WorldWideScience

Sample records for gluon helicity distribution

  1. Experiments to measure the gluon helicity distribution in protons

    International Nuclear Information System (INIS)

    Spinka, H.; Beddo, M.E.; Underwood, D.G.

    1993-01-01

    Several experiments are described that could obtain information about the gluon helicity distribution in protons. These experiments include inclusive direct-γ, direct-γ + jet, jet, and jet + jet production with colliding beams of longitudinally-polarized protons. Some rates and kinematics are also discussed

  2. Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip

    International Nuclear Information System (INIS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.; Wallon, S.

    2014-01-01

    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)

  3. Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CNRS, CPhT, Ecole Polytechnique, Palaiseau (France); Semenov-Tian-Shansky, K. [Universite de Liege, IFPA, Departement AGO, Liege (Belgium); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [Universite de Paris-Sud, CNRS, LPT, Orsay (France); Universite Paris 06, Faculte de Physique, UPMC, Paris (France)

    2014-05-15

    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)

  4. Gluon field distribution in baryons

    International Nuclear Information System (INIS)

    Bissey, F.; Cao, F-G.; Kitson, A.; Lasscock, B.G.; Leinweber, D.B.; Signal, A.I.; Williams, A.G.; Zanotti, J.M.

    2005-01-01

    Methods for revealing the distribution of gluon fields within the three-quark static-baryon potential are presented. In particular, we outline methods for studying the sensitivity of the source on the emerging vacuum response for the three-quark system. At the same time, we explore the possibility of revealing gluon-field distributions in three-quark systems in QCD without the use of gauge-dependent smoothing techniques. Renderings of flux tubes from a preliminary high-statistics study on a 12 3 x 24 lattice are presented

  5. A two-loop four-gluon helicity amplitude in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, L.

    2000-01-06

    The authors present the two-loop pure gauge contribution to the gluon-gluon scattering amplitude with maximal helicity violation. The construction of the amplitude does not rely directly on Feynman diagrams, but instead uses its analytic properties 4--2{epsilon} dimensions. The authors evaluate the loop integrals appearing in the amplitude through order({epsilon}{sup 0})in terms of polylogarithms.

  6. General split helicity gluon tree amplitudes in open twistor string theory

    Science.gov (United States)

    Dolan, Louise; Goddard, Peter

    2010-05-01

    We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].

  7. Regge behaviour of distribution functions and evolution of gluon ...

    Indian Academy of Sciences (India)

    work we solved DGLAP evolution equation for gluon distribution function at low-x in next-to-leading order (NLO) and the t and x-evolutions of gluon distribution function thus obtained have been compared with global MRST2004 and GRV98 parametrizations. In PQCD, since the higher-order terms in the leading logarithmic.

  8. Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution

    NARCIS (Netherlands)

    Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner

    2012-01-01

    We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine

  9. The Gluon Sivers Distribution: Status and Future Prospects

    International Nuclear Information System (INIS)

    Zhou, Jian; Boer, Daniël; Pisano, Cristian; Lorcé, Cédric

    2015-01-01

    We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p"↑p→πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution of natural size expected from large N_c arguments, which is O(1/N_c) times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been suggested, which besides RHIC investigations, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon Sivers TMD probed in the various processes are different linear combinations of two universal gluon Sivers functions that have different behavior under charge conjugation and that therefore satisfy different theoretical constraints. For this reason both hadronic and DIS type of collisions are essential in the study of the role of gluons in transversely polarized protons.

  10. A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory

    International Nuclear Information System (INIS)

    Badger, Simon; Mogull, Gustav; Ochirov, Alexander; O’Connell, Donal

    2015-01-01

    We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.

  11. A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Mogull, Gustav; Ochirov, Alexander [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); O’Connell, Donal [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States)

    2015-10-09

    We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.

  12. Accessing the distribution of linearly polarized gluons in unpolarized hadrons

    NARCIS (Netherlands)

    Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian

    2011-01-01

    Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron

  13. The gluon distribution at small x - a phenomenological analysis

    International Nuclear Information System (INIS)

    Harriman, P.N.; Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1990-03-01

    The size of the gluon distribution at small χ has important implications for phenomenology at future high energy hadron-hadron and lepton-hadron colliders. We extend a recent global parton distribution fit to investigate the constraints on the gluon from deep inelastic and prompt photon data. In particular, we estimate a band of allowed gluon distributions with qualitatively small-χ behaviour and study the implications of these on a variety of cross sections at high energy pp and ep colliders. (author)

  14. Muoproduction of J/ψ-mesons and the gluon distribution in nucleons

    International Nuclear Information System (INIS)

    Jong, Maarten de.

    1991-01-01

    The cross sections for production of J/ψ-mesons in muon-scattering at hydrogen and deuterium have been measured at a muon-energy of 280 GeV in order to extract from these the momentum distribution of gluons in the nucleon. These cross sections turned out to be equal for protons and neutrons within the experimental error. In the framework of the colour singlet model the gluon distribution has been determined from the cross section for the inelastic production of J/ψ mesons. At small gluon impulses the distribution obtained resembles a brems-strahlung spectrum. This distribution decreases, according to a simple description (counting rules) at larger impulses. The same model however underestimates the cross section for elastic production of J/ψ-mesons seriously. It is found that in inelastic production of J/ψ-mesons both helicities of the meson occur equally. Also a correlation has been observed between the scattering plane and the plane in which the J/ψ meson decays. The production of J/ψ-mesons and ψ'-mesons has been investigated in muon scattering at concrete at the same incoming energy. The measured ratio of their cross sections agrees with the colour singlet model but disagrees with the simplified description which characterizes the 'photon-gluon fusion model'. The possible nuclear-mass dependence of the cross section for J/ψ-meson production has been investigated in interactions of muons with tin and carbon at an energy of 280 GeV. This possible dependence turns out to be absent which means that on the basis of the colour singlet model the distributions of the gluons in the nucleon are equal in tin and carbon. (author). 103 refs.; 60 figs.; 19 tabs

  15. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution

    Science.gov (United States)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-07-01

    We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ( f {1/ g }), linearly polarized ( h {1/⊥ g }) and helicity ( g {1/L g }) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of g {1/L g }, which has never been calculated before, constitutes a new and necessary ingredient for a reliable phenomenological extraction of this quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The coefficients of f {1/ g } and h {1/⊥ g } have never been calculated in the present formalism, although they could be obtained by carefully collecting and recasting previous results in the new TMD formalism. We apply these results to analyze the contribution of linearly polarized gluons at different scales, relevant, for instance, for the inclusive production of the Higgs boson and the C-even pseudoscalar bottomonium state η b . Applying our resummation scheme we finally provide predictions for the Higgs boson q T -distribution at the LHC.

  16. Mechanism of J/PSI production: determining gluon distributions

    International Nuclear Information System (INIS)

    Nandi, S.; Schneider, H.R.

    1978-01-01

    Assuming a generalised Drell-Yan type mechanism for hadronic PSI-production, the relative importance of the different possible contributions is estimated from the data. We find that about 80% of the pp → PSI X cross-section is due to gluons. Therefore, these data give some information on the gluon distribution G(x) in the proton. Assuming xG(x) approximately (1-x)sup(n), data restrict n to 4... 6, in agreement with dimensional counting rules. The energy dependence of sigma(anti p p → PSI X)/sigma(pp → PSIX) is predicted. (orig.) [de

  17. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  18. Q2 evolution of a soft gluon distribution function

    International Nuclear Information System (INIS)

    Enkovskij, L.L.; Kotikov, A.V.; Pakkanoni, F.

    1992-01-01

    Model parameter dependence refferring to the function of gluon distribution linked with the exchange of a dipole pomeron from Q 2 is calculated within the framework of the Gribov-Lipatov-Altarelli-Parisi evolution equation (GLAP) both in the leading logarithm approximation and in the double logarithmic approximation. The behaviour of logarithmic parametrization ∼ (ln(1/x)) b appears to be unstable in relation to perturbative calculations

  19. Non-perturbative inputs for gluon distributions in the hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)

    2017-03-15

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)

  20. Non-perturbative inputs for gluon distributions in the hadrons

    International Nuclear Information System (INIS)

    Ermolaev, B.I.; Troyan, S.I.

    2017-01-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)

  1. Regge behaviour of structure function and gluon distribution at low-x in leading order

    International Nuclear Information System (INIS)

    Sarma, J.K.

    2000-01-01

    We present a method to find the gluon distribution from the F 2 proton structure function data at low-x assuming the Regge behaviour of the gluon distribution function at this limit. We use the leading order (LO) Altarelli-Parisi (AP) evolution equation in our analysis and compare our result with those of other authors. We also discuss the limitations of the Taylor expansion method in extracting the gluon distribution from the F 2 structure function used by those authors. (orig.)

  2. Analysis of the proton longitudinal structure function from the gluon distribution function

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2012-01-01

    We make a critical, next-to-leading order, study of the relationship between the longitudinal structure function F L and the gluon distribution proposed in Cooper-Sarkar et al. (Z. Phys. C 39:281, 1988; Acta Phys. Pol. B 34:2911 2003), which is frequently used to extract the gluon distribution from the proton longitudinal structure function at small x. The gluon density is obtained by expanding at particular choices of the point of expansion and compared with the hard Pomeron behavior for the gluon density. Comparisons with H1 data are made and predictions for the proposed best approach are also provided. (orig.)

  3. Muoproduction of J/ψ and the gluon distribution of the nucleon

    International Nuclear Information System (INIS)

    Ashman, J.; Combley, F.; Salmon, D.; Wheeler, S.; Bee, C.P.; Brown, S.C.; Court, G.; Francis, D.; Gabathuler, E.; Gamet, R.; Hayman, P.; Holt, J.R.; Jones, T.; Matthews, M.; Wimpenny, S.J.; Coignet, G.; Toth, J.; Urban, L.; Drees, J.; Edwards, A.W.; Hamacher, K.; Korzen, B.; Kruener, U.; Moenig, K.; Pavel, N.; Peschel, H.; Nassalski, J.; Sandacz, A.; Windmolders, R.; Ernst, T.; Landgraf, U.; Schroeder, T.; Stier, H.E.; Stock, J.; Wallucks, W.

    1992-01-01

    Measurements are presented of the inclusive distributions of the J/ψ meson produced by muons of energy 200 GeV from an ammonia target. The gluon distribution of the nucleon has been derived from the data in the range 0.04< x<0.36 using a technique based on the colour singlet model. An arbitrary normalisation factor is required to obtain a reasonable integral of the gluon distribution. Some comments are made on the use of J/ψ production by virtual photons to extract the gluon distribution at HERA. (orig.)

  4. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    International Nuclear Information System (INIS)

    Gary, J. William

    1999-01-01

    Gluon jets are identified in e + e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP

  5. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gary, J. William

    1999-03-01

    Gluon jets are identified in e{sup +}e{sup -} hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP.

  6. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gary, J.W. [California Univ., Riverside, CA (United States). Dept. of Physics

    1999-03-01

    Gluon jets are identified in e{sup +}e{sup -} hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP. (orig.) 6 refs.

  7. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    International Nuclear Information System (INIS)

    Gary, J.W.

    1999-01-01

    Gluon jets are identified in e + e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP. (orig.)

  8. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Science.gov (United States)

    Gary, J. William

    1999-03-01

    Gluon jets are identified in e +e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon hets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP.

  9. Deduction of the in-medium gluon distribution from photon-gluon fusion processes in peripheral ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Greiner, M.; Hofmann, C.; Schaefer, A.; Soff, G.

    1994-08-01

    The photon-gluon fusion process into a pair of heavy quarks is studied for peripheral Pb+Pb collisions at LHC energies. The double differential cross section with respect to the invariant mass and the rapidity of the produced quark pair at zero rapidity is directly proportional to the gluon distribution in the nuclear medium. Differential cross sections for the b-quark production lie well in the μbarn/GeV regime which will allow the deduction of the gluon distribution at low x. Rapidity cuts for the actual detectors are also considered. (orig.)

  10. Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions

    Science.gov (United States)

    OPAL Collaboration; Ackerstaff, K.; et al.

    Gluon jets are identified in e+e^- hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The charged particle multiplicity distribution of the gluon jets is presented, and is analyzed for its mean, dispersion, skew, and curtosis values, and for its factorial and cumulant moments. The results are compared to the analogous results found for a sample of light quark (uds) jets, also defined inclusively. We observe differences between the mean, skew and curtosis values of gluon and quark jets, but not between their dispersions. The cumulant moment results are compared to the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the data compared to a next-to-leading order calculation without energy conservation. There is agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets.

  11. Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    Gluon jets are identified in e+e- hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The charged particle multiplicity distribution of the gluon jets is presented, and is analyzed for its mean, dispersion, skew, and curtosis values, and for its factorial and cumulant moments. The results are compared to the analogous results found for a sample of light quark (uds) jets, also defined inclusively. We observe differences between the mean, skew and curtosis values of gluon and quark jets, but not between their dispersions. The cumulant moment results are compared to the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observe...

  12. Dynamical behavior connection of the gluon distribution and the proton structure function at small x

    International Nuclear Information System (INIS)

    Boroun, G.R.

    2014-01-01

    We make a critical study of the relationship between the singlet structure function F 2 S and the gluon distribution G(x,Q 2 ) proposed in the past two decades, which is frequently used to extract the gluon distribution from the proton structure function. We show that a simple relation is not generally valid in the simplest state. We complete this relation by using a Laplace transform method and hard-pomeron behavior at LO and NLO at small x. Our study shows that this relation is dependent on the splitting functions and initial conditions at Q 2 =Q 2 0 and running coupling constant at NLO. The resulting analytic expression allows us to predict the proton structure function with respect to the gluon distributions and to compare the results with H1 data and a QCD analysis fit. Comparisons with other results are made and predictions for the proposed best approach are also provided. (orig.)

  13. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q(T)-distribution

    NARCIS (Netherlands)

    Garcia, M.; Kasemets, T.; Mulders, P.J.G.; Pisano, C.

    2015-01-01

    Abstract: We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms

  14. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    NARCIS (Netherlands)

    Czakon, Michał; Hartland, Nathan P.; Mitov, Alexander; Nocera, Emanuele R.; Rojo, Juan

    2016-01-01

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work

  15. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    International Nuclear Information System (INIS)

    Czakon, Michał; Hartland, Nathan P.; Mitov, Alexander; Nocera, Emanuele R.; Rojo, Juan

    2017-01-01

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at √s=8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

  16. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    Energy Technology Data Exchange (ETDEWEB)

    Czakon, Michał [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,D-52056 Aachen (Germany); Hartland, Nathan P. [Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081, HV Amsterdam (Netherlands); Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); Mitov, Alexander [Cavendish Laboratory, University of Cambridge,Cambridge CB3 0HE (United Kingdom); Nocera, Emanuele R. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford (United Kingdom); Rojo, Juan [Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081, HV Amsterdam (Netherlands); Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands)

    2017-04-10

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at √s=8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

  17. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, David, E-mail: dde@cern.ch [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); ICREA and ICC-UB, Universitat de Barcelona, 08028 Barcelona, Catalonia (Spain); Rojo, Juan [CERN, PH Department, TH Unit, CH-1211 Geneva 23 (Switzerland)

    2012-07-21

    The impact of isolated-photon data from proton-(anti)proton collisions at RHIC, Spp{sup Macron }S, Tevatron and LHC energies, on the parton distribution functions of the proton is studied using a recently developed Bayesian reweighting method. The impact on the gluon density of the 35 existing isolated-{gamma} measurements is quantified using next-to-leading order (NLO) perturbative QCD calculations complemented with the NNPDF2.1 parton densities. The NLO predictions are found to describe well most of the datasets from 200 GeV up to 7 TeV centre-of-mass energies. The isolated-photon spectra recently measured at the LHC are precise enough to constrain the gluon distribution and lead to a moderate reduction (up to 20%) of its uncertainties around fractional momenta x Almost-Equal-To 0.02. As a particular case, we show that the improved gluon density reduces the PDF uncertainty for the Higgs boson production cross section in the gluon-fusion channel by more than 20% at the LHC. We conclude that present and future isolated-photon measurements constitute an interesting addition to coming global PDF analyses.

  18. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data

    CERN Document Server

    d'Enterria, David

    2012-01-01

    The impact of isolated-photon data from proton-(anti)proton collisions at RHIC, SppbarS, Tevatron and LHC energies, on the parton distribution functions of the proton is studied using a recently developed Bayesian reweighting method. The impact on the gluon density of the 35 existing isolated-gamma measurements is quantified using next-to-leading order (NLO) perturbative QCD calculations complemented with the NNPDF2.1 parton densities. The NLO predictions are found to describe well most of the datasets from 200 GeV up to 7 TeV centre-of-mass energies. The isolated-photon spectra recently measured at the LHC are precise enough to constrain the gluon distribution and lead to a moderate reduction (up to 20%) of its uncertainties around fractional momenta x~0.02. As a particular case, we show that the improved gluon density reduces the PDF uncertainty for the Higgs boson production cross section in the gluon-fusion channel by more than 20% at the LHC. We conclude that present and future isolated-photon measuremen...

  19. Heavy-quark hadroproduction in kT-factorization approach with unintegrated gluon distributions

    International Nuclear Information System (INIS)

    Shabelski, Yu.M.; Shuvaev, A.G.

    2006-01-01

    The processes of heavy-quark production using the unintegrated gluon distributions are considered. The numerical predictions for high-energy nucleon-nucleon and photon-nucleon collisions of the k T -factorization approach (semihard theory) are compared with the experimental data from Tevatron collider and HERA. The total production cross sections and p T distributions are considered and they are in reasonable agreement with the data for reasonable values of QCD scale [ru

  20. Gluon distributions in nucleons and pions at a low resolution scale

    International Nuclear Information System (INIS)

    Christiansen, H.R.

    2000-10-01

    In this paper we study the gluon distribution functions in nucleons and pions at a low resolution Q 2 scale. This is an important issue since parton densities at low Q 2 have always been taken as an external input which is adjusted through DGLAP evolution to fit the experimental data at higher scales. Here, in the framework of a model recently developed, it is shown that the hypothetical cloud of neutral pions surrounding nucleons and pions appears to be responsible for the characteristic valence-like gluon distributions needed at the initial low scale. As an additional result, we get the remarkable prediction that neutral and charged ions have different intrinsic sea flavor contents. (author)

  1. Excluding scalar gluons

    International Nuclear Information System (INIS)

    Koller, K.; Krasemann, H.

    1979-08-01

    We investigate the Dalitz plot population and thrust angular distribution for the Orthoquarkonium decay Q anti Q → 3 scalar gluons. The Dalitz plot for scalar gluons is populated in corners where events are 2 jet like and this disagrees with existing Upsilon data. The scalar gluon thrust angular distribution is also in striking disagreement with the UPSILON data and so scalar gluons are completely ruled out. (orig.)

  2. Exclusive neutrino production of a charmed vector meson and transversity gluon generalized parton distributions

    Science.gov (United States)

    Pire, B.; Szymanowski, L.

    2017-12-01

    We calculate at the leading order in αs the QCD amplitude for exclusive neutrino production of a D* or Ds* charmed vector meson on a nucleon. We work in the framework of the collinear QCD approach where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We include O (mc) terms in the coefficient functions and the O (mD) term in the definition of heavy meson distribution amplitudes. The show that the analysis of the angular distribution of the decay D(s) *→D(s )π allows us to access the transversity gluon GPDs.

  3. Soft gluon resummation of Drell-Yan rapidity distributions: Theory and phenomenology

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2011-01-01

    We examine critically the theoretical underpinnings and phenomenological implications of soft gluon (threshold) resummation of rapidity distributions at a hadron collider, taking Drell-Yan production at the Tevatron and the LHC as a reference test case. First, we show that in perturbative QCD soft gluon resummation is necessary whenever the partonic (rather the hadronic) center-of-mass energy is close enough to threshold, and we provide tools to assess when resummation is relevant for a given process. Then, we compare different prescriptions for handling the divergent nature of the series of resummed perturbative corrections, specifically the minimal and Borel prescriptions. We assess the intrinsic ambiguities of resummed results, both due to the asymptotic nature of their perturbative expansion, and to the treatment of subleading terms. Turning to phenomenology, we introduce a fast and accurate method for the implementation of resummation with the minimal and Borel prescriptions using an expansion on a basis of Chebyshev polynomials. We then present results for W and Z production as well as both high- and low-mass dilepton pairs at the LHC, and show that soft gluon resummation effects are generally comparable in size to NNLO corrections, but sometimes affected by substantial ambiguities.

  4. Helicity description of e+e- → qanti qg and e+e- → Qanti Q(1--) → ggg on and off the Z0: quark, gluon and beam polarization effects

    International Nuclear Information System (INIS)

    Schiller, D.H.; Koerner, J.G.

    1981-07-01

    We develop the helicity description for the processes e + e - → qanti qg and e + e - → Qanti Q(1 -- ) → ggg(γgg) in the purely electromagnetic case, in the γ-Z 0 interference region and on the Z 0 -pole. We present complete differential cross section formulas including beam, quark and gluon polarization effects. We also treat the corresponding processes e + e - → qanti qS and e + e - → Qanti Q(1 -- ) → SSS(γSS) involving scalar gluons. (orig.)

  5. Small-x Asymptotics of the Quark Helicity Distribution.

    Science.gov (United States)

    Kovchegov, Yuri V; Pitonyak, Daniel; Sievert, Matthew D

    2017-02-03

    We construct a numerical solution of the small-x evolution equations derived in our recent work [J. High Energy Phys. 01 (2016) 072.JHEPFG1029-847910.1007/JHEP01(2016)072] for the (anti)quark transverse momentum dependent helicity TMDs and parton distribution functions (PDFs) as well as the g_{1} structure function. We focus on the case of large N_{c}, where one finds a closed set of equations. Employing the extracted intercept, we are able to predict directly from theory the behavior of the quark helicity PDFs at small x, which should have important phenomenological consequences. We also give an estimate of how much of the proton's spin carried by the quarks may be at small x and what impact this has on the spin puzzle.

  6. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  7. Helicity-dependent generalized parton distributions for nonzero skewness

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-09-15

    We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)

  8. The Weizsäcker-Williams distribution of linearly polarized gluons (and its fluctuations) at small x

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, Adrian; Skokov, Vladimir

    2017-09-11

    The conventional and linearly polarized Weizsäcker-Williams gluon distributions at small x are defined from the two-point function of the gluon field in light-cone gauge. They appear in the cross section for dijet production in deep inelastic scattering at high energy. We determine these functions in the small-x limit from solutions of the JIMWLK evolution equations and show that they exhibit approximate geometric scaling. Also, we discuss the functional distributions of these WW gluon distributions over the JIMWLK ensemble at rapidity Y ~ 1/αs. These are determined by a 2d Liouville action for the logarithm of the covariant gauge function g2tr A+(q)A+(-q). For transverse momenta on the order of the saturation scale we observe large variations across configurations (evolution trajectories) of the linearly polarized distribution up to several times its average, and even to negative values.

  9. Rapidity distribution of photons from an anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Bhattacharya, Lusaka; Roy, Pradip

    2010-01-01

    We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, p hard (τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed p T , where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y∼1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.

  10. The Higgs transverse momentum distribution in gluon fusion as multiscale problem

    International Nuclear Information System (INIS)

    Bagnaschi, E.; Vicini, A.

    2015-05-01

    We consider Higgs production in gluon fusion and in particular the prediction of the Higgs transverse momentum distribution. We discuss the ambiguities affecting the matching procedure between fixed order matrix elements and the resummation to all orders of the terms enhanced by log(p H T /m H ) factors. Following a recent proposal (Grazzini et al., hep-ph/1306.4581), we argue that the gluon fusion process, computed considering two active quark flavors, is a multiscale problem from the point of view of the resummation of the collinear singular terms. We perform an analysis at parton level of the collinear behavior of the real emission amplitudes and we derive an upper limit to the range of transverse momenta where the collinear approximation is valid. This scale is then used as the value of the resummation scale in the analytic resummation framework or as the value of the h parameter in the POWHEG-BOX code. Finally, we provide a phenomenological analysis in the Standard Model, in the Two Higgs Doublet Model and in the Minimal Supersymmetric Standard Model. In the two latter cases, we provide an ansatz for the central value of the matching parameters not only for a Standard Model-like Higgs boson, but also for heavy scalars and in scenarios where the bottom quark may play the dominant role.

  11. Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Daniel; /Groningen U.; Diehl, Markus; /DESY; Milner, Richard; /MIT; Venugopalan, Raju; /Brookhaven; Vogelsang, Werner; /Tubingen U.; Kaplan, David; /Washington U., Seattle; Montgomery, Hugh; /Jefferson Lab; Vigdor, Steven; /Brookhaven; Accardi, A.; /Jefferson Lab; Aschenauer, E.C.; /Brookhaven; Burkardt, M.; /New Mexico State U.; Ent, R.; /Jefferson Lab; Guzey, V.; /Jefferson Lab; Hasch, D.; /Frascati; Kumar, K.; /Massachusetts U., Amherst; Lamont, M.A.C.; /Brookhaven; Li, Ying-chuan; /Brookhaven; Marciano, W.; /Brookhaven; Marquet, C.; /CERN; Sabatie, F.; /IRFU, SPhN, Saclay; Stratmann, M.; /Brookhaven /LBL, Berkeley /Buenos Aires U. /Antwerp U. /Pelotas U. /Moncton U. /Santa Maria U., Valparaiso /CCTVal, Valparaiso /Hefei, CUST /Shandong U., Weihai /Boskovic Inst., Zagreb /Zagreb U., Phys. Dept. /Jyvaskyla U. /Orsay, LPT /Paris U., VI-VII /Ecole Polytechnique, CPHT /IRFU, SPhN, Saclay /Saclay, SPhT /Ruhr U., Bochum /Giessen U. /DESY /Hamburg U., Inst. Theor. Phys. II /Heidelberg U. /Mainz U., Inst. Kernphys. /Mainz U., Inst. Phys. /Regensburg U. /Tubingen U. /Wuppertal U. /DESY /Cagliari U. /INFN, Cagliari /Frascati /Milan U. /INFN, Milan /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U.; /more authors..

    2012-06-07

    This report on the science case for an Electron-Ion Collider (EIC) is the result of a ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September 13-November 19, 2010), motivated by the need to develop a strong case for the continued study of the QCD description of hadron structure in the coming decades. Hadron structure in the valence quark region will be studied extensively with the Jefferson Lab 12 GeV science program, the subject of an INT program the previous year. The focus of the INT program was on understanding the role of gluons and sea quarks, the important dynamical degrees of freedom describing hadron structure at high energies. Experimentally, the most direct and precise way to access the dynamical structure of hadrons and nuclei at high energies is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors offers enormous potential as the next generation accelerator to address many of the most important, open questions about the fundamental structure of matter. The goal of the INT program, as captured in the writeups in this report, was to articulate these questions and to identify golden experiments that have the greatest potential to provide definitive answers to these questions. At resolution scales where quarks and gluons become manifest as degrees of freedom, the structure of the nucleon and of nuclei is intimately connected with unique features of QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron sub-structure in DIS is obtained in the form of 'snapshots' by the 'lepton microscope' of the dynamical many-body hadron system, over different momentum resolutions and energy scales. These femtoscopic snapshots, at the simplest level, provide distribution functions which are extracted over the largest accessible kinematic range to assemble fundamental dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be

  12. Unintegrated gluon distributions in D*± and dijet associated photoproduction at HERA

    International Nuclear Information System (INIS)

    Lipatov, A.V.; Zotov, N.P.

    2006-01-01

    We consider the photoproduction of D *± mesons associated with two hadron jets at HERA collider in the framework of the k T -factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make a comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is given to the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)

  13. Gluon attributes

    International Nuclear Information System (INIS)

    Weiler, T.

    1981-01-01

    An overview is presented of the attributes of gluons, deducible from experimental data. Particular attention is given to the photon-gluon fusion model of charm leptoproduction. The agreement with QCD and theoretical prejudice is qualitatively good

  14. Gluons and the quark sea at high energies : distributions, polarization, tomography

    NARCIS (Netherlands)

    Boer, D.; Diehl, M.; Milner, R.; Venugopalan, R.; Vogelsang, W.; Accardi, A.; Aschenauer, E.; Burkardt, M.; Ent, R.; Guzey, V.; Hasch, D.; Kumar, K.; Lamont, M. A. C.; Li, Y.; Marciano, W. J.; Marquet, C.; Sabatie, F.; Stratmann, M.; Yuan, F.; Abeyratne, S.; Ahmed, S.; Aidala, C.; Alekhin, S.; Anselmino, M.; Avakian, H.; Bacchetta, A.; Bartels, J.; H., BC; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Beuf, G.; Blumlein, J.; Blaskiewicz, M .; Bogacz, A.; Brodsky, S. J.; Burton, T.; Calaga, R.; Chang, X.; Cherednikov, I. O.; Chevtsov, P.; Chirilli, G. A.; Atti, C. Ciofi degli; Cloet, I. C.; Cooper-Sarkar, A.; Debbe, R.; Derbenev, Ya; Deshpande, A.; Dominguez, F.; Dumitru, A.; Dupre, R.; Erdelyi, B.; Faroughy, C.; Fazio, S.; Fedotov, A.; Forshaw, J. R.; Geraud, R.; Gallmeister, K.; Gamberg, L.; Gao, J. -H.; Gassner, D.; Gelis, F.; Gilfoyle, G. P.; Goldstein, G.; Golec-Biernat, K.; Goncalves, V. P.; Gonderinger, M.; Guzzi, M.; Hagler, P.; Hahn, H.; Hammons, L.; Hao, Y.; He, P.; Horn, T.; Horowitz, W. A.; Huang, M.; Hutton, A.; Jager, B.; Jackson, W.; Jain, A.; Johnson, E. C.; Kang, Z. -B.; Kaptari, L. P.; Kayran, D.; Kewisch, J.; Koike, Y.; Kondratenko, A.; Kopeliovich, B. Z.; Kovchegov, Y. V.; Krafft, G.; Kroll, P.; Kumano, S.; Kumericki, K.; Lappi, T.; Lautenschlager, T.; Li, R.; Liang, Z. -T.; Litvinenko, V. N.; Liuti, S.; Luo, Y.; Muller, D.; Mahler, G.; Majumder, A.; Manikonda, S.; Marhauser, F.; McIntyre, G.; Meskauskas, M.; Meng, W.; Metz, A.; Mezzetti, C. B.; Miller, G. A.; Minty, M.; Moch, S. -O.; Morozov, V.; Mosel, U.; Motyka, L.; Moutarde, H.; Mulders, P. J.; Musch, B.; Nadel-Turonski, P.; Nadolsky, P.; Olness, F.; Ostrumov, P. N.; Parker, B.; Pasquini, B.; Passek-Kumericki, K.; Pikin, A.; Pilat, F.; Pire, B.; Pirner, H.; Pisano, C.; Pozdeyev, E.; Prokudin, A.; Ptitsyn, V.; Qian, X.; Qiu, J. -W.; Radici, M.; Radyushkin, A.; Rao, T.; Rimmer, R.; Ringer, F.; Riordan, S.; Rogers, T.; Rojo, J.; Roser, T.; Sandapen, R.; Sassot, R.; Satogata, T.; Sayed, H.; Schafer, A.; Schnell, G.; Schweitzer, P.; Sheehy, B.; Skaritka, J.; Soyez, G.; Spata, M.; Spiesberger, H.; Stasto, A. M.; Stefanis, N. G.; Strikman, M.; Sullivan, M.; Szymanowski, L.; Tanaka, K.; Taneja, S.; Tepikian, S.; Terzic, B.; Than, Y.; Toll, T.; Trbojevic, D.; Tsentalovich, E.; Tsoupas, N.; Tuchin, K.; Tuozzolo, J.; Ullrich, T.; Vossen, A.; Wallon, S.; Wang, G.; Wang, H.; Wang, X. -N.; Webb, S.; Weiss, C.; Wu, Q.; Xiao, B. -W.; Xu, W.; Yunn, B.; Zelenski, A.; Zhang, Y.; Zhou, J.; Zurita, P.

    2011-01-01

    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that

  15. Are the gluon distributions different in π- and K-mesons?

    International Nuclear Information System (INIS)

    Batunin, A.V.; Likhoded, A.K.; Kiselev, V.V.

    1988-01-01

    The experimental data an excess of D-meson production in K - -beam as compared with π - one (NA32 collaboration) is discussed. Such a situation is shown to be possible at larger total number of gluons in K-meson only. However, this is in a disagreemtn with other charm production experiments

  16. Charmonia enhancement in quark-gluon plasma with improved description of c-quarks phase distribution

    International Nuclear Information System (INIS)

    Gossiaux, Pol Bernard; Guiho, Vincent; Aichelin, Joerg

    2005-01-01

    We present a dynamical model of heavy quark evolution in the quark-gluon plasma (QGP) based on the Fokker-Planck equation. We then apply this model to the case of central ultra-relativistic nucleus-nucleus collisions performed at RHIC and estimate the component of J/ψ production (integrated and differential) stemming from c-c-bar pairs that are initially uncorrelated

  17. A new numerical method for inverse Laplace transforms used to obtain gluon distributions from the proton structure function

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal

    2011-01-01

    We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F 2 γp (x,Q 2 ). We numerically inverted the function g(s), s being the variable in Laplace space, to G(v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g(s)→0 less rapidly than 1/s as s→∞, e.g., as 1/s β for 0 β-1 and a polynomial in v. We test the algorithm numerically for very small positive β, β=10 -6 obtaining numerical results that imitate the Dirac delta function δ(v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q 2 =5 GeV 2 down to the lower virtuality Q 2 =1.69 GeV 2 . For devolution, β is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail. (orig.)

  18. Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery

    International Nuclear Information System (INIS)

    Gladwish, Adam; Kron, Tomas; McNiven, Andrea; Bauman, Glenn; Van Dyk, Jake

    2004-01-01

    Helical tomotherapy (HT) is a novel radiotherapy technique that utilizes intensity modulated fan beams that deliver highly conformal dose distributions in a helical beam trajectory. The most significant limitation in dose delivery with a constant fan beam thickness (FBT) is the penumbra width of the dose distribution in the craniocaudal direction, which is equivalent to the FBT. We propose to employ a half-blocked fan beam at start and stop location to reduce the penumbra width by half. By opening the jaw slowly during the helical delivery until the desired FBT is achieved it is possible to create a sharper edge in the superior and inferior direction from the target. The technique was studied using a tomotherapy beam model implemented on a commercial treatment planning system (Theraplan Plus V3.0). It was demonstrated that the dose distribution delivered using a 25 mm fan beam can be improved significantly, to reduce the dose to normal structures located superiorly and inferiorly of the target. Dosimetry for this technique is straightforward down to a FBT of 15 mm and implementation should be simple as no changes in couch movement are required compared to a standard HT delivery. We conclude that the use of asymmetric collimated fan beams for the start and stop of the helical tomotherapeutic dose delivery has the potential of significantly improving the dose distribution in helical tomotherapy

  19. Extraction of Structure Function and Gluon Distribution Function at Low-x from Cross Section Derivative by Regge Behavior

    International Nuclear Information System (INIS)

    Boroun, G.R.

    2005-01-01

    An approximation method based on Regge behavior is presented. This new method relates the reduced cross section derivative and the structure function Regge behavior at low x. With the use of this approximation method, the C and λ parameters are calculated from the HERA reduced cross section data taken at low-x. Also, we calculate the structure functions F 2 (x,Q 2 ) even for low-x values, which have not been investigated. To test the validity of calculated structure functions, we find the gluon distribution function in the Leading order approximation based on Regge behaviour of structure function and compare to the NLO QCD fit to H1 data and NLO parton distribution function.

  20. Plot of expected distributions of the test statistics q=log(L(0^+)/L(2^+)) for the spin-0 and spin-2 (produced by gluon fusion) hypotheses

    CERN Multimedia

    ATLAS, Collaboration

    2013-01-01

    Expected distributions of the test statistics q=log(L(0^+)/L(2^+)) for the spin-0 and spin-2 (produced by gluon fusion) hypotheses. The observed value is indicated by a vertical line. The coloured areas correspond to the integrals of the expected distributions used to compute the p-values for the rejection of each hypothesis.

  1. Investigating the impact of the gluon saturation effects on the momentum transfer distributions for the exclusive vector meson photoproduction in hadronic collisions

    Directory of Open Access Journals (Sweden)

    V.P. Gonçalves

    2017-05-01

    Full Text Available The exclusive vector meson production cross section is one of the most promising observables to probe the high energy regime of the QCD dynamics. In particular, the squared momentum transfer (t distributions are an important source of information about the spatial distribution of the gluons in the hadron and about fluctuations of the color fields. In this paper we complement previous studies on exclusive vector meson photoproduction in hadronic collisions presenting a comprehensive analysis of the t-spectrum measured in exclusive ρ, ϕ and J/Ψ photoproduction in pp and PbPb collisions at the LHC. We compute the differential cross sections taking into account gluon saturation effects and compare the predictions with those obtained in the linear regime of the QCD dynamics. Our results show that gluon saturation suppresses the magnitude of the cross sections and shifts the position of the dips towards smaller values of t.

  2. A new numerical method for inverse Laplace transforms used to obtain gluon distributions from the proton structure function

    Energy Technology Data Exchange (ETDEWEB)

    Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States)

    2011-11-15

    We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F{sub 2}{sup {gamma}}{sup p}(x,Q{sup 2}). We numerically inverted the function g(s), s being the variable in Laplace space, to G(v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g(s){yields}0 less rapidly than 1/s as s{yields}{infinity}, e.g., as 1/s{sup {beta}} for 0 <{beta}<1. In this note, we derive a new numerical algorithm for such cases, which holds for all positive and non-integer negative values of {beta}. The new algorithm is exact if the original function G(v) is given by the product of a power v{sup {beta}}{sup -1} and a polynomial in v. We test the algorithm numerically for very small positive {beta}, {beta}=10{sup -6} obtaining numerical results that imitate the Dirac delta function {delta}(v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q{sup 2}=5 GeV{sup 2} down to the lower virtuality Q{sup 2}=1.69 GeV{sup 2}. For devolution, {beta} is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail. (orig.)

  3. Gluons and the quark sea at high energies: distributions, polarization, tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Venugopalan, R.; Diehl, M.; Milner, R.; Vogelsang, W.; et al.

    2011-09-30

    This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure of the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.

  4. Gluons and the quark sea at high energies: distributions, polarization, tomography

    CERN Document Server

    Boer, D; Milner, Richard; Venugopalan, Raju; Vogelsang, Werner; Kaplan, David; Montgomery, Hugh; Vigdor, Steven; Accardi, A.; Aschenauer, E.C.; Burkardt, M.; Ent, R.; Guzey, V.; Hasch, D.; Kumar, K.; Lamont, M.A.C.; Li, Ying-chuan; Marciano, W.; Marquet, C.; Sabatie, F.; Stratmann, M.; Yuan, F.; Sassot, R.; Zurita, P.; Cherednikov, I.O.; Goncalves, V.P.; Sandapen, R.; Kopeliovich, B.Z.; Gao, J.-H.; Liang, Z.-T.; Passek-Kumericki, K.; Kumericki, K.; Lappi, T.; Wallon, S.; Pire, B.; Geraud, R.; Moutarde, H.; Gelis, F.; Soyez, G.; Meskauskas, M.; Mueller, Dieter; Stefanis, N.G.; Gallmeister, K.; Mosel, U.; Diehl, M.; Bartels, J.; Pirner, H.J.; Hagler, P.; Jager, B.; Spiesberger, H.; Lautenschlager, T.; Schafer, A.; Ringer, F.; Vogelsang, W.; Kroll, P.; Alekhin, S.; Blumlein, J; Moch, S.-O.; Pisano, C.; Rojo, J.; Bacchetta, A.; Pasquini, B.; Radici, M.; Ciofi degli Atti, C.; Mezzetti, C.B.; Kaptari, L.P.; Anselmino, M.; Tanaka, K.; Koike, Y.; Kumano, S.; Motyka, L.; Golec-Biernat, K.; Stasto, A.M.; Golec-Biernat, K.; Szymanowski, L.; Cherednikov, I.O.; Kaptari, L.P.; Radyushkin, A.; Alekhin, S.; Kondratenko, A.; Horowitz, W.A.; Schnell, G.; Chevtsov, P.; Mulders, P.J.; Rogers, T.C.; Boer, D.; Forshaw, J.R.; Cooper-Sarkar, A.; Chirilli, G.A.; Muller, D.; Wang, X.-N.; Yuan, F.; Qian, X.; Brodsky, S.J.; Schweitzer, P.; Horn, T.; Tuchin, K.; Dupre, R.; Erdelyi, B.; Manikonda, S.; Ostrumov, P.N.; Abeyratne, S.; Erdelyi, B.; Vossen, A.; Riordan, S.; Tsentalovich, E.; Goldstein, G.R.; Pozdeyev, E.; Huang, M.; Aidala, C.; Dumitru, A.; Dominguez, F.; Ben-Zvi, I.; Deshpande, A.; Faroughy, C.; Hammons, L.; Hao, Y.; Johnson, E.C.; Litvinenko, V.N.; Taneja, S.; Tsoupas, N.; Webb, S.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M.M.; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hahn, H.; Hammons, L.; Hao, Y.; He, P.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Ptitsyn, V.; Rao, T.; Roser, T.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Zelenski, A.; Beuf, G.; Burton, T.; Debbe, R.; Fazio, S.; Marciano, W.J.; Qiu, J.-W.; Toll, T.; Ullrich, T.; Deshpande, A.; Dumitru, A.; Kang, Z.-B.; Stasto, A.M.; Yuan, F.; Kovchegov, Y.V.; Majumder, A; Metz, A.; Zhou, J.; Gamberg, L.; Stasto, A.M.; Strikman, M.; Xiao, B.-W.; Guzzi, M.; Nadolsky, P.; Olness, F.; BC, H.; Liuti, S.; Ahmed, S.; Bogacz, A.; Derbenev, Ya.; Hutton, A.; Krafft, G.; Li, R.; Marhauser, F.; Morozov, V.; Pilat, F.; Rimmer, R.; Satogata, T.; Sullivan, M.; Spata, M.; Terzic, B.; Wang, H.; Yunn, B.; Zhang, Y.; Avakian, H.; Musch, B.; Nadel-Turonski, P.; Prokudin, A.; Radyushkin, A.; Weiss, C.; Krafft, G.; Radyushkin, A.; Sayed, H.; Gilfoyle, G.P.; Cloet, I.C.; Miller, G.; Gonderinger, M.

    2011-01-01

    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific op...

  5. Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering

    CERN Document Server

    Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Kramer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmitt, L; Schopferer, S; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2010-01-01

    Double-spin asymmetries for production of charged pions and kaons in semi-inclusive deep-inelastic muon scattering have been measured by the COMPASS experiment at CERN. The data, obtained by scattering a 160 GeV muon beam off a longitudinally polarised NH_3 target, cover a range of the Bjorken variable x between 0.004 and 0.7. A leading order evaluation of the helicity distributions for the three lightest quarks and antiquark flavours derived from these asymmetries and from our previous deuteron data is presented. The resulting values of the sea quark distributions are small and do not show any sizable dependence on x in the range of the measurements. No significant difference is observed between the strange and antistrange helicity distributions, both compatible with zero. The integrated value of the flavour asymmetry of the helicity distribution of the light-quark sea, \\Delta u-bar - \\Delta d-bar, is found to be slightly positive, about 1.5 standard deviations away from zero.

  6. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  7. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  8. Bootstrapping quarks and gluons

    International Nuclear Information System (INIS)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces

  9. Flavour separation of helicity distributions from deep inelastic muon-deuteron scattering

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Dinkelbach, A.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grajek, O.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; Hagemann, R.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Käfer, W.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kiefer, J.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Venugopal, G.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Wenzl, K.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    Roč. 680, č. 5 (2009), s. 217-224 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * double-spin asymmetry * helicity density * Parton distribution function * flavour separation analysis * polarised DIS and SIDIS reactions * charged kaon asymmetry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.083, year: 2009

  10. Constituent gluon interpretation of glueballs and gluelumps

    International Nuclear Information System (INIS)

    Boulanger, N.; Buisseret, F.; Mathieu, V.; Semay, C.

    2008-01-01

    Arguments are given that support the interpretation of the lattice QCD glueball and gluelump spectra in terms of bound states of massless constituent gluons with helicity 1. In this scheme, we show that the mass hierarchy of the currently known gluelumps and glueballs is mainly due to the number of constituent gluons and can be understood within a simple flux tube model. It is also argued that the lattice QCD 0 +- glueball should be seen as a four-gluon bound state. We finally predict the mass of the 0 - state, not yet computed in lattice QCD. (orig.)

  11. Nucleon internal structure: a new set of quark, gluon momentum, angular momentum operators and parton distribution functions

    International Nuclear Information System (INIS)

    Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.

    2009-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)

  12. The gluon structure of hadrons and nuclei from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-04-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  13. The gluon structure of hadrons and nuclei from lattice QCD

    Science.gov (United States)

    Shanahan, Phiala

    2018-03-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  14. Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering

    CERN Document Server

    Alekseev, M.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; Hagemann, R.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kiefer, J.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Wenzl, K.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    We present a LO evaluation of helicity densities of valence, \\Delta u_v+\\Delta d_v, non-strange sea, \\Delta\\bar{u}+\\Delta\\bar{d}, and strange quarks, \\Delta s (assumed to be equal to \\Delta\\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\\pi+}_{1,d}, A^{\\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004distribution of \\Delta s(x) is compatible with zero in the whole measured range, in contrast to the shape of the strange quark helicity distribution obtained in most LO and NLO QCD fits. The sensitivity of the values of \\Delta s(x) upon the choice of fragmentation functions used in the derivation is discussed.

  15. Gluon polarization in the proton: Constraints at low x from the measurement of the double longitudinal spin asymmetry for forward-rapidity hadrons with the PHENIX detector at RHIC

    Science.gov (United States)

    McKinney, Cameron Palmer

    In the 1980s, polarized deep inelastic lepton-nucleon scattering experiments revealed that only about a third of the proton's spin of ½ h is carried by the quarks and antiquarks, leaving physicists with the puzzle of how to account for the remaining spin. As gluons carry roughly 50% of the proton's momentum, it seemed most logical to look to the gluon spin as another significant contributor. However, lepton-nucleon scattering experiments only access the gluon helicity distribution, Delta g, through effects on the quark distributions via scaling violations. Constraining Deltag through scaling violations requires experiments that together cover a large range of Q 2. Such experiments had been carried out with unpolarized beams, leaving g(x) (the unpolarized gluon distribution) relatively well-known, but the polarized experiments have only thus far provided weak constraints on Deltag in a limited momentum fraction range. With the commissioning in 2000 of the Relativistic Heavy Ion Collider, the first polarized proton-proton (pp) collider, and the first polarized pp running in 2002, the gluon distributions could be accessed directly by studying quark-gluon and gluon-gluon interactions. In 2009, data from measurements of double longitudinal spin asymmetries, ALL, at the STAR and PHENIX experiments through 2006 were included in a QCD global analysis performed by Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang (DSSV), yielding the first direct constraints on the gluon helicity. The DSSV group found that the contribution of the gluon spin to the proton spin was consistent with zero, but the data provided by PHENIX and STAR was all at mid-rapidity, meaning Delta g was constrained by data only a range in x from 0.05 to 0.2, leaving out helicity contributions from the huge number of low- x gluons. A more recent analysis by DSSV from 2014 including RHIC data through 2009 for the first time points to significant gluon polarization at intermediate

  16. Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.

    2006-01-01

    The giant magnetoimpedance effect in composite wires consisting of a non-magnetic inner core and soft magnetic shell is studied theoretically. It is assumed that the magnetic shell has a helical anisotropy. The current and field distributions in the composite wire are found by means of a simultaneous solution of Maxwell equations and the Landau-Lifshitz equation. The expressions for the diagonal and off-diagonal impedance are obtained for low and high frequencies. The dependences of the impedance on the anisotropy axis angle and the shell thickness are analyzed. Maximum field sensitivity is shown to correspond to the case of the circular anisotropy in the magnetic shell. It is demonstrated that the optimum shell thickness to obtain maximum impedance ratio is equal to the effective skin depth in the magnetic material

  17. Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation) and Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of)]. E-mail: n_buznikov@mail.ru; Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of); Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

    2006-01-15

    The giant magnetoimpedance effect in composite wires consisting of a non-magnetic inner core and soft magnetic shell is studied theoretically. It is assumed that the magnetic shell has a helical anisotropy. The current and field distributions in the composite wire are found by means of a simultaneous solution of Maxwell equations and the Landau-Lifshitz equation. The expressions for the diagonal and off-diagonal impedance are obtained for low and high frequencies. The dependences of the impedance on the anisotropy axis angle and the shell thickness are analyzed. Maximum field sensitivity is shown to correspond to the case of the circular anisotropy in the magnetic shell. It is demonstrated that the optimum shell thickness to obtain maximum impedance ratio is equal to the effective skin depth in the magnetic material.

  18. Conventional patient specific IMRT QA and 3DVH verification of dose distribution for helical tomotherapy

    International Nuclear Information System (INIS)

    Sharma, Prabhat Krishna; Joshi, Kishore; Epili, D.; Gavake, Umesh; Paul, Siji; Reena, Ph.; Jamema, S.V.

    2016-01-01

    In recent years, patient-specific IMRT QA has transitioned from point dose measurements by ion chambers to films to 2D array measurements. 3DVH software has taken this transition a step further by estimating the 3D dose delivered to the patient volume from 2D diode measurements using a planned dose perturbation (PDP) algorithm. This algorithm was developed to determine, if the conventional IMRT QA though sensitive at detecting errors, has any predictive power in detecting dose errors of clinical significance related to dose to the target volume and organs at risk (OAR). The aim of this study is to compare the conventional IMRT patient specific QA and 3DVH dose distribution for patients treated with helical tomotherapy (HT)

  19. QCD corrections to decay-lepton polar and azimuthal angular distributions in e+e- → tt-bar in the soft-gluon approximation

    International Nuclear Information System (INIS)

    Rindani, S.D.

    2002-01-01

    QCD corrections to order α s in the soft-gluon approximation to angular distributions of decay charged leptons in the process e + e - → t t-bar, followed by semileptonic decay of t or t-bar, are obtained in the e + e - centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow direct comparison with experiment without the need to reconstruct the top rest frame. The results also do not depend on the choice of a spin quantization axis for t or t-bar. Analytic expression for the triple distribution in the polar angle of t and polar and azimuthal angles of the lepton is obtained. Analytic expression is also derived for the distribution in the charged-lepton polar angle. Numerical values are discussed for √s = 400, 800 and 1500 GeV. (author)

  20. Gluons in quarkonium decay

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.

    1978-03-01

    We discuss what can be learned of the 3 S 1 quarkonium decay QantiQ → 3 gluoans QantiQ → γ + 2 gluons. The former is a way to find gluon jets and test QCD. The latter also allows us to measure gluoan + gluon → hadrons and look for pure gluonic resonances (glueballs). (orig.) [de

  1. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp→ Z/γ*+X→μ+μ-+X with ATLAS

    International Nuclear Information System (INIS)

    Schmieden, Kristof

    2013-04-01

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp→Z/γ * +X→ μ + μ - +X. In total 4.7 fb -1 of proton-proton collisions at √(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ * system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  2. Counting and tensorial properties of twist-two helicity-flip nucleon form factors

    International Nuclear Information System (INIS)

    Chen Zhang; Ji Xiangdong

    2005-01-01

    We perform a systematic analysis on the off-forward matrix elements of the twist-two quark and gluon helicity-flip operators. By matching the allowed quantum numbers and their crossing channel counterparts (a method developed by Ji and Lebed), we systematically count the number of independent nucleon form factors in off-forward scattering of matrix elements of these quark and gluon spin-flip operators. In particular, we find that the numbers of independent nucleon form factors of twist-two, helicity-flip quark (gluon) operators are 2n-1 (2n-5) if n is odd, and 2n-2 (2n-6) if n is even, with n≥2 (n≥4). We also analyze and write down the tensorial/Lorentz structure and kinematic factors of the expansion of these operators' matrix elements in terms of the independent form factors. These generalized form factors define the off-forward quark and gluon helicity-flip distributions in the literature

  3. Distributed processing and network of data acquisition and diagnostics control for Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kojima, M.; Hidekuma, S.

    1997-11-01

    The LHD (Large Helical Device) data processing system has been designed in order to deal with the huge amount of diagnostics data of 600-900 MB per 10-second short-pulse experiment. It prepares the first plasma experiment in March 1998. The recent increase of the data volume obliged to adopt the fully distributed system structure which uses multiple data transfer paths in parallel and separates all of the computer functions into clients and servers. The fundamental element installed for every diagnostic device consists of two kinds of server computers; the data acquisition PC/Windows NT and the real-time diagnostics control VME/VxWorks. To cope with diversified kinds of both device control channels and diagnostics data, the object-oriented method are utilized wholly for the development of this system. It not only reduces the development burden, but also widen the software portability and flexibility. 100Mbps EDDI-based fast networks will re-integrate the distributed server computers so that they can behave as one virtual macro-machine for users. Network methods applied for the LHD data processing system are completely based on the TCP/IP internet technology, and it provides the same accessibility to the remote collaborators as local participants can operate. (author)

  4. Gluon-spin contribution to the proton spin from the double helicity asymmetry in inclusive pi0 production in polarized p + p collisions at s**(1/2) = 200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adare, A.; Afanasiev, S.; Aidala, C.; Růžička, Pavel; Tomášek, Lukáš; Vrba, Václav

    2009-01-01

    Roč. 103, č. 1 (2009), 012003/1-012003/4 ISSN 0031-9007 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : PHENIX * gluon * proton spin Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.328, year: 2009 http://arxiv.org/pdf/0810.0694

  5. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  6. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  7. The five-gluon amplitude and one-loop integrals

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Kosower, D.A.

    1992-12-01

    We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given

  8. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  9. Charmed quark production as a gluon probe

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1980-09-01

    The lowest-order QCD mechanisms for producing cc or other heavy quarks depend on the gluon distributions in hadrons; hence the latter can be extracted directly from experiment. Recent results are described. (author)

  10. Problems in the resummation of soft-gluon effects in the transverse-momentum distributions of massive vector bosons in hadronic collisions

    CERN Document Server

    Frixione, Stefano; Ridolfi, G

    1999-01-01

    We consider the resummation of soft-gluon emission in the transverse-momentum distribution of vector mesons in hadronic collisions. We find that the resummed expression in the impact-parameter formulation has an expansion in $\\as$ with factorially growing terms with oscillating signs. These diverging terms arise from the small impact-parameter region of integration, and are of a subleading nature. We also obtain a closed expression for the next-to-leading logarithm resummation in $\\qt$-space, and we study its analytic structure. We find in this case that, although no factorially growing terms are present, there are geometrical singularities that severely restrict the range of applicability of the resummation formula.

  11. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  12. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  13. Measurements of double-helicity asymmetries in inclusive J /ψ production in longitudinally polarized p +p collisions at √{s }=510 GeV

    Science.gov (United States)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; He, X.; Hemmick, T. K.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kanda, S.; Kang, J. H.; Kang, J. S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y. K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotov, D.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Velkovska, J.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-12-01

    We report the double-helicity asymmetry, ALL J /ψ, in inclusive J /ψ production at forward rapidity as a function of transverse momentum pT and rapidity |y |. The data analyzed were taken during √{s }=510 GeV longitudinally polarized p +p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J /ψ particles are predominantly produced through gluon-gluon scatterings, thus ALL J /ψ is sensitive to the gluon polarization inside the proton. We measured ALL J /ψ by detecting the decay daughter muon pairs μ+μ- within the PHENIX muon spectrometers in the rapidity range 1.2 <|y |<2.2 . In this kinematic range, we measured the ALL J /ψ to be 0.012 ±0.010 (stat) ±0.003 (syst). The ALL J /ψ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x : one at moderate range x ≈5 ×10-2 where recent data of jet and π0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x ≈2 ×10-3. Thus our new results could be used to further constrain the gluon polarization for x <5 ×10-2.

  14. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  15. Three gluon jets as a test of QCD

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.F.

    1977-10-01

    As a test of quantum chromodynamics (QCD), we suggest looking for gluon jets in the decay of a heavy quark-antiquark bound state produced in e + e - -annihilation, Q anti Q → 3 gluons → 3 gluon jets. In particular, we point out that these events form a jet Dalitz plot, and we calculate the gluon or jet distributions (including the effect of polarized e + e - -beams). This process affords a test of the gluon spin. It is the analogue of two-jet angular distributions in e + e - %→ q anti q → 2 quark jets. We also estimate multiplicities and momentum distributions of hadrons in Q anti Q → 3 gluons → hadrons, using the recently discovered UPSILON (9.4) as an example. (orig.) [de

  16. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  17. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  18. Analytic derivation of the leading-order gluon distribution function G(x,Q2)=xg(x,Q2) from the proton structure function F2p(x,Q2)

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; McKay, Douglas W.

    2008-01-01

    We derive a second-order linear differential equation for the leading-order gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) which determines G(x,Q 2 ) directly from the proton structure function F 2 p (x,Q 2 ). This equation is derived from the leading-order evolution equation for F 2 p (x,Q 2 ), and does not require knowledge of either the individual quark distributions or the gluon evolution equation. Given an analytic expression that successfully reproduces the known experimental data for F 2 p (x,Q 2 ) in a domain x min (Q 2 )≤x≤x max (Q 2 ), Q min 2 ≤Q 2 ≤Q max 2 of the Bjorken variable x and the virtuality Q 2 in deep inelastic scattering, G(x,Q 2 ) is uniquely determined in the same domain. We give the general solution and illustrate the method using the recently proposed Froissart-bound-type parametrization of F 2 p (x,Q 2 ) of E. L. Berger, M. M. Block and C.-I. Tan [Phys. Rev. Lett. 98, 242001 (2007)]. Existing leading-order gluon distributions based on power-law descriptions of individual parton distributions agree roughly with the new distributions for x > or approx. 10 -3 as they should, but are much larger for x -3 .

  19. One-loop Higgs plus four gluon amplitudes. Full analytic results

    International Nuclear Information System (INIS)

    Badger, Simon; Nigel Glover, E.W.; Williams, Ciaran; Mastrolia, Pierpaolo

    2009-10-01

    We consider one-loop amplitudes of a Higgs boson coupled to gluons in the limit of a large top quark mass. We treat the Higgs as the real part of a complex field φ that couples to the self-dual field strengths and compute the one-loop corrections to the φ-NMHV amplitude, which contains one gluon of positive helicity whilst the remaining three have negative helicity. We use four-dimensional unitarity to construct the cut-containing contributions and a hybrid of Feynman diagram and recursive based techniques to determine the rational piece. Knowledge of the φ-NMHV contribution completes the analytic calculation of the Higgs plus four gluon amplitude. For completeness we also include expressions for the remaining helicity configurations which have been calculated elsewhere. These amplitudes are relevant for Higgs plus jet production via gluon fusion in the limit where the top quark is large compared to all other scales in the problem. (orig.)

  20. Gluon quasidistribution function at one loop

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Shuai [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China); Zhu, Ruilin [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China); Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China)

    2018-02-15

    We study the unpolarized gluon quasidistribution function in the nucleon at one loop level in the large momentum effective theory. For the quark quasidistribution, power law ultraviolet divergences arise in the cut-off scheme and an important observation is that they all are subjected to Wilson lines. However for the gluon quasidistribution function, we first point out that the linear ultraviolet divergences also exist in the real diagram which is not connected to any Wilson line. We then study the one loop corrections to parton distribution functions in both cut-off scheme and dimensional regularization to deal with the ultraviolet divergences. In addition to the ordinary quark and gluon distributions, we also include the quark to gluon and gluon to quark splitting diagrams. The complete one-loop matching factors between the quasi and light cone parton distribution functions are presented in the cut-off scheme. We derive the P{sup z} evolution equation for quasi parton distribution functions, and find that the P{sup z} evolution kernels are identical to the DGLAP evolution kernels. (orig.)

  1. Helicity formalism and spin effects

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Piovano, U.

    1990-01-01

    The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)

  2. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    International Nuclear Information System (INIS)

    Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim

    2016-01-01

    We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  3. The Elusive Gluon

    CERN Document Server

    Chala, Mikael; Perez, Gilad; Santiago, Jose

    2015-01-01

    We study the phenomenology of vector resonances in the context of natural composite Higgs models. A mild hierarchy between the fermionic partners and the vector resonances can be expected in these models based on the following arguments. Both direct and indirect (electroweak and flavor precision) constraints on fermionic partners are milder than the ones on spin one resonances. Also the naturalness pressure coming from the top partners is stronger than that induced by the gauge partners. This observation implies that the search strategy for vector resonances at the LHC needs to be modified. In particular, we point out the importance of heavy gluon decays (or other vector resonances) to top partner pairs that were overlooked in previous experimental searches at the LHC. These searches focused on simplified benchmark models in which the only new particle beyond the Standard Model was the heavy gluon. It turns out that, when kinematically allowed, such heavy-heavy decays make the heavy gluon elusive, and the bou...

  4. Confinement models for gluons

    International Nuclear Information System (INIS)

    Khadkikar, S.B.; Vinodkumar, P.C.

    1987-04-01

    Confinement model for gluons using a 'colour super current' is formulated. An attempt has been made to derive a suitable dielectric function corresponding to the current confinement model. A simple inhomogeneous dielectric confinement model for gluons is studied for comparison. The model Hamiltonians are second quantized and the glueball states are constructed. The spurious motion of the centre of confinement is accounted for. The results of the current confinement scheme are found to be in good agreement with the experimental candidates for glueballs. (author). 16 refs, 3 tabs

  5. Gluon and quark jets in a recursive model motivated by quantum chromodynamics

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1979-01-01

    We compute observable quantities like the multiplicity and momentum distributions of hadrons in gluon and quark jets in the framework of a recursive cascade model, which is strongly motivated by the fundamental interactions of QCD. Fragmentation occurs via 3 types of breakups: quark → meson + quark, gluon → meson + gluon, gluon → quark + antiquark. In our model gluon jets are softer than quark jets. The ratio of gluon jet to quark jet multiplicity is found to be 2 asymptotically, but much less at lower energies. Some phenomenological consequences for γ decay are discussed. (orig.)

  6. χc charmonium - a tool to investigate gluon polarization

    International Nuclear Information System (INIS)

    Batunin, A.V.; Slabospitskij, S.R.

    1986-01-01

    Production of particles with a hidden charm Χ C in polarized parton beams (quarks or gluons) is studied. Parton polarization is shown to cause the changes of angular distributions of Χ C meson decay products, which allows one to investigate possible gluon polarization in hadrons

  7. EXPLORING THE POLARIZATION OF GLUONS IN THE NUCLEON.

    Energy Technology Data Exchange (ETDEWEB)

    STRATMANN,M.; VOGELSANG,W.

    2007-10-22

    We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.

  8. The quark gluon plasma

    International Nuclear Information System (INIS)

    Granier de Cassagnac, R.

    2010-01-01

    The quark-gluon plasma (QGP) is a state of matter in which the universe was expected to be a few micro-seconds after the big-bang. Violent collisions of heavy ions are supposed to re-create this state in particle accelerators. Numerous signatures of this fugacious state have already been observed at the RHIC (relativistic heavy ion collider). The first evidence of the violence of collisions is the number of generated particles: about 6000 per collision, mostly hadrons. This figure seems high but in fact is less than theoretically expected and is the first sign of the formation of a QGP that saturates the density of gluons. Another sign, observed at the RHIC is the damping of the particle jets that are produced in the collision. This damping is consistent with the crossing of a medium whose density is so high that it can not be made of hadrons but of partons. In the RHIC experiments the collective behaviour of quarks and gluons shows that they are strongly interacting with one another. This fact supports the idea that the QGP is more a perfect liquid rather than an ideal gas in which quarks and gluons move freely. (A.C.)

  9. Phenomenology of gluon TMDs at NNLL

    NARCIS (Netherlands)

    Garcia, M.

    2015-01-01

    All the leading-Twist (un)polarized gluon transverse momentum dependent parton distribution functions have the same evolution, once they are properly defined in order to cancel spurious rapidity divergences. Currently known perturbative ingredients can be used to resum large logarithms up to

  10. On the Influence of Force Distribution and Boundary Condition on Helical Gear Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2015-01-01

    influence on the stiffness. These two factors are the rim thickness included in the stiffness calculation and the contact zone size. In the contact zone the distribution of the load is also shown to be important. Simple possible simplications in relation to the contact load distribution are presented...

  11. Quark-Gluon Plasma

    CERN Document Server

    1990-01-01

    This volume contains 14 review articles on the theory and phenomenology of the creation and diagnosis of quark-gluon plasma. They are written by active investigators of in the various research topics, which range from the QCD foundation through transport theory and thermalization models to the examination of possible signatures. The monograph should be useful not only to the experienced researchers in the subject but also to newcomers.

  12. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  13. The elusive gluon

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Mikael [Granada Univ. (Spain). CAFPE; Granada Univ. (Spain). Dept. de Fisica Teorica y del Cosmos; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Juknevich, Jose [International School for Advanced Studies, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste (Italy); Perez, Gilad [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astrophysics; Santiago, Jose [Granada Univ. (Spain). CAFPE; Granada Univ. (Spain). Dept. de Fisica Teorica y del Cosmos; European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-11-15

    We study the phenomenology of vector resonances in the context of natural composite Higgs models. A mild hierarchy between the fermionic partners and the vector resonances can be expected in these models based on the following arguments. Both direct and indirect (electroweak and flavor precision) constraints on fermionic partners are milder than the ones on spin one resonances. Also the naturalness pressure coming from the top partners is stronger than that induced by the gauge partners. This observation implies that the search strategy for vector resonances at the LHC needs to be modified. In particular, we point out the importance of heavy gluon decays (or other vector resonances) to top partner pairs that were overlooked in previous experimental searches at the LHC. These searches focused on simplified benchmark models in which the only new particle beyond the Standard Model was the heavy gluon. It turns out that, when kinematically allowed, such heavy-heavy decays make the heavy gluon elusive, and the bounds on its mass can be up to 2 TeV milder than in the simpler models considered so far for the LHC14. We discuss the origin of this difference and prospects for dedicated searches.

  14. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  15. The elusive gluon

    International Nuclear Information System (INIS)

    Chala, Mikael; Juknevich, Jose; Perez, Gilad

    2014-11-01

    We study the phenomenology of vector resonances in the context of natural composite Higgs models. A mild hierarchy between the fermionic partners and the vector resonances can be expected in these models based on the following arguments. Both direct and indirect (electroweak and flavor precision) constraints on fermionic partners are milder than the ones on spin one resonances. Also the naturalness pressure coming from the top partners is stronger than that induced by the gauge partners. This observation implies that the search strategy for vector resonances at the LHC needs to be modified. In particular, we point out the importance of heavy gluon decays (or other vector resonances) to top partner pairs that were overlooked in previous experimental searches at the LHC. These searches focused on simplified benchmark models in which the only new particle beyond the Standard Model was the heavy gluon. It turns out that, when kinematically allowed, such heavy-heavy decays make the heavy gluon elusive, and the bounds on its mass can be up to 2 TeV milder than in the simpler models considered so far for the LHC14. We discuss the origin of this difference and prospects for dedicated searches.

  16. Gluon saturation and baryon stopping in the SPS, RHIC, and LHC energy regions

    International Nuclear Information System (INIS)

    Li Shuang; Feng Shengqin

    2012-01-01

    A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions. The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions. Predictions for net baryon rapidity distributions, mean rapidity loss and gluon saturation feature in central Pb + Pb collisions at the LHC are made in this paper. (authors)

  17. Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Makke, N.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    Roč. 693, č. 3 (2010), s. 227-235 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : semi-inclusive deep inelastic scattering * structure function * parton distribution functions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.255, year: 2010

  18. Gluon asymmetries in the leptoproduction of J/Ψ

    International Nuclear Information System (INIS)

    Godbole, R.M.; Gupta, S.; Sridhar, K.

    1990-07-01

    We study J/Ψ production, in deep inelastic scattering experiments with polarised beams and polarised targets. The spin asymmetries are seen to depend strongly on the particular form of the spin dependent gluon distributions used. Therefore, it should be possible in these experiments, to discriminate between different parametrizations of polarised gluon distributions, and hence between the distinctly different physical pictures of the proton spin underlying these parametrizations. (author). 18 refs, 4 figs, 1 tab

  19. Measurement of J/ψ helicity distributions in inelastic photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-06-01

    The J/ψ decay angular distributions have been measured in inelastic photoproduction in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb -1 . The range in photon-proton centre-of-mass energy, W, was 50 + were measured in the J/ψ rest frame and compared to theoretical predictions at leading and next-to-leading order in QCD. (orig.)

  20. Measurement of J/{psi} helicity distributions in inelastic photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-06-15

    The J/{psi} decay angular distributions have been measured in inelastic photoproduction in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb{sup -1}. The range in photon-proton centre-of-mass energy, W, was 50

  1. The gluon condensation at high energy hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei, E-mail: weizhu@mail.ecnu.edu.cn [Department of Physics, East China Normal University, Shanghai 200241 (China); Lan, Jiangshan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-03-15

    We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.

  2. Tales of 1001 gluons

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Stefan, E-mail: weinzierl@uni-mainz.de

    2017-03-13

    This report is centred around tree-level scattering amplitudes in pure Yang–Mills theories, the most prominent example is given by the tree-level gluon amplitudes of QCD. I will discuss several ways of computing these amplitudes, illustrating in this way recent developments in perturbative quantum field theory. Topics covered in this review include colour decomposition, spinor and twistor methods, off- and on-shell recursion, MHV amplitudes and MHV expansion, the Grassmannian and the amplituhedron, the scattering equations and the CHY representation. At the end of this report there will be an outlook on the relation between pure Yang–Mills amplitudes and scattering amplitudes in perturbative quantum gravity.

  3. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  4. Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at ${\\sqrt {\\smash [b]{s_{_{\\mathrm {NN}}}}}} = $ 5.02 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hrubec, Josef; Jeitler, Manfred; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Postiau, Nicolas; Starling, Elizabeth; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Wang, Qun; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; David, Pieter; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Alves, Fábio Lúcio; Alves, Gilvan; Correa Martins Junior, Marcos; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhang, Sijing; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Levin, Andrew; Li, Jing; Li, Linwei; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Kolosova, Marina; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Ayala, Edy; Carrera Jarrin, Edgar; Abdalla, Hassan; Abdelalim, Ahmed Ali; Mahmoud, Mohammed; Bhowmik, Sandeep; Carvalho Antunes De Oliveira, Alexandra; Dewanjee, Ram Krishna; Ehataht, Karl; Kadastik, Mario; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Granier de Cassagnac, Raphael; Kucher, Inna; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Cherepanov, Vladimir; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Esch, Thomas; Fischer, Robert; Ghosh, Saranya; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Keller, Henning; Knutzen, Simon; Mastrolorenzo, Luca; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Schmidt, Alexander; Teyssier, Daniel; Flügge, Günter; Hlushchenko, Olena; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Roy, Dennis; Sert, Hale; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Babounikau, Illia; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bertsche, David; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Defranchis, Matteo Maria; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eichhorn, Thomas; Elwood, Adam; Eren, Engin; Gallo, Elisabetta; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Haranko, Mykyta; Harb, Ali; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Myronenko, Volodymyr; Pflitsch, Svenja Karen; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Schütze, Paul; Schwanenberger, Christian; Shevchenko, Rostyslav; Singh, Akshansh; Tholen, Heiner; Turkot, Oleksii; Vagnerini, Antonio; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Benato, Lisa; Benecke, Anna; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Kutzner, Viktor; Lange, Johannes; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Perieanu, Adrian; Reimers, Arne; Rieger, Oliver; Scharf, Christian; Schleper, Peter; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; El Morabit, Karim; Faltermann, Nils; Freund, Benedikt; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mitra, Soureek; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Paspalaki, Garyfallia; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Kontaxakis, Pantelis; Panagiotou, Apostolos; Papavergou, Ioanna; Saoulidou, Niki; Tziaferi, Eirini; Vellidis, Konstantinos; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Tsipolitis, Georgios; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Bartók, Márton; Csanad, Mate; Filipovic, Nicolas; Major, Péter; Nagy, Marton Imre; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Vámi, Tamás Álmos; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Tiwari, Praveen Chandra; Bahinipati, Seema; Kar, Chandiprasad; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Amandeep; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sandeep, Kaur; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Gola, Mohit; Keshri, Sumit; Kumar, Ashok; Malhotra, Shivali; Naimuddin, Md; Priyanka, Priyanka; Ranjan, Kirti; Shah, Aashaq; Sharma, Ramkrishna; Bhardwaj, Rishika; Bharti, Monika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Mondal, Kuntal; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Saha, Gourab; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Bhat, Muzamil Ahmad; Dugad, Shashikant; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Ravindra Kumar Verma, Ravindra; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Karmakar, Saikat; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Ince, Merve; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Ciocca, Claudia; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Di Mattia, Alessandro; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Di Guida, Salvatore; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Zuolo, Davide; Buontempo, Salvatore; Cavallo, Nicola; Di Crescenzo, Antonia; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Boletti, Alessio; Bragagnolo, Alberto; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Hoh, Siew Yan; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Fiori, Francesco; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Cometti, Simona; Costa, Marco; Covarelli, Roberto; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Soldi, Dario; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Vazzoler, Federico; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Kim, Hyunsoo; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Jeon, Dajeong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castaneda Hernandez, Alfredo; Murillo Quijada, Javier Alberto; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Ramirez-Sanchez, Gabriel; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Reyes-Almanza, Rogelio; Ramírez García, Mateo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Araujo, Mariana; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Golunov, Alexey; Golutvin, Igor; Karjavine, Vladimir; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Trofimov, Vladimir; Yuldashev, Bekhzod S; Zarubin, Anatoli; Zhiltsov, Victor; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Chadeeva, Marina; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Barnyakov, Alexander; Blinov, Vladimir; Dimova, Tatyana; Kardapoltsev, Leonid; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Slabospitskii, Sergei; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Baidali, Sergei; Okhotnikov, Vitalii; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Álvarez Fernández, Adrian; Bachiller, Irene; Barrio Luna, Mar; Brochero Cifuentes, Javier Andres; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Rodríguez Bouza, Víctor; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; García Alonso, Andrea; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Brondolin, Erica; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; Cucciati, Giacomo; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Fasanella, Daniele; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Guilbaud, Maxime; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Malgeri, Luca; Mannelli, Marcello; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Ngadiuba, Jennifer; Nourbakhsh, Shervin; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Zeuner, Wolfram Dietrich; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Manzoni, Riccardo Andrea; Marionneau, Matthieu; Meinhard, Maren Tabea; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Pigazzini, Simone; Quittnat, Milena; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Leontsinis, Stefanos; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Hou, George Wei-Shu; Kumar, Arun; Li, You-ying; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dolek, Furkan; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Isik, Candan; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Atakisi, Ismail Okan; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Penning, Bjoern; Sakuma, Tai; Smith, Dominic; Smith, Vincent J; Taylor, Joseph; Titterton, Alexander; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Martelli, Arabella; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Singh, Gurpreet; Stoye, Markus; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Mackay, Catherine Kirsty; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Madrid, Christopher; Mcmaster, Brooks; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Coubez, Xavier; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Usai, Emanuele; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Kukral, Ota; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Wang, Sicheng; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Sun, Menglei; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Pena, Cristian; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Cadamuro, Luca; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Joshi, Yagya Raj; Linn, Stephan; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Schiber, Catherine; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Rahmani, Mehdi; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Mills, Corrinne; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wang, Xiao; Wu, Zhenbin; Zhang, Jingyu; Alhusseini, Mohammad; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bylinkin, Alexander; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Duric, Senka; Ivanov, Andrew; Kaadze, Ketino; Kim, Doyeong; Maravin, Yurii; Mendis, Dalath Rachitha; Mitchell, Tyler; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Wong, Kak; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kharchilava, Avto; Mclean, Christine; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Elmer, Peter; Hardenbrook, Joshua; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Lucchini, Marco Toliman; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Mahakud, Bibhuprasad; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Dulemba, Joseph Lynn; Fallon, Colin; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Taus, Rhys; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Luo, Sifu; Mueller, Ryan; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Verweij, Marta; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    The pseudorapidity distributions of dijets as a function of their average transverse momentum ($ p_{\\mathrm{T}}^{text{ave}} $) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_{\\mathrm{T}}^{text{ave}}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.

  5. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp{yields} Z/{gamma}*+X{yields}{mu}{sup +}{mu}{sup -}+X with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schmieden, Kristof

    2013-04-15

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp{yields}Z/{gamma}{sup *}+X{yields} {mu}{sup +}{mu}{sup -}+X. In total 4.7 fb{sup -1} of proton-proton collisions at {radical}(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/{gamma}{sup *} system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  6. Heavy Flavour Production as Probe of Gluon Sivers Function

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav; Sonawane, Bipin

    2017-01-01

    Heavy flavour production like J/ψ and D-meson production in scattering of electrons/unpolarized protons off polarized proton target offer promising probes to investigate gluon Sivers function. In this talk, I will summarize our recent work on transverse single spin asymmetry in J/ψ-production and D-meson production in pp↑ scattering using a generalized parton model approach. We compare predictions obtained using different models of gluon Sivers function within this approach and then, taking into account the transverse momentum dependent evolution of the unpolarized parton distribution functions and gluon Sivers function, we study the effect of evolution on asymmetry. (author)

  7. Rapidity evolution of gluon TMD from low to moderate x

    International Nuclear Information System (INIS)

    Balitsky, I.

    2016-01-01

    I discuss how the rapidity evolution of gluon transverse momentum dependent distribution (TMD) changes from nonlinear evolution at small x << 1 to linear evolution at moderate x ∼ 1. I have described the rapidity evolution of gluon TMD in the whole range of Bjorken x B and the whole range of transverse momentum. It should be emphasized that with our definition of rapidity cutoff the leading-order matrix elements of TMD operators are UV-finite so the rapidity evolution is the only evolution and it describes all the dynamics of gluon TMDs in the leading-log approximation

  8. The final inclusive and semi-inclusive longitudinal double-spin asymmetries at HERMES. Extraction of quark helicity distributions of the nucleon from deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Polina

    2010-10-15

    The thesis focuses on two aspects of the HERMES data analysis: the measurement of the semi-inclusive double spin asymmetries and the extraction of quark helicity distributions and quark polarizations of the nucleon from deep-inelastic scattering, as a possible interpretation of the HERMES data. The asymmetries are presented using all possible and accessible information about the HERMES data, including the latest systematic studies provided during the last years by HERMES collaboration. (orig.)

  9. Production and recombination of gluons

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2006-01-01

    Full text: Nonlinear Markov process of parton production has been considered. The Kolmogorov equation is applied for the evolution equation based on the approximation of independent gluons production in every decay act. We introduced a 'crossing' parameter and used the combination relations to obtain nonlinear recombination equation for the evolution of gluon structure function. (author)

  10. From Color Fields to Quark Gluon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J. [School of Physics and Astronomy, University of Minnesota, Minneapolis MN 55455 (United States); Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis MN 55455 (United States); Li, Yang [School of Physics and Astronomy, University of Minnesota, Minneapolis MN 55455 (United States)

    2006-08-07

    We discuss a model for the energy distribution and the early space-time evolution of a heavy ion collision. We estimate the gluon field generated in the wake of hard processes and through primordial fluctuations of the color charges in the nuclei. Without specifying the dynamical mechanism of thermalization we calculate the energy momentum tensor of the following plasma phase. The results of this model can be used as initial conditions for a further hydrodynamic evolution.

  11. Calculation of parton fragmentation functions from jet calculus: gluon applications

    International Nuclear Information System (INIS)

    Lassila, K.E.; Ng, A.

    1985-01-01

    A method is presented for calculation of general parton fragmentation functions based on jet calculus plus meson and baryon wave functions. Results for gluon fragmentation into mesons and baryons are discussed and related to recent information on upsilon decay into gluons. The expressions derived can be used directly in e + e - cross section predictions and will need to be folded in with baryon parton distribution functions when used in p-barp collisions. (author)

  12. Phenomenological Evidence for Gluon Depletion in pA Collisions

    OpenAIRE

    Hwa, R. C.; Pisut, J.; Pisutova, N.

    2000-01-01

    The data of J/psi suppression at large x_F in pA collisions are used to infer the existence of gluon depletion as the projectile proton traverses the nucleus. The modification of the gluon distribution is studied by use of a convolution equation whose non-perturbative splitting function is determined phenomenologically. The depletion factor at x_1=0.8 is found to be about 25% at A=100.

  13. Hello diquark, goodbye gluon

    International Nuclear Information System (INIS)

    Fredriksson, S.

    1984-01-01

    The Stockholm diquark is a very small (0.1-0.2 fm), bound pair of two unequal quarks in spin 0 and colour 3*. If it exists, it is expected to simulate many of the trends presently attributed to perturbative gluon processes. The Stockholm group (S. Ekelin, M. Jaendel, T.I. Larson and myself) is therefore looking for reactions where the non-perturbative QCD phenomenon of diquark formation would give signatures completely different from those of perturbative gluonic contributions. I report here on some new suggestions for diquark effects in deep inelastic scattering, with emphasis on neutron-proton differences, proton production in the current fragmentation region and nuclear target (''EMC'') effects

  14. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  15. Quarks and gluons in hadrons and nuclei

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-12-01

    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs

  16. Inclusive gluon production in deep inelastic scattering at high parton density

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Tuchin, Kirill

    2002-01-01

    We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the produced gluons as well as their transverse momentum spectrum given by the derived expression for the inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear collisions which includes the effects of nonlinear evolution in both colliding nuclei

  17. Numerical estimates of the evolution of quark and gluon populations inside QCD jets

    International Nuclear Information System (INIS)

    Garetto, M.

    1980-01-01

    The system of first order differential equations for the probabilities of producing nsub(g) gluons and nsub(q) quarks in a single gluon or quark jet are solved numerically for a convenient choice of the parameters A, A-tilde, B. Relevant branching ratios as the evolution parameter Y increases are shown. The different behaviour of the distributions in the quark- and in the gluon-jet is discussed. (author)

  18. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  19. Gluon cascades and amplitudes in light-front perturbation theory

    International Nuclear Information System (INIS)

    Cruz-Santiago, C.A.; Staśto, A.M.

    2013-01-01

    We construct the gluon wave functions, fragmentation functions and scattering amplitudes within the light-front perturbation theory. Recursion relations on the light-front are constructed for the wave functions and fragmentation functions, which in the latter case are the light-front analogs of the Berends–Giele recursion relations. Using general relations between wave functions and scattering amplitudes it is demonstrated how to obtain the maximally-helicity violating amplitudes, and explicit verification of the results is based on simple examples.

  20. One gluon, two gluon: multigluon production via high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2006-01-01

    We develop an approach for calculating the inclusive multigluon production within the JIMWLK high energy evolution. We give a formal expression of multigluon cross section in terms of a generating functional for arbitrary number of gluons n. In the dipole limit the expression simplifies dramatically. We recover the previously known results for single and double gluon inclusive cross section and generalize those for arbitrary multigluon amplitude in terms of Feynman diagramms of Pomeron - like objects coupled to external rapidity dependent field s(η). We confirm the conclusion that the AGK cutting rules in general are violated in multigluon production. However we present an argument to the effect that for doubly inclusive cross section the AGK diagramms give the leading contribution at high energy, while genuine violation only occurs for triple and higher inclusive gluon production. We discuss some general properties of our expressions and suggest a line of argument to simplify the approach further

  1. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  2. Gluon Polarisation Measurements at COMPASS

    CERN Document Server

    Silva, Luís

    2012-01-01

    One of the missing keys in the present understanding of the spin structure of the nucleon is the contribution from the gluons: the so-called gluon polarisation. This quantity can be determined in DIS through the photon-gluon fusion process, in which two analysis methods may be used: (i) identifying open charm events or (ii) selecting events with high $p_{T}$ hadrons. The data used in the present work were collected in the COMPASS experiment, where a 160 GeV/c naturally polarised muon beam, impinging on a polarised nucleon fixed target is used. Preliminary results for the gluon polarisation from high $p_{T}$ and open charm analyses are presented. The gluon polarisation result for high $p_{T}$ hadrons is divided, for the first time, into three statistically independent measurements at LO. The result from open charm analysis is obtained at LO and NLO. In both analyses a new weighted method based on a neural network approach is used.

  3. The PLUTO experiment at DORIS (DESY) and the discovery of the gluon (A recollection)

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Bruno R. [Rome-3 Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Meyer, Hans-Juergen

    2010-08-15

    With the aim of determining the contribution of the PLUTO experiment at the DORIS e{sup +}e{sup -} storage ring to the discovery of the gluon, as members of this former collaboration we have reconsidered all the scientific material produced by PLUTO in 1978 and the first half of 1979. It is clear that the experiment demonstrated the main decay of the Y(9.46 GeV) resonance to be mediated by 3 gluons, by providing evidence for the agreement of this hypothesis with average values and differential distributions of all possible experimental variables and by excluding all other possible alternative models. Moreover PLUTO measured in June 1979 the matrix element of the 3-gluon decay to be quantitatively as expected by QCD (even after hadronization) and, having checked the possibility to correctly trace the gluons' directions, demonstrated the spin 1 nature of the gluon by excluding spin 0 and spin 1/2. The hadronization of the gluon like a quark jet, hypothesized in the 3-gluon jet Monte Carlo simulation, was compatible with the topological data at this energy and was shown to be an approximation at 10% level for the multiplicity ({approx} < p {sub vertical} {sub stroke} {sub vertical} {sub stroke} {sub >}{sup -1}); the right expected gluon fragmentation was needed for the inclusive distributions; this was the first experimental study of (identified) gluon jets. In the following measurements at the PETRA storage ring, these results were confirmed by PLUTO and by three contemporaneous experiments by evidencing at higher energies the gluon radiation (''bremsstrahlung''), the softer one, by jet broadening, and the hard one, by the emission of (now clearly visible) gluon jets by quarks. The gluon's spin 1 particle nature was also confirmed. The PLUTO results on Y decays had been confirmed both by contemporaneous experiments at DORIS (partially) and later (also partially) were confirmed by more sophisticated detectors. (orig.)

  4. The PLUTO experiment at DORIS (DESY) and the discovery of the gluon (A recollection)

    International Nuclear Information System (INIS)

    Stella, Bruno R.; Meyer, Hans-Juergen

    2010-08-01

    With the aim of determining the contribution of the PLUTO experiment at the DORIS e + e - storage ring to the discovery of the gluon, as members of this former collaboration we have reconsidered all the scientific material produced by PLUTO in 1978 and the first half of 1979. It is clear that the experiment demonstrated the main decay of the Y(9.46 GeV) resonance to be mediated by 3 gluons, by providing evidence for the agreement of this hypothesis with average values and differential distributions of all possible experimental variables and by excluding all other possible alternative models. Moreover PLUTO measured in June 1979 the matrix element of the 3-gluon decay to be quantitatively as expected by QCD (even after hadronization) and, having checked the possibility to correctly trace the gluons' directions, demonstrated the spin 1 nature of the gluon by excluding spin 0 and spin 1/2. The hadronization of the gluon like a quark jet, hypothesized in the 3-gluon jet Monte Carlo simulation, was compatible with the topological data at this energy and was shown to be an approximation at 10% level for the multiplicity (∼ vertical stroke vertical stroke > -1 ); the right expected gluon fragmentation was needed for the inclusive distributions; this was the first experimental study of (identified) gluon jets. In the following measurements at the PETRA storage ring, these results were confirmed by PLUTO and by three contemporaneous experiments by evidencing at higher energies the gluon radiation (''bremsstrahlung''), the softer one, by jet broadening, and the hard one, by the emission of (now clearly visible) gluon jets by quarks. The gluon's spin 1 particle nature was also confirmed. The PLUTO results on Y decays had been confirmed both by contemporaneous experiments at DORIS (partially) and later (also partially) were confirmed by more sophisticated detectors. (orig.)

  5. A new prescription for soft gluon resummation

    International Nuclear Information System (INIS)

    Abbate, Riccardo; Forte, Stefano; Ridolfi, Giovanni

    2007-01-01

    We present a new prescription for the resummation of the divergent series of perturbative corrections, due to soft gluon emission, to hard processes near threshold in perturbative QCD (threshold resummation). This prescription is based on Borel resummation, and contrary to the commonly used minimal prescription, it does not introduce a dependence of resummed physical observables on the kinematically unaccessible x→0 region of parton distributions. We compare results for resummed deep-inelastic scattering obtained using the Borel prescription and the minimal prescription and exploit the comparison to discuss the ambiguities related to the resummation procedure

  6. The gluon contribution to polarised nucleon structure functions

    International Nuclear Information System (INIS)

    Ross, G.G.; Roberts, R.G.

    1990-08-01

    As with all parton distributions in quantum chromodynamics (QCD) the separation of polarised nucleon structure functions into gluon and quark contributions must be specified. We consider a definition of the gluon contribution to polarised nucleon structure functions based on exclusive processes which is explicitly gauge invariant, has no regularisation ambiguities, is insensitive to infrared singularities and can be related to other polarised scattering processes. We discuss the relationship of this gluon definition to others that have recently been used and to the estimates that have been made of the gluon contribution using current algebra and other methods. A quantitative analysis of the structure function g 1 (x,Q 2 ) for polarised deep inelastic scattering is carried out, with the aim of examining the importance of the gluon contribution. Using the positivity of parton distributions the magnitude of Δg(x,Q 2 ) is constrained by a realistic estimate of the unpolarised glue. With the appropriate choice of the hard scattering cross-section, Δσ γg , we find that even with a maximally polarised glue (for x > 0.1), some polarised strange quark contribution is still needed by the data of the EMC. (author)

  7. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  8. The unconfined quarks and gluons

    International Nuclear Information System (INIS)

    Abdus Salam

    1977-01-01

    The consequences of the lepton-hadron gauge unification hypothesis with unconfined quarks and gluons being the hall-mark are discussed. Quark and gluon decays into leptons are shown to provide a new source of multileptonic production in NN, νN and μN collisions. A theorem is stated and proved which highlights the differences between the dynamics of gauge versus non-gauge 1 - particles. Empirical manifestations of gauge coloured mesons are discussed. The question of exact confinement or not is concluded to be in the end an empirical one and must be settled in the laboratory

  9. A solution of the DGLAP equation for gluon at low x

    Indian Academy of Sciences (India)

    Using (43) we will estimate the logarithmic slope of the structure function from the proposed gluon distribution at several points of expansion and compare with data [19] at. Q2 =20 GeV2 where the data on the slope are available. 3. Results and discussion. In the present paper, we have obtained a new description of gluon ...

  10. Quark and gluon fragmentation in high energy e+e- annihilation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1986-07-01

    The paper on quark and gluon fragmentation in high energy e + e - annihilation is based on lectures given at the International School of High Energy Physics, Yugoslavia, 1986. Fragmentation Models, charged particle multiplicity, Bose-Einstein correlations, single particle inclusive distributions, hadrons in jets, leading particle effects, baryon production, comparison of quark and gluon jets, and the string effect, are all discussed. (UK)

  11. Fragmentation of quarks and gluons

    International Nuclear Information System (INIS)

    Soeding, P.

    1983-10-01

    The author presents a review about quark and gluon jets. He describes the particle contents of the different types of jets. Finally he considers the hadronization mechanism with special regards to three-jet events in e + e - annihilation and hadronization in nuclear matter. (HSI)

  12. Quark-gluon plasma 2

    CERN Document Server

    1995-01-01

    This is a sequel to the review volume Quark-Gluon Plasma. There are 13 articles contributed by leading investigators in the field, covering a wide range of topics about the theoretical approach to the subject. These contributions are timely reviews of nearly all the actively pursued problems, written in a pedagogical style suitable for beginners as well as experienced researchers.

  13. Quark-Gluon Plasma Signatures

    CERN Document Server

    Vogt, Ramona

    1998-01-01

    Aspects of quark-gluon plasma signatures that can be measured by CMS are discussed. First the initial conditions of the system from minijet production are introduced, including shadowing effects. Color screening of the Upsilon family is then presented, followed by energy loss effects on charm and bottom hadrons, high Pt jets and global observables.

  14. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  15. Soft Probes of the Quark-Gluon Plasma in ATLAS

    CERN Document Server

    Wozniak, K W; The ATLAS collaboration

    2014-01-01

    Measurements of low-$p_{_{\\rm T}}$ ($<$ 5 GeV) particles in Pb+Pb collisions at the LHC provide valuable insight in the production and evolution of the quark-gluon plasma. In particular, measurements of the elliptic and higher order collective flow imprinted on the azimuthal angle distributions of low-$p_{T}$ particles directly probe the strongly-coupled dynamics of the quark gluon plasma and test hydrodynamic model descriptions of its evolution. The large acceptance of detectors like ATLAS makes it possible to measure flow event-by-event and to determine the correlations between different event planes and different flow harmonics.

  16. Quark and gluon tagging in dijet mass resonance search

    CERN Document Server

    Kellermann, Edgar

    2013-01-01

    Several models beyond the Standard Model predict new phenomena in particle physics, which would appear as resonant signals in dijet mass distributions. An example for such a resonance is the excited quark q, which is a consequence of Compositeness Models postulating that quarks and leptons are build by more fundamental particles. The main signature of an excited quark would be a dijet event, originated from the radiation of a gluon from the original excited quark when going back to its non-excited state, leading to a quark and a gluon in the final state (with a branching ratio of 83%) . Other examples are the heavy vector bosonsW0 decaying to two quarks and colour octet scalar S8 decaying to two gluons.

  17. Study of gluon condensates using the Bogolyubov transformation

    International Nuclear Information System (INIS)

    Iracane, Daniel

    1985-01-01

    We describe the ground state of non-perturbative QCD as a gluon condensate. In the framework of the Coulomb gauge Hamiltonian, we introduce an effective interaction between infrared gluons by removing high-momentum gluons. The Bogoliubov transformation provides us with our variational space. The minimisation over this Fock subspace leads to a non-perturbative vacuum and its excitations. The minimum functional space for a boson dynamic is a distribution set. We find two kinds of condensation. The first one occurs only for zero-momentum states and looks like the Bose Condensation. In the second one, the quasiparticle spectrum shows a finite gap and the vacuum is a superconducting state. We give constraints on the interaction so that the superconducting phase is more bounded than the Bose one. (author) [fr

  18. The quark-gluon model for particle production processes

    International Nuclear Information System (INIS)

    Volkovitskij, P.E.

    1983-01-01

    The quark-gluon model for hadronization of strings produced in soft and hard processes is suggested. The model is based on the distribution functions of valence quarks in hadrons which have correct Regge behaviour. The simplest case is discussed in which only the longitudinal degrees of freedom are taken into account

  19. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  20. Gluon mass generation without seagull divergences

    International Nuclear Information System (INIS)

    Aguilar, Arlene C.; Papavassiliou, Joannis

    2010-01-01

    Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.

  1. Shadowing of gluons in perturbative QCD: A comparison of different models

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal; Wang, Xin-Nian

    2001-01-01

    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC

  2. Forward gluon production in hadron-hadron scattering with Pomeron loops

    International Nuclear Information System (INIS)

    Iancu, E.

    2006-01-01

    We discuss new physical phenomena expected in particle production in hadron-hadron collisions at high energy, as a consequence of Pomerons loop effects in the evolution equations for the Color Glass Condensate. We focus on gluon production in asymmetric, 'dilute-dense', collisions: a dilute projectile scatters off a dense hadronic target, whose gluon distribution is highly evolved. This situation is representative for particle production in proton-proton collisions at forward rapidities (say, at LHC) and admits a dipole factorization similar to that of deep inelastic scattering (DIS). We show that at sufficiently large forward rapidities, where the Pomerons loop effects become important in the evolution of the target wavefunction, gluon production is dominated by 'black spots' (saturated gluon configurations) up to very large values of the transverse momentum, well above the average saturation momentum in the target. In this regime, the produced gluon spectrum exhibits diffusive scaling, so like DIS at sufficiently high energy. (authors)

  3. Two theoretical treatments of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Carrington, M.E.

    1989-01-01

    The study of the quark-gluon plasma is of direct relevance to questions about the confinement properties of QCD and the validity of the standard theory of QCD in a different physical regime. Part 1 of this work contains a brief discussion of the theoretical and numerical evidence for the existence of the quark-gluon plasma. In the next two sections, two different approaches are discussed. In Part 2, the problem is presented in the general framework of kinetic theory. A definition of the Wigner distribution operator is introduced for quarks and a set of kinetic equations are derived for the momentum moments of this operator. A Wigner distribution operator is defined for gluons and the momentum of this operator are calculated and related to physical quantities. In Part 3, a calculation of linear response functions in a hot gluon plasma is presented. Problems related to gauge invariance and to the definition of a thermal ensemble in the presence of unphysical degrees of freedom are discussed. Results in different gauges and with different ensembles are compared, and the implications of the results for plasma oscillations are discussed

  4. Gluon exchange in elastic hadron scattering

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Paccanoni, F.; Chikovani, Z.E.

    1991-01-01

    It is generally accepted that the Pomeron, which determines the long-range component of the strong interaction, corresponds to exchange of gluons with the corresponding quantum numbers (the minimum number of such gluons is two). The C-odd partner of the Pomeron, the odderon, corresponds to exchange of an odd number of gluons (three or more). By means of a model of the nonperturbative gluon propagator, restrictions are obtained on the parameters of two-gluon (Pomeron) and three-gluon (odderon) exchange in hadron scattering. In the framework of this model an interpretation is proposed for the various asymptotic regimes in the behavior of the total cross section and of the differential cross section of elastic scattering at high energies

  5. High energy evolution of soft gluon cascades

    International Nuclear Information System (INIS)

    Shuvaev, A.; Wallon, S.

    2006-01-01

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  6. High energy evolution of soft gluon cascades

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2006-04-15

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  7. Quark ACM with topologically generated gluon mass

    Science.gov (United States)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  8. Thrust distribution of two-jet like events at a photon-photon collider

    International Nuclear Information System (INIS)

    Kanakubo, Fumiko

    1995-01-01

    One of the advantages of using a photon-photon collision with the same helicity is that the continuum qq-bar production is suppressed at the lowest order (α s 0 ). However, the helicity suppression does not take place for the gluon radiation process, and qq-barg can be two-jet like. We evaluate the cross sections of the two-jet like events in a photon-photon collision, and present the thrust distributions. We take into account the QCD effect to all orders in α s in the leading-double-log approximation, and show the suppression due to this effect. The evaluation with the energy and the polarization distributions of the photon suggests that the contaminating photons with the opposite helicity contribute dominantly to the two-jet like process. (author)

  9. Gluon radiation in diffractive electroproduction

    International Nuclear Information System (INIS)

    Buchmueller, W.; McDermott, M.F.; Hebecker, A.

    1996-07-01

    Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)

  10. Spin asymmetry in proton-proton collisions as a probe of sea and gluon polarization in a proton

    International Nuclear Information System (INIS)

    Cheng, H.; Lai, S.

    1990-01-01

    Quark and gluon spin densities in a proton are phenomenologically parametrized based on the European Muon Collaboration (EMC) data and on some plausible theoretical arguments. Four different characteristic values of gluon and sea polarizations suggested by various theoretical conjectures are considered. The sea polarization in a proton is probed by measuring the spin-spin asymmetry A LL DY in the Drell-Yan process, while the helicity asymmetry A LL γ in direct photon production at high p T is employed to test the gluon spin content. Helicity asymmetries in both processes are quite sizable. A LL DY is positive and of order 10 -1 if the sea is polarized opposite to the proton spin, as suggested by the EMC data. However, even in the absence of the sea polarization at the EMC energies, we find A LL DY to be large and negative. Experimental measurements of A LL DY and A LL γ together will not only provide a clean probe of sea and gluon polarizations, but also test whether the combination Δs-(α s /4π)ΔG inferred from the EMC data is valid, i.e., whether gluons contribute to the spin-dependent structure function g 1 p (x,Q 2 ) via the triangular anomaly

  11. Measuring the contribution of low Bjorken-x gluons to the proton spin with polarized proton-proton collisions

    Science.gov (United States)

    Wolin, Scott Justin

    The PHENIX experiment is one of two detectors located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, NY. Understanding the spin structure of the proton is a central goal at RHIC, the only polarized proton-on-proton collider in existence. The PHENIX spin program has two primary objectives. The first is to improve the constraints on the polarized parton distributions of the anti-u and anti-d quarks within the proton. The second objective is to improve the constraint on the gluon spin contribution to the proton spin, DeltaG. The focus of this thesis is the second objective. PHENIX experiment has been successful at providing the first meaningful constraints on DeltaG, along with STAR, the other detector located at RHIC. These constraints have, in fact, eliminated the extreme scenarios for gluon polarization through measurements of the double spin asymmetry, ALL, between the cross section of like and unlike sign helicity pp interactions. ALL measurements can be performed with a variety of final states at PHENIX. Until 2009, these final states were only measured for pseudo-rapidities of |eta| Piston Calorimeter (MPC) was installed in 2006 and 2007 at forward rapidity, 3.1 < |eta| < 3.9, with the intention of giving PHENIX the ability to constrain Delta g(x) for x < 0.05. Following this, an electronics upgrade to the MPC will be described which enables the selection of events with two hadrons detected in the MPC. This requirement favors gluons at even lower x than the single hadron event selection. The di-hadron measurement that this upgrade makes possible will allow PHENIX to produce an ALL measurement that constrains Deltag(x) in the range of 5 x 10-4 < x < 0.01. Finally, we discuss the most important systematic uncertainty common to all ALL measurements which arises from the determination of the relative luminosity. A precision ALLL measurement requires measuring the final state yield from the portions of the proton beams that

  12. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  13. Gluon chains and multiquark hadrons

    International Nuclear Information System (INIS)

    Jadach, S.; Jezabek, M.

    1979-01-01

    A monopole approximation to the confining potential is proposed. In this approximation spatially separated groups of quarks carry a definite total colour charge. The potentials which lead to the formation of gluon chains are discussed. The generalization of a (3,3bar) chain notion, studied by Tiktopoulos, to the case of arbitrary colour charges is given. It is argued that these generalized chains may be unstable with respect to splitting into a system of weakly interacting chains of the (3,3bar) type. A unified picture of the high energy hadronic collisions, based on the gluon chain notion and the monopole approximation is proposed. In the meson-meson sector this picture is equivalent to the topological approach. For the other processes it is similar to the approach of Rossi and Veneziano. However, it is argued that the introduction of the junction line into the quark frame is superfluous. The results are expressed in the language of the coloured dual diagrams which provide a generalization of those of Harari and Rosner. (author)

  14. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    International Nuclear Information System (INIS)

    Levegrün, Sabine; Pöttgen, Christoph; Wittig, Andrea; Lübcke, Wolfgang; Abu Jawad, Jehad; Stuschke, Martin

    2013-01-01

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N mets ) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV mets ) and of the individual metastasis planning target volume (PTV ind met ) were 8.7 ± 8.9 cm 3 (range, 1.3-35.5 cm 3 ) and 2.5 ± 4.5 cm 3 (range, 0.19-24.7 cm 3 ), respectively. Dose distributions in PTV mets and PTV ind met were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N mets was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV mets amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV ind met were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV mets (CN = 0.737 for PTV mets ≤4.32 cm 3 vs CN = 0.848 for PTV mets >4.32 cm 3 , P=.006), in contrast to N mets . The achieved dose conformity to PTV mets , assessed by both CN and PITV, was in all investigated volume strata

  15. Ward identities for amplitudes with reggeized gluons

    International Nuclear Information System (INIS)

    Bartles, J.; Vacca, G.P.

    2012-05-01

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  16. Soft gluon resummation for gluon-induced Higgs Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Harlander, Robert; Zirke, Tom [Fachbereich C, Bergische Universitaet Wuppertal (Germany); Kulesza, Anna; Theeuwes, Vincent [Institute for Theoretical Physics, WWU Muenster (Germany)

    2015-07-01

    We study the effect of soft gluon emission on the total cross section predictions for the gg → HZ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a ZH system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. The perturbative stability of the results is verified by including universal NNLL effects. We find that resummation significantly reduces the scale uncertainty of the gg → HZ contribution, which is the dominant source of perturbative uncertainty to ZH production. We use our results to evaluate updated numbers for the total inclusive cross section of associated pp → ZH production at the LHC. The reduced scale uncertainty of the gg → HZ component translates into a decrease of the overall scale error by about a factor of two.

  17. Baryonic decay of the J/psi and gluon spin

    International Nuclear Information System (INIS)

    Pallin, D.

    1985-04-01

    A study of the J/psi state of the charmomium (c antic state) was performed at the D.C.I. collider in Orsay with the DM2 detector. 9 millions of J/psi have been produced, corresponding to more than one half of the actual world statistics. The very simple mecanism of the e +- annihilation into baryon-antibaryon via the J/psi state, allows measurements of the gluon spin through the emitted baryon angular distribution. The analyse of the channels J/psi → p antip and Λ antiΛ, permits to obtain parameters for the angular distributions. These experimental values favour very clearly a vectorial gluon hypothesis, as postulated by the quantum Chromodynamics [fr

  18. Duality and multi-gluon scattering

    International Nuclear Information System (INIS)

    Mangano, M.; Parke, S.; Xu Zhan

    1988-01-01

    For the six-gluon scattering process we give explicit and simple expressions for the amplitude and its square. To achieve this we use an analogy with string theories to identify a unique procedure for writing the multi-gluon scattering amplitudes in terms of a sum of gauge invariant dual sub-amplitudes multiplied by an appropriate color (Chan-Paton) factor. The sub-amplitudes defined in this way are invariant under cyclic permutations, satisfy powerful identities which relate different non-cyclic permutations and factorize in the soft gluon limit, the two-gluon collinear limit and on multi-gluon poles. Also, to leading order in the number of colors these sub-amplitudes sum incoherently in the square of the full matrix element. The results contained here are important for Monte Carlo studies of multi-jet processes at hadron colliders as well as for understanding the general structure of QCD. (orig.)

  19. HUNTING THE QUARK GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear

  20. HUNTING THE QUARK GLUON PLASMA

    International Nuclear Information System (INIS)

    LUDLAM, T.; ARONSON, S.

    2005-01-01

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high

  1. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  2. Gluons from logarithmic slopes of F2 in the NLL approximation

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1994-02-01

    We make a critical, next-to-leading order, study of the accuracy of the ''Prytz'' relation, which is frequently used to extract the gluon distribution at small x from the logarithmic slopes of the structure function F 2 . We find that the simple relation is not generally valid in the HERA regime, but show that it is a reasonable approximation for gluons which are sufficiency singular at small x. (author). 9 refs, 3 figs

  3. Dilepton spectrum from quark-gluon plasma in second Born approximation

    International Nuclear Information System (INIS)

    Makhlin, A.N.

    1989-01-01

    The real time temperature Keldysh technique has been used to calculate the rate of dilepton emission from quark-gluon plasma in the first order with respect to strong coupling constant. This approximation us shown to be inconsistent. The radiative corrections turned to be of the same order as the contribution of real processes with gluons. Nevertheless the general properties inherent in dilepton emission from continuous media can be verified by measuring the lepton distribution inside the dilepton. 11 refs.; 2 figs

  4. Hadronic total cross-sections through soft gluon summation in impact parameter space

    International Nuclear Information System (INIS)

    Grau, A.

    1999-01-01

    IThe Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant α s is discussed, both for finite as well as singular, but integrable, α s . The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident

  5. Higgs as a gluon trigger

    International Nuclear Information System (INIS)

    Cipriano, P.; Dooling, S.; Grebenyuk, A.; Gunnellini, P.; Katsas, P.; Hautmann, F.; Oxford Univ.; Jung, H.; Antwerpen Univ.

    2013-08-01

    In the forthcoming high-luminosity phase at the LHC many of the most interesting QCD measurements so far become prohibitively difficult due to the high pile-up. We suggest a program of QCD measurements based on the observed Higgs boson which can be started now and can be carried through also in the large pile-up environment at high luminosity. It focuses on gluonic processes at high mass scales, and their distinctive QCD features compared to classic probes such as Drell-Yan. It explores the strong-interaction sector of the Standard Model both at high transverse momenta and at low transverse momenta, by investigating issues on gluon fusion processes which have never been addressed experimentally before. We discuss a few specific examples and present results of Monte Carlo simulations.

  6. Higgs as a gluon trigger

    Energy Technology Data Exchange (ETDEWEB)

    Cipriano, P.; Dooling, S.; Grebenyuk, A.; Gunnellini, P.; Katsas, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hautmann, F. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Oxford Univ. (United Kingdom). Dept. of Physics; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica

    2013-08-15

    In the forthcoming high-luminosity phase at the LHC many of the most interesting QCD measurements so far become prohibitively difficult due to the high pile-up. We suggest a program of QCD measurements based on the observed Higgs boson which can be started now and can be carried through also in the large pile-up environment at high luminosity. It focuses on gluonic processes at high mass scales, and their distinctive QCD features compared to classic probes such as Drell-Yan. It explores the strong-interaction sector of the Standard Model both at high transverse momenta and at low transverse momenta, by investigating issues on gluon fusion processes which have never been addressed experimentally before. We discuss a few specific examples and present results of Monte Carlo simulations.

  7. The gluon Sivers asymmetry measurements at COMPASS

    CERN Document Server

    Szabelski, Adam

    2018-01-01

    The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. As such, a nonzero Sivers effect for gluons could be a signature of their nonzero orbital angular momentum inside the nucleon. COMPASS has collected data of semi-inclusive deep inelastic scattering by impinging 160 GeV/$c$ muons on transversely polarised proton and deuteron targets. The gluon Sivers asymmetry is extracted from a high-$p_T$ hadron pair sample with the use of monte carlo simulations and the a neural network approach. The results of a similar analysis for a Collins-like asymmetry for gluons will also be given.

  8. The gluon Sivers asymmetry measurements at COMPASS

    CERN Document Server

    Szabelski, Adam

    2017-01-01

    The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. As such, a nonzero Sivers effect for gluons could be a signature of their nonzero orbital angular momentum inside the nucleon. COMPASS has collected data of semi-inclusive deep inelastic scattering by impinging 160 GeV/$c$ muons on transversely polarised proton and deuteron targets. The gluon Sivers asymmetry is extracted from a high-$p_T$ hadron pair sample with the use of monte carlo simulations and the a neural network approach. The results of a similar analysis for a Collins-like asymmetry for gluons will also be given.

  9. Soft gluon resummation in the infrared region and the Froissart bound

    CERN Document Server

    Pancheri, Giulia; Godbole, Rohini M; Srivastava, Yogendra N

    2010-01-01

    We describe the taming effect induced by soft gluon $k_t$-resummation on the rapid rise of QCD mini-jet contributions to the total cross-sections.This results from an eikonal model in which the rise of the total cross-section is due to mini-jet contribution. We perform the calculation with current Parton Density Functions (PDFs). The impact parameter distribution we use is obtained as the Fourier transform of the resummed $k_t$-distribution of soft gluons emitted from the initial state during the collision.The emission, which is energy dependent, destroys the initial collinearity of partons.In this model, the strong power-like rise due to the increasing number of low-x gluon collisions is tamed by the acollinearity induced by soft gluon kt-resummation down to zero gluon momenta. It explicitly links a singular soft gluon coupling in the infrared region to the behaviour dictated by the Froissart bound for the total cross-section. The model describes well both proton and photon processes at present accelerator e...

  10. Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    CERN Document Server

    Ageev, E S; Alexandrov, Yu A; Alexeev, G D; Amoroso, A; Badelek, B; Balestra, F; Ball, J; Baum, G; Bedfer, Y; Berglund, P; Bernet, C; Bertini, R; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Bychkov, V N; Cerini, L; Chapiro, A; Cicuttin, A; Colantoni, M L; Colavita, A A; Costa, S; Crespo, M L; Dalla Torre, S; Das-Gupta, S S; Dedek, N; De Masi, R; Denisov, O Yu; Dhara, L; Díaz, V; Dinkelbach, A M; Dolgopolov, A V; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dünnweber, W; Ehlers, J; Eversheim, P D; Eyrich, W; Fabro, M; Faessler, Martin A; Falaleev, V; Fauland, P; Ferrero, A; Ferrero, L; Finger, Miroslav H; Finger, M Jr; Fischer, H; Franz, J; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S G; Geyer, R; Giorgi, M; Gobbo, B; Görtz, S; Gorin, A M; Grajek, O A; Grasso, A; Grube, B; Grünemaier, A; Hannappel, J; Von Harrach, D; Hasegawa, T; Hedicke, S; Heinsius, F H; Hermann, R; Hess, C; Hinterberger, F; Von Hodenberg, M; Horikawa, N; Horikawa, S; D'Hose, N; Ijaduola, R B; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Iwata, T; Jahn, R; Janata, A; Joosten, R; Jouravlev, N I; Kabuss, E M; Kalinnikov, V; Kang, D; Karstens, F; Kastaun, W; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Khomutov, N V; Kisselev, Yu V; Klein, F; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Königsmann, K C; Konoplyannikov, A K; Konorov, I; Konstantinov, V F; Korentchenko, A S; Korzenev, A; Kotzinian, A M; Koutchinski, N A; Kowalik, K L; Kravchuk, N P; Krivokhizhin, V G; Krumshtein, Z; Kühn, R; Kunne, Fabienne; Kurek, K; Ladygin, M E; Lamanna, M; Leberig, M; Le Goff, J M; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Manuilov, I V; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Matsuda, T; Maksimov, A N; Medved, K S; Meyer, W; Mielech, A; Mikhailov, Yu V; Moinester, M A; Nahle, O; Nassalski, J P; Neliba, S; Neyret, D P; Nikolaenko, V I; Nozdrin, A A; Obraztsov, V F; Olshevskii, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pereira, H D; Peshekhonov, V D; Piragino, G; Platchkov, S; Platzer, K; Pochodzalla, J; Polyakov, V A; Popov, A A; Pretz, J; Procureur, S; Quintans, C; Ramos, S; Rebourgeard, P C; Reicherz, G; Reymann, J; Rith, K; Rondio, Ewa; Rozhdestvensky, A M; Sadovski, A B; Saller, E; Samoylenko, V D; Sandacz, A; Sans, M; Sapozhnikov, M G; Savin, I A; Schiavon, Paolo; Schill, C; Schmidt, T; Schmitt, H; Schmitt, L; Shevchenko, O Yu; Shishkin, A A; Siebert, H W; Sinha, L; Sissakian, A N; Skachkova, A N; Slunecka, M; Smirnov, G I; Sozzi, F; Srnka, A; Stinzing, F; Stolarski, M; Sugonyaev, V P; Sulc, M; Sulej, R; Takabayashi, N; Tchalishev, V V; Tessarotto, F; Teufel, A; Thers, D; Tkatchev, L G; Toeda, T; Tretyak, V I; Trousov, S; Varanda, M; Virius, M; Vlassov, N V; Wagner, M; Webb, R; Weise, E; Weitzel, Q; Wiedner, U; Wiesmann, M; Windmolders, R; Wirth, S; Wislicki, W; Zanetti, A M; Zaremba, K; Zhao, J; Ziegler, R; Zvyagin, A

    2006-01-01

    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2 = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.

  11. The three-gluon vertex of QCD

    International Nuclear Information System (INIS)

    Koller, K.; Zerwas, P.M.; Walsh, T.F.

    1978-12-01

    We show how the Q 2 evolution of gluon jets can be used to provide indirect but strong evidence for the 3 gluon vertex of QCD. We propose looking for this evolution in the QantiQ → 3G → hadrons decay of successive 1 3 S 1 quarkonium states. The results apply to other processes if G jets can be isolated. (orig.) [de

  12. The structure of the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    The gluon propagator has been calculated for quenched QCD in the Landau gauge at {beta} = 6.0 for volumes 16{sup 3} x 48 and 32{sup 3} x 64, and at {beta} 6.2 for volume 24{sup 3} x 48. The large volume and different lattice spacings allow us to identify and minimise finite volume and finite lattice spacing artefacts. We also study the tensor structure of the gluon propagator, confirming that it obeys the lattice Landau gauge condition.

  13. Describing gluons at zero and finite temperature

    International Nuclear Information System (INIS)

    Maas, A.

    2010-01-01

    Any description of gluons requires a well-defined gauge. This is complicated non-perturbatively by Gribov copies. A possible method-independent gauge definition to resolve this problem is presented and afterwards used to study the properties of gluons at any temperature. It is found that only chromo-electric properties reflect the phase transition. From these the gauge-invariant phase transition temperature is determined for SU(2) and SU(3) Yang-Mills theory independently. (author)

  14. Identified particles in quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Rybin, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1997-01-01

    A sample of about 1.4 million hadronic \\z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of \\kp, \\ko, \\p, \\l and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

  15. Soft probes of the quark gluon plasma in ATLAS

    CERN Document Server

    Wozniak, K W; The ATLAS collaboration

    2014-01-01

    Measurements of low-$p_{T}$ (< 5 GeV) particle production have provided valuable insight on the production and evolution of the quark-gluon plasma in Pb+Pb collisions at the LHC. In particular, measurements of elliptic and higher order collective flow imprinted on the azimuthal angle distributions of low-$p_{T}$ particles directly probe the strongly-coupled dynamics of the quark gluon plasma and test hydrodynamic model descriptions of its evolution. The large acceptance of detectors like ATLAS have made it possible to measure flow event-by-event and to determine the correlations between different harmonics. Recent measurements of low-$p_{T}$ particle production and multi-particle correlations in proton-lead collisions have shown features similar to the collective flow observed in Pb+Pb collisions. Results will be presented from a variety of single and multi-particle measurements in Pb+Pb and proton-Pb collisions that probe the collective dynamics of the quark gluon plasma and possibly provide evidence for ...

  16. Gluon density determination from open charm events at HERA

    International Nuclear Information System (INIS)

    Woudenberg, R. van; Ould-Saada, F.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Egli, S.

    1992-01-01

    We study some prospects of measuring the gluon density in the proton using charm events at HERA for the ep center of mass energy √s = 314 GeV. We invoke the QCD-improved boson-gluon fusion model and find the following cross-section: σ(ep → ecanti cX) ≅ O(0.6 μb). This cross-section would provide O(10 8 ) events/year, for an integrated luminosity of 100 pb -1 . We have investigated two traditional methods for tagging of charm, namely, D *± reconstruction using the process D *± → D 0 π ± → (K -+ π ± )π ± , and dileptonic decays of charmed hadrons (canti c → l + l - X). The inclusive cross-sections after full detector simulation are 10 3 pb and 10 2 pb, respectively. In both cases the background was strongly reduced. By using these events, the gluon distribution in the proton can be measured in the range 10 -3 ≤ x g ≤ 10 -1 . We conclude that an adequate discrimination among the present theoretical parametrizations can be achieved at HERA. (orig.)

  17. Experimental study of rapidity gaps in gluon jets

    CERN Document Server

    Gary, J W

    2003-01-01

    Gluon jets are selected from hadronic Z/sup 0/ decay events produced in e/sup +/e/sup -/ annihilations, collected with the OPAL detector at LEP. A subsample of these jets is identified which exhibit a large gap in the rapidity distribution of particles within the jet. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We test two QCD Monte Carlo programs which implement color reconnection: one in the Ariadne Monte Carlo and the other by Rathsman in the Pythia Monte Carlo. We find these models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and conclude that color reconnection as implemented in these models is disfavored. Further, we use our data on gluon jets with a rapidity gap to search for glueball-like objects in the leading part of those jets. We do not find any clear evidence for...

  18. Multiplicities of $\\pi^{0}$, $\\eta$, $K^{0}$ and of charged particles in quark and gluon jets

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon ...

  19. Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g → gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The ε-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/ε pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula

  20. Finding the 3-gluon vertex from 4-jet events in e+e- annihilation

    International Nuclear Information System (INIS)

    Bengtsson, M.

    1988-05-01

    Although the 3-gluon coupling is a necessary ingredient for QCD to be asymptotically free, conclusive experimental evidence is still lacking. We make here a comprehensive and systematic study of the possibilities of finding it in e + e - annihilation at the Z 0 resonance. Emphasis is put on observables of 4-jet events which are sensitive to the specific helicity structure of the processes g → gg and g → qanti q. These observables give a quantitative and qualitative difference between QCD and abelian models, making it straightforward to confirm the nonabelian nature of the theory of strong interactions. (orig.)

  1. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  2. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  3. Possibility of determining gluon polarization via polarized top pairs in gamma-proton scattering

    International Nuclear Information System (INIS)

    Atag, S.; Billur, A.A.

    2009-01-01

    We study the possibility for directly measuring the polarized gluon distribution in the process γp→t-bar t. It is shown that polarization asymmetry of the final top quarks is proportional to the gluon polarization. With available energy and luminosity, the collision of a polarized proton beam and a Compton backscattered photon beam can create polarized top quarks which carry the spin information of the process. Energy dependence and angular distributions of the polarization asymmetry of the top pairs has been discussed including statistical uncertainty.

  4. Quantum Simulations of Strongly Coupled Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.

    2013-01-01

    particles. This method has been successfully applied to strongly coupled electrodynamic plasmas (EMP). A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based on a very similar behavior observed in electrodynamic plasmas. We have done already the first calculation of the QGP equation of state, spatial and color pair distribution functions, diffusion coefficients and shear viscosity. The preliminary results has already been reported and discussed at the international conferences and meetings and are accepted for publications. (author)

  5. Gluon Bremsstrahlung in Weakly-Coupled Plasmas

    International Nuclear Information System (INIS)

    Arnold, Peter

    2009-01-01

    I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.

  6. Gluon bremsstrahlung and elastic scattering of hadrons

    International Nuclear Information System (INIS)

    Povh, B.

    2001-01-01

    The differential and the total cross sections in high energy hadron-proton interactions give a beautiful insight in the low Q 2 structure of the nucleon. The cross section is composed of two parts: a large energy independent part corresponding to the interaction of the valence quark with the target without gluon radiation and an energy dependent part caused by gluon bremsstrahlung. The gluons are located at small transverse distances of about 0.3 fm from the valence quarks. The model with two scales, the size of the hadron (R 2 ∼ 1 fm 2 ) and the size of the gluonic cloud (r 0 2 ∼ 0.1 fm 2 ), correctly predicts the total and the differential cross sections and the behaviour of diffractive dissociation in hadronic and deep inelastic events. (orig.)

  7. Constituent gluons and the static quark potential

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.

  8. Quark vs Gluon Jet Tagging at ATLAS

    CERN Document Server

    Rubbo, Francesco; The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.

  9. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  10. Experimental properties of gluon and quark jets from a point source

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should ap...

  11. Experimental studies of unbiased gluon jets from $e^{+}e^{-}$ annihilations using the jet boost algorithm

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the en...

  12. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Kun Shi Zhang; Mei Ling Yu; Lian Shou Liu

    2002-01-01

    The 3-jet events produced in e/sup +/e/sup -/ collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, /sub gluon///sub quark/, has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH, and DELPHI Collaborations, indicating that the method proposed to select gluon and quark jets from ...

  13. Gluon fragmentation in T(1S) decays

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1983-05-01

    In T(1S) decays most observables (sphericity, charged multiplicity, photonic energy fraction, inclusive spectra) can be understood assuming that gluons fragment like quarks. New results from LENA use the (axis-independent) Fox-Wolfram moments for the photonic energy deposition. Continuum reactions show 'standard' Field-Feynman fragmentation. T(1S) decays show a significant difference in the photonic energy topology. It is more isotropic than with the Field-Feynman fragmentation scheme. Gluon fragmentation into isoscalar mesons (a la Peterson and Walsh) is excluded. But if one forces the leading particle to be isoscalar, one gets good agreement with the data. (orig.)

  14. Effects of gluon radiation in hadronic collisions

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1989-10-01

    In this talk I discuss effects of gluon emission in soft collisions, the so-called 'soft radiation' in the Fritjof model. It is seen e.g. that the pT in the fragmentation regions, the seagull effect, increases with energy in fair agreement with experiments. I also discuss the content of strange and heavier quarks in high-pT gluon jets. Within the dipole scheme for QCD cascades on finds a larger production of heavier quarks than in previous approaches. Qualitative agreement with data is obtained for the K/π ratio and D meson production

  15. Quark-gluon plasma, and strangeness

    International Nuclear Information System (INIS)

    Rafelski, Johann; Letessier, Jean

    2002-01-01

    In order to recognize the new form of matter created at RHIC and SPS as the deconfined quark-gluon plasma state (QGP), we need to understand the expected properties of this phase near to the conditions of its formation and disintegration. Thus, we first develop a model of QGP considering the constrains arising from QCD properties and lattice results, and explore its properties. In the second part, we describe the kinetic theory of strangeness production in the QGP phase. We show that gluon fusion dominate and evaluate the degree of equilibration expected at RHIC

  16. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  17. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  18. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  19. Analysis of the logarithmic slope of F2 from the Regge gluon density behavior at small x

    International Nuclear Information System (INIS)

    Boroun, G. R.

    2010-01-01

    We study the accuracy of the Regge behavior of the gluon distribution function for an approximate relation that is frequently used to extract the logarithmic slopes of the structure function from the gluon distribution at small x. We show that the Regge behavior analysis results are comparable with HERA data and are also better than other methods that expand the gluon density at distinct points of expansion. We also show that for Q 2 = 22.4 GeV 2 , the x dependence of the data is well described by gluon shadowing corrections to the GLR-MQ equation. The resulting analytic expression allows us to predict the logarithmic derivative ∂F 2 (x, Q 2 )/∂lnQ 2 and to compare the results with the H1 data and a QCD analysis fit with the MRST parameterization input.

  20. A next-to-leading determination of the singlet axial charge and the polarized gluon content of the nucleon

    CERN Document Server

    Ball, R D; Ridolfi, G

    1996-01-01

    We perform a full next-to-leading analysis of the the available experimental data on the polarized structure function g_1 of the nucleon, and give a precise determination of its singlet axial charge together with a thorough assessment of the theoretical uncertainties. We find that the data are now sufficient to separately determine first moments of the polarized quark and gluon distributions and show in particular that the gluon contribution is large and positive.

  1. Squeezed colour states in gluon jet

    Science.gov (United States)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  2. Gluon gas viscosity in nonperturbative region

    International Nuclear Information System (INIS)

    Il'in, S.V.; Mogilevskij, O.A.; Smolyanskij, S.A.; Zinov'ev, G.M.

    1992-01-01

    Using the Green-Kubo-type formulae and the cutoff model motivated by Monte Carlo lattice gluodynamics simulations we find the temperature behaviour of shear viscosity of gluon gas in the region of deconfinement phase transition. 22 refs.; 1 fig. (author)

  3. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...

  4. Inflating metastable quark-gluon plasma universe

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Kaempfer, B.; Sysoev, V.M.

    1990-01-01

    We show within the Friedmann model with the equation of state p(T)=aT 4 -AT that our universe has expanded exponentially when it was in a metastable quark-gluon plasma state. The scale factor during that epoch increased by many orders of magnitude. 13 refs.; 5 figs

  5. Bosonization with inclusion of the gluon condensate

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1994-01-01

    The effects of the gluon condensate on the quark condensate and on masses and coupling constants of composite mesons are discussed within a QCD-motivated Nambu-Jona-Lasinio model for zero temperature as well as for the case of finite temperature and baryon number density. (orig.)

  6. Quark-gluon plasma (Selected Topics)

    International Nuclear Information System (INIS)

    Zakharov, V. I.

    2012-01-01

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  7. Polarized photons from quark-gluon plasma

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Snigirev, A.M.; Zinov'ev, G.M.

    1988-01-01

    The degree of polarization of magnetic bremsstrahlung radiation resulting from the interaction of escaping quarks with a collective confining color field is calculated. For a wide rapidity interval the angle at which the photon is registered and constitutes about 25%. This could signal about quark-gluon plasma formation

  8. Exploring Quarks, Gluons and the Higgs Boson

    Science.gov (United States)

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  9. Soft gluon contributions to hard processes

    International Nuclear Information System (INIS)

    Ciafaloni, M.

    1981-10-01

    The main concern of this paper is in trying to elucidate the origin of large QCD perturbative corrections and explain how to deal with them to all orders. They come essentially from the phase space regions close to the kinematical boundary of a hard process, in which one or many gluons become soft

  10. Searching for the quarks and gluons plasma

    International Nuclear Information System (INIS)

    Gerschel, C.; Kluberg, L.

    1989-01-01

    Some investigations involving quark matter, at CERN, are discussed. The CERN available oxygen and sulfur beams, with energy about 200 GeV/nuclei, allow the obtention of high energy densities, never reached before. The possibilities of investigating (at CERN) the quarks and gluons plasma are considered. The first and unexpected results obtained from the NA38 experiment are overviewed [fr

  11. Gluon 2- and 3-Point Correlation Functions on the Lattice

    OpenAIRE

    Parrinello, Claudio

    1993-01-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex.

  12. 2- and 3-point gluon correlation functions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Dept. of Physics, Univ. of Edinburgh (United Kingdom))

    1994-04-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex. (orig.)

  13. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  14. Forward gluon production in hadron-hadron scattering with Pomeron loops

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, E. [CEA Saclay, Service de Physique Th orique (DSM/SPhT), Unite de recherche associ e au CNRS (URA D2306), 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Marquet, C.; Soyez, G. [CEA Saclay, Service de Physique Th orique (DSM/SPhT), Unite de recherche associ e au CNRS (URA D2306), 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Liege Univ., Fundamental Theoretical Physics Group (Belgium)

    2006-07-01

    We discuss new physical phenomena expected in particle production in hadron-hadron collisions at high energy, as a consequence of Pomerons loop effects in the evolution equations for the Color Glass Condensate. We focus on gluon production in asymmetric, 'dilute-dense', collisions: a dilute projectile scatters off a dense hadronic target, whose gluon distribution is highly evolved. This situation is representative for particle production in proton-proton collisions at forward rapidities (say, at LHC) and admits a dipole factorization similar to that of deep inelastic scattering (DIS). We show that at sufficiently large forward rapidities, where the Pomerons loop effects become important in the evolution of the target wavefunction, gluon production is dominated by 'black spots' (saturated gluon configurations) up to very large values of the transverse momentum, well above the average saturation momentum in the target. In this regime, the produced gluon spectrum exhibits diffusive scaling, so like DIS at sufficiently high energy. (authors)

  15. Deciphering the quark-gluon structure of the photon in electronγ collisions

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gonzalez-Garcia, M.C.; Halzen, F.; Novaes, S.F.

    1992-11-01

    The capability of an electron γ collider to unravel the hadronic content of the photon is investigated. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. It is showed that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. It is illustrated their power for studying the parton distribution of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-γ pairs, and heavy quark pairs are produced. (author)

  16. Diffractive J/ψ photoproduction as a probe of the gluon density

    International Nuclear Information System (INIS)

    Ryskin, M.G.; Roberts, R.G.; Martin, A.D.; Levin, E.M.

    1995-11-01

    We use perturbative QCD beyond the leading Ln Q 2 approximation, to show how measurements of diffractive J/ψ production at HERA can provide a sensitive probe of the gluon density of the proton at small values of Bjorken x. We estimate both the effect of the relativistic motion of the c and c within the J/ψ and of the rescattering of the cc quark pair on the proton. We find that the available data for diffractive J/ψ photoproduction can discriminate between the gluon distributions of the most recent sets of partons. (author). 18 refs., 9 figs., 1 tab

  17. The Mellin transform technique for the extraction of the gluon density

    International Nuclear Information System (INIS)

    Graudenz, D.

    1995-06-01

    A new method is presented to determine the gluon density in the proton from jet production in deeply inelastic scattering. By using the technique of Mellin transforms not only for the solution of the scale evolution equation of the parton densities but also for the evaluation of scattering cross sections, the gluon density can be extracted in next-to-leading order QCD. The method described in this paper is, however, more general, and can be used in situations where a repeated fast numerical evaluation of scattering cross sections for varying parton distribution functions is required. (orig.)

  18. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1990-08-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: ''intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and ''extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic ''bound-valence'' and extrinsic ''non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs

  19. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1991-01-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: 'intrinsic' contributions, which are due to the direct scattering on the bound-state constituents, and 'extrinsic' contributions, which are derived from particles created in the collision. In this talk, I discuss several aspects of deep inealstic structure functions in which the bound-state structure of the proton plays a crucial role: (1) the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; (2) the separation of the quark structure function of the proton into intrinsic 'bound-valence' and extrinsic 'non-valence' components which takes into account the Pauli principle; (3) the properties and identification of intrinsic heavy quark structure functions; and (4) a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. (orig.)

  20. The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders

    NARCIS (Netherlands)

    Demartin, Federico; Forte, Stefano; Mariani, Elisa; Rojo, Juan; Vicini, Alessandro

    2010-01-01

    We present a systematic study of uncertainties due to parton distributions and the strong coupling on the gluon-fusion production cross section of the Standard Model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08

  1. Impact of gluon polarization on Higgs boson plus jet production at the LHC

    NARCIS (Netherlands)

    Boer, Daniel; Pisano, Cristian

    2015-01-01

    In this paper we consider Higgs boson plus jet production as a process that is sensitive to the linear polarization of gluons inside the unpolarized protons of the LHC. The leading order expressions for the transverse momentum distribution of the Higgs boson plus jet pair are provided in terms of

  2. Experimental properties of gluon and quark jets from a point source

    International Nuclear Information System (INIS)

    Abbiendi, G.; Ackerstaff, K.; Alexander, G.

    1999-01-01

    Gluon jets are identified in hadronic Z 0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large p T , we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29±0.09(stat.)±0.15(syst.), in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, C A /C F =2.25. The intervals used to define soft particles and large p T for this result, p T < 3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data. (orig.)

  3. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  4. On positivity of parton distributions

    International Nuclear Information System (INIS)

    Altarelli, G.; Forte, S.; Ridolfi, G.

    1998-01-01

    We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution. (orig.)

  5. On positivity of parton distributions

    CERN Document Server

    Altarelli, Guido; Ridolfi, G; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni

    1998-01-01

    We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution.

  6. Impact of momentum anisotropy and turbulent chromo-fields on thermal particle production in quark-gluon-plasma medium

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Vinod [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India); Sreekanth, V. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India)

    2017-06-15

    Momentum anisotropy present during the hydrodynamic evolution of the Quark-Gluon Plasma (QGP) in RHIC may lead to the chromo-Weibel instability and turbulent chromo-fields.The dynamics of the quark and gluon momentum distributions in this case is governed by an effective diffusive Vlasov equation (linearized). The solution of this linearized transport equation for the modified momentum distribution functions lead to the mathematical form of non-equilibrium momentum distribution functions of quarks/antiquarks and gluons. The modifications to these distributions encode the physics of turbulent color fields and momentum anisotropy. In the present manuscript, we employ these distribution functions to estimate the thermal dilepton production rate in the QGP medium. The production rate is seen to have appreciable sensitivity to the strength of the anisotropy. (orig.)

  7. Review of the helicity formalism

    International Nuclear Information System (INIS)

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  8. Soft gluon approach for diffractive photoproduction of J/ψ

    International Nuclear Information System (INIS)

    Ma, J.P.; Xu Jiasheng

    2002-01-01

    We study diffractive photoproduction of J/ψ by taking the charm quark as a heavy quark. A description of nonperturbative effect related to J/ψ can be made by using NRQCD. In the forward region of the kinematics, the interaction between the cc-bar-pair and the initial hadron is due to exchange of soft gluons. The effect of the exchange can be studied by using the expansion in the inverse of the quark mass m c . At the leading order we find that the nonperturbative effect related to the initial hadron is represented by a matrix element of field strength operators, which are separated in the moving direction of J/ψ in the spacetime. The S-matrix element is then obtained without using perturbative QCD and the results are not based on any model. Corrections to the results can be systematically added. Keeping the dominant contribution of the S-matrix element in the large energy limit we find that the imaginary part of the S-matrix element is related to the gluon distribution for x→0 with a reasonable assumption, the real part can be obtained with another approximation or with dispersion relation. Our approach is different than previous approaches and also our results are different than those in these approaches. The differences are discussed in detail. A comparison with experiment is also made and a qualitative agreement is found. (author)

  9. Soft gluon resummation formulae for hard proton processes in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Jones, H.F.

    1980-01-01

    We briefly review the treatment of leading logarithmic behaviour of the parton distributions in QCD within the Bethe-Salpeter framework by analysing directly parton hadron Green functions in the limit of parton four-momentum k 2 → - infinitely in a special light-like gauge involving a spectator vector. This technique allows us to derive the factorization of parton probabilities in leading logarithmic order in QCD in the various inclusive processes involving a single short-distance scale. The proof requires us to show that the use of planar gauges eta = psub(A) + psub(B) + ..., where psub(A), psub(B)... are the observed hadron momenta, reduces to choosing the appropriate light-like gauge for each hadron-parton BS channel, after demonstrating a Bloch-Nordsieck cancellation of the real and virtual soft left-over gluons. In the case where two large momentum scales appear, by restricting the transverse phase space into which the gluons are radiated, we derive the double logarithmic eikonal renormalization of the hard scattering formula of the type proposed recently by Parisi and Petronzio. (orig.)

  10. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Edinburgh Univ. (United Kingdom). Tait Inst.; Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano (Italy); Marzani, Simone [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Genova (Italy)

    2013-03-15

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in {alpha}{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  11. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2013-01-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result

  12. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, England (United Kingdom); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-09-21

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  13. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Marzani, Simone

    2013-03-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  14. The structure of gluon radiation in QCD

    International Nuclear Information System (INIS)

    Parke, S.; Mangano, M.

    1989-08-01

    For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processes. Also, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD. 16 refs., 3 figs., 1 tab

  15. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  16. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  17. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  18. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  19. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  20. Physics of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Polonyi, J.; Institut National de Physique Nucleaire et de Physique des Particules; Lorand Eoetvoes Univ., Budapest

    1995-01-01

    Some features of the high temperature gluonic matter, such as the breakdown of the fundamental group symmetry by the kinetic energy, the screening of test quarks by some unusual gluon states and the explanation of the absence of isolated quarks in the vacuum without the help of infinities are presented in this talk. Special attention is paid to separate the dynamical input inferred from the numerical results of lattice gauge theory from the kinematics. (author)

  1. The structure of gluon radiation in QCD

    International Nuclear Information System (INIS)

    Parke, S.; Mangano, M.

    1990-01-01

    For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. Here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processess. Finally, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD

  2. Soft gluon emission in coloured quark scattering

    International Nuclear Information System (INIS)

    Frenkel, J.; Meuldemans, R.; Mohammad, I.; Taylor, J.C.

    1977-01-01

    In order to investigate the infrared behaviour of non-Abelian gauge theories the leading logarithms in the bremsstrahlung of two soft gluons by a coloured quark scattered in an external colourless potential have been calculated. In the calculations only diagrams containing exactly one Yang-Mills vertex have been used alongside with the dimensional infrared regularization. An expression is obtained exhibiting a crucial difference between QCD and QED

  3. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    Oprisa, D.

    2006-05-01

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  4. Hadronization of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Mueller, B.; Sano, M.; Sato, H.; Schaefer, A.

    1986-11-01

    We construct a model for hadronization of the quark-gluon plasma, based on the relativistic coalescence model. We relate the coalescence amplitude to the one-particle Wigner function for quarks in the plasma. The relation between the Wigner function and the nucleon structure function is pointed out. We derive explicit expressions for the production of mesons and baryons in the framework of the relativistic harmonic oscillator model of hadronic structure. (author)

  5. Signatures of quark-gluon plasma production

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1985-01-01

    A critical analysis of a variety of proposed signatures for quark-gluon formation in ultrarelativistic nuclear collisions is given. The authors emphasize that longitudinal growth rather than the nuclear radius controls the time scales for expansion. The author pointed out the qualitative difference of the evolution of the plasma produced in the stopping regime E approx. 10 GeV/nucleon and the scaling regime E > 1 TeV/nucleon. This difference reflects itself in the the rmal profile function

  6. The gluon propagator in momentum space

    International Nuclear Information System (INIS)

    Bernard, C.; Soni, A.

    1992-01-01

    We consider quenched QCD on a 16 3 x40 lattice at β=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others

  7. Quark-gluon mixing in scalar mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained

  8. The hadron to quark/gluon transition

    International Nuclear Information System (INIS)

    Brown, G.E.; Bethe, H.A.; Pizzochero, P.M.

    1991-01-01

    In this paper we are concerned with the hadron to quark/gluon transition. We describe the equilibrium states of hadronic matter by a Hagedorn spectrum; introducing scaling masses, as dictated by the restoration of chiral invariance with increasing temperature, we show that in the chiral SU(2) f limit there is a maximum hadron temperature (T H ) max ≅ 128 MeV. Since the quark/gluon perturbative phase involves restoration of conformal invariance, we take the bag constant to be the conformal anomaly, i.e. the gluon condensate. The stability condition P QG > 0 for the pressure requires that there is a minimum temperature; we find (T QG ) min ≅ 172 MeV for SU(2) f . According to the simple Hagedorn model, there appears to be a region of temperature between (T H ) max and (T QG ) min in which no admissible equilibrium states exist. Since the two phases cannot exist at a common temperature, in this model there is no QCD phase transition. (orig.)

  9. Quark and gluon condensate in vacuum

    International Nuclear Information System (INIS)

    Vajnshtejn, A.I.; Zakharov, V.I.; Shifman, M.A.

    1979-01-01

    The mechanism of quark confinement has been reviewed. The fact that coloured particles in a free state cannot be observed is connected with specific properties of vacuum in quantum chromodynamics. The basic hypothesis consists in the existence of vacuum fields, quark and gluon condensates, which affect the coloured objects. The vacuum transparent relative to noncharged ''white'' states serves as a source of the force acting upon the coloured particles. It has been a sucess to examine strictly the action of the vacuum fields on quarks when the distance between them is relatively small and the force of the vacuum fields on quarks is relatively small too. It is shown that the interaction with the vacuum fields manifests itself earlier than the forces connected with the gluon exchange do. It is assumed that the vacuum condensate of quarks and gluons and its relation to properties of resonances and to the bag model exist in reality. The dispersion sum rules are used for calculating masses and lepton widths of resonances

  10. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  11. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  12. Dynamical gluon mass in the instanton vacuum model

    Science.gov (United States)

    Musakhanov, M.; Egamberdiev, O.

    2018-04-01

    We consider the modifications of gluon properties in the instanton liquid model (ILM) for the QCD vacuum. Rescattering of gluons on instantons generates the dynamical momentum-dependent gluon mass Mg (q). First, we consider the case of a scalar gluon, no zero-mode problem occurs and its dynamical mass Ms (q) can be found. Using the typical phenomenological values of the average instanton size ρ = 1 / 3 fm and average inter-instanton distance R = 1 fm we get Ms (0) = 256 MeV. We then extend this approach to the real vector gluon with zero-modes carefully considered. We obtain the following expression Mg2 (q) = 2 Ms2 (q). This modification of the gluon in the instanton media will shed light on nonperturbative aspect on heavy quarkonium physics.

  13. Waggawagga-CLI: A command-line tool for predicting stable single α-helices (SAH-domains, and the SAH-domain distribution across eukaryotes.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAH-domains function as rigid connectors and constant force springs between structural domains, and can provide contact surfaces for protein-protein and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are monomeric and stable in polar solutions, characteristics which distinguish them from coiled-coil domains and intrinsically disordered regions. Although the number of reported SAH-domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic genomes are still missing. Here, we present Waggawagga-CLI, a command-line tool for predicting and analysing SAH-domains in protein sequence datasets. Using Waggawagga-CLI we predicted SAH-domains in 24 datasets from eukaryotes across the tree of life. SAH-domains were predicted in 0.5 to 3.5% of the protein-coding content per species. SAH-domains are particularly present in longer proteins supporting their function as structural building block in multi-domain proteins. In human, SAH-domains are mainly used as alternative building blocks not being present in all transcripts of a gene. Gene ontology analysis showed that yeast proteins with SAH-domains are particular enriched in macromolecular complex subunit organization, cellular component biogenesis and RNA metabolic processes, and that they have a strong nuclear and ribonucleoprotein complex localization and function in ribosome and nucleic acid binding. Human proteins with SAH-domains have roles in all types of RNA processing and cytoskeleton organization, and are predicted to function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskeletal protein binding. Waggawagga-CLI allows the user to adjust the stabilizing and destabilizing contribution of amino acid interactions in i,i+3 and i,i+4 spacings, and provides extensive flexibility for user-designed analyses.

  14. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  15. Thermal radiation from an evolving viscous quark gluon plasma

    International Nuclear Information System (INIS)

    Mitra, Sukanya; Mohanty, Payal; Sarkar, Sourav; Alam, Jan-E

    2013-01-01

    The effects of viscosity on the space-time evolution of quark gluon plasma produced in nuclear collisions at relativistic heavy ion collider energies have been studied. The entropy generated due to the viscous motion of the fluid has been taken into account in constraining the initial temperature by the final multiplicity (measured at the freeze-out point). The viscous effects on the photon spectra has been introduced consistently through the evolution dynamics and phase space factors of all the participating partons/hadrons in the production process. In contrast to some of the recent calculations the present work includes the contribution from the hadronic phase. A small change in the transverse momentum (p T ) distribution of photons is observed due to viscous effects. (author)

  16. Semirelativistic potential model for three-gluon glueballs

    International Nuclear Information System (INIS)

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2008-01-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Our results are in good agreement with other approaches and lattice calculation for the odderon trajectory but differ strongly from lattice in the J +- sector. We propose a possible explanation for this problem.

  17. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  18. The Theory of Quark and Gluon Interactions

    CERN Document Server

    Ynduráin, Francisco J

    2006-01-01

    F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.

  19. Gluon fragmentation into 3 PJ quarkonium

    International Nuclear Information System (INIS)

    Ma, J.P.

    1995-01-01

    The functions of the gluon fragmentation into 3 P j quarkonium are calculated to order α 2 s . With the recent progress in analysing quarkonium systems in QCD it is possible show how the so called divergence in the limit of the zero-binding energy, which is related to P-wave quarkonia, is treated correctly in the case of fragmentation functions. The obtained fragmentation functions satisfy explicitly at the order of α 2 s the Altarelli-Parisi equation and when z → 0 they behave as z -1 as expected. 19 refs., 7 figs

  20. Quarks, gluons, colour: facts or fiction?

    International Nuclear Information System (INIS)

    Buchholz, D.

    1996-01-01

    A general method is presented that allows one to determine from the local gauge invariant observables of a quantum field theory the underlying particle and symmetry structures appearing at the lower (ultraviolet) end of the spatio-temporal scale. Particles that are confined to small scales, i.e. do not appear in the physical spectrum, can be uncovered in this way without taking recourse to gauge fields or indefinite metric spaces. In this way notions such as quark, gluon, colour symmetry and confinement acquire a new and intrinsic meaning which is stable under gauge or duality transformations. The method is illustrated by the example of the Schwinger model. (orig.)

  1. Hydrodynamics of quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1986-06-01

    This paper reviews some aspects of the hydrodynamics of quark-gluon plasmas. Various stages of ultra-relativistic heavy ion collisions are described. Several estimates of the maximum energy density expected to be achieved in these collisions are compared. Discontinuities which may be induced in the hydrodynamic flow by a phase transition are described and a convenient numerical method designed to deal with such discontinuous flows is briefly presented. Finally, the correlations between particle transverse momenta and multiplicities are analyzed and one discusses to which extent these correlations could signal the occurrence of a phase transition in heavy ion collisions

  2. Effective gluon operators and neutron dipole moment

    International Nuclear Information System (INIS)

    Bigi, I.; Ural'tsev, N.G.

    1991-01-01

    The role of the purely gluon CP odd six-dimension effective arising in various CP-breaking models is discussed. This operators of most interest in the nonminimal Higgs sector models, the right W models and supersymmetric theories, where it may induce the neutron dipole moment at the level of the experimental restriction. The method for evaluating the magnitude d n is proposed and the reasons are given in favor that the original Weiberg's estimate based on the naive Dimensional Analysis is overdone significantly. The Peccei -Quinn mechanism, impact on the magnitude of d n , which generally may be very essential, is discussed

  3. Electric and magnetic properties of hot gluons

    International Nuclear Information System (INIS)

    Hansson, T.H.; Zahed, I.

    1987-01-01

    The dielectric constant ε and magnetic permeability μ for gluon plasma are calculated from the one-loop gauge-invariant effective action. The real parts are gauge-fixing independent and agree with earlier work. The imaginary part of μ/sup -1/ is zero in any covariant background-field gauge, while the imaginary part of ε is gauge-fixing dependent and negative definite. This result indicates that there is no consistent perturbative description of gluonic plasmons on scale ≥(g 2 T)/sup -1/

  4. The quark gluon plasma; Le plasma de quarks et de gluons

    Energy Technology Data Exchange (ETDEWEB)

    Granier de Cassagnac, R. [Ecole Polytechnique, Lab. Leprince-Ringuet, 91 - Palaiseau (France)

    2010-05-15

    The quark-gluon plasma (QGP) is a state of matter in which the universe was expected to be a few micro-seconds after the big-bang. Violent collisions of heavy ions are supposed to re-create this state in particle accelerators. Numerous signatures of this fugacious state have already been observed at the RHIC (relativistic heavy ion collider). The first evidence of the violence of collisions is the number of generated particles: about 6000 per collision, mostly hadrons. This figure seems high but in fact is less than theoretically expected and is the first sign of the formation of a QGP that saturates the density of gluons. Another sign, observed at the RHIC is the damping of the particle jets that are produced in the collision. This damping is consistent with the crossing of a medium whose density is so high that it can not be made of hadrons but of partons. In the RHIC experiments the collective behaviour of quarks and gluons shows that they are strongly interacting with one another. This fact supports the idea that the QGP is more a perfect liquid rather than an ideal gas in which quarks and gluons move freely. (A.C.)

  5. Intensity-Modulated Radiotherapy (IMRT) vs Helical Tomotherapy (HT) in Concurrent Chemoradiotherapy (CRT) for Patients with Anal Canal Carcinoma (ACC): an analysis of dose distribution and toxicities

    International Nuclear Information System (INIS)

    Yeung, Rosanna; McConnell, Yarrow; Warkentin, Heather; Graham, Darren; Warkentin, Brad; Joseph, Kurian; Doll, Corinne M

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) have been adopted for radiotherapy treatment of anal canal carcinoma (ACC) due to better conformality, dose homogeneity and normal-tissue sparing compared to 3D-CRT. To date, only one published study compares dosimetric parameters of IMRT vs HT in ACC, but there are no published data comparing toxicities. Our objectives were to compare dosimetry and toxicities between these modalities. This is a retrospective study of 35 ACC patients treated with radical chemoradiotherapy at two tertiary cancer institutions from 2008–2010. The use of IMRT vs HT was primarily based on center availability. The majority of patients received fluorouracil (5-FU) and 1–2 cycles of mitomycin C (MMC); 2 received 5-FU and cisplatin. Primary tumor and elective nodes were prescribed to ≥54Gy and ≥45Gy, respectively. Patients were grouped into two cohorts: IMRT vs HT. The primary endpoint was a dosimetric comparison between the cohorts; the secondary endpoint was comparison of toxicities. 18 patients were treated with IMRT and 17 with HT. Most IMRT patients received 5-FU and 1 MMC cycle, while most HT patients received 2 MMC cycles (p < 0.01), based on center policy. HT achieved more homogenous coverage of the primary tumor (HT homogeneity and uniformity index 0.14 and 1.02 vs 0.29 and 1.06 for IMRT, p = 0.01 and p < 0.01). Elective nodal coverage did not differ. IMRT achieved better bladder, femoral head and peritoneal space sparing (V30 and V40, p ≤ 0.01), and lower mean skin dose (p < 0.01). HT delivered lower bone marrow (V10, p < 0.01) and external genitalia dose (V20 and V30, p < 0.01). Grade 2+ hematological and non-hematological toxicities were similar. Febrile neutropenia and unscheduled treatment breaks did not differ (both p = 0.13), nor did 3-year overall and disease-free survival (p = 0.13, p = 0.68). Chemoradiotherapy treatment of ACC using IMRT vs HT results in differences in dose homogenity and

  6. Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: a phenomenological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Martins, L.A.S.; Sauter, W.K. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)

    2016-02-15

    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken-x variable and low values of the hard scale Q{sup 2}. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γh cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q{sup 2}. (orig.)

  7. Proton-proton elastic scattering with massive gluons

    International Nuclear Information System (INIS)

    Sauter, Werner K.; Ducati, M.B. Gay

    2001-01-01

    In this contribution different approaches to generate a gluon mass are discussed. More specially a recent result for the gluon propagator with a dynamical mass, proposal by Gorbar and Natale, is used in connection with the Landshoff-Nachtmann model for the Pomeron to describe the elastic differential cross section for pp scattering, with good agreement. (author)

  8. Differences between quark and gluon jets as seen at LEP

    International Nuclear Information System (INIS)

    Tasevsky, M.

    2001-01-01

    The differences between quark and gluon jets are studied using LEP results on jet widths, scale dependent multiplicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the observed differences stem primarily from the different quark and gluon colour factors

  9. Differences between Quark and Gluon jets as seen at LEP

    CERN Document Server

    Tasevsky, Marek

    2001-01-01

    The differences between quark and gluon jets are studied using LEP results on jet widths, scale dependent multiplicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the observed differences stem primarily from the different quark and gluon colour factors.

  10. Dynamical instabilities in quark-gluon plasma with hard jet

    International Nuclear Information System (INIS)

    Pavlenko, O.P.

    1990-01-01

    The dynamical instabilities, whose development can be expected under the hard jet propagating through the quark-gluon plasma, are analyzed. The possible signals of the quark-gluon plasma formation in ultrarelativistic nuclear collisions connected with the development of the plasma-jet instabilities are discussed. 10 refs

  11. Gluon condensate from lattice caculations: SU(3) pure gauge theory

    International Nuclear Information System (INIS)

    Kripfganz, J.

    1981-01-01

    A short distance expansion of Wilson loops is used to define and isolate vacuum expectation values of composite gluon operators. It is applied to available lattice Monte Carlo data for SU(3) pure gauge theory. The value obtained for the gluon condensate is consistent with the ITEP estimate. (author)

  12. The Mixed Quark-Gluon Condensate from the Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; LU Xiao-Fu; WANG Fan; ZHAO En-Guang

    2002-01-01

    The mixed quark-gluon condensate from the global color symmetry model is derived. It is shown that themixed quark-gluon condensate depends explicitly on the gluon propagator. This interesting feature may be regarded asan additional constraint on the model of gluon propagator. The values of the mixed quark-gluon condensate from someansatz for the gluon propagator are compared with those determined from QCD sum rules.

  13. Equation of state of quasi-free gluon gas

    International Nuclear Information System (INIS)

    Chakrabarty, Somenath; Syam, Debapriyo

    1993-01-01

    The object of this work is to derive an equation of state for a system of gluons beyond the deconfining temperature (∼200 MeV) with phenomenological applications in mind. Our starting point is the relativistic virial theorem. We assume that the non-Abelian nature of QCD (especially the confirming gluon-gluon interaction), as far as the gluon gas is concerned, can be accounted for by postulating a bag pressure (B), while the residual interaction among the gluons can be treated as if the problem is Abelian. Near the 'critical' temperature the residual interactions are seen to play an important role. Also the Stefan-Boltzmann constant is required to be replaced by an effective constant having a somewhat smaller value. (Author)

  14. Selection of Photon Gluon Fusion Events in DIS

    International Nuclear Information System (INIS)

    Kowalik, K.; Rondio, E.; Sulej, R.; Zaremba, K.

    2001-01-01

    A selection of the Photon Gluon Fusion (PGF) process with light quarks for deep inelastic scattering events is presented. This process is directly sensitive to gluon polarization and our goal is to find out the most effective selection on a sample of events simulated for the SMC experiment. We compare two general multi-class classification methods - Bayes method and neural network with a conventional selection procedure. The neural network algorithm presented here is a modification of method belonging to the family of directional minimization algorithms. This method is convenient and effective for photon gluon fusion selection and determination of gluon polarization. Finally we present the estimation for precision of gluon polarization for neural network method. (author)

  15. Bound states of quarks and gluons and hadronic transitions

    International Nuclear Information System (INIS)

    Castro, Antonio Soares de.

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs

  16. Helical Tomotherapy Quality Assurance

    International Nuclear Information System (INIS)

    Balog, John; Soisson, Emilie

    2008-01-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed

  17. Are Parton Distributions Positive?

    CERN Document Server

    Forte, Stefano; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni

    1999-01-01

    We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution

  18. Are parton distributions positive?

    International Nuclear Information System (INIS)

    Forte, Stefano; Altarelli, Guido; Ridolfi, Giovanni

    1999-01-01

    We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution

  19. Fractal based observables to probe jet substructure of quarks and gluons

    Science.gov (United States)

    Davighi, Joe; Harris, Philip

    2018-04-01

    New jet observables are defined which characterize both fractal and scale-dependent contributions to the distribution of hadrons in a jet. These infrared safe observables, named Extended Fractal Observables (EFOs), have been applied to quark-gluon discrimination to demonstrate their potential utility. The EFOs are found to be individually discriminating and only weakly correlated to variables used in existing discriminators. Consequently, their inclusion improves discriminator performance, as here demonstrated with particle level simulation from the parton shower.

  20. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  1. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    Science.gov (United States)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; Zhou, Kevin

    2017-09-01

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that track multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a "soft drop multiplicity" which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.

  2. Quarkonium decays: Testing the 3-gluon vertex

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.F.; Zerwas, P.M.; Technische Hochschule Aachen

    1980-12-01

    We study the 3-jet decays of S and P-wave quarkonia with C = +. If observed, some of these will offer a way of seeing the 3G vertex of QCD via 1 Ssub(o), 3 Psub(o), 3 P 2 (Qanti Q) → GGG + Gqanti q → 3 jets. (As is well-known, cancellations reduce 3 P 1 (anti Q) → GGG.) We elaborate in detail the S-wave decay as it is expected to show all the characteristic features of orthoquarkonium decays into 4 jets, 3 S 1 (Qanti Q) → GGGG + GGqanti q → 4 jets which we will comment upon. These quarkonium decays offer a very clear signal for QCD as a non-abelian local gauge field theory with color-charged gluons. (orig.)

  3. Very boosted Higgs in gluon fusion

    CERN Document Server

    Grojean, Christophe; Schlaffer, Matthias; Weiler, Andreas

    2014-01-01

    The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the $t\\bar{t}h$ channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.

  4. Quark-gluon plasma: experimental signatures

    International Nuclear Information System (INIS)

    Drapier, O.

    1995-01-01

    The existence of a deconfining phase transition of nuclear matter is a clear prediction of lattice quantum chromodynamics calculations. The signatures of this quark-gluon plasma (QGP) have been searched for, since the first high energy ion beams became available at BNL and CERN in 1986, and gold and lead beams are now accelerated at 11 and 160 GeV per nucleon by the AGS and SPS. An overview of the main signatures expected in case of QGP formation is presented here. Although some recent results have been found in agreement with the predictions of the QGP scenario, no clear evidence for its formation has been observed at present. Nevertheless, new high statistics results are expected from CERN lead beams. In addition, future experiments are being prepared at RHIC and LHCC, providing an increase by two orders of magnitude of the c.m.s. energy within a few years. (author). 66 refs., 28 figs

  5. Soft gluons and superleading logarithms in QCD

    CERN Document Server

    Forshaw, J R

    2009-01-01

    After a brief introduction to the physics of soft gluons in QCD we present a surprising prediction. Dijet production in hadron-hadron collisions provides the paradigm, i.e. h_1 +h_2 \\to jj+X. In particular, we look at the case where there is a restriction placed on the emission of any further jets in the region in between the primary (highest p_T) dijets. Logarithms in the ratio of the jet scale to the veto scale can be summed to all orders in the strong coupling. Surprisingly, factorization of collinear emissions fails at scales above the veto scale and triggers the appearance of double logarithms in the hard sub-process. The effect appears first at fourth order relative to the leading order prediction and is subleading in the number of colours.

  6. Very boosted Higgs in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-12-15

    The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.

  7. Gluon Green functions free of quantum fluctuations

    Directory of Open Access Journals (Sweden)

    A. Athenodorou

    2016-09-01

    Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

  8. Bound states of quarks and gluons and hadronic transitions; Estados ligados de quarks e gluons e transicoes hadronicas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio Soares de

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.

  9. Physics of the quark - gluon plasma

    International Nuclear Information System (INIS)

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p T physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B → J/Ψ production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation

  10. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  11. Baryonic hybrids: Gluons as beads on strings between quarks

    International Nuclear Information System (INIS)

    Cornwall, John M.

    2005-01-01

    In this paper we analyze the ground state of the heavy-quark qqqG system using standard principles of quark confinement and massive constituent gluons as established in the center-vortex picture. The known string tension K F and approximately-known gluon mass M lead to a precise specification of the long-range nonrelativistic part of the potential binding the gluon to the quarks with no undetermined phenomenological parameters, in the limit of large interquark separation R. Our major tool (also used earlier by Simonov) is the use of proper-time methods to describe gluon propagation within the quark system, along with some elementary group theory describing the gluon Wilson-line as a composite of colocated q and q lines. We show that (aside from color-Coulomb and similar terms) the gluon potential energy in the presence of quarks is accurately described (for small gluon fluctuations) via attaching these three strings to the gluon, which in equilibrium sits at the Steiner point of the Y-shaped string network joining the three quarks. The gluon undergoes small harmonic fluctuations that slightly stretch these strings and quasiconfine the gluon to the neighborhood of the Steiner point. To describe nonrelativistic ground-state gluonic fluctuations at large R we use the Schroedinger equation, ignoring mixing with l=2 states. Available lattice data and real-world hybrids require consideration of R values small enough for significant relativistic corrections, which we apply using a variational principle for the relativistic harmonic-oscillator. We also consider the role of color-Coulomb contributions. In terms of interquark separations R, we find leading nonrelativistic large-R terms in the gluon excitation energy of the form ε(R)→M+ξ[K F /(MR)] 1/2 -ζα c /R where ξ,ζ are calculable numerical coefficients and α c ≅ 0.15 is the color-Coulomb qq coupling. When the gluon is relativistic, ε∼(K F /R) 1/3 . We get an acceptable fit to lattice data with M=500 Me

  12. Flexible helical yarn swimmers.

    Science.gov (United States)

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  13. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  14. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  15. Determination of the gluon polarisation in the nucleon in the production of hadrons with high transverse momentum at Compass

    International Nuclear Information System (INIS)

    Procureur, S.

    2006-07-01

    The main goal of the COMPASS experiment at CERN is the determination of the gluon polarisation in the nucleon, V. For this, the helicity asymmetry of the photon gluon fusion process is measured, in the scattering of polarized muons on a polarised deuteron target. This process can be tagged by the production of hadrons with high transverse momentum (pT), that allows to get a large statistics. On the other hand, a physical background remains and complicates the extraction of V. This PhD thesis presents different studies performed to optimize the determination of c in this channel. In particular, a study of the alignment of the 200 detection planes is presented, leading to an improvement of the spectrometer resolution. Performances of the 12 Micromegas detectors have also been determined during 2004 run. Then, the asymmetries obtained in the analysis of 2002 to 2004 data are calculated, for various high PT selections: production of 1 or 2 hadrons, at low or high Q2. An optimization of the selection, based on a neural network, has also been developed, and a detailed study of the experimental false asymmetry has been performed. V extraction is then described, based on Monte Carlo simulations (using PYTHIA or LEPTO). For the first time, the asymmetry of the so-called resolved photon processes is estimated. An improvement on the reconstruction of nucleon momentum fraction carried by the gluon is also proposed, by reconstructing pseudo-jets. Finally, small values obtained for GG are discussed, in terms of constraints on the gluon contribution to the nucleon spin. (author)

  16. The SU(3) running coupling from lattice gluons

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. [Edinburgh Univ. (United Kingdom). Dept. of Phys. and Astron.; UKQCD Collaboration

    1995-04-01

    We provide numerical results for the running coupling in SU(3) Yang-Mills theory as determined from an analysis of lattice two and three-point gluon correlation functions. The coupling is evaluated directly, from first principles, by defining suitable renormalisation constants from the lattice triple gluon vertex and gluon propagator. For momenta larger than 2GeV, the coupling is found to run according to the 2-loop asymptotic formula. The influence of lattice artifacts on the results appears negligible within the precision of our measurements, although further work on this point is in progress. ((orig.)).

  17. Infra-red ghost contribution to the gluon Green's functions

    International Nuclear Information System (INIS)

    Paccanoni, F.

    1985-01-01

    The Schwinger-Dyson equations for the ghost propagator and the ghost-ghost-gluon vertex function are studied in the Landau gauge. A confining infra-red singularity is assumed for the gluon propagator and a suitable approximation is devised for the solution of the integral equations. It is found that the bare values of the ghost propagator and coupling cannot be a consistent solution of either equation. It is determined a possible behaviour of the correction factor for the ghost propagator in the small-momentum limit and discussed the consistency of the approximation schemes for the gluon propagator that neglet Faddeev-Popov ghost

  18. Quark and gluon propagators in the spherical bag model

    Energy Technology Data Exchange (ETDEWEB)

    Kulish, Yu V [AN Ukrainskoj SSR, Fiziko-Tekhnicheskij Inst., Kharkov

    1983-12-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values.

  19. Quark and gluon propagators in the spherical bag model

    International Nuclear Information System (INIS)

    Kulish, Yu.V.

    1983-01-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values

  20. Quark-gluon mixing in pseudoscalar and tensor mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    A mixing model of quark-antiquark ang gluonium states in η, η', i(1440) pseudoscalar and f, f', Θ(1690) tensor mesons is considered. Description of and predictions for 68 two-particle decays with these particles taking part in them are obtained. It is shown that i(1440) by 85% consists of gluonium and Θ(1690) is a pure gluonic state. The quark-gluon and gluon-gluon couplings in the pseudoscalar sector are obtained to be stronger as compared to the corresponding ones in the tensor case

  1. Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions

    International Nuclear Information System (INIS)

    Chandra, Vinod; Ravishankar, V.

    2009-01-01

    We propose a quasi-particle model to describe the lattice QCD equation of state for pure SU(3) gauge theory in its deconfined state, for T≥1.5T c . The method involves mapping the interaction part of the equation of state to an effective fugacity of otherwise non-interacting quasi-gluons. We find that this mapping is exact. Using the quasi-gluon distribution function, we determine the energy density and the modified dispersion relation for the single particle energy, in which the trace anomaly is manifest. As an application, we first determine the Debye mass, and then the important transport parameters, viz., the shear viscosity, η, and the shear viscosity to entropy density ratio, η/S. We find that both η and η/S are sensitive to the interactions, and that the interactions significantly lower both η and η/S. (orig.)

  2. Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

    Science.gov (United States)

    Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael

    2016-12-01

    We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.

  3. Quark charges and colour gluon mass from deep-inelastic bremsstrahlung

    International Nuclear Information System (INIS)

    Pandita, P.N.

    1978-01-01

    Sum rules are derived for the structure function V(x) for the 'three-photon' process e +- + p →e +- + γ +X which can distinguish between various colour models below colour threshold, independently of the quark and gluon distributions. A careful study of the sum rule for V(x) in the broken colour gauge theory model can in principle be used to determine the colour gluon mass. Invoking the specific assumptions of the dominance of p-type quarks and neglecting the sea of quark-antiquark pairs, bounds for V(x) are obtained in terms of νW 2 (x) which can distinguish between various colour models below colour threshold. (author)

  4. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Zhang Kun Shi; Yu Mei Ling; LianShouLiu

    2002-01-01

    The 3-jet events produced in e sup + e sup - collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, sub g sub l sub u sub o sub n / sub q sub u sub q sub r sub k , has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH and DELPHI Collaborations, indicating that the method propose...

  5. Study on the coherent emission of gluons in QCD jets from electron-positron annihilation

    International Nuclear Information System (INIS)

    Kreutzmann, H.

    1990-11-01

    The inclusive momentum distribution of charged particles is studied with the OPAL detector at LEP in multihadronic events produced in e + e - -annihilations at E cm ≅ M(Z 0 ). Agreement is found with analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from c.m. energies between 14 GeV and 91 GeV, the dependence of the inclusive momentum distribution on the centre of momentum energy E cm is investigated. The analytic predictions derived from perturbative energy E cm ≅ M(Z 0 ) and its change with E cm are also described by QCD shower Monte Carlo programs which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and the momentum spectra. A detailed simulation of the OPAL Jet Chamber and a reconstruction program for jet chamber tracks were developed and applied in this analysis. The essential features of both programs are presented. (orig.) [de

  6. Measurements of double-helicity asymmetries in inclusive $J/\\psi$ production in longitudinally polarized $p+p$ collisions at $\\sqrt{s}=510$ GeV

    OpenAIRE

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.

    2016-01-01

    We report the double helicity asymmetry, $A_{LL}^{J/\\psi}$, in inclusive $J/\\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\\sqrt{s}=510$ GeV longitudinally polarized $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, $J/\\psi$ particles are predominantly produced through gluon-gluon scatterings, thus $A_{LL}^{J/\\psi}$ is ...

  7. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  8. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  9. The very hot soup of quarks and gluons; La tres chaude soupe de quarks et de gluons

    Energy Technology Data Exchange (ETDEWEB)

    Ter Minassian, V.

    2010-05-15

    The Phenix collaboration at the RHIC collider (Usa) has measured directly, for the first time, the temperature just after 2 gold nuclei have collided. All the experimental conditions were taken to assure that the temperature measured was that of the quark-gluon plasma. The value of this temperature is 4000*10{sup 9} K, which is 1.20 as high as the theoretical temperature threshold for the existence of the quark-gluon plasma. It is a proof that the quark-gluon plasma can be created within the operating conditions of the RHIC. (A.C.)

  10. Role of the QCD induced gluon-gluon coupling to gauge boson pairs in the multitev region

    International Nuclear Information System (INIS)

    Ametller, L.; Gava, E.; Paver, N.; Treleani, D.

    1985-02-01

    We discuss the production of γγ and Zsup(O)γ pairs induced by the gluon-gluon fusion mechanism at typical supercollider energies. Due to the large flux of gluons with small fractional momenta, it is found that in certain kinematical configurations that subprocess, although of order (αsub(S)/π) 2 with respect to the leading quark annihilation, can give an appreciable contribution to the cross-section for Zsup(O)γ and even a larger one for the γγ production. (author)

  11. Strangeness and the quark-gluon plasma: An experimenter's perspective

    International Nuclear Information System (INIS)

    Odyniec, G.

    1994-02-01

    Current status of experimental results on strange particle production in relativistic nucleus-nucleus collisions is reviewed. Emphasis is placed on the relevance to the hypothetical quark-gluon plasma formation and the origin of the Universe

  12. The LPM effect in sequential bremsstrahlung: 4-gluon vertices

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Peter; Chang, Han-Chih [Department of Physics, University of Virginia,382 McCormick Road, Charlottesville, Virginia 22904-4714 (United States); Iqbal, Shahin [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 45320 (Pakistan)

    2016-10-24

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; q̂ approximation; and large N{sub c}) by now including processes involving 4-gluon vertices.

  13. Resummation and the gluon damping rate in hot QCD

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1990-08-01

    At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs

  14. Differences between quark and gluon jets at LEP1

    CERN Document Server

    Boutemeur, Madjid

    1997-01-01

    A report is ven here on the differences between quark and gluon initiated jets as measured in LEPl. Various measurements, agree qualitatively on the differences between quark and gluon jets. However a direct quantitative comparison among the measurements as well as comparisons between the measurements and analytical calculations are difficult. This is due to the dependence of the results on the selected event topologies and used jet finding algorithms. Topology dependence of the charged particle multiplicity in quark and gluon jets is studied by ALEPH and transverse momentum-like scales are proposed to account for it. OPAL produced the first quantitative test of QCD analytic prediction for the ratio of the mean particle multiplicity between gluon and quark jets valid, at least, for 39 GeV jets.

  15. A new method for computing the quark-gluon vertex

    International Nuclear Information System (INIS)

    Aguilar, A C

    2015-01-01

    In this talk we present a new method for determining the nonperturbative quark-gluon vertex, which constitutes a crucial ingredient for a variety of theoretical and phenomenological studies. This new method relies heavily on the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. The longitudinal part of this latter quantity is fixed using the standard gauge technique, whereas the transverse is estimated with the help of the so-called transverse Ward identities. This method allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. Numerical results are presented for the form factors in three special kinematical configurations (soft gluon and quark symmetric limit, zero quark momentum), and compared with the corresponding lattice data. (paper)

  16. Quantum chromodynamics as effective theory of quarks and composite gluons

    International Nuclear Information System (INIS)

    Fuss, T.

    2004-01-01

    The dynamics of quarks is described by a nonperturbatively regularized NJL model which is canonically quantized and fulfil a probability interpretation. The quantum field theory of this model is formulated in a functional space. The wave functions of the quarks and gluons are calculated as eigenstates of Hard-Core equations and the gluons are considered as relativistic bound states of colored quark-antiquark pairs. The effective dynamics of the quarks and gluons is derived from weak mapping in functional space. This leads to the functional formulation of the phenomenological SU(3) local gauge invariant quark-gluon equations in temporal gauge. This means that the local gauge symmetry is a dynamical effect resulting from the quark model

  17. Time evolution of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Cooper, F.; New Hampshire Univ., Durham, NH

    1993-01-01

    We review progress in our understanding the production and time evolution of the quark gluon plasma starting with boost invariant initial conditions in a filed theory model based on the Schwinger mechanism of particle production via tunneling

  18. On the application of gluon to heavy quarkonium fragmentation function

    International Nuclear Information System (INIS)

    Qi Wei; Wang Jianxiong

    2007-01-01

    We analyze the uncertainties induced by different definitions of the momentum fraction z in the application of gluon to heavy quarkonium fragmentation function. We numerically calculate the initial g→J/ψ fragmentation functions by using the non-covariant definitions of z with finite gluon momentum and find that these fragmentation functions have strong dependence on the gluon momentum k. As |k|→∞, these fragmentation functions approach to the fragmentation function in the light-cone definition. We find that when |k| is small (for instance in the typical energy scale (about 4-20GeV) of the gluon production at the hadron colliders, such as Tevatron and LHC), large uncertainty remains while the in-covariant definitions of z are employed in the application of the fragmentation functions. (authors)

  19. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  20. Helicity non-conserving form factor of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others

    1994-04-01

    The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.

  1. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  2. Rapidity dependence of thermal dileptons resulting from hadronizing quark-gluon matter with finite baryon charge

    International Nuclear Information System (INIS)

    Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev; Gorenstein, M.I.; Peshier, A.; Soff, G.

    1994-07-01

    The influence of a non-vanishing baryon charge on the rapidity distribution of dileptons produced in ultrarelativistic heavy-ion collisions is studied. We employ a frozen motion model with scaling invariant expansion of the hadronizing quark-gluon plasma as well as a realistic rapidity distribution of secondary particles (i.e., pions and baryons) expected for RHIC energies. We find a considerable suppression of the dilepton production yield at large rapidities due to the finite baryon density. To discriminate the thermal dileptons from Drell-Yan background we propose to utilize the dilepton yield scaled suitably by the pion multiplicity as function of rapidity. (orig.)

  3. One-loop QCD and Higgs bosons to partons processes using six-dimensional helicity and generalized unitarity

    International Nuclear Information System (INIS)

    Davies, Scott

    2011-01-01

    We combine the six-dimensional helicity formalism of Cheung and O'Connell with D-dimensional generalized unitarity to obtain a new formalism for computing one-loop amplitudes in dimensionally regularized QCD. With this procedure, we simultaneously obtain the pieces that are constructible from four-dimensional unitarity cuts and the rational pieces that are missed by them, while retaining a helicity formalism. We illustrate the procedure using four- and five-point one-loop amplitudes in QCD, including examples with external fermions. We also demonstrate the technique's effectiveness in next-to-leading order QCD corrections to Higgs processes by computing the next-to-leading order correction to the Higgs plus three positive-helicity gluons amplitude in the large top-quark mass limit.

  4. Rotation influence on the plasma helical instability

    International Nuclear Information System (INIS)

    Gutkin, T.I.; Tsypin, V.S.; Boleslavskaya, G.I.

    1980-01-01

    The influence of the rotation on helical instability of a plasma with the fixed boundaries (HIFB) is investigated taking into account the compressibility. A case of infinitely long cylinder with distributed current is considered. Cases when a rotating plasma is confined by current magnetic field are analytically considered. It is shown that in the case of the fixed boundary taking into account the compressibility in the HIFB increment increases and the picture of the rotation influence on HIFB considerably changes. Besides, it is shown that in the case of high plasma pressures HIFB can stabilize as a result of the rotation

  5. TMD splitting functions in kT factorization. The real contribution to the gluon-to-gluon splitting

    International Nuclear Information System (INIS)

    Hentschinski, M.; Kusina, A.; Kutak, K.; Serino, M.

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within k T -factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of k T factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization. (orig.)

  6. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  7. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca [Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); McKay, Mairi; Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh (United Kingdom)

    2017-02-10

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  8. Evidence of ghost suppression in gluon mass scale dynamics

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2018-03-01

    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.

  9. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  10. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  11. Generalized helicity and Beltrami fields

    International Nuclear Information System (INIS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  12. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  13. Measurements of gluon spin-sensitive quantities at the Z0 resonance

    International Nuclear Information System (INIS)

    Fan, C.G.

    1993-10-01

    Measurements have been made of the scaled jet energies (x 1 , x 2 , x 3 ) and the Ellis-Karliner angle (cosθ EK ), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e + e - annihilation at the Z 0 resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z 0 events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x 1 , x 2 , x 3 , and cosθ EK to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x 1 , x 2 , x 3 , and cosθ EK simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data

  14. Measurements of gluon spin-sensitive quantities at the Z0 resonance

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Cheng -Gang [Stanford Univ., CA (United States)

    1993-10-01

    Measurements have been made of the scaled jet energies (x1, x2, x3) and the Ellis-Karliner angle (cosθEK), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e+e- annihilation at the Z0 resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z0 events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x1, x2, x3, and cosθEK to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x1, x2, x3, and cosθEK simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data.

  15. Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD

    International Nuclear Information System (INIS)

    von Smekal, L.; Hauck, A.; Alkofer, R.

    1997-01-01

    A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly. The numerical solutions are compared with recent lattice results. The running coupling approaches a fixed point, α c ≅9.5 , in the infrared. copyright 1997 The American Physical Society

  16. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  17. Resonant helical fields in tokamaks

    International Nuclear Information System (INIS)

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  18. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  19. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  20. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  1. NLO QCD corrections to Higgs boson production plus three jets in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deurzen, H. van; Greiner, N.; Luisoni, G.; Mirabella, E.; Peraro, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Sezione di Padova (Italy); Ossola, G. [New York Univ., NY (United States). New York City College of Technology; New York Univ., NY (United States). The Graduate School and University Center; Tramontano, F. [Napoli Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Napoli (Italy)

    2013-07-15

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.

  2. Virtual photoproduction of hadrons at large p/sub T/ as a probe for gluon bremsstrahlung

    CERN Document Server

    Floratos, Emmanuel G

    1978-01-01

    In a SU/sub 3, colour/ x SU/sub 3, flavour/ invariant interaction of quarks and gluons, where the colour degree of freedom is locally gauged, first-order corrections of the naive parton model are calculated for the one-hadron inclusive virtual photoproduction. The high p/sub T/ distribution of hadrons is studied and the kinetical region in which the prediction of the model dominates over the fall- off approximately exp(-bp/sub T//sup 2/) which seems to be supported by the low-p/sub T/ available experimental data is determined. (29 refs).

  3. Transport quasiparticles and transverse interactions in quark-gluon plasmas

    International Nuclear Information System (INIS)

    Baym, Gordon

    1996-01-01

    Calculations of the properties of interacting quark-gluon plasmas are beset by infrared divergences associated with the fact that magnetic interactions, i.e., those occurring through exchange of transverse gluons, are, in the absence of a 'magnetic mass''in QCD, not screened. In this lecture we discuss the effects of magnetic interactions on the transport coefficients and the quasiparticle structure of quark-gluon plasmas. We describe how inclusion of dynamical screening effects - corresponding to Landau damping of the virtual quanta exchanged - leads to finite transport scattering rates. In the weak coupling limit, dynamical screening effects dominate over a magnetic mass. We illustrate the breakdown of the quasi particle structure of degenerate plasmas caused by long-ranged magnetic interactions, describe the structure of fermion quasiparticles in hot relativistic plasmas, and touch briefly on the problem of the lifetime of quasiparticle in the presence of long-ranged magnetic interactions. (author)

  4. Worldline calculation of the three-gluon vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, N.; Schubert, C.

    2012-01-01

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  5. Neural network classification of quark and gluon jets

    International Nuclear Information System (INIS)

    Graham, M.A.; Jones, L.M.; Herbin, S.

    1995-01-01

    We demonstrate that there are characteristics common to quark jets and to gluon jets regardless of the interaction that produced them. The classification technique we use depends on the mass of the jet as well as the center-of-mass energy of the hard subprocess that produces the jet. In addition, we present the quark-gluon separability results of an artificial neural network trained on three-jet e + e - events at the Z 0 mass, using a back-propagation algorithm. The inputs to the network are the longitudinal momenta of the leading hadrons in the jet. We tested the network with quark and gluon jets from both e + e - →3 jets and bar pp→2 jets. Finally, we compare the performance of the artificial neural network with the results of making well chosen physical cuts

  6. The gluon Reggeization in perturbative QCD at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S. [Novosibirsk State Univ., Institute for Nuclear Physics (Russian Federation)

    2005-07-01

    The gluon Reggeization is one of the outstanding properties of QCD. It is extremely important for description of high energy processes. In particular, it appears as the basis of the BFKL approach to summation of the terms strengthened by powers of log(1/x). The hypothesis is extremely powerful, since all scattering amplitudes are expressed in terms of the gluon trajectory and several Reggeon vertices. Now the hypothesis is proved in NLA (next-to leading approximation). The proof is based on bootstrap relations. It is shown that an infinite number of these relations is reduced to several bootstrap conditions on the gluon trajectory and the Reggeon vertices. It is shown that fulfillment of these conditions means a proof of the Reggeization hypothesis. All bootstraps conditions are formulated explicitly and are proved to be fulfilled.

  7. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  8. Low-momentum ghost dressing function and the gluon mass

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Gomez, M. E.; Rodriguez-Quintero, J.

    2010-01-01

    We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q 2 ). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.

  9. Transverse momentum of gluons in ep-scattering at HERA

    International Nuclear Information System (INIS)

    Cholewa, A.

    2005-11-01

    A Monte Carlo analysis of the phase space of hard interacting gluons in ep-scattering is presented. The event generator CASCADE is used in combination with the program HZTOOL to identify the accessible regions of phase space of present HERA measurements. A map of the k t -x g -plane is presented to show that in the region -3≤log g ≤-1 transverse gluon momenta of up to k t >or sim 20 GeV are accessible to HERA measurements. Furthermore the observables x γ and the transverse jet energy E T are found to be highly sensitive to the transverse momentum and the longitudinal momentum fraction of gluons. (orig.) (orig.)

  10. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  11. In search of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Schutz, Y.; Delagrange, H.

    2002-01-01

    This article describes in a very pedagogical manner the ultimate state of matter when quarks are no longer confined in hadrons. This state is called quark and gluon plasma, its existence is suspected through 4 facts: 1) a quark and gluon plasma that has just been created from a high energy ion-collision is mainly made up of light quarks (up and down), then this plasma should evolve towards other quarks (particularly strange quarks) because of the Pauli exclusion principle. This fact has been experimentally confirmed: at the CERN accelerator physicists have detected a higher production of strange hadrons when the energy of the collision increases; 2) some particles like ρ 0 mesons, that are made up of 2 quarks, are massively produced in ion collisions, their mass has been measured at the moment of the collision and later in the quark and gluon plasma, 2 different values have been found so it confirms the theory that predicts that free quarks have a mass that decreases as energy increases; 3) J/Ψ mesons are made up of a charmed quark combined with its anti-quark, physicists have noticed that less J/Ψ mesons are detected when the energy of the collision rises, this result agrees with the fact that in quark gluon plasma where quarks are free and of different colours and flavors, it is highly unlikely that a charmed quark combines with its anti-quark to form a J/Ψ meson; and 4) the theory of the formation of quark gluon plasma predicts that its electromagnetic radiation has a thermal radiation specificity, physicists have studied the radiation spectra emitted in the core of a ion collision, they have shown that it is a thermal radiation and that the temperature of the emitter corresponds to the temperature of a quark gluon plasma. (A.C.)

  12. Momentum Broadening in Weakly Coupled Quark-Gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma)

    CERN Document Server

    D'Eramo, Francesco; Liu, Hong; Rajagopal, Krishna

    2013-01-01

    We calculate P(k_\\perp), the probability distribution for an energetic parton that propagates for a distance L through a medium without radiating to pick up transverse momentum k_\\perp, for a medium consisting of weakly coupled quark-gluon plasma. We use full or HTL self-energies in appropriate regimes, resumming each in order to find the leading large-L behavior. The jet quenching parameter \\hat q is the second moment of P(k_\\perp), and we compare our results to other determinations of this quantity in the literature, although we emphasize the importance of looking at P(k_\\perp) in its entirety. We compare our results for P(k_\\perp) in weakly coupled quark-gluon plasma to expectations from holographic calculations that assume a plasma that is strongly coupled at all length scales. We find that the shape of P(k_\\perp) at modest k_\\perp may not be very different in weakly coupled and strongly coupled plasmas, but we find that P(k_\\perp) must be parametrically larger in a weakly coupled plasma than in a strongl...

  13. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  14. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  15. A gauge quantum field theory of confined quarks and gluons

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1983-01-01

    A SU(3)-gauge quantum field theory with a quark triplet, an antiquark triplet and a self-conjugate gluon octet as basic fields is investigated. In virtue of a non trivial coupling between the representation of the translation group and the SU(3)-colour charge of the basic fields it is proved: (i) The basic quark, antiquark and gluon fields are confined. (ii) Every statevector of the physical Hilbert space is a SU(3)-colour singlet state. (iii) Poincare invariance holds in the physical Hilbert space. (orig.)

  16. Evidence for a spin 1 gluon in three jet events

    International Nuclear Information System (INIS)

    Brandelik, R.; Braunschweig, W.; Gather, K.; Kadansky, V.; Kirschfink, F.J.; Luebelsmeyer, K.; Martyn, H.U.; Peise, G.; Rimkus, J.; Sander, H.G.

    1980-08-01

    High energy e + e - annihilation events obtained in the TASSO detector at PETRA have been used to determine the spin of the gluon in the reaction e + e - → q anti qg. We analyzed angular correlations between the 3 jet axes. While vector gluons are consistent with the data (55% confidence limit), scalar fluons are disfavored by 3.8 standard deviations, corresponding to a confidence level of about 10 -4 . Our conclusion is free of possible biases due to uncertainties in the fragmentation process or in determining the q anti qg kinematic from the observed hadrons. (orig.)

  17. The hard gluon component of the QCD Pomeron

    International Nuclear Information System (INIS)

    White, A.R.

    1996-01-01

    The authors argue that deep-inelastic diffractive scaling provides fundamental insight into the QCD Pomeron. The logarithmic scaling violations seen experimentally are in conflict with the scale-invariance of the BFKL Pomeron and with phenomenological two-gluon models. Instead the Pomeron appears as a single gluon at short-distances, indicating the appearance of a Super-Critical phase of Reggeon Field Theory. That the color compensation takes place at a longer distance is consistent with the Pomeron carrying odd color charge parity

  18. A gluon cluster solution of effective Yang-Mills theory

    CERN Document Server

    Pavlovsky, O V

    2001-01-01

    A classical solution of the effective Yang-Mills (YM) theory with a finite energy and nonstandard Lagrangian was obtained. Influence of vacuum polarization on gluon cluster formation was discussed. Appearance of cluster solutions in the theory of non-Abelian fields can take place only if the result goes beyond the framework of pure YM theory. It is shown that account of quantum effects of polarized vacuum in the presence of a classical gluon field can also result in formation of the solutions. Solutions with the finite intrinsic energy are provided. Besides, fields of colour groups SU(2) were studied

  19. Check of the bootstrap conditions for the gluon Reggeization

    International Nuclear Information System (INIS)

    Papa, A.

    2000-01-01

    The property of gluon Reggeization plays an essential role in the derivation of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the cross sections at high energy √s in perturbative QCD. This property has been proved to all orders of perturbation theory in the leading logarithmic approximation and it is assumed to be valid also in the next-to-leading logarithmic approximation, where it has been checked only to the first three orders of perturbation theory. From s-channel unitarity, however, very stringent 'bootstrap' conditions can be derived which, if fulfilled, leave no doubts that gluon Reggeization holds

  20. '' Ideal Gas '' gluon plasma with medium dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    An '' ideal gas '' model with temperature dependent particle mass is constructed for the gluon plasma equation of state. This simple model gives us an example of a system with temperature dependent effective Hamiltonian. To satisfy thermodynamical relations in these systems, standard statistical mechanics formulas have to be supplemented by special requirements which are considered in details. A self-consistent '' ideal gas '' formulation is used to describe Monte Carlo lattice data for the thermodynamical functions of SU(2) and SU(3) gluon plasma. 14 refs., 8 figs

  1. Plaquette expectation value and gluon condensate in three dimensions

    International Nuclear Information System (INIS)

    Hietanen, Ari; Kajantie, Keijo; Schroeder, York; Laine, Mikko; Rummukainen, Kari

    2005-01-01

    In three dimensions, the gluon condensate of pure SU(3) gauge theory has ultraviolet divergences up to 4-loop level only. By subtracting the corresponding terms from lattice measurements of the plaquette expectation value and extrapolating to the continuum limit, we extract the finite part of the gluon condensate in lattice regularization. Through a change of regularization scheme to MS-bar and (inverse) dimensional reduction, this result would determine the first non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure. (author)

  2. Nielsen's identity and gluon condensation at finite temperature

    International Nuclear Information System (INIS)

    Skalozub, V.V.

    1992-11-01

    The gauge dependence problem of the gluon field zero component condensate, A 0 =const, is investigated in finite temperature SU(3) gluodynamics. The two-loop effective action W(A 0 ,ξ) is recalculated in the background R ξ gauge. The obtained result somewhat differs from that of other authors. By straightforward calculation it is shown that W(A 0 ,ξ) satisfies the Nielsen (the Ward type) identity. Thus, the gauge invariance of the gluon condensation phenomenon is proved. (author). 14 refs

  3. Plaquette expectation value and gluon condensate in three dimensions

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    In three dimensions, the gluon condensate of pure SU(3) gauge theory has ultraviolet divergences up to 4-loop level only. By subtracting the corresponding terms from lattice measurements of the plaquette expectation value and extrapolating to the continuum limit, we extract the finite part of the gluon condensate in lattice regularization. Through a change of regularization scheme to MSbar and (inverse) dimensional reduction, this result would determine the first non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure.

  4. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  5. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  6. The helical tomotherapy thread effect

    International Nuclear Information System (INIS)

    Kissick, M.W.; Fenwick, J.; James, J.A.; Jeraj, R.; Kapatoes, J.M.; Keller, H.; Mackie, T.R.; Olivera, G.; Soisson, E.T.

    2005-01-01

    Inherent to helical tomotherapy is a dose variation pattern that manifests as a 'ripple' (peak-to-trough relative to the average). This ripple is the result of helical beam junctioning, completely unique to helical tomotherapy. Pitch is defined as in helical CT, the couch travel distance for a complete gantry rotation relative to the axial beam width at the axis of rotation. Without scattering or beam divergence, an analytical posing of the problem as a simple integral predicts minima near a pitch of 1/n where n is an integer. A convolution-superposition dose calculator (TomoTherapy, Inc.) included all the physics needed to explore the ripple magnitude versus pitch and beam width. The results of the dose calculator and some benchmark measurements demonstrate that the ripple has sharp minima near p=0.86(1/n). The 0.86 factor is empirical and caused by a beam junctioning of the off-axis dose profiles which differ from the axial profiles as well as a long scatter tail of the profiles at depth. For very strong intensity modulation, the 0.86 factor may vary. The authors propose choosing particular minima pitches or using a second delivery that starts 180 deg off-phase from the first to reduce these ripples: 'Double threading'. For current typical pitches and beam widths, however, this effect is small and not clinically important for most situations. Certain extremely large field or high pitch cases, however, may benefit from mitigation of this effect

  7. How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions

    Science.gov (United States)

    Kovchegov, Yuri V.; Skokov, Vladimir V.

    2018-05-01

    We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. We evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics contribution to the two-gluon production in the saturation framework is nonzero.

  8. Quality assurance of a helical tomotherapy machine

    International Nuclear Information System (INIS)

    Fenwick, J D; Tome, W A; Jaradat, H A; Hui, S K; James, J A; Balog, J P; DeSouza, C N; Lucas, D B; Olivera, G H; Mackie, T R; Paliwal, B R

    2004-01-01

    Helical tomotherapy has been developed at the University of Wisconsin, and 'Hi-Art II' clinical machines are now commercially manufactured. At the core of each machine lies a ring-gantry-mounted short linear accelerator which generates x-rays that are collimated into a fan beam of intensity-modulated radiation by a binary multileaf, the modulation being variable with gantry angle. Patients are treated lying on a couch which is translated continuously through the bore of the machine as the gantry rotates. Highly conformal dose-distributions can be delivered using this technique, which is the therapy equivalent of spiral computed tomography. The approach requires synchrony of gantry rotation, couch translation, accelerator pulsing and the opening and closing of the leaves of the binary multileaf collimator used to modulate the radiation beam. In the course of clinically implementing helical tomotherapy, we have developed a quality assurance (QA) system for our machine. The system is analogous to that recommended for conventional clinical linear accelerator QA by AAPM Task Group 40 but contains some novel components, reflecting differences between the Hi-Art devices and conventional clinical accelerators. Here the design and dosimetric characteristics of Hi-Art machines are summarized and the QA system is set out along with experimental details of its implementation. Connections between this machine-based QA work, pre-treatment patient-specific delivery QA and fraction-by-fraction dose verification are discussed

  9. Infrared behaviour of three and four gluon vertices in Yang-Mills theory

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1985-01-01

    The structure of the 3-point function with one and two external gluons on-shell is studied in a general covariant gauge. The contributions which result in one loop approximation are expressed in terms of simple functions containing collinear and soft singularities. Furthermore, the contributions associated with the 4-point vertex when all external gluons are on-shell are analysed. As an application of these results, the infrared structure of gluon-gluon scattering amplitude is studied. (Author) [pt

  10. Quark-gluon plasma and the little bang

    International Nuclear Information System (INIS)

    McLerran, L.

    1981-06-01

    A space-time picture of the fragmentation and central regions is presented for extremely high energy head-on heavy nucleus collisions. The energy densities of the matter produced in such collisions are estimated. Speculations concerning the possible formation of a quark-gluon plasma are discussed, as are possible experimental signals for analyzing such a plasma

  11. Bounds on the gluon mass from nucleon decay

    Energy Technology Data Exchange (ETDEWEB)

    Avila, M.A. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico)

    2001-04-01

    Permanent confinement of quarks is assumed to hold in QCD. However, if the gluon has a small mass it is possible to produce-quarks in hadron decays, high-energy reactions or in the early-universe. This situation is modelled by a quark-diquark potential composed of a linear (or harmonic) plus a Yukawa term. We compare our prediction for the proton decay with the experimental lower bound on its life-time, and obtain an upper bound on the gluon mass. [Spanish] Se supone se cumple el confinamiento permanente de quarks en cromodinamica cuantica. Si el gluon tiene masa pequena es posible producir quarks libres en decaimiento hadronicos, reacciones de altas energias o en el universo temprano. Esta situacion es modelada por un potencial quark-diquark, compuesto de un termino lineal (o armonico) mas un termino Yukawa. Comparamos nuestra prediccion para el decaimiento del proton con la cota inferior experimental de su vida media y obtenemos una cota superior sobre la masa del gluon.

  12. Universal Regge slope α' from QCD gluon propagator

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Ninomiya, M.

    1980-02-01

    An effective gluon propagator is estimated in the presence of a fluctuating color magnetic field in vacuum. Using the dual honeycomb diagram tlhe universal slope is estimated to yield Λsub(p) = 0.34 GeV when corrected by instanton, for α' = 0.88 GeV -2 . (Auth.)

  13. Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons

    NARCIS (Netherlands)

    Boer, D.; Brodsky, S. J.; Mulders, P.J.G.; Pisano, C.

    2011-01-01

    We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2 asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized

  14. Screening in an expanding quark-gluon plasma

    International Nuclear Information System (INIS)

    Broniowski, W.

    1988-12-01

    Effects of expansion on the Debye length in quark-gluon plasma are calculated in an abelian, boost invariant model. It is found that for early times the screening is significantly more efficient than what follows from naive static considerations. 11 refs., 1 fig., 1 tab. (author)

  15. The quark gluon plasma: Lattice computations put to experimental test

    Indian Academy of Sciences (India)

    I describe how lattice computations are being used to extract experimentally relevant features of the quark gluon plasma. I deal specifically with relaxation times, photon emissivity, strangeness yields, event-by-event fluctuations of conserved quantities and hydrodynamic flow. Finally I give evidence that the plasma is rather ...

  16. The angular ordering in soft-gluon emission

    International Nuclear Information System (INIS)

    Tesima, K.

    1987-01-01

    The way to evaluate multi-parton cross-sections systematically is discussed. In the leading-double-log approximation in QCD, the successive emission of soft gluons is at successively smaller angles. The angular ordering, however, is violated in the next-to-leading order

  17. How Resummation Depresses the Gluon at Small x

    CERN Document Server

    Forte, Stefano; Ball, Richard D.; Forte, Stefano; Altarelli, Guido; Ball, Richard D.

    2006-01-01

    We summarize recent progress in the resummation of perturbative evolution at small x. We show that the problem of incorporating BFKL small x logs in GLAP evolution is now completely solved, and that the main effect of small x resummation is to reduce the growth of the gluon at small x in the HERA and LHC regions.

  18. Nonperturbative quark-gluon thermodynamics at finite density

    Science.gov (United States)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 confinement.

  19. Strangeness and quark gluon plasma: Aspects of theory and experiment

    International Nuclear Information System (INIS)

    Eggers, H.C.; Rafelski, J.

    1990-07-01

    A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)

  20. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, ...

  1. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Park, Sung-hong; Wang Haimin; Chae, Jongchul

    2010-01-01

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10 22 Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10 42 Mx 2 during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  2. Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.

    1992-01-01

    The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab

  3. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  4. Quark-gluon plasma tomography by vector mesons

    International Nuclear Information System (INIS)

    Lovas, I.

    2001-01-01

    Full text: The most important aim of relativistic heavy ion experiments is the observation f the quark-gluon plasma formation. In order to detect the transition into the plasma state it is desirable to map the density profile of the fireball formed in the collision. Here we investigate the possibility of this mapping by tomography. The fireball is characterized by the impact parameter vector b, which can be determined from the multiplicity and the angular distribution of the reaction products. By appropriate rotations the b vectors of each collision can be aligned into a fixed direction. Using the measured values of the momentum distributions independent integral equations can be formulated for the unknown emission densities (EM(r) and for the unknown absorption densities (Δ μ M (r)) of the different vector mesons M(≡ ω 0 , ρ 0 , φ 0 , ψ 0 , ψ 0' , Υ). At a fixed value of M and b the number of detected mesons N M (p,b) with momentum p, can be expressed by the following formula: N M (p,b) = ∫ V(b) dr EM(r) exp[-μ M (p)L(r,p o )] V(b) R(r, po)] exp[- ∫ from r until R(r,p 0 ) dl ' Δ μ M (r ' ,p)], where the average value of the absorption coefficient having no r dependence is denoted by μ(p), while Δ μM is defined as Δ μM = μ M - μ- M . The meson arrives to the surface of the fireball at R(r, p 0 ). The length of the path between r and R is denoted by L(r, po). The equation given above can be considered as an integral equation. Unfortunately it can not be transformed into an exact system of linear equations. However an iterative procedure can be constructed in such a way that in every iterative step a linear system of equations must be solved. N M (p,b) = ∫ V(b) dr exp[- μ M (p) L(r,p o )] [E M n (r) Σ from k=O until (n-1) (1/k !) (- ∫ from r until R (r, p 0 ) dl ' Δ μM n-1 (r ' , p) k + E M n-1 (r) (1/n !) (- ∫ from r until R(r, p 0 ) dl ' Δ μM n-1 (r ' , p)) (n-1) (- ∫ from r until R(r, p 0 ) dl ' Δ μM (n) (r ' , p))]. Since

  5. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  6. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  7. Helical CT of ureteral disease

    International Nuclear Information System (INIS)

    Cikman, Pablo; Bengio, Ruben; Bulacio, Javier; Zirulnik, Esteban; Garimaldi, Jorge

    2000-01-01

    Among the new applications of helical CT is the study of the ureteral pathology. The objective of this paper was to evaluate patients with suspected pathology of this organ and the repercussion in the therapeutic plans. We studied 23 patients with a helical CT protocol, without IV contrast injection and performed multiplanar reconstruction (MPR). We called this procedure Pielo CT. Thirteen ureteral stones were detected, 6 calculi, 2 urinary tract tumors, dilatation of the system in a patient with neo-bladder. In 2 patients, in whom ureteral pathology was ruled out, we found other alterations that explained the symptoms, (gallbladder stones, disk protrusion). The Pielo CT let decide a therapeutical approach in 20 or 21 patients with ureteral pathology. (author)

  8. Radiation characteristics of helical tomotherapy

    International Nuclear Information System (INIS)

    Jeraj, Robert; Mackie, Thomas R.; Balog, John; Olivera, Gustavo; Pearson, Dave; Kapatoes, Jeff; Ruchala, Ken; Reckwerdt, Paul

    2004-01-01

    Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent

  9. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  10. Improving the simulation of quark and gluon jets with Herwig 7

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Daniel [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Richardson, Peter [CERN, Theory Department, Geneva (Switzerland); Durham University, Department of Physics, IPPP, Durham (United Kingdom); Siodmok, Andrzej [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland)

    2017-12-15

    The properties of quark and gluon jets, and the differences between them, are increasingly important at the LHC. However, Monte Carlo event generators are normally tuned to data from e{sup +}e{sup -} collisions which are primarily sensitive to quark-initiated jets. In order to improve the description of gluon jets we make improvements to the perturbative and the non-perturbative modelling of gluon jets and include data with gluon-initiated jets in the tuning for the first time. The resultant tunes significantly improve the description of gluon jets and are now the default in Herwig 7.1. (orig.)

  11. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  12. Improving the Simulation of Quark and Gluon Jets with Herwig 7 arXiv

    CERN Document Server

    Reichelt, Daniel; Siodmok, Andrzej

    2017-12-16

    The properties of quark and gluon jets, and the differences between them, are increasingly important at the LHC. However, Monte Carlo event generators are normally tuned to data from $e^+e^-$ collisions which are primarily sensitive to quark-initiated jets. In order to improve the description of gluon jets we make improvements to the perturbative and the non-perturbative modelling of gluon jets and include data with gluon-initiated jets in the tuning for the first time. The resultant tunes significantly improve the description of gluon jets and are now the default in Herwig 7.1.

  13. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  14. Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD

    International Nuclear Information System (INIS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Baehr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D.P.; Brueckner, W.; Bruel, P.; Bruncko, D.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Burrage, A.; Buschhorn, G.; Calvet, D.; Campbell, A.J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Contreras, J.G.; Cormack, C.; Coughlan, J.A.; Cousinou, M.-C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E.A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K.T.; Dowell, J.D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A.B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Fluegge, G.; Fomenko, A.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Graessler, H.; Greenshaw, T.; Griffiths, R.K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K.H.; Hilton, C.D.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Jansen, D.M.; Joensson, L.; Johnson, D.P.; Jones, M.; Jung, H.; Kaestli, H.K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I.R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Koehne, J.H.; Kolanoski, H.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Kraemerkaemper, T.; Krasny, M.W.; Krehbiel, H.; Kruecker, D.; Krueger, K.; Kuepper, A.; Kuester, H.; Kuhlen, M.; Kurca, T.; Lahmann, R.; Landon, M.P.J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lueders, S.; Lueke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krueger, H.; Malinovski, E.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S.J.; McMahon, T.R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J.V.; Mueller, D.; Mueller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Negri, I.; Newman, P.R.; Nguyen, H.K.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J.E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G.D.; Pawletta, H.; Perez, E.; Phillips, J.P.; Pieuchot, A.; Pitzl, D.; Poeschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schroeder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J.P.; Swart, M.; Tapprogge, S.; Tasevsky, M.; Tchernshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P.D.; Tobien, N.; Todenhagen, R.; Truoel, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L.R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wuensch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.

    1999-01-01

    With the H1 detector at the ep collider HERA, D * meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q 2 > 3 GeV 2 and in photoproduction at energies around W γp ∼ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x g g(x g ), has been extracted in the momentum fraction range 7.5 x 10 -4 g -2 at average scales μ 2 = 25 to 50 GeV 2 . The gluon momentum fraction x g has been obtained from the measured kinematics of the scattered electron and the D * meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F 2

  15. Soft-gluon resummation for high-pT inclusive-hadron production at COMPASS

    International Nuclear Information System (INIS)

    Pfeuffer, Melanie

    2013-01-01

    One of the experiments that may be used to probe the nucleon's gluon distribution is the fixed-target lepton scattering experiment COMPASS at CERN, where charged hadrons with high transverse momentum are observed. An aspect that makes the COMPASS experiment quite challenging for the theoretical calculation in perturbative QCD is its fixed-target regime. The hadron's transverse momentum is relatively large compared to the available center-of-mass energy. Thus the partonic process is close to the threshold, where all available partonic center-of-mass energy is just used to produce the high-transverse momentum parton that subsequently hadronizes into the observed hadron, and its recoiling counterpart. Additional real gluon radiation is strongly suppressed and therefore mostly constrained to the emission of soft and/or collinear gluons. This results in a strong imbalance between real and virtual gluon diagrams and the cancellation of infrared singularities leaves behind large logarithmic corrections to the leading order cross section. These logarithms are not only present in the next-to-leading (NLO) corrections, but appear also in all higher order corrections in its perturbation expansion. They dominate the cross section in the kinematic region close to the threshold and thus have to be taken into account order-by-order. A technique that addresses these logarithms is known as threshold resummation. The main goal of this work is to investigate the relevance of higher-order QCD corrections of the unpolarized photoproduction reaction in fixed-target scattering at COMPASS, where the hadron is produced at large transverse momentum. In particular the large logarithmic threshold corrections to the partonic cross sections are addressed, which are resummed to all orders at next-to-leading logarithmic (NLL) accuracy. As new technical ingredient to resummation, the rapidity dependence of the cross section in the resummed calculation is fully included in order to account for all

  16. Monte Carlo evidence for the gluon-chain model of QCD string formation

    International Nuclear Information System (INIS)

    Greensite, J.; San Francisco State Univ., CA

    1988-08-01

    The Monte Carlo method is used to calculate the overlaps string vertical stroken gluons>, where Ψ string [A] is the Yang-Mills wavefunctional due to a static quark-antiquark pair, and vertical stroken gluons > are orthogonal trial states containing n=0, 1, or 2 gluon operators multiplying the true ground state. The calculation is carried out for SU(2) lattice gauge theory in Coulomb gauge, in D=4 dimensions. It is found that the string state is dominated, at small qanti q separations, by the vacuum ('no-gluon') state, at larger separations by the 1-gluon state, and, at the largest separations attempted, the 2-gluon state begins to dominate. This behavior is in qualitative agreement with the gluon-chain model, which is a large-N colors motivated theory of QCD string formation. (orig.)

  17. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  18. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    International Nuclear Information System (INIS)

    Parker, William; Brodeur, Marylene; Roberge, David; Freeman, Carolyn

    2010-01-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as part of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.

  19. Multiple production of hadrons at high energies in the model of quark-gluon strings

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Ter-Martirosyan, K.A.

    1983-01-01

    Multiple production of hadrons at high energies is considered in the framework of the approach based on a picture of formation and subsequent fission of the quark-gluon strings, corresponding to the Pomeron with αsub(P)(0) > 1. The topological (1/nsub(f))-expansion and the colour-tube model is used. Inclusive cross-sections are expressed in therms of the structure functions and fragmentation functions of quarks and their limiting values are in an agreement with the results of the reggeon theory. It is pointed out that an account of rapidity fluctuations of the ends of the quark-gluon strings, connected to valence or sea quarks, allows one to explain a number of characteristic features of the multiple production of hadrons. In particular the model, which takes into account multipomeron configurations, reproduces the experimentally observed rise of inclusive spectra in a central region and well describes both rapidity and multiplicity distributions of charged particles up to energies of the SPS-collider. It is shown that in this approach the KNO-scaling is only approximately satisfied and the pattern of its violation at energies √ s approximately 10 3 GeV is predicted. Inclusive spectra are investigated in the whole region 0 or approximately 0.1) Feynman scaling is violated only logarithmically and deviations from it are very rsmall at s 3 +10 4 GeV

  20. Inclusive observables and hard gluon emission in neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bouchiat, C.; Meyer, P.; Mezard, M.

    1980-01-01

    We derive the predictions of perturbative QCD together with non-perturbative corrections for a set of inclusive observables connected with the angular distribution of light-cone energy in deep inelastic neutrino scattering. Our particular choice of observables has been made in order to meet important physical requirements besides the necessary condition of infrared regularity. Our inclusive observables receive their dominant contribution from the quark fragmentation region. The non-perturbative contribution is calculable in a rather model-independent way and stays at an acceptable level in realistic experimental conditions. The QCD perturbative contribution, which takes the simple form of a convolution product, exhibits a strongly decreasing behaviour as a function of the Bjorken scaling variable x, superimposed on a constant background associated with the non-perturbative terms, allowing a rather clean separation of the two effects. The perturbative term being dominated by the process of hard-gluon emission, an experimental investigation of the observables discussed here may be a good way to detect the effect of gluon emission in deep inelastic neutrino scattering. (orig.)

  1. Measurements of the structure of quark and gluon jets in hadronic Z decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for tests of QCD over a wide range of transverse momentum scales. The observables include distributions of jet-shape variables, the mean and standard deviation of the subjet multiplicity distribution and the fragmentation function for charged particles. The data are compared with predictions of perturbative QCD as well as QCD-based Monte Carlo models. In certain kinematic regions the measurements are sensitive mainly to perturbatively calculable effects, allowing for a test of QCD. The comparisons are also extended into regions where nonperturbative effects become large, and in this way the transition from hard to soft QCD is investigated. It is found that by including leading and next-to-leading logarithmic contributions in the QCD predictions, the agreement with the data can be extended to lower transverse momentum sca...

  2. Medium-induced gluon radiation beyond the eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A

    2014-01-01

    In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x$\\rightarrow$1 in Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon. We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.

  3. Quark-Gluon Soup -- The Perfectly Liquid Phase of QCD

    Science.gov (United States)

    Heinz, Ulrich

    2015-03-01

    At temperatures above about 150 MeV and energy densities exceeding 500 MeV/fm3, quarks and gluons exist in the form of a plasma of free color charges that is about 1000 times hotter and a billion times denser than any other plasma ever created in the laboratory. This quark-gluon plasma (QGP) turns out to be strongly coupled, flowing like a liquid. About 35 years ago, the nuclear physics community started a program of relativistic heavy-ion collisions with the goal of producing and studying QGP under controlled laboratory conditions. This article recounts the story of its successful creation in collider experiments at Brookhaven National Laboratory and CERN and the subsequent discovery of its almost perfectly liquid nature, and reports on the recent quantitatively precise determination of its thermodynamic and transport properties.

  4. Singular gauge potentials and the gluon condensate at zero temperature

    International Nuclear Information System (INIS)

    Langfeld, K.; Ilgenfritz, E.-M.; Reinhardt, H.; Schaefke, A.

    2002-01-01

    We consider a new cooling procedure which separates gluon degrees of freedom from singular center vortices in SU(2) LGT in a gauge invariant way. Restricted by a cooling scale κ 4 /σ 2 fixing the residual SO(3) gluonic action relative to the string tension, the procedure is RG invariant. In the limit κ → 0 a pure Z(2) vortex texture is left. This minimal vortex content does not contribute to the string tension. It reproduces, however, the lowest glueball states. With an action density scaling like a 4 with β, it defines a finite contribution to the action density at T = 0 in the continuum limit. We propose to interpret this a mass dimension 4 condensate related to the gluon condensate. Similarly, this vortex texture is revealed in the Landau gauge

  5. Recursive Neural Networks in Quark/Gluon Tagging

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Vidyo contribution Based on the natural tree-like structure of jet sequential clustering, the recursive neural networks (RecNNs) embed jet clustering history recursively as in natural language processing. We explore the performance of RecNN in quark/gluon discrimination. The results show that RecNNs work better than the baseline BDT by a few percent in gluon rejection at the working point of 50\\% quark acceptance. We also experimented on some relevant aspects which might influence the performance of networks. It shows that even only particle flow identification as input feature without any extra information on momentum or angular position is already giving a fairly good result, which indicates that most of the information for q/g discrimination is already included in the tree-structure itself.

  6. Running coupling corrections to high energy inclusive gluon production

    International Nuclear Information System (INIS)

    Horowitz, W.A.; Kovchegov, Yuri V.

    2011-01-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. In the final answer for the cross section the three powers of fixed coupling are replaced by seven factors of running coupling, five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling k T -factorization formula for gluon production which includes nonlinear small-x evolution.

  7. The soft-gluon current at one-loop order

    CERN Document Server

    Catani, S

    2000-01-01

    We study the soft limit of one-loop QCD amplitudes and we derive the process-independent factorization formula that controls the singular behaviour in this limit. This is obtained from the customary eikonal factorization formula valid at tree (classical) level by introducing a generalized soft-gluon current that embodies the quantum corrections. We compute the explicit expression of the soft-gluon current at one-loop order. It contains purely non-abelian correlations between the colour charges of each pair of hard-momentum partons in the matrix element. This leads to colour correlations between (two and) three hard partons in the matrix element squared. Exploiting colour conservation, we recover QED-like factorization for the square of the matrix elements with two and three hard partons.

  8. Quark/gluon jet discrimination: a reproducible analysis using R

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The power to discriminate between light-quark jets and gluon jets would have a huge impact on many searches for new physics at CERN and beyond. This talk will present a walk-through of the development of a prototype machine learning classifier for differentiating between quark and gluon jets at experiments like those at the Large Hadron Collider at CERN. A new fast feature selection method that combines information theory and graph analytics will be outlined. This method has found new variables that promise significant improvements in discrimination power. The prototype jet tagger is simple, interpretable, parsimonious, and computationally extremely cheap, and therefore might be suitable for use in trigger systems for real-time data processing. Nested stratified k-fold cross validation was used to generate robust estimates of model performance. The data analysis was performed entirely in the R statistical programming language, and is fully reproducible. The entire analysis workflow is data-driven, automated a...

  9. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  10. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  11. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  12. On the zero crossing of the three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, A. [Department of Physics, University of Cyprus, POB 20537, 1678 Nicosia (Cyprus); Binosi, D., E-mail: binosi@ectstar.eu [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (Italy); Boucaud, Ph. [Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); De Soto, F. [Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla (Spain); Papavassiliou, J. [Department of Theoretical Physics and IFIC, University of Valencia-CSIC, E-46100, Valencia (Spain); Rodríguez-Quintero, J. [Department of Integrated Sciences, University of Huelva, E-21071 Huelva (Spain); Zafeiropoulos, S. [Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2016-10-10

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  13. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  14. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  15. Structure functions and parton distributions

    International Nuclear Information System (INIS)

    Olness, F.; Tung, Wu-Ki

    1991-04-01

    Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed

  16. Patterns of uterine enhancement with helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H.; Loyer, E.M.; Charnsangavej, C. [Department of Diagnostic Radiology, Box 57, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Minami, M. [Department of Radiology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113 (Japan)

    1998-10-01

    Objective: The purpose of this study was to evaluate the enhancement characteristics of the normal uterine body and cervix using dynamic contrast-enhanced helical CT. Methods: Thirty-eight women scheduled for pelvic CT for non-gynecologic malignancies underwent dynamic contrast-enhanced helical CT of the pelvis. Data acquisition was during the arterial phase (30-45 s after the start of injection), the parenchymal phase (90-120 s after the start of injection), and delayed phase (3-9 min after the start of injection). The images were evaluated by four radiologists for the pattern of myometrial and cervical enhancement. Correlation was made with the age and menstrual status of the patients. Results: In the uterine body, three types of enhancement were observed. Type 1 enhancement, seen in 16 patients (42%), was characterized by the visualization of a subendometrial zone of enhancement, 30-120 s after the start of injection. Eight of these patients also showed an enhancing zone in the outer myometrium. Both zones were transitory, and in all cases, the uterus became homogeneous in the delayed phase. This pattern was seen predominantly in premenopausal women with a mean age of 34 years. Type 2 enhancement, seen in 17 cases (45%), was defined by the absence of subendometrial enhancement in the early phase. Enhancement was either diffuse from the outset or originated in the outer myometrium. This pattern was seen nearly equally in premenopausal and postmenopausal women with a mean age of 40 years. Type 3 enhancement was seen in five postmenopausal patients (13%) with a mean age of 53 years and was characterized by faint diffuse enhancement. In the cervix, a zonal pattern of enhancement defining inner and outer stroma was seen in 23 patients (61%). Fifteen patients were premenopausal and eight were postmenopausal. Conclusion: In this study, we have shown a transitory zonal distribution of the contrast in the myometrium and cervix using dynamic contrast-enhanced helical CT

  17. Patterns of uterine enhancement with helical CT

    International Nuclear Information System (INIS)

    Kaur, H.; Loyer, E.M.; Charnsangavej, C.; Minami, M.

    1998-01-01

    Objective: The purpose of this study was to evaluate the enhancement characteristics of the normal uterine body and cervix using dynamic contrast-enhanced helical CT. Methods: Thirty-eight women scheduled for pelvic CT for non-gynecologic malignancies underwent dynamic contrast-enhanced helical CT of the pelvis. Data acquisition was during the arterial phase (30-45 s after the start of injection), the parenchymal phase (90-120 s after the start of injection), and delayed phase (3-9 min after the start of injection). The images were evaluated by four radiologists for the pattern of myometrial and cervical enhancement. Correlation was made with the age and menstrual status of the patients. Results: In the uterine body, three types of enhancement were observed. Type 1 enhancement, seen in 16 patients (42%), was characterized by the visualization of a subendometrial zone of enhancement, 30-120 s after the start of injection. Eight of these patients also showed an enhancing zone in the outer myometrium. Both zones were transitory, and in all cases, the uterus became homogeneous in the delayed phase. This pattern was seen predominantly in premenopausal women with a mean age of 34 years. Type 2 enhancement, seen in 17 cases (45%), was defined by the absence of subendometrial enhancement in the early phase. Enhancement was either diffuse from the outset or originated in the outer myometrium. This pattern was seen nearly equally in premenopausal and postmenopausal women with a mean age of 40 years. Type 3 enhancement was seen in five postmenopausal patients (13%) with a mean age of 53 years and was characterized by faint diffuse enhancement. In the cervix, a zonal pattern of enhancement defining inner and outer stroma was seen in 23 patients (61%). Fifteen patients were premenopausal and eight were postmenopausal. Conclusion: In this study, we have shown a transitory zonal distribution of the contrast in the myometrium and cervix using dynamic contrast-enhanced helical CT

  18. RHIC and the pursuit of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Mitchell, J.T.

    2001-01-01

    There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far

  19. Superconvergent gluon propagator and the quark-antiquark potential

    International Nuclear Information System (INIS)

    Oehme, R.; Chicago Univ., IL; Chicago Univ., IL

    1989-01-01

    Superconvergence of the gluon propagator, together with the asymptotically negative sign of the discontinuity, imply that the structure function has a representation which corresponds to an approximately linear quark-antiquark potential, provided the number of flavors is less than ten. For more than ten flavors, there is no indication for a linear potential within this framework. The connection with metric confinement is emphasized. Possible dipole terms are considered briefly. (orig.)

  20. On the scattering of gluons in the GKP string

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Hamburg Univ.; Bianchi, Marco S.

    2015-11-01

    We compute the one-loop S-matrix for the light bosonic excitations of the GKP string at strong coupling. These correspond, on the gauge theory side, to gluon insertions in the GKP vacuum. We perform the calculation by Feynman diagrams in the worldsheet theory and we compare the result to the integrability prediction, finding perfect agreement for the scheme independent part. For scheme dependent rational terms we test different schemes and find that a recent proposal reproduces exactly the integrability prediction.

  1. Gluon and charm content of the η' meson and instantons

    International Nuclear Information System (INIS)

    Shuryak, E.V.; Zhitnitsky, A.R.

    1998-01-01

    Motivated by recent CLEO measurements of the B→η ' 'K decay, we evaluate the gluon and charm content of the η ' ' meson using the interacting instanton liquid model of the QCD vacuum. Our main result is left-angle 0|g 3 f abc G μν a G να b G αμ c |η ' 'right-angle=-(2

  2. Cold quark-gluon plasma. Theoretical and experimental perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Mandzhavidze, I [Institute of Physics, Tbilisi (Georgia); Sisakyan, A N [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1998-12-01

    The arguments that extremely high-multiplicity hadron interactions at high energies are the source of cold, dense quark-gluon plasma (CQGP) created by the QCD heavy jets are offered. The possibility of calorimetric triggering and measurements of CQGP is considered. The space-time local thermodynamical formalism is adopted for field-theoretical description of such measurements. The valid phenomena in the CQGP are discussed (qualitatively) from theoretical and experimental points of view 62 refs.

  3. Enhanced J/psi suppression due to gluon depletion

    OpenAIRE

    Hwa, R. C.; Pisut, J.; Pisutova, N.

    1997-01-01

    The nonlinear effect of gluon depletion in the collision of large nuclei can be large. It is due to multiple scatterings among comoving partons initiated by primary scattering of partons in the colliding nuclei. The effect can give rise to substantial suppression of $J/\\psi$ production in very large nuclei, even if the linear depletion effect is insignificant for the collisions of nuclei of smaller sizes. This mechanism offers a natural explanation of the enhanced suppression in the Pb-Pb dat...

  4. Tree-level gluon amplitudes on the celestial sphere

    Science.gov (United States)

    Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael

    2018-06-01

    Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.

  5. Debye's length in expanding quark-gluon plasma

    International Nuclear Information System (INIS)

    Bialas, A.

    1988-06-01

    The screening properties of an abelian quark-gluon plasma and boost invariantly expanding in a given direction, are discussed. The expansion results in anisotropic screening. At early stages of the process, the Debye length along the direction of the expansion is reduced by a factor of about 2, relative to static calculations. This may have important consequences for the J/ψ production rate. 12 refs., 2 figs., 1 tab. (author)

  6. Phenomenological Review on Quark-Gluon Plasma: Concepts vs. Observations

    Czech Academy of Sciences Publication Activity Database

    Pasechnik, R.; Šumbera, Michal

    2017-01-01

    Roč. 3, č. 1 (2017), č. článku 7. ISSN 2218-1997 R&D Projects: GA MŠk(CZ) LG13031; GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : extreme states of matter * heavy ion collisions * QCD critical point * quark-gluon plasma * saturation phenomena * QCD vacuum Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics

  7. Evolution of gluon TMDs from small to moderate x

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Andrey [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.

  8. From quarks and gluons to baryon form factors.

    Science.gov (United States)

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  9. Dynamical gluon masses in perturbative calculations at the loop level

    International Nuclear Information System (INIS)

    Machado, Fatima A.; Natale, Adriano A.

    2013-01-01

    Full text: In the phenomenology of strong interactions one always has to deal at some extent with the interplay between perturbative and non-perturbative QCD. On one hand, the former has quite developed tools, yielded by asymptotic freedom. On the other, concerning the latter, we nowadays envisage the following scenario: 1) There are strong evidences for a dynamically massive gluon propagator and infrared finite coupling constant; 2) There is an extensive and successful use of an infrared finite coupling constant in phenomenological calculations at tree level; 3) The infrared finite coupling improves the perturbative series convergence; 4) The dynamical gluon mass provides a natural infrared cutoff in the physical processes at the tree level. Considering this scenario it is natural to ask how these non-perturbative results can be used in perturbative calculations of physical observables at the loop level. Recent papers discuss how off-shell gauge and renormalization group invariant Green functions can be computed with the use of the Pinch Technique (PT), with IR divergences removed by the dynamical gluon mass, and using a well defined effective charge. In this work we improve the former results by the authors, which evaluate 1-loop corrections to some two- and three-point functions of SU(3) pure Yang-Mills, investigating the dressing of quantities that could account for an extension of loop calculations to the infrared domain of the theory, in a way applicable to phenomenological calculations. One of these improvements is maintaining the gluon propagator transverse in such a scheme. (author)

  10. Quarks and gluons in nuclear and particle physics

    International Nuclear Information System (INIS)

    Van Hove, L.

    1988-01-01

    This paper provides a broad overview of strong interactions, or nuclear forces, as ones understanding has expanded over the past 25 years. The major particles and models are briefly touched upon. The author expands upon the field theories which have evolved to explain the experimental work, and the present model of quarks and gluons which form the components of hadrons. The standard model has been very successful in explaining much of the newly acquired experimental data. But the property of confinement, where the partons, (quarks and gluons), are not observed seperately has precluded observation of these particles. He touches on the manifestation of these particles in high energy physics, where they model the observed particles and resonances, and are responsible for the production of hadronic jets. However in nuclear physics, one does not need to postulate the existance of these particles to explain the properties of nuclei, until one deals with interaction energies in the range of GeV. The author then touches on the area of ultra-relativistic nuclear physics, where the partons must play a role in the effects which are observed. In particular he discusses deep inelastic lepton scattering on nuclei, the Drell-Yan process in nuclei, and ultra-relativistic nuclear collisions. Finally he gives a brief discussion of the quark-gluon plasma, which is postulated to form during very high energy collisions, manifesting itself as a brief deconfinement of the partons into an equilibrium plasma

  11. The gluon momentum fraction of the nucleon from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Constantinou, Martha; Jansen, Karl; Wiese, Christian; Panagopoulos, Haralambos

    2016-01-01

    We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally twisted mass fermion ensembles with N_f=2+1+1 flavors at a pion mass of about 370 MeV and a lattice spacing of a∼0.082 fm and with N_f=2 flavors at the physical pion mass and a lattice spacing of a∼0.093 fm. In the definition of the gluon operator we employ stout smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the renormalization of the quark and gluon operators. We find, after conversion to the MS scheme at a scale of 2 GeV: left angle x right angle "R_g=0.284(23)(23) for pion mass of about 370 MeV and left angle x right angle "R_g=0.283(23)(15) for the physical pion mass.

  12. Physics and astrophysics of quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario.

  13. Physics and astrophysics of quark-gluon plasma

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario

  14. Phenomenological study of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson

    International Nuclear Information System (INIS)

    Anikin, I. V.; Besse, A.; Ivanov, D. Yu.; Pire, B.; Szymanowski, L.; Wallon, S.

    2011-01-01

    We apply a previously developed scheme to consistently include the twist-3 distribution amplitudes for transversely polarized ρ mesons in order to evaluate, in the framework of k T factorization, the helicity amplitudes for exclusive leptoproduction of a light vector meson, at leading order in α s . We compare our results with high energy experimental data for the ratios of helicity amplitudes T 11 /T 00 and T 01 /T 00 and get a good description of the data.

  15. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    Science.gov (United States)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  16. Recent Results on Soft Probes of the Quark-Gluon Plasma from the ATLAS Experiment at the LHC

    CERN Document Server

    Przybycien, M; The ATLAS collaboration

    2014-01-01

    Measurements of low-pT (< 5 GeV) particle production have provided valuable insight on the production and evolution of the quark-gluon plasma in Pb+Pb collisions at the LHC. In particular, measurements of elliptic and higher order collective flow imprinted on the azimuthal angle distributions of low-pT particles directly probe the strongly-coupled dynamics of the quark-gluon plasma and test hydrodynamic model descriptions of its evolution. The large acceptance of detectors like ATLAS has made it possible to measure flow event-by-event and to determine the correlations between different harmonics. Recent measurements of low-pT particle production and multi-particle correlations in proton-lead collisions have shown features similar to the collective flow observed in Pb+Pb collisions. Results will be presented from a variety of single and multi-particle measurements in Pb+Pb and proton-Pb collisions that probe the collective dynamics of the quark-gluon plasma and possibly provide evidence for collectivity in ...

  17. Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We concl...

  18. D*± meson production at low Q2 with the H1 detector and determination of unintegrated gluon densities

    International Nuclear Information System (INIS)

    Cholewa, Axel

    2011-02-01

    A study of inclusive D *± meson production in deep inelastic electron-proton scattering at the H1 detector is presented for low photon virtualities. The results of these measurements have been used to determine unintegrated gluon densities with the Monte Carlo generator CASCADE. The phase space of the measurement is defined by photon virtualities inside 2 GeV 2 2 2 , and inelasticities inside 0.02 *± mesons is restricted to pseudo rapidities of vertical stroke η D * vertical stroke t D * >1.5 GeV and complements D *± meson production measurements at higher photon virtualities. Data taken in the years 2004-2007 during the HERA II running period have been analyzed yielding an integrated luminosity of 348 pb -1 . This significant increase in statistics compared to HERA I was exploited in the single and double differential cross sections which have been measured more differentiated than in previous measurements at H1. The single differential cross sections have been used in parameter fits of unintegrated gluon densities. For this purpose scattering events in electron-proton collisions were simulated with the Monte Carlo generator CASCADE and the deviation of the prediction of the simulation from the measured data was then minimized with the χ 2 method. Three different parametrizations of unintegrated gluon distributions have been used and compared. (orig.)

  19. Examining the Conservation of Kinks in Alpha Helices.

    Directory of Open Access Journals (Sweden)

    Eleanor C Law

    Full Text Available Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures.

  20. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-11-01

    Full Text Available Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswimmers with the soft and deformable body are appropriate and highly adaptive in a confined environment. Thus, this paper presents a lotus-root-based helical microswimmer, which is fabricated by the fibers of lotus-root coated with magnetic nanoparticles to active under the magnetic fields. The helical microstructures are derived from the intrinsic biological structures of the fibers of the lotus-root. This paper aims to study the swimming characteristic of lotus-root-based microswimmers with deformable helical bodies. In the initial step under the uniform magnetic actuation, the helical microswimmers are bent lightly due to the heterogeneous distribution of the internal stress, and then they undergo a swimming motion which is a spindle-like rotation locomotion. Our experiments report that the microswimmers with soft bodies can locomote faster than those with rigid bodies. Moreover, we also find that the curvature of the shape decreases as a function of actuating field frequency which is related to the deformability of lotus-root fibers.

  1. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  2. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  3. Helicity amplitudes for matter-coupled gravity

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Novaes, S.F.; Spehler, D.

    1992-07-01

    The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)

  4. Stiffness versus architecture of single helical polyisocyanopeptides

    NARCIS (Netherlands)

    Buul, van A.M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J.C.; Christianen, P.C.M.; Kouwer, P.H.J.; Nolte, R.J.M.; Engelkamp, H.; Blank, K.; Rowan, A.E.

    2013-01-01

    Helical structures play a vital role in nature, offering mechanical rigidity, chirality and structural definition to biological systems. Little is known about the influence of the helical architecture on the intrinsic properties of polymers. Here, we offer an insight into the nano architecture of

  5. The resummed Higgs boson transverse momentum distribution at the LHC

    CERN Document Server

    Kulesza, A; Vogelsang, W

    2003-01-01

    We apply QCD resummation techniques to study the transverse momentum distribution of Higgs bosons produced via gluon-gluon fusion at the LHC. In particular we focus on the joint resummation formalism which resums both threshold and transverse momentum corrections simultaneously. A comparison of results obtained in the joint and the standard recoil resummation frameworks is presented.

  6. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  7. The exclusive J/ψ process at the LHC tamed to probe the low x gluon

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.P. [Max-Planck-Institute for Physics, Munich (Germany); Martin, A.D. [Institute for Particle Physics Phenomenology Durham University, Durham (United Kingdom); Ryskin, M.G. [Institute for Particle Physics Phenomenology Durham University, Durham (United Kingdom); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, St. Petersburg (Russian Federation); Teubner, T. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom)

    2016-11-15

    The perturbative QCD expansion for J/ψ photoproduction appears to be unstable: the NLO correction is large (and of opposite sign) to the LO contribution. Moreover, the predictions are very sensitive to the choice of factorisation and renormalisation scales. Here we show that perturbative stability is greatly improved by imposing a 'Q{sub 0} cut' on the NLO coefficient functions; a cut which is required to avoid double counting. Q{sub 0} is the input scale used in the parton DGLAP evolution. This result opens the possibility of high precision exclusive J/ψ data in the forward direction at the LHC being able to determine the low x gluon distribution at low scales. (orig.)

  8. A perturbative treatment of double gluon exchange in γ*-proton DIS

    International Nuclear Information System (INIS)

    Kharraziha, H.

    2000-04-01

    A new model for the exchange of two gluons between the virtual photon and the proton, in non-diffractive deeply inelastic electron-proton scattering, is developed and studied. This model relies on a perturbative calculation, previously applied to diffraction, and a general result from Regge theory. As a first application of the model, we study corrections to the momentum transfer to the quark-anti-quark pair, at the photon-vertex. We find a significant enhancement of the cross-section at ∝Q 2 momentum transfers, and large negative corrections for small momentum transfers. The implication of this result for jet-distributions measured at HERA, is discussed. (orig.)

  9. Structure functions and pair correlations of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Thoma, Markus H.

    2005-01-01

    Recent experiments at RHIC and theoretical considerations indicate that the quark-gluon plasma, present in the fireball of relativistic heavy-ion collisions, might be in a liquid phase. The liquid state can be identified by characteristic correlation and structure functions. Here definitions of the structure functions and pair correlations of the quark-gluon plasma are presented as well as perturbative results. These definitions might be useful for verifying the quark-gluon-plasma liquid in QCD lattice calculations

  10. A QCD derivation of the additive quark model from two and three gluon exchanges

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The contributions to the Pomeron from two and three gluon exchanges are shown to give the correct combinatorial factors for the additive quark model relation between meson and baryon Pomeron couplings, even though two-quark and three-quark operators are involved. Similar results hold for the contributions to hadron masses from three-gluon vertices as well as one-gluon exchange. The color algebra reduces the multiquark couplings to a linear function of quark number. (author)

  11. Transverse gluon contributions to the thermal static potential of heavy quarkonium

    International Nuclear Information System (INIS)

    Zhu, Jia-Qing; Li, Yun-De

    2015-01-01

    The transverse gluon contributions to the thermal static potentials of heavy quarkonia in isotropic medium are studied. Using the resummation of the damping rates method developed by Hou and Li, the infrared divergence that appeared in the effective potential calculations of transverse gluon is avoided. The comparisons between the transverse and the longitudinal contributions for heavy quarkonia are discussed. The results show that the dissociation scales of quarkonia in thermal medium are decreased by the transverse gluon contributions

  12. Topology of helical fluid flow

    DEFF Research Database (Denmark)

    Andersen, Morten; Brøns, Morten

    2014-01-01

    function for the topology of the streamline pattern in incompressible flows. On this basis, we perform a comprehensive study of the topology of the flow field generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Hardin, J. C. 1982...... the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. By including the self-induced velocity on the vortex filament by a localised induction approximation, the stream function is slightly modified...... and an extra parameter is introduced. In this setting two new flow topologies arise, but not more than two critical points occur for any combination of parameters....

  13. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  14. The quantum Hall effect helicity

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Keshav N., E-mail: keshav1001@yahoo.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  15. Vertex of three and four gluons in the Yang-Mills theory

    International Nuclear Information System (INIS)

    Brandt, F.T.C.

    1986-01-01

    In a general covariant gauge, the structure of the three-point function with one and two external gluons on shell is studied. The contributions which result in the one-loop approximation are expressed in terms of simple functions containing collinear and soft singularities. Furthermore, the contributions asociated with the four-point vertex when all external gluons are on-sheel, are analysed. As an application of these results, the infrared structure of the gluon-gluon scattering amplitude, is studied. (author) [pt

  16. Semirelativistic potential model for low-lying three-gluon glueballs

    International Nuclear Information System (INIS)

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2006-01-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J PC states are computed and compared with recent lattice calculations. A good agreement is found for 1 -- and 3 -- states, but our model predicts a 2 -- state much higher in energy than the lattice result. The 0 -+ mass is also computed

  17. High energy production of gluons in a quasi-multi-Regge kinematics

    International Nuclear Information System (INIS)

    Fadin, V.S.; Lipatov, L.N.

    1989-01-01

    Inelastic gluon-gluon scattering amplitudes in the Born approximation for the quasi-multi-Regge kinematics are calculated, starting with the Veneziano-type expression for the inelastic amplitude of the gluon-tachyon scattering with its subsequent simplification in the region of large energies and the Regge slope α'→0. Results obtained allow one to determine the high order corrections to the gluon Regge trajectory, the reggeon-particle vertices and to the integral kernel of the Bethe-Salpeter equation for the vacuum t-channel partial waves. 10 refs.; 7 figs

  18. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Cyprus Institute, Nicosia; Drach, Vincent; Wiese, Christian; Hadjiyiannakou, Kyriakos; Jansen, Karl; Deutsches Elektronen-Synchrotron; Kostrzewa, Bartosz

    2013-11-01

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle g for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24 3 x 48 lattices for the case where the Feynman-Hellman theorem is used and 32 3 x 64 lattices for the direct method, employing N f =2+1+1 maximally twisted mass fermions.

  19. Heavy ion collisions, the quark-gluon plasma and antinucleon annihilation

    International Nuclear Information System (INIS)

    Sarma, Nataraja

    1985-01-01

    Studies in high energy physics have indicated that nucleon and mesons are composed of quarks confined in bags by the strong colours mediated by gluons. It is reasonably expected that at suitably high baryon density and temperature of the nucleus, these bags of nucleon and mesons fuse into a big bag of quarks or gluons i.e. hadronic matter undergoes transition to a quark-gluon phase. Two techniques to achieve this transition in a laboratory are: (1) collision of two heavy nuclei, and (2) annihilation of antinucleons and antinuclei in nuclear matter. Theoretical studies as well as experimental studies associated with the transition to quark-gluon phase are reviewed. (author)

  20. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun

    2009-09-10

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  1. Quarkonium states in an anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Guo Yun

    2009-01-01

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  2. Threshold region for Higgs boson production in gluon fusion.

    Science.gov (United States)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  3. Probing Quark-Gluon Interactions with Transverse Polarized Scattering

    International Nuclear Information System (INIS)

    Rondon, Oscar A.

    2011-01-01

    Transverse polarized inelastic scattering extends the power of the electromagnetic interaction as a probe of nucleon dynamics beyond the leading order regime explored with longitudinally polarized DIS. In transverse polarized scattering, the twist-3 g 2 spin structure function contributes at the same order as the longitudinal, twist-2, g 1 , so interactions between quarks and gluons can be studied, opening a window on the mechanisms of confinement. This talk reports the results of Jefferson Lab's Resonances Spin Structure experiment measurement of g 2 and the d 2 twist-3 quark matrix element at a four-momentum transfer of 1.3 GeV 2 .

  4. Singular gauge potentials and the gluon condensate at zero temperature

    OpenAIRE

    Langfeld, K.; Ilgenfritz, E. -M.; Reinhardt, H.; Schäfke, A.

    2001-01-01

    We consider a new cooling procedure which separates gluon degrees of freedom from singular center vortices in SU(2) LGT in a gauge invariant way. Restricted by a cooling scale $\\kappa^4/\\sigma^2$ fixing the residual SO(3) gluonic action relative to the string tension, the procedure is RG invariant. In the limit $\\kappa \\to 0$ a pure Z(2) vortex texture is left. This {\\it minimal} vortex content does not contribute to the string tension. It reproduces, however, the lowest glueball states. With...

  5. Very high energy probes of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Ludlam, T.; Paige, F.; Madansky, L.

    1984-01-01

    Among the penetrating probes of nuclear matter the most frequently discussed have been those which involve the detection of photons or leptons with m/sub T/ approx. = P/sub T/ < 3 GeV. This is the expected range of emission from a hot, thermalized plasma of quarks and gluons. The suggestion has been made that in very high energy collisions of nuclei the properties of high P/sub T/ jets may also reflect the characteristics of the nuclear medium through which the parent partons have propagated just after the collision. In this note we expand on the possible uses of such a probe

  6. Viscosities in the Gluon-Plasma within a Quasiparticle Model

    CERN Document Server

    Bluhm, M; Redlich, K

    2009-01-01

    A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.

  7. Quarks and gluons in the nucleon: Proceedings. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks.

  8. Finite size effects in quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gopie, Andy; Ogilvie, Michael C.

    1999-01-01

    Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c

  9. Quark-gluon plasma searches: today and tomorrow

    International Nuclear Information System (INIS)

    Geist, W.M.

    1991-01-01

    Selected recent data from ion collisions at high energy are discussed in the frame-work of Quark-Gluon Plasma (QGP) searches. The purpose of these experiments is to measure the volume where a high temperature QGP may have been formed, determine its characteristic temperature, verify chemical equilibrium, establish deconfinement of this phase of matter, and/or find anything that differs from natural extrapolations from pp and pA collisions. Refined methods and new theoretical ideas for future experiments with heavier beams and/or at higher energies are briefly outlined. (G.P.) 49 refs., 28 figs

  10. Gluon ladders in pp (pp-bar) collisions

    International Nuclear Information System (INIS)

    Machado, Magno Valerio Trindade; Ducati, Maria Beatriz Gay

    2000-01-01

    Full text follows: We study the contribution of a finite sum of gluon ladders to the hadronic processes showing that a reliable description is obtained using two order on perturbation theory. The pp(pp-bar) total cross sections are described with good agreement, consistent with unitarity bound. We also calculate the elastic scattering amplitude at non zero momentum transfer t, introducing two distinct Ansatz for the proton impact factor. As a by product the elastic differential cross section is obtained at small t approximation and compared with the data. (author)

  11. Effects of magnetic fields on the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-11-15

    In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

  12. Quarks and gluons in the nucleon: Proceedings. Volume 6

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks

  13. Interactions of quarks and gluons with nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  14. Attractive Casimir effect in an infrared modified gluon bag model

    International Nuclear Information System (INIS)

    Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.

    2005-01-01

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy

  15. Astrophysical Aspects of Neutrino Dynamics in Ultradegenerate Quark Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Souvik Priyam Adhya

    2017-01-01

    Full Text Available The cardinal focus of the present review is to explore the role of neutrinos originating from the ultradense core of neutron stars composed of quark gluon plasma in the astrophysical scenario. The collective excitations of the quarks involving the neutrinos through the different kinematical processes have been studied. The cooling of the neutron stars as well as pulsar kicks due to asymmetric neutrino emission has been discussed in detail. Results involving calculation of relevant physical quantities like neutrino mean free path and emissivity have been presented in the framework of non-Fermi liquid behavior as applicable to ultradegenerate plasma.

  16. Meson interferometry and the quest for quark-gluon matter

    International Nuclear Information System (INIS)

    Soff, Sven

    2001-01-01

    We point out what we may learn from the investigation of identical two-particle interferometry in ultrarelativistic heavy ion collisions if we assume a particular model scenario by the formation of a thermalized quark-gluon plasma hadronizing via a first-order phase transition to an interacting hadron gas. The bulk properties of the two-pion correlation functions are dominated by these late and soft resonance gas rescattering processes. However, we show that kaons at large transverse momenta have several advantages and a bigger sensitivity to the QCD phase transition parameters

  17. Heavy quarks and squarks from W-gluon fusion

    International Nuclear Information System (INIS)

    Lindfors, J.

    1986-05-01

    We discuss Wg-fusion as a source of heavy quark and squark pairs at very high energy hadron colliders. Effective W approximation is used to calculate the cross-sections analytically in the forward scattering configuration; good agreement is obtained with exact numerical calculations. W-gluon fusion is found to be not nearly as important a production mechanism of heavy squarks as it is of heavy quarks. This is especially true when the mass-splitting within the SU(2) L doublet is small

  18. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  19. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  20. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.