WorldWideScience

Sample records for glufosinate ammonium-induced pathogen

  1. Perinatal exposure to low dose glufosinate ammonium induces autism-like phenotypes in mice.

    Directory of Open Access Journals (Sweden)

    Anthony eLaugeray

    2014-11-01

    Full Text Available Glufosinate ammonium (GLA is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in normalized brain weight of the offspring. In addition, reduced expression of Pten and Peg3 - two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between perinatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods.

  2. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  3. Characterisation of glufosinate resistance mechanisms in Eleusine indica.

    Science.gov (United States)

    Jalaludin, Adam; Yu, Qin; Zoellner, Peter; Beffa, Roland; Powles, Stephen B

    2017-06-01

    An Eleusine indica population has evolved resistance to glufosinate, a major post-emergence herbicide of global agriculture. This population was analysed for target-site (glutamine synthetase) and non-target-site (glufosinate uptake, translocation and metabolism) resistance mechanisms. Glutamine synthetase (GS) activity extracted from susceptible (S) and resistant (R*) plants was equally sensitive to glufosinate inhibition, with IC 50 values of 0.85 mm and 0.99 mm, respectively. The extractable GS activity was also similar in S and R* samples. Foliar uptake of [ 14 C]-glufosinate did not differ in S and R* plants, nor did glufosinate net uptake in leaf discs. Translocation of [ 14 C]-glufosinate into untreated shoots and roots was also similar in both populations, with 44% to 47% of the herbicide translocated out from the treated leaf 24 h after treatment. The HPLC and LC-MS analysis of glufosinate metabolism revealed no major metabolites in S or R* leaf tissue. Glufosinate resistance in this resistant population is not due to an insensitive GS, or increased activity, or altered glufosinate uptake and translocation, or enhanced glufosinate metabolism. Thus, target-site resistance is likely excluded and the exact resistance mechanism(s) remain to be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. A comparative investigation of the metabolism of the herbicide glufosinate in cell cultures of transgenic glufosinate-resistant and non-transgenic oilseed rape (Brassica napus) and corn (Zea mays).

    Science.gov (United States)

    Ruhland, Monika; Engelhardt, Gabriele; Pawlizki, Karlheinz

    2002-10-01

    To obtain information on differences between the metabolic pathways of the herbicide glufosinate (trade names: BASTA, LIBERTY) in non-transgenic, glufosinate-sensitive plants and in transgenic, glufosinate-resistant plants, the metabolism of 14C-labeled glufosinate and its enantiomers L- and D-glufosinate was studied using cell cultures of oilseed rape and corn. Transformation of glufosinate in both sensitive and transgenic rape cells remained at a low rate of about 3-10% in contrast to corn cells, where 20% was transformed in sensitive and 43% in transgenic cells after 14 days of incubation, the rest remaining as unchanged glufosinate. In sensitive rape and corn cells the main metabolite was 4-methylphosphinico-2-oxo-butanoic acid (PPO) with 7.3 and 16.4%, respectively, together with low amounts of 3-methylphosphinicopropionic acid (MPP), 4-methylphosphinico-2-hydroxybutanoic acid (MHB), 4-methylphosphinicobutanoic acid (MPB) and 2-methylphosphinicoacetic acid (MPA). An additional metabolite formed in transgenic cell cultures was 2-acetamido-4-methylbutanoic acid (N-acetyl-L-glufosinate, NGA), which was formed at rates of 3.2% in rape and 16.1% in corn. A further minor metabolite, not yet identified, was detected in both cell types. The liberation of 0.2% 14CO2 indicates further metabolic steps prior to a limited mineralization in plant cell cultures. L-glufosinate was transformed into the same metabolites as the glufosinate racemate. D-glufosinate was not metabolized.

  5. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties.

    Science.gov (United States)

    Hoerlein, G

    1994-01-01

    Glufosinate ammonium (phosphinothricin ammonium) (GLA) is the active ingredient of Basta and several other herbicides used worldwide. It is produced as part of the tripeptide L-phosphinothricyl-L-alanyl-L-alanin, which was first isolated from Streptomyces viridichromogenes or Streptomyces hygroscopicus. Its structure is confirmed by degradation and synthesis. Several processes for the preparation of D,L- and L-phosphinothricin are described. Glufosinate is a structural analog of glutamate and inhibits the glutamine synthetase. The result is a rapid build-up of a high ammonia level and a concomitant depletion of glutamine and several other amino acids in the plant. These effects are accompanied by a rapid decline of photosynthetic CO2-fixation and are followed by chlorosis and desiccation. The results of numerous toxicological studies show that glufosinate ammonium and its commercial formulations are safe for users and consumers under the conditions of recommended use. The fast and complete degradation in soil and surface water prevents movement of residues into groundwater. The toxicological threshold levels for all the nontarget organisms tested are well above the potential exposure levels and therefore do not reflect any hazard for nontarget organisms in the ecosystem. Basta is a nonselective foliar applied herbicide for the control of undesirable mono- and dicotyledonous plants in orchards, vineyards, and plantations for minimum tillage, and as a harvest aid. A synthetic phosphinothricin acetyltransferase (PAT) gene has been introduced via Agrobacterium tumefaciens into dicot crops, such as like tobacco, tomato, spring and winter rapeseed, alfalfa, and several horticultural crops. The PAT gene was also successfully introduced into maize protoplasts that could be regenerated into fertile plants. All transgenic crop plants tolerated a two- to threefold field dosage of Basta.

  6. First Case of Glufosinate-Resistant Rigid Ryegrass (Lolium rigidum Gaud. in Greece

    Directory of Open Access Journals (Sweden)

    Ilias S. Travlos

    2018-03-01

    Full Text Available Repeated applications of the same herbicide(s, which are characterized by the same mode of action, increase selection pressure, which in turn favours the evolution of herbicide-resistant weeds. Glufosinate is a broad-spectrum non-selective herbicide being used for weed control for many years around the world. Rigid ryegrass (Lolium rigidum Gaud. is an economically important grass weed in Greece. Recent complaints by growers about control failure of rigid ryegrass with glufosinate require further investigation and have been the basis of this study. The objectives of this study were to confirm the existence of glufosinate-resistant L. rigidum in Greece and evaluate the effect of L. rigidum growth stage on glufosinate efficacy. Twenty populations of rigid ryegrass from Greece were sampled from five regions, and whole plant dose–response studies were conducted for five populations under controlled conditions with eight rates of glufosinate (0.0, 0.098, 0.187, 0.375, 0.75, 1.5, 3.0, and 6.0 kg a.i. ha−1. Glufosinate resistance was confirmed in three out of five populations with the level of resistance ranging from three-to seven-fold compared with the susceptible populations based on above-ground biomass reduction. Results also revealed that the level of glufosinate-resistance of rigid ryegrass was dependent on the growth stage at which it was applied.

  7. Field dissipation and storage stability of glufosinate ammonium and its metabolites in soil.

    Science.gov (United States)

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC) using a flame photometric detector (FPD). The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2-95.5%, 98.3-100.3%, and 99.3-99.6% with relative standard deviations (RSD) of 1.8-4.1%, 0.4-1.4%, and 1.3-2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30-2.93 days in an open field. In soil samples stored at -20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment.

  8. Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy

    OpenAIRE

    Screpanti , Claudio; Accinelli , Cesare; Vicari , Alberto; Catizone , Pietro

    2005-01-01

    International audience; The main objective of this experiment was to estimate field-scale runoff losses of glyphosate and glufosinate-ammonium under natural rainfall conditions. Investigations were carried out at the Runoff Monitoring Station of the University of Bologna (Italy). Glyphosate and glufosinate-ammonium were applied as pre-emergence herbicides on 350-m2 field plots characterized by a uniform slope of 15%. Field plots were cultivated with corn. The persistence and sorption isotherm...

  9. Nitrogen loss in Brachiaria decumbens after application of glyphosate or glufosinate-ammonium

    OpenAIRE

    Damin,Virginia; Franco,Henrique Coutinho Junqueira; Moraes,Milton Ferreira; Franco,Ademir; Trivelin,Paulo Cesar Ocheuze

    2008-01-01

    Nitrogen losses from the soil-plant system may be influenced by herbicide applications. In order to evaluate N loss in brachiaria (Brachiaria decumbens) after application of the herbicides glyphosate and glufosinate-ammonium, an experiment was carried out in a greenhouse as a completely randomized design, with three treatments and six replicates. Treatments were as follows: i) desiccation of brachiaria-plants with glyphosate; ii) desiccation of brachiaria-plants with glufosinate-ammonium; and...

  10. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2014-01-01

    Full Text Available A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP and 2-methylphosphinico-acetic acid (MPA, in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg. Soil samples were extracted with ammonium hydroxide solution 5% (v/v, concentrated, and reacted with trimethyl orthoacetate (TMOA in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC using a flame photometric detector (FPD. The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2–95.5%, 98.3–100.3%, and 99.3–99.6% with relative standard deviations (RSD of 1.8–4.1%, 0.4–1.4%, and 1.3–2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30–2.93 days in an open field. In soil samples stored at −20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment.

  11. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    Science.gov (United States)

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC) using a flame photometric detector (FPD). The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2–95.5%, 98.3–100.3%, and 99.3–99.6% with relative standard deviations (RSD) of 1.8–4.1%, 0.4–1.4%, and 1.3–2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30–2.93 days in an open field. In soil samples stored at −20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment. PMID:25374604

  12. Fate of the herbicide glufosinate-ammonium in the sandy, low-organic-carbon aquifer at CFB Borden, Ontario, Canada

    Science.gov (United States)

    Allen-King, Richelle M.; Butler, Barbara J.; Reichert, Barbara

    1995-04-01

    The herbicide glufosinate-ammonium was persistent in aerobic sandy aquifer material in laboratory batch and field in situ microcosms when added at concentrations of 50-400 μg L -1. In contrast, the compound is biotransformed relatively quickly in surface soil. Glufosinate transformation and metabolite (3-methylphosphinyl-propionic acid) production in carbonamended laboratory microcosms demonstrated that the aquifer system was carbon-limited with respect to glufosinate transformation. Microbiological test showed that flufosinateammonium and sodium-glufosinate was be used as a nitrogen source, in the presence of sufficient carbon. Glufosinate was not used by the native microorganisms as a source of phosphorus, nor metabolized as a sole carbon and energy source. Ammonium appeared to be preferred over glufosinate as a nitrogen source. When representative microbial strains isolated from the Borden aquifer were tested, most were glufosinate-ammonium tolerant. Complete inhibition of some isolates was demonstrated only at very high concentrations of 2-4 g L -1. The research suggests that in an aquifer with a relatively low clay content and little labile organic carbon, such as the sandy aquifer at the field site, glufosinate will be persistent and transport will be essentially unretarded. The availability of alternative nitrogen sources was also indicated as a parameter that can affect persistence.

  13. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil.

    Science.gov (United States)

    Tayeb, M A; Ismail, B S; Khairiatul-Mardiana, J

    2017-10-11

    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.

  14. Adsorption behavior and mechanism of glufosinate onto goethite.

    Science.gov (United States)

    Xu, Jian; Gu, Xueyuan; Guo, Yong; Tong, Fei; Chen, Liangyan

    2016-08-01

    The adsorption of glufosinate (GLU), a widely used herbicide similar to glyphosate (GLY), onto goethite was investigated as a function of the pH, ionic strength, background cations and anions, heavy metal ions and fulvic acids (FAs) by using batch adsorption experiments. In situ ATR-FTIR spectroscopy and density functional theory (DFT) calculations were carried out to characterize the molecular interactions between GLU and goethite surfaces. The macroscopic results indicated that an increasing pH exerted an adverse effect on GLU adsorption because of the electrostatic repulsion, and the adsorption was not sensitive to ionic strengths or background cation types, indicating that an inner-sphere surface complex was involved. GLU adsorption can be considerably depressed by PO4(3-), SO4(2-), and a high level of FA because of the competitive effect, while being enhanced by Cu(2+) with a maximum adsorption at approximately pH5 because of the metal ion bridging effect. Other examined divalent metal cations (Cd(2+), Zn(2+), and Pb(2+)) showed almost no effect on GLU adsorption, indicating weak interaction between them. ATR-FTIR spectra and the DFT calculations further proved that GLU was bonded to goethite surfaces through the formation of a monodentate mononuclear inner-sphere complex between the phosphinic moiety and surface Fe(III) centers under an acidic condition. The results showed that GLU had a similar adsorption mechanism to that of GLY onto goethite, but with a lower adsorption affinity, possibly exerting higher mobility and risk in soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.

  16. Seletividade de amonio-glufosinate isolado e em mistura com pyrithiobac-sodium em algodoeiro transgênico LL® Selectivity of ammonium-glufosinate applied alone or in mixture with pyrithiobac sodium in transgenic LL® cotton

    Directory of Open Access Journals (Sweden)

    G.B.P. Braz

    2012-12-01

    Full Text Available Com a recente introdução no Brasil de variedades transgênicas de algodoeiro que apresentam resistência ao amonio-glufosinate (LL®, há escassez de informações tanto a respeito da seletividade de reaplicações desse herbicida, quanto no que se refere a misturas com outros herbicidas. Objetivou-se no presente trabalho avaliar a seletividade de aplicações sequenciais de amonio-glufosinate isolado e em associação com pyrithiobac-sodium em algodão transgênico LL®. Dessa forma, foi instalado um experimento em delineamento de blocos casualizados em arranjo fatorial (3x3+1, empregando-se oito repetições. O primeiro fator correspondeu à aplicação dos tratamentos amonio-glufosinate (500 g ha-1 e amonio-glufosinate + pyrithiobac-sodium (500 + 42 g ha-1 e 500 + 56 g ha-1. O segundo fator foi o número de aplicações sequenciais em pós-emergência do algodoeiro (uma, duas ou três. O tratamento adicional foi composto por testemunha sem aplicação de herbicida. A associação do pyrithiobac-sodium ao amonio-glufosinate causou maiores níveis de fitointoxicação inicial, embora não tenham havido mais sintomas duas semanas após as aplicações. A qualidade de fibra do algodoeiro não foi influenciada por nenhum dos tratamentos herbicidas. O amonio-glufosinate isolado foi seletivo para o algodão LL® em até três aplicações em pós-emergência. O algodoeiro apresentou ainda tolerância a uma aplicação da mistura de amonio-glufosinate + pyrithiobac-sodium, e não se observou qualquer efeito negativo sobre a produtividade de algodão em caroço.Due to the recent introduction of transgenic cotton varities with resistance to ammonium-glufosinate (LL® in Brazil, there is a lack of information related both to the selectivity of sequential reapplications of ammonium-glufosinate and to tank mixture with other herbicides. This work aimed to evaluate the selectivity of sequential applications of ammonium-glufosinate isolated or in

  17. Interaction of 2,4-D or Dicamba with Glufosinate for Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida L. in Glufosinate-Resistant Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Zahoor A. Ganie

    2017-07-01

    Full Text Available Glyphosate-resistant (GR giant ragweed is a problematic broadleaf weed in crops including maize and soybean in the Midwestern United States. Commercialization of crops with 2,4-D or dicamba and glufosinate resistance will allow post-emergence (POST applications of these herbicides. Therefore, information is needed on how 2,4-D/dicamba will interact with glufosinate in various rate combinations. The objectives of this study were to evaluate the interaction of glufosinate plus 2,4-D and/or dicamba for control of GR giant ragweed, and to determine their effect on GR giant ragweed density, biomass, maize injury, and yield. Field experiments were conducted in 2013 and 2014 in a field infested with GR giant ragweed in Nebraska, United States. The treatments included POST applications of glufosinate (450 or 590 g ai ha-1, 2,4-D, or dicamba at 280 or 560 g ae ha-1 applied alone and in tank-mixtures in glufosinate-resistant maize. The results showed that dicamba applied alone resulted in 56 to 62% and 73 to 83% control at 14 and 28 days after treatment (DAT, respectively, and ≥95% control at 60 DAT or at harvest compared to 17 to 30% and 57 to 73% control with 2,4-D applied alone at 280 and 560 g ai ha-1, respectively. Glufosinate tank-mixed with 2,4-D and/or dicamba consistently provided ≥89% control of GR giant ragweed, except that control with glufosinate plus 2,4-D varied from 80 to 92% at 60 DAT and at harvest. The comparison between the observed and expected control (determined by Colby’s equation suggested an additive interaction between glufosinate and 2,4-D or dicamba for control of GR giant ragweed. Contrast analysis also indicated that GR giant ragweed control with glufosinate plus 2,4-D or dicamba was either consistently higher or comparable with individual herbicides excluding 2,4-D applied alone. Herbicide programs, excluding 2,4-D at 280 g ae ha-1, resulted in ≥80% reduction in GR giant ragweed density. Tank-mixing glufosinate with

  18. Response of Conyza bonariensis, Conyza canadensis and Conyza sumatrensis to glufosinate

    Directory of Open Access Journals (Sweden)

    Hugo Enrique Cruz-Hipolito

    2012-02-01

    Full Text Available Conyza bonariensis, C. canadensis and C. sumatrensis are problematic weeds in citrus orchards and olive trees in southern Spain. The aim of this work was to determine the efficacy of glufosinate in these species, and also to establish a suitable growing stage for application in C. bonariensis. For this purpose, dose-response and spray retention assays were carried out in susceptible biotypes of C. bonariensis, C. canadensis and C. sumatrensis at the rosette stage (BBCH 14-15. Additionally, the ED50 and spray retention at two later growth stages were determined in C. bonariensis. Results at rosette stage (BBCH 14-15 showed an ED50 of 0.216 in the case of C. bonariensis; 0.058 for C. canadensis and 0.090 L ha-1 for C. sumatrensis. The spray retention values did not show any significant differences between the three species at rosette stage. In C. bonariensis, at the second stage of its growth (10-15 cm in height, the ED50 obtained was 0.517 and 1.297 L ha-1 for the third stage (with formed capitula. Also, the spray retention in the second and third stage was of 0.44 and 0.38 mL of glufosinate g-1 of dry weight, respectively. These species treated in an early developmental stage are more susceptible to glufosinate herbicide.

  19. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species.

    Science.gov (United States)

    Fernández, Pablo; Alcántara, Ricardo; Osuna, María D; Vila-Aiub, Martin M; Prado, Rafael De

    2017-05-01

    In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD 50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR 50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2013-01-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow; and the sub subplots were four secondary spring tillage methods: disking followed by (fb cultivator (DCU, disking fb chisel plow (DCH, disking fb disking (DD and no tillage (NT. Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1 fb cereal rye (3698 kg ha−1 and winter fallow (777 kg ha−1. Two weeks after planting (WAP and before the postemergence (POST application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1, DD following crimson clover (2213 kg ha−1 and DD following winter fallow (2153 kg ha−1. On average, IT cotton yields (2133 kg ha−1 were 21% higher than NIT (1766 kg ha−1. Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer

  1. Glufosinate ammonium clean-up procedure from water samples using SPE

    Science.gov (United States)

    Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini

    2015-09-01

    For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.

  2. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    OpenAIRE

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid f...

  3. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia L. in Glufosinate-Resistant Soybean [Glycine max (L. Merr

    Directory of Open Access Journals (Sweden)

    Ethann R. Barnes

    2017-08-01

    Full Text Available Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1 evaluate the efficacy of preplant (PP herbicides followed by (fb glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor applied post-emergence (POST for control of GR common ragweed in glufosinate-resistant soybean; (2 their effect on common ragweed density, biomass, and soybean yield; and (3 the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90–99% control of common ragweed at 21 d after treatment (DAT. The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor controlled GR common ragweed 84–98% at soybean harvest, reduced common ragweed density (≤20 plants m−2 and biomass by ≥93%, and secured soybean yield 1,819–2,158 kg ha−1. The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373–US$506 compared to PP alone (US$91 or PRE fb POST programs (US$158. The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  4. Sensitivity of Phaseolus vulgaris cv. `CIAP 7247F' plants to Glufosinate ammonium herbicide in greenhouse

    Directory of Open Access Journals (Sweden)

    Idalmis Bermúdez-Caraballoso

    2014-01-01

    Full Text Available Genetic breeding in Phaseolus by genetic transformation requires an efficient selection system. The present investigation was aimed to determine the minimum lethal concentration of glufosinate-ammonium (Finale ® in beans plants cv. `CIAP 7247F' grown in greenhouse. Different concentrations of the herbicide were applied to the foliage of plants in acclimatization phase (20, 30 y 40 mg l-1 and the control. Results showed that the minimum lethal concentration in plants in acclimatization phase was 30 mg l-1. Results also demonstrated that is possible the use of the herbicide as a selective agent of beans transformants cv. `CIAP 7247F' carrying the bar gene. Keywords: genetic transformation, herbicide, selective agent, tissue culture

  5. Ação dos herbicidas atrazine e glufosinate de amônio no aproveitamento de nitrogênio pelas plantas de milho Herbicides atrazine and ammonium glufosinate action on nitrogen usage by corn plants

    OpenAIRE

    N.G. Fleck; M.A. Rizzardi; R. Neves; D. Agostinetto

    2001-01-01

    A absorção vegetal do nitrogênio (N) presente no solo ou fornecido via fertilização é regulada por um complexo enzimático que age de forma conjunta e ordenada na planta. O objetivo desta pesquisa foi investigar efeitos dos herbicidas atrazine e glufosinate de amônio na absorção do N pelas plantas e os efeitos que exercem em características de plantas de milho. Em um dos experimentos (experimento 1) foram testadas três doses de atrazine (0, 200 e 2.000 g i.a. ha-1) e de glufosinate de amônio (...

  6. Ação dos herbicidas atrazine e glufosinate de amônio no aproveitamento de nitrogênio pelas plantas de milho Herbicides atrazine and ammonium glufosinate action on nitrogen usage by corn plants

    Directory of Open Access Journals (Sweden)

    N.G. Fleck

    2001-08-01

    Full Text Available A absorção vegetal do nitrogênio (N presente no solo ou fornecido via fertilização é regulada por um complexo enzimático que age de forma conjunta e ordenada na planta. O objetivo desta pesquisa foi investigar efeitos dos herbicidas atrazine e glufosinate de amônio na absorção do N pelas plantas e os efeitos que exercem em características de plantas de milho. Em um dos experimentos (experimento 1 foram testadas três doses de atrazine (0, 200 e 2.000 g i.a. ha-1 e de glufosinate de amônio (0; 40 e 80 g i.a. ha-1 e duas doses de N (0 e 90 kg ha-1. No segundo experimento (experimento 2 foram testados três tratamentos herbicidas (atrazine, 200 g i.a. ha-1; glufosinate de amônio, 40 g i.a. ha-1; atrazine + glufosinate de amônio, 200 + 40 g i.a. ha-1; e testemunha, duas fontes de N (uréia e nitrato de amônio e duas doses de N (0 e 100 kg ha-1. Os efeitos dos tratamentos foram avaliados aos 10 e 20 dias após a aplicação (DAA dos herbicidas, no experimento 1, e quando as plantas de milho apresentavam 10 folhas desenvolvidas (15 DAA e no pendoamento do milho (40 DAA, no experimento 2. A partir da análise dos resultados obtidos, constatou-se que aplicação de N em cobertura na cultura do milho promove aumento na maioria dos componentes do rendimento e incrementa em 35% o rendimento de grãos e que esse efeito ocorre de forma independente da fonte de N utilizada: uréia ou nitrato de amônio. Não ocorre interação entre os fatores relacionados aos herbicidas inibidores do fotossistema II (atrazine e da síntese de glutamina (glufosinate de amônio e aplicação de N em cobertura no milho. O uso destes herbicidas em doses reduzidas (abaixo da recomendada, aplicados isoladamente ou combinados, não afetou o rendimento de grãos nem os componentes do rendimento da cultura do milho. O herbicida atrazine tem pequena influência nos teores de clorofila e de N em milho, mas, em algumas situações, sua ação é favorável, especialmente

  7. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Eronen, Liisa; Rämö, Sari; Welling, Leena; Oinonen, Seija; Mattsoff, Leona; Ruohonen-Lehto, Marja

    2006-06-01

    The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright (c) 2006 Society of Chemical Industry

  8. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity

    OpenAIRE

    Dennis, Paul G.; Kukulies, Tegan; Forstner, Christian; Orton, Thomas G.; Pattison, Anthony B.

    2018-01-01

    In this study, we investigated the effects of one-off applications of glyphosate, glufosinate, paraquat, and paraquat-diquat on soil microbial diversity and function. All herbicides were added to soil as pure compounds at recommended dose and were incubated under laboratory conditions for 60 days. High-throughput phylogenetic marker gene sequencing revealed that none of the herbicides significantly influenced the richness, evenness and composition of bacterial and archaeal communities. Likewi...

  9. Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khenifi, Aicha [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Laboratoire de physico-chimie des materiaux, catalyse et environnement Usto, Oran, El M' nouar (Algeria); Derriche, Zoubir [Laboratoire de physico-chimie des materiaux, catalyse et environnement Usto, Oran, El M' nouar (Algeria); Forano, Claude; Prevot, Vanessa [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Mousty, Christine, E-mail: Christine.Mousty@univ-bpclermont.fr [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Scavetta, Erika, E-mail: scavetta@fci.unibo.it [Laboratorio di Chimica Analitica, Dipartimento di Chimica Fisica ed Inorganica, Universita degli Studi di Bologna (Italy); Ballarin, Barbara; Guadagnini, Lorella; Tonelli, Domenica [Laboratorio di Chimica Analitica, Dipartimento di Chimica Fisica ed Inorganica, Universita degli Studi di Bologna (Italy)

    2009-11-10

    An amperometric sensor based on Ni{sub 1-x}Al{sub x}(OH){sub 2}NO{sub 3x}.nH{sub 2}O layered double hydroxide (LDH) has been developed for the electrochemical analysis in one step of two herbicides: glyphosate (N-(phosphonomethyl)glycine, Glyp) and glufosinate ((DL-homoalanine-4-yl)-methylphosphinic acid, Gluf). NiAl-LDH was prepared by coprecipitation or by electrodeposition at the Pt electrode surface. Inorganic films were fully characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Adsorption isotherms of Glyp onto this inorganic lamellar material have been established. Electrocatalytic oxidation of Glyp and Gluf is possible at the Ni{sup 3+} centres of the structure. The electrochemical responses of the NiAl-LDH modified electrode were obtained by cyclic voltammetry and chronoamperometry at 0.49 V/SCE as a function of herbicide concentration in 0.1 M NaOH solution. The electrocatalytic response showed a linear dependence on the Glyp concentration ranging between 0.01 and 0.9 mM with a detection limit of 1 {mu}M and sensitivity 287 mA/M cm{sup 2}. The sensitivity found for Gluf was lower (178 mA/M cm{sup 2}).

  10. Metodologia para determinação de efeitos fisiológicos e metabólicos do glufosinate em soja

    OpenAIRE

    Barberis, Luis Rodrigo Miyamoto [UNESP

    2012-01-01

    O glufosinate é derivado do fosfinotricina, uma toxina microbiana natural isolada a partir de duas espécies de fungos Streptomyces. Atua inibindo a atividade da enzima glutamina sintetase, que é necessária para a produção do aminoácido glutamina e para a desintoxicação da amônia pela planta. Objetivou-se neste trabalho avaliar a intoxicação e alterações fisiológicas e bioquímicas causadas pelo glufosinate em plantas de soja. O experimento foi conduzido em casa-de-vegetação, no Núcleo de Pesqu...

  11. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifoliaL.) in Glufosinate-Resistant Soybean [Glycine max(L.) Merr].

    Science.gov (United States)

    Barnes, Ethann R; Knezevic, Stevan Z; Sikkema, Peter H; Lindquist, John L; Jhala, Amit J

    2017-01-01

    Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR) common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1) evaluate the efficacy of preplant (PP) herbicides followed by (fb) glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor applied post-emergence (POST) for control of GR common ragweed in glufosinate-resistant soybean; (2) their effect on common ragweed density, biomass, and soybean yield; and (3) the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90-99% control of common ragweed at 21 d after treatment (DAT). The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor controlled GR common ragweed 84-98% at soybean harvest, reduced common ragweed density (≤20 plants m -2 ) and biomass by ≥93%, and secured soybean yield 1,819-2,158 kg ha -1 . The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373-US$506) compared to PP alone (US$91) or PRE fb POST programs (US$158). The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  12. Different rates of synthesis and degradation of two chloroplastic ammonium-inducible NADP-specific glutamate dehydrogenase isoenzymes during induction and deinduction in Chlorella sorokiniana cells

    International Nuclear Information System (INIS)

    Bascomb, N.F.; Prunkard, D.E.; Schmidt, R.R.

    1987-01-01

    The kinetics of accumulation (per milliliter of culture) of the α- and β-subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The β-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the α-subunit holoenzyme(s). After 120 minutes, the α-subunit ceased accumulating and thereafter remained at a constant level. From pulse-chase experiments, using 35 SO 4 and immunochemical procedures, the rate of synthesis of the α-subunit was shown to be greater than the β-subunit during the first 80 minutes of induction. The α- and β-subunits had different rates of degradation during the induction period (t/sub 1/2/ = 50 versus 150 minutes, respectively) and during the deinduction period (t/sub 1/2/ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed

  13. Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis.

    Science.gov (United States)

    Zhou, Xin; Zhong, Jian-Jiang

    2011-05-01

    It was previously reported that low initial ammonium (2 mM) in medium had significant stimulating effects on the biosynthesis of taxuyunnanine C (Tc) by Taxus chinensis cells. However, the secondary metabolism induction mechanism of the low initial ammonium is yet unknown in plant cells. To provide an insight into the defense signals response to the low initial ammonium, oxidative burst and intracellular salicylic acid (SA) were detected, and their influences on the expression of important genes in taxoid biosynthetic pathway were examined in the cell cultures of T. chinensis. Induced H(2)O(2) production, elevated phenylalanine ammonia-lyase (PAL) activity, and enhanced SA biosynthesis were observed. Interestingly, inhibition of SA biosynthesis by paclobutrazol and (BOC-aminooxy) acetic acid significantly depressed the Tc stimulation and up-regulation of Tc biosynthetic genes of geranylgeranyl diphosphate synthase and taxadiene synthase. The role of intracellular SA in regulating Tc biosynthesis was further confirmed by applying exogenous SA in normal ammonium (20 mM) medium. The results indicated that SA acted as a signal in low initial ammonium-induced Tc biosynthesis. A signal transduction cascade from defense signal response to activated transcription of taxoid biosynthetic genes and enhanced Tc production is proposed.

  14. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity.

    Science.gov (United States)

    Dennis, Paul G; Kukulies, Tegan; Forstner, Christian; Orton, Thomas G; Pattison, Anthony B

    2018-02-01

    In this study, we investigated the effects of one-off applications of glyphosate, glufosinate, paraquat, and paraquat-diquat on soil microbial diversity and function. All herbicides were added to soil as pure compounds at recommended dose and were incubated under laboratory conditions for 60 days. High-throughput phylogenetic marker gene sequencing revealed that none of the herbicides significantly influenced the richness, evenness and composition of bacterial and archaeal communities. Likewise, the diversity, composition and size of nematode communities were not significantly influenced by any of the herbicides. From a functional perspective, herbicides did not significantly affect fluorescein diacetate hydrolysis (FDA) and beta-glucosidase activities. Furthermore, the ability of soil organisms to utilise 15 substrates was generally unaffected by herbicide application. The only exception to this was a temporary impairment in the ability of soil organisms to utilise three organic acids and an amino acid. Given the global and frequent use of these herbicides, it is important that future studies evaluate their potential impacts on microbial communities in a wider-range of soils and environmental conditions.

  15. Persistence and transformation of the herbicide (/sup 14/C)glufosinate-ammonium in prairie soils under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.E.

    The degradation of the herbicide (/sup 14/C)glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10/sup 0/C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of (/sup 14/C)carbon dioxide. At 20/sup 0/C, the soil half-life values for the (/sup 14/C)herbicide were 3-7 days and, at 10/sup 0/C, 8-11 days. Over a 90-day incubation period at 20/sup 0/C, between 28 and 55% of the applied radioactivity was released from treated soils as (/sup 14/C)carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial /sup 14/C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions.

  16. Persistence and transformation of the herbicide [14C]glufosinate-ammonium in prairie soils under laboratory conditions

    International Nuclear Information System (INIS)

    Smith, A.E.

    1988-01-01

    The degradation of the herbicide [ 14 C]glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10 0 C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of [ 14 C]carbon dioxide. At 20 0 C, the soil half-life values for the [ 14 C]herbicide were 3-7 days and, at 10 0 C, 8-11 days. Over a 90-day incubation period at 20 0 C, between 28 and 55% of the applied radioactivity was released from treated soils as [ 14 C]carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial 14 C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions

  17. MRI characterization of structural mouse brain changes in response to chronic exposure to the glufosinate ammonium herbicide.

    Science.gov (United States)

    Meme, Sandra; Calas, André-Guilhem; Montécot, Céline; Richard, Oliver; Gautier, Hélène; Gefflaut, Thierry; Doan, Bich Thuy; Même, William; Pichon, Jacques; Beloeil, Jean-Claude

    2009-10-01

    Glufosinate ammonium (GLA) is the active component of herbicides widely used in agriculture, truck farming, or public domains. GLA acts by inhibiting the plant glutamine synthetase (GlnS). It also inhibits mammalian GlnS in vitro and ex vivo. In the central nervous system this enzyme is exclusively localized in glial cells. Whereas acute neurotoxic effects of GLA are well documented, long-term effects during chronic exposure at low doses remain largely undisclosed. In the present work, C57BL/6J mice were treated intraperitoneally with 2.5, 5, and 10 mg/kg of GLA three times a week during 10 weeks. Cerebral magnetic resonance imaging (MRI) experiments were performed at high field (9.4 T) and the images were analyzed with four texture analysis (TA) methods. TA highlighted structural changes in seven brain structures after chronic GLA treatments. Changes are dose dependent and can be seen at a dose as low as 2.5 mg/kg for two areas, namely hippocampus and somatosensorial cortex. Glial fibrillary acidic protein (GFAP) expression in the same seven brain structures and GlnS activity in the hippocampus and cortex areas were also studied. The number of GFAP-positive cells is modified in six out of the seven areas examined. GlnS activity was significantly increased in the hippocampus but not in the cortex. These results indicate some kind of suffering at the cerebral level after chronic GLA treatment. Changes in TA were compared with the modification of the number of GFAP-positive astrocytes in the studied brain areas after GLA treatment. We show that the noninvasive MRI-TA is a sensitive method and we suggest that it would be a very helpful tool that can efficiently contribute to the detection of cerebral alterations in vivo during chronic exposure to xenobiotics.

  18. Molecular investigations of the soil, rhizosphere and transgenic glufosinate-resistant rape and maize plants in combination with herbicide (Basta) application under field conditions.

    Science.gov (United States)

    Ernst, Dieter; Rosenbrock-Krestel, Hilkea; Kirchhof, Gudrun; Bieber, Evi; Giunaschwili, Nathela; Müller, Rüdiger; Fischbeck, Gerhard; Wagner, Tobias; Sandermann, Heinrich; Hartmann, Anton

    2008-01-01

    A field study was conducted during 1994 to 1998 on the Experimental Farm Roggenstein, near Fürstenfeldbruck, Bavaria, Germany to determine the effect of transgenic glufosinate-resistant rape in combination with the herbicide Basta [glufosinate-ammonium, phosphinothricin, ammonium (2RS)-2-amino-4-(methylphosphinato) butyric acid] application on soil microorganisms and the behaviour of the synthetic transgenic DNA in response to normal agricultural practice. No influence of Basta on microbial biomass could be detected. The phospholipid fatty acid analysis of soil extracts showed no difference between Basta application and mechanical weed control, whereas conventional herbicide application revealed a different pattern. Basta application resulted in a changed population of weeds with a selective effect for Viola arvensis. During senescence, transgenic rape DNA was degraded similar to endogenous control DNA. After ploughing the chopped plant material in the soil, transgenic as well as endogenous control DNA sequences could be detected for up to 4 weeks for rape and up to 7 months for maize, whereas PCR analysis of composted transgenic maize revealed the presence of the transgene over a period of 22 months.

  19. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8

  20. Nosocomial pathogens

    African Journals Online (AJOL)

    remains an important problem in intensive care units. Hospital wards had been shown to act as reservoirs of pathogenic microorganisms associated with infection. To assess the prevalence of pathogenic organisms in the environment of the neonatal unit, 92 swabs were randomly collected from cots, incubators and various ...

  1. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number.

    Science.gov (United States)

    Khuong, Thi Thu Huong; Crété, Patrice; Robaglia, Christophe; Caffarri, Stefano

    2013-09-01

    An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.

  2. Degradation and leaching behaviour of 14C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    International Nuclear Information System (INIS)

    Kubiak, R.

    1996-12-01

    Degradation and leaching behaviour of 14 C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The 14 C-loss during application was 4.8-8.2%. The 14 C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of 14 C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of 14 C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  3. Degradation and leaching behaviour of {sup 14}C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, R

    1996-12-01

    Degradation and leaching behaviour of {sup 14}C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The {sup 14}C-loss during application was 4.8-8.2%. The {sup 14}C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of {sup 14}C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of {sup 14}C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  4. Produção de prolina e suscetibilidade ao glufosinato de amônio em plantas transgênicas de citrumelo Swingle Proline production by transgenic plants of Swingle citrumelo and susceptibility to glufosinate ammonium

    Directory of Open Access Journals (Sweden)

    Cristine Elizabeth Alvarenga Carneiro

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a sensibilidade de plantas transgênicas de citrumelo Swingle com elevada produção de prolina, ao herbicida glufosinato de amônio. As plantas utilizadas apresentavam a inserção do gene mutante da enzima delta1-pirrolina-5-carboxilato sintetase (P5CS, responsável pela biossíntese de prolina. A expressão do gene p5cs em plantas transgênicas causou aumento nas quantidades de prolina em tecidos foliares, em até cinco vezes, quando comparadas às plantas-controle tratadas com 200 µM de glufosinato de amônio. As plantas transgênicas acumularam maior quantidade de NH4+ nas folhas, em relação às plantas não-transgênicas. Os danos causados pelo herbicida foram avaliados in vitro, utilizando-se discos foliares cultivados em meio MS com diferentes concentrações de glufosinato de amônio. Observou-se maior clorose em discos foliares das plantas transgênicas, o que comprova a maior suscetibilidade de plantas de citrumelo Swingle com alta produção de prolina ao herbicida.The objective of this work was to evaluate the susceptibility to glufosinate ammonium of transgenic plants of Swingle citrumelo with high proline production. The mutant gene of the enzyme delta1-pyrroline-5-carboxylate synthetase (P5CS, the rate-limiting enzyme in proline biosynthesis, was inserted into Swingle citrumelo plants. The expression of the gene p5cs caused up to 5-fold increase on the proline content in leaf tissues of transgenic plants treated with 200 µM glufosinate ammonium, when compared with control plants. Leaves of transgenic plants accumulated higher amounts of NH4+ than the nontransgenic control. The herbicide toxicity was evaluated using leaf disks cultivated in MS medium, containing different concentrations of glufosinate ammonium. The severity of the chlorosis, observed in leaf disks of transgenic plants, confirmed the higher susceptibility of Swingle citrumelo plants, with high proline production, to this

  5. Foodborne pathogens

    Directory of Open Access Journals (Sweden)

    Thomas Bintsis

    2017-06-01

    Full Text Available Foodborne pathogens are causing a great number of diseases with significant effects on human health and economy. The characteristics of the most common pathogenic bacteria (Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus, Vibrio spp. and Yersinia enterocolitica, viruses (Hepatitis A and Noroviruses and parasites (Cyclospora cayetanensis, Toxoplasma gondii and Trichinella spiralis, together with some important outbreaks, are reviewed. Food safety management systems based on to classical hazard-based approach has been proved to be inefficient, and risk-based food safety approach is now suggested from leading researchers and organizations. In this context, a food safety management system should be designed in a way to estimate the risks to human health from food consumption and to identify, select and implement mitigation strategies in order to control and reduce these risks. In addition, the application of suitable food safety education programs for all involved people in the production and consumption of foods is suggested.

  6. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  7. The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water.

    Science.gov (United States)

    Skeff, Wael; Recknagel, Constantin; Schulz-Bull, Detlef E

    2016-12-02

    The analysis of highly polar and amphoteric compounds in seawater is a continuing challenge in analytical chemistry due to the possible formation of complexes with the metal cations present in salt-based matrices. Here we provide information for the development of analytical methods for glyphosate, glufosinate, AMPA, and 2-AEP in salt water, based on studies of the effects of salt matrices on reversed-phase liquid chromatography-heated electrospray ionization-tandem mass spectrometry (RP-LC-HESI-MS/MS) after derivatization of the target compounds with FMOC-Cl. The results showed that glyphosate was the only analyte with a strong tendency to form glyphosate-metal complexes (GMC), which clearly influenced the analysis. The retention times (RTs) of GMC and free glyphosate differed by approximately 7.00min, reflecting their distinct RP-LC behaviors. Divalent cations, but not monovalent (Na + , K + ) or trivalent (Al 3+ , Fe 3+ ) cations, contributed to this effect and their influence was concentration-dependent. In addition, Cu 2+ , Co 2+ , Zn 2+ , and Mn 2+ prevented glyphosate detection whereas Ca 2+ , Mg 2+ , and Sr 2+ altered the retention time. At certain tested concentrations of Ca 2+ and Sr 2+ glyphosate yielded two peaks, which violated the fundamental rule of LC, that under the same analytical conditions a single substance yields only one LC-peak with a specific RT. Salt-matrix-induced ion suppression was observed for all analytes, especially under high salt concentrations. For glyphosate and AMPA, the use of isotopically labeled internal standards well-corrected the salt-matrix effects, with better results achieved for glufosinate and 2-AEP with the AMPA internal standard than with the glyphosate internal standard. Thus, our study demonstrated that Ca 2+ , Mg 2+ , and Sr 2+ can be used together with FMOC-Cl to form GMC-FMOC which is suitable for RP-LC-HESI-MS/MS analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nitrogen loss in Brachiaria decumbens after application of glyphosate or glufosinate-ammonium Perdas de nitrogênio por Brachiaria decumbens após a aplicação de glifosato ou glufosinato de amônio

    Directory of Open Access Journals (Sweden)

    Virginia Damin

    2008-01-01

    Full Text Available Nitrogen losses from the soil-plant system may be influenced by herbicide applications. In order to evaluate N loss in brachiaria (Brachiaria decumbens after application of the herbicides glyphosate and glufosinate-ammonium, an experiment was carried out in a greenhouse as a completely randomized design, with three treatments and six replicates. Treatments were as follows: i desiccation of brachiaria-plants with glyphosate; ii desiccation of brachiaria-plants with glufosinate-ammonium; and iii control, without herbicide application. The plants were cultivated in 4 kg pots of sandy soil and fertilized with ammonium sulfate- 15N, (200 mg kg-1 in order to quantify the allocation of the fertilizer-N and its recovery in the soil-plant system. Plants treated with the herbicides had less N accumulation and less recovery of the fertilizer-N (15N relative to the control. In the soil, the greatest recovery of 15N-fertilizer occurred for treatments where N was applied, possibly due to the occurrence of other N compound losses to the soil, like root exudation and root death. The total recovery of 15N-fertilizer in the soil-plant system was higher in the control than in the treated plants showing the direct action of the herbicides on nitrogen loss, and especially by the above-ground part of the brachiaria plants.As perdas de nitrogênio no sistema solo-planta podem ser influenciadas pela aplicação de herbicidas. Com o objetivo de avaliar a perda de N do capim-Brachiaria (Brachiaria decumbens após a aplicação dos herbicidas glifosato e glufosinato de amônio, foi realizado um experimento em casa-de-vegetação em delineamento inteiramente aleatorizado (DIA, com três tratamentos e seis repetições. Os tratamentos foram os seguintes: i dessecação de plantas de braquiária com o herbicida glifosato; ii dessecação de plantas de braquiária com herbicida glufosinato de amônio e iii testemunha, sem aplicação de herbicida. As plantas foram cultivadas

  9. Food-borne pathogens

    International Nuclear Information System (INIS)

    Niemand, J.G.

    1985-01-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process

  10. Plant pathogen resistance

    Science.gov (United States)

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  11. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  12. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  13. Indicators for waterborne pathogens

    National Research Council Canada - National Science Library

    Committee on Indicators for Waterborne Pathogens; Board on Life Sciences; Water Science and Technology Board; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    2004-01-01

    ... not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples.Â...

  14. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  15. Host–Pathogen Interactions

    NARCIS (Netherlands)

    Smits, M.A.; Schokker, D.J.

    2011-01-01

    The outcome of an infection is determined by numerous interactions between hosts and pathogens occurring at many different biological levels, ranging from molecule to population. To develop new control strategies for infectious diseases in livestock species, appropriate methodologies are needed

  16. Candida albicans pathogenicity mechanisms.

    Science.gov (United States)

    Mayer, François L; Wilson, Duncan; Hube, Bernhard

    2013-02-15

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen.

  17. Candida albicans pathogenicity mechanisms

    Science.gov (United States)

    Mayer, François L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen. PMID:23302789

  18. Human pathogen avoidance adaptations

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.

    2016-01-01

    Over the past few decades, researchers have become increasingly interested in the adaptations guiding the avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed information-processing model of the adaptations underlying pathogen

  19. Pathogenicity and virulence

    Science.gov (United States)

    Many pathogenic microorganisms are host-specific in that they parasitize only one or a few animal species. For example, the cause of equine strangles, Streptococcus equi subspecies equi, is essentially limited to infection of horses. Others—certain Salmonella serotypes, for example—have a broad host...

  20. 77 FR 59106 - Glufosinate Ammonium; Pesticide Tolerances

    Science.gov (United States)

    2012-09-26

    ...; (PP 9E7604) by Interregional Research Project Number 4 (IR-4), IR-4 Project Headquarters, 500 College... toxicological POD is used as the basis for derivation of reference values for risk assessment. PODs are... amount of exposure will lead to some degree of risk. Thus, the Agency estimates risk in terms of the...

  1. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes

    NARCIS (Netherlands)

    Rövenich, H.; Boshoven, J.C.; Thomma, B.

    2014-01-01

    Microorganisms play essential roles in almost every environment on earth. For instance, microbes decompose organic material, or establish symbiotic relationships that range from pathogenic to mutualistic. Symbiotic relationships have been particularly well studied for microbial plant pathogens and

  3. Candida albicans pathogenicity mechanisms

    OpenAIRE

    Mayer, Fran?ois L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasi...

  4. Multiplex detection of agricultural pathogens

    Science.gov (United States)

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  5. Cryptosporidium Pathogenicity and Virulence

    Science.gov (United States)

    Bouzid, Maha; Chalmers, Rachel M.; Tyler, Kevin M.

    2013-01-01

    Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence. PMID:23297262

  6. Pathogenic mycoflora on carrot seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  7. The pathogenic equine streptococci.

    Science.gov (United States)

    Timoney, John F

    2004-01-01

    Streptococci pathogenic for the horse include S. equi (S. equi subsp. equi), S. zooepidemicus (S. equi subsp. zooepidemicus), S. dysgalactiae subsp. equisimilis and S. pneumoniae capsule Type III. S. equi is a clonal descendent or biovar of an ancestral S. zooepidemicus strain with which it shares greater than 98% DNA homology and therefore expresses many of the same proteins and virulence factors. Rapid progress has been made in identification of virulence factors and proteins uniquely expressed by S. equi. Most of these are expressed either on the bacterial surface or are secreted. Notable examples include the antiphagocytic SeM and the secreted pyrogenic superantigens SePE-I and H. The genomic DNA sequence of S. equi will greatly accelerate identification and characterization of additional virulence factors and vaccine targets. Although it is the most frequently isolated opportunist pyogen of the horse, S. zooepidemicus has been the subject of few contemporary research studies. Variation in the protectively immunogenic SzP proteins has, however, been well characterized. Given its opportunist behavior, studies are urgently needed on regulation of virulence factors such as capsule and proteases. Likewise, information is also very limited on virulence factors and associated gene regulation of S. dysgalactiae subspecies equisimilis. It has recently been shown that equine isolates of Streptococcus pneumoniae are clonal, a feature shared with S. equi. All equine isolates express capsule Type III, are genetically similar, and have deletions in the genes for autolysin and pneumolysin. In summary, the evolving picture of the interaction of the equine pathogenic streptococci and their host is that of multiple virulence factors active at different stages of pathogenesis. The inherent complexity of this interaction suggests that discovery of effective combinations of immunogens from potential targets identified in genomic sequence will be laborious.

  8. Multiplex detection of respiratory pathogens

    Science.gov (United States)

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  9. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  10. Ecology of Pathogen Groups: Fungi

    DEFF Research Database (Denmark)

    Hajek, Ann E.; Meyling, Nicolai Vitt

    2018-01-01

    Summary This chapter investigates the recent results of studies of the ecology of fungal pathogens, including ecological insights obtained by implementation of molecular tools. It spans a spectrum of invertebrates as hosts, although emphasis will be on pathogens of terrestrial insects, which have...... been the focus of most ecological research. Some taxa of invertebrate pathogenic fungi have evolved adaptations for utilizing living plants as substrates, and these lifestyles have recently received increased attention from researchers following the initial documentations of such plant associations...... by Beauveria and Metarhizium. This topic has recently been reviewed; the chapter mainly focuses on aspects of ecological relevance, including trophic interactions. Fungal pathogens are used to provide biological control in numerous ways. The primary type of biological control emphasized for fungal pathogens...

  11. The pathogenicity of cytomegalovirus.

    Science.gov (United States)

    Sweet, C

    1999-07-01

    Human cytomegalovirus is ubiquitous, yet causes little illness in immunocompetent individuals. Disease is evident in immunodeficient groups such as neonates, transplant recipients and AIDS patients either following a primary infection or reactivation of a latent infection. Little is known of the mechanisms underlying the pathogenicity of the virus. The recent determination of the nucleotide sequence of both human cytomegalovirus (strain AD169) and murine cytomegalovirus (murine cytomegalovirus strain Smith) has allowed an analysis of the biological importance of several virus genes. Studies with human cytomegalovirus have indicated that many viral genes are non-essential for replication in vitro which are thus assumed to be important in the pathogenesis of the virus. This is being examined in the murine model where the role of the gene and its product in disease can be directly examined in vivo using viral mutants in which the relevant gene has been interrupted or deleted. Current information on the role of cytomegalovirus genes in tissue tropism, immune evasion, latency, reactivation from latency and damage is described.

  12. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.

    Science.gov (United States)

    Brüggemann, Holger

    2005-10-01

    The recently decoded genomes of the major clostridial toxin-producing pathogens Clostridium perfringens, Clostridium tetani, Clostridium botulinum and Clostridium difficile have provided a huge amount of new sequence data. Recent studies have focused on the identification and investigation of pathogenic determinants and the regulatory events governing their expression. The sequence data revealed also the genomic background of virulence genes, as well as the contribution of extrachromosomal elements to a pathogenic phenotype. This has generated new insights in clostridial pathogenesis - and will continue to do so in the future - and has deepened our understanding of the anaerobic lifestyle of clostridial species.

  13. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

    Directory of Open Access Journals (Sweden)

    Joseph O. Falkinham

    2015-06-01

    Full Text Available Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators.

  14. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water.

    Science.gov (United States)

    Falkinham, Joseph O; Pruden, Amy; Edwards, Marc

    2015-06-09

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators.

  15. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  16. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  17. How plants recognize pathogens and defend themselves

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2007-01-01

    Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens

  18. Molecular Soybean-Pathogen Interactions.

    Science.gov (United States)

    Whitham, Steven A; Qi, Mingsheng; Innes, Roger W; Ma, Wenbo; Lopes-Caitar, Valéria; Hewezi, Tarek

    2016-08-04

    Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.

  19. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  20. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  1. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Compositions and methods for pathogen transport

    Energy Technology Data Exchange (ETDEWEB)

    El-Etr, Sahar; Farquar, George R.

    2016-01-26

    This disclosure provides a method for transporting a pathogen under ambient conditions, by culturing the pathogen with an amoeba under conditions that favor the incorporation of the pathogen into a trophozoite, starving the amoeba until it encysts, then culturing under conditions that favor conversion of the amoeba back to a trophozoite. In one aspect, the conditions that favor incorporation of the pathogen into the cyst of the amoeba comprises contacting the pathogen with the amoeba in an iron rich environment. Virus and/or bacteria are pathogens that can be transported by the disclosed method. Amoeba that are useful in the disclosed methods include, without limitation Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria gruberi. The disclosed methods have utility in: transporting pathogens from military field hospitals and clinics to the laboratory; transporting pathogens from global satellite laboratories to clinical laboratories; long term storage of pathogens; enriching contaminated patient samples for pathogens of interest; biosurveillance and detection efforts.

  3. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  4. From multiple pathogenicity islands to a unique organized pathogenicity archipelago.

    Science.gov (United States)

    Bouyioukos, Costas; Reverchon, Sylvie; Képès, François

    2016-06-15

    Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single "archipelago" at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement.

  5. New trends in emerging pathogens.

    Science.gov (United States)

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  6. Applied Genomics of Foodborne Pathogens

    DEFF Research Database (Denmark)

    This book provides a timely and thorough snapshot into the emerging and fast evolving area of applied genomics of foodborne pathogens. Driven by the drastic advance of whole genome shot gun sequencing (WGS) technologies, genomics applications are becoming increasingly valuable and even essential...... in studying, surveying and controlling foodborne microbial pathogens. The vast opportunities brought by this trend are often at odds with the lack of bioinformatics know-how among food safety and public health professionals, since such expertise is not part of a typical food microbiology curriculum and skill...

  7. Pathogen pollution and the emergence of a deadly amphibian pathogen.

    Science.gov (United States)

    McKenzie, Valