. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to

  7. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  8. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  9. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.

    Science.gov (United States)

    Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana

    2013-10-01

    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata. © 2013.

  10. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  11. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  12. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  13. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  14. Indirect Transportation Cost in the border crossing process: The United States–Mexico trade

    Directory of Open Access Journals (Sweden)

    Carlos Obed Figueroa Ortiz

    2015-12-01

    Full Text Available Using a Social Accounting Matrix as database, a Computable General Equilibrium model is implemented in order to estimate the Indirect Transportations Costs (ITC present in the border crossing for the U.S.–Mexico bilateral trade. Here, an “iceberg–type” transportation function is assumed to determine the amount of loss that must be faced as a result of border crossing process through the ports of entry existing between the two countries. The study period covers annual data from 1995 to 2009 allowing the analysis of the trend of these costs considering the trade liberalisation that is experienced. Results show that the ITC have experienced a decrease of 12% during the period.Test

  15. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  16. Process of Judging Significant Modifications for Different Transportation Systems compared to the Approach for Nuclear Installations

    Directory of Open Access Journals (Sweden)

    Nicolas Petrek

    2015-12-01

    Full Text Available The implementation of the CSM regulation by the European Commission in 2009 which harmonizes the risk assessment process and introduces a rather new concept of judging changes within the European railway industry. This circumstance has risen the question how other technology sectors handle the aspect of modifications and alterations. The paper discusses the approaches for judging the significance of modifications within the three transport sectors of European railways, aviation and maritime transportation and the procedure which is used in the area of nuclear safety. We will outline the similarities and differences between these four methods and discuss the underlying reasons. Finally, we will take into account the role of the European legislator and the fundamental idea of a harmonization of the different approaches.

  17. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  18. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  19. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  1. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  2. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  3. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  4. Collection, transport and general processing of clinical specimens in Microbiology laboratory.

    Science.gov (United States)

    Sánchez-Romero, M Isabel; García-Lechuz Moya, Juan Manuel; González López, Juan José; Orta Mira, Nieves

    2018-02-06

    The interpretation and the accuracy of the microbiological results still depend to a great extent on the quality of the samples and their processing within the Microbiology laboratory. The type of specimen, the appropriate time to obtain the sample, the way of sampling, the storage and transport are critical points in the diagnostic process. The availability of new laboratory techniques for unusual pathogens, makes necessary the review and update of all the steps involved in the processing of the samples. Nowadays, the laboratory automation and the availability of rapid techniques allow the precision and turn-around time necessary to help the clinicians in the decision making. In order to be efficient, it is very important to obtain clinical information to use the best diagnostic tools. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  6. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Science.gov (United States)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  7. Improved performance of organic solar cells with solution processed hole transport layer

    Science.gov (United States)

    Bhargav, Ranoo; Gairola, S. P.; Patra, Asit; Naqvi, Samya; Dhawan, S. K.

    2018-06-01

    This work is based on Cobalt Oxide as solution processed, inexpensive and effective hole transport layer (HTL) for efficient organic photovoltaic applications (OPVs). In Organic solar cell (OSC) devices ITO coated glass substrate used as a transparent anode electrode for light incident, HTL material Co3O4 dissolve in DMF solvent deposited on anode electrode, after that active layer material (donor/acceptor) deposited on to HTL and finally Al were deposited by thermal evaporation used as cathode electrode. These devices were fabricated with PCDTBT well known low band gap donor material in OSCs and blended with PC71BM as an acceptor material using simplest device structure ITO/Co3O4/active layer/Al at ambient conditions. The power conversion efficiencies (PCEs) based on Co3O4 and PEDOT:PSS have been achieved to up to 3.21% and 1.47% with PCDTBT respectively. In this study we reported that the devices fabricated with Co3O4 showed better performance as compare to the devices fabricated with well known and most studied solution processed HTL material PEDOT:PSS under identical environmental conditions. The surface morphology of the HTL film was characterized by (AFM). Lastly, we have provided Co3O4 as an efficient hole transport material HTL for solution processed organic photovoltaic applications.

  8. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji

    1998-01-01

    In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  9. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    Science.gov (United States)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  10. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  11. Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient

    DEFF Research Database (Denmark)

    Schousboe, Arne; Sickmann, Helle M; Walls, Anne B

    2010-01-01

    It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in glycolysis after conversion to glucose-6-phosphate. The impo......It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in glycolysis after conversion to glucose-6-phosphate....... The importance of this as well as the significance of ATP formed in glycolysis versus that formed by the concerted action of the tricarboxylic acid (TCA) cycle processes and oxidative phosphorylation for maintenance of glutamate transport capacity in astrocytes is discussed. It is argued that glycolytically...

  12. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  13. Transport processes for Chernobyl-labelled sediments: preliminary evidence from upland mid-Wales

    International Nuclear Information System (INIS)

    Bonnett, P.J.P.; Leeks, G.J.L.; Cambray, R.S.

    1989-01-01

    The nuclear accident at Chernobyl in April 1986 resulted in a significant increase in the inventory of radiocaesium retained in the soil in many regions of the United Kingdom. The deposition of 134 Cs provides a convenient tool for the examination of erosional processes in upland systems. Detailed soil sampling has been undertaken within the Plynlimon experimental catchments to establish the pattern of deposition of Chernobyl-derived radionuclides. The preliminary results of a combined radiometric and mineral magnetic approach to the study of the transport of Chernobyl-labelled sediments and their source areas on these upland catchments in mid-Wales are described. (author)

  14. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    Science.gov (United States)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  15. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    Science.gov (United States)

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents.

  16. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  17. Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes

    Directory of Open Access Journals (Sweden)

    Robert Matindi

    2018-10-01

    Full Text Available In Australia, Bioenergy plays an important role in modern power systems, where many biomass resources provide greenhouse gas neutral and electricity at a variety of scales. By 2050, the Biomass energy is projected to have a 40-50 % share as an alternative source of energy. In addition to conversion of biomass, barriers and uncertainties in the production, supply may hinder biomass energy development. The sugarcane is an essential ingredient in the production of Bioenergy, across the whole spectrum ranging from the first generation to second generation, e.g., production of energy from the lignocellulosic component of the sugarcane initially regarded as waste (bagasse and cane residue. Sustainable recovery of the Lignocellulosic component of sugarcane from the field through a structured process is largely unknown and associated with high capital outlay that have stifled the growth of bioenergy sector. In this context, this paper develops a new scheduler to optimise the recovery of lignocellulosic component of sugarcane and cane, transport and harvest systems with reducing the associated costs and operational time. An Optimisation Algorithm called Limited Discrepancy Search has been adapted and integrated with the developed scheduling transport algorithms. The developed algorithms are formulated and coded by Optimization Programming Language (OPL to obtain the optimised cane and cane residues transport schedules. Computational experiments demonstrate that high-quality solutions are obtainable for industry-scale instances. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and criteria.

  18. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2012-01-01

    This paper evaluates alternative fuels for the Greek road transport sector, using the Analytic Hierarchy Process. Seven different alternatives of fuel mode are considered in this paper: internal combustion engine (ICE) and its combination with petroleum and 1st and 2nd generation biofuels blends, fuel cells, hybrid vehicles, plug-in hybrids and electric vehicles. The evaluation of alternative fuel modes is performed according to cost and policy aspects. In order to evaluate each alternative fuel, one base scenario and ten alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all ten alternative scenarios. It is concluded that ICE blended with 1st and 2nd generation biofuels are the most suitable alternative fuels for the Greek road transport sector. - Highlights: ► Alternative fuels for the Greek road transport sector have been evaluated. ► The method of the AHP was used. ► Seven different alternatives of fuel mode are considered. ► The evaluation is performed according to cost and policy aspects. ► The ICE with 1st and 2nd generation biofuels are the most suitable fuels.

  19. Long wavelength approximation of transport processes in a single-band crystal

    International Nuclear Information System (INIS)

    Ferrari, Loris

    2014-01-01

    The single band, long wavelength approximation (SBA–LWA) is currently used in textbooks as a quasi-free-particle picture of the motion in a quantum crystal. The resulting transport process might thereby look a trivial issue. In contrast, we shall show that the SBA–LWA hides some controversial aspects that should be clarified at the level of an advanced course of condensed matter physics, and refer to the incompleteness of the SBA representation. In particular, it will be shown that the single-band velocity v 1B , expressed in terms of the projectors on the Bloch states, cannot be a transport velocity in a full sense, since the resulting current violates the continuity equation. The drawback manifests itself as a ‘lost’ current J lost , which provides a non conventional estimate of the limits of accuracy of SBA–LWA. The vanishing of J lost corresponds to the effective mass approximation in which the dispersion relation can be reduced to a quadratic form in the (pseudo) momentum components. In practice, the quantity transported by v 1B is not the bare mass, but the effective mass, until this notion does make sense. Recalling that the non-quadratic expression of the relativistic kinetic energy leads to a difference between the rest and moving mass, the notion of the lost current is finally used as a non-conventional approach to relativistic quantum mechanics, with special reference to Dirac’s theory. (paper)

  20. Realistic integration of sorption processes in transport codes for long-term safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Fluegge, Judith; Britz, Susan; Schneider, Anke [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Brendler, Vinzenz; Stockmann, Madlen; Schikora, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Lampe, Michael [Frankfurt Univ. (Germany). Goethe Center for Scientific Computing

    2012-09-15

    One important aspect in long-term safety assessment is related to radionuclide transport in geologic formations. In order to assess its consequences over assessment periods of one million years numerical models describing flow and transport are applied. Sorption on mineral surfaces is the most relevant process retarding radionuclide transport. On the one hand an increased transport time might cause a decrease in radionuclide concentration by radioactive decay. On the other hand it might increase concentrations of dose-relevant daughter nuclides in decay chains. In order to treat the radionuclide sorption processes in natural systems close to reality the so-called smart K{sub d}-concept is implemented into the transport program r{sup 3}t, which is applied to large model areas and very long time scales in long-term safety assessment. In the first stage this approach is developed for a typical sedimentary system covering rock salt and clay formations in Northern Germany. The smart K{sub d}-values are based on mechanistic surface complexation models (SCM), varying in time and space and de-pending on the actual geochemical conditions, which might change in the future e. g. due to the impact of climate changes. The concept developed and introduced here is based on a feasible treatment of the most relevant geochemical parameters in the transport code as well as on a matrix of smart K{sub d}-values calculated in dependence on these parameters. The implementation of the concept comprises the selection of relevant elements and minerals to be considered, an experimental program to fill data gaps of the thermody-namic sorption database, an uncertainty and sensitivity analysis to identify the most important environmental parameters influencing sorption of long-term relevant radionu-clides, the creation of a matrix with K{sub d}-values dependent on the selected environmental parameters, and the development and realisation of the conceptual model for treatment of temporal and

  1. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  2. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Science.gov (United States)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2014-12-01

    We analyzed the measurements of ozone (O3) and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site downwind of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv), while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in situ production. The O3 production was in a volatile organic compound (VOC)-limited regime in both Shanghai and Guangzhou, and a NOx-limited regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5), uptake of hydro peroxy radical (HO2) on particles and surface reactions of NO2 forming nitrous acid (HONO), were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  3. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  4. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  5. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    International Nuclear Information System (INIS)

    Woodman, N.D.; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-01-01

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study

  6. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  8. Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission

    Directory of Open Access Journals (Sweden)

    David J. Barker

    2017-11-01

    Full Text Available Summary: The lateral habenula (LHb is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO, little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. : Barker et al. show that distinct populations of lateral preoptic area glutamate and GABA neurons synapse together on single lateral habenula neurons and find that this “convergent neurotransmission” allows preoptic area neurons to exert bivalent control over single lateral habenula neurons and drive opposing motivational states. Keywords: preoptic, habenula, reward, aversion, synapse, glutamate, GABA, stress, calcium imaging, optogenetics, electron microscopy

  9. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  10. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  11. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  12. Integration, status and potential of environmental justice and the social impact assessment process in transportation development in Missouri

    Science.gov (United States)

    2003-12-01

    This research examines the Social Impact Assessment Process at the Missouri Department of Transportation as directed by the : National Environmental Policy Act (NEPA). The analysis includes an examination of the influences of the more recent directiv...

  13. Validating commercial remote sensing and spatial information (CRS&SI) technologies for streamlining environmental and planning processes in transportation projects.

    Science.gov (United States)

    2010-03-01

    Transportation corridor-planning processes are well understood, and consensus exists among practitioners : about common practices for stages and tasks included in traditional EIS approaches. However, traditional approaches do : not typically employ f...

  14. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...... for continuous solute exchange with the macropores. An average field-determined active macroporosity constituted 0.2% of the total porosity, or approximately 10% of the total macroporosity. (C) 1998 Elsevier Science B.V. All rights reserved....

  15. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang

    2000-01-19

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.

  16. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes; SEMIANNUAL

    International Nuclear Information System (INIS)

    Yorstos, Yanis C.

    2002-01-01

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes

  17. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    International Nuclear Information System (INIS)

    Carvalho, C.; Anjos, R.M.; Veiga, R.; Macario, K.

    2011-01-01

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using γ-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: → Based on the natural γ-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. → Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  18. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Anjos, R.M., E-mail: meigikos@if.uff.b [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Veiga, R.; Macario, K. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil)

    2011-02-15

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using {gamma}-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: {yields} Based on the natural {gamma}-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. {yields} Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  19. Developing emergency exercises for hazardous material transportation: process, documents and templates.

    Science.gov (United States)

    Crichton, Margaret; Kelly, Terence

    2012-01-01

    Multi-agency emergency exercises establish and reinforce relationships, and bring people from different areas together to work as a team, realise clear goals, understand roles and responsibilities, and get to know and respect each agency's strengths and weaknesses. However, despite the long-held belief in and respect for exercises in their provision of benefits to the individual and the organisation, there is little evidence of a consistent and clear process for exercise design, especially identifying the documents that may need to be completed to ensure efficient exercise preparation and performance. This paper reports the results of a project undertaken on behalf of the organisations that form the radioactive material transportation mutual-aid agreement, RADSAFE, to develop a standardised process to design emergency exercises. Three stages, from identifying the requirement for an exercise (Stage I), through to obtaining approval for operational orders (Stage II), then conducting a management review as part of the continuous improvement cycle (Stage III), were developed. Although designed for radioactive material transportation events, it is suggested that many of the factors within these three stages can be generalised for the design of exercises in other high-hazard industries.

  20. Theoretical approach to description of some corrosion product transport processes in PWRs primary circuit

    International Nuclear Information System (INIS)

    Zmitko, M.

    1990-10-01

    The behavior and mass transport of corrosion products in primary circuits of PWR type reactors are described assuming that the products occur in ionic form, in colloidal form (about 0.01-0.6 μm in size) and in particulate form. The transport of the soluble form is treated as a diffusion process. For the colloidal form, allowance is made for its Van der Waals attraction and repulsion interaction with the surfaces. For particles and their agglomerates, the hydrodynamical effects of the flowing liquid on the agglomerate breakdown and re-formation of the particle suspension are taken into account. Efforts were made to employ theoretical relations rather than particular experimental data, for the conclusions to be applicable to different facilities. It is believed that the complex approach to the problem can contribute to gaining insight into the role of the individual factors and processes involved, particularly as regards colloidal particles whose effect on the formation of radiation fields is not yet fully understood. (author). 3 figs., 10 refs

  1. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  2. A new approach to correlate transport processes and optical efficiency in GaN-based LEDs

    International Nuclear Information System (INIS)

    Pavesi, M; Manfredi, M; Rossi, F; Salviati, G; Meneghini, M; Zanoni, E

    2009-01-01

    Carrier injection and non-radiative processes are determinants of the optical efficiency of InGaN/GaN LEDs. Among transport mechanisms, tunnelling is crucial for device functioning, but other contributions can be decisive on a varying bias. It is not easy to identify the weights and roles of these terms by a simple current-voltage characterization, so it needs a careful investigation by means of complementary experimental techniques. The correlation between luminescence and microscopic transport processes in InGaN/GaN LEDs has been investigated by means of a set of techniques: electroluminescence, cathodoluminescence, current-voltage dc measurements and thermal admittance spectroscopy. Green and blue LEDs, designed with a multi-quantum-well injector layer and an optically active single-quantum-well, have been tested. They showed distinctive current and temperature dependences of the optical efficiency, with a better performance at room temperature observed for green devices. This was discussed in terms of the carrier injection efficiency controlled by electrically active traps. The comparative analysis of the optical and electrical experimental data comes in handy as a methodological approach to correlate the emission properties with the carrier injection mechanisms and to improve the functionality in a large number of quantum well heterostructures for lighting applications.

  3. Data processing in studies of diffusion for seawage disposal and of sediment transportation

    International Nuclear Information System (INIS)

    Szulak, C.; Agudo, E.G.

    1974-01-01

    The radiotracer applications on diffusion studies for sewage disposal in sea waters, as well as some large scale experiments on sediments transportation, are characterized by the bulky amount data obtained in the field. Data processing and plotting is a very time consuming task if they are to be handled manually, as may occurs in small research institutes. In order to overcome this difficulty, a program suitable for a 9810-A, Model Hewlett Packard calculator with plotter, was been developed. Through this program the following sequence of operations is performed: 1 - Background and decay corrections on activity measurements; 2 - conversion of angular position data taken with sextants, to rectangular coordinates; 3 - Position corrections as a function of the mean transport velocity of the radioactive cloud; 4 - Interpolation and plotting for each cloud section; of the points belonging ro preselected values of isoactivity curves; 5 - Interpolation and plotting between maximum activity points from two consecutive trajectories of the points belonging to preselected isoactivity curves. As a result of each data processing and plotting, a definition of shape of the radioactive, as well as the instantaneous concentration distribution are obtained. Interpolating a curve through the points with same activity, the preselected isoactivity lines are easily drawn [pt

  4. Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations

    International Nuclear Information System (INIS)

    Hutton, T.; Sublet, J.C.; Morgan, L.; Leadbeater, T.W.

    2015-01-01

    Highlights: • We quantify the effect of processing nuclear data from ENDF to ACE format. • We consider the differences between fission and fusion angular distributions. • C-nat(n,el) at 2.0 MeV has a 0.6% deviation between original and processed data. • Fe-56(n,el) at 14.1 MeV has a 11.0% deviation between original and processed data. • Processed data do not accurately depict ENDF distributions for fusion energies. - Abstract: Nuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the nat C(n,el) reaction at 2.0 MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56 Fe(n,el) reaction at 14.1 MeV, the deviation increases to 11.0%. We

  5. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glu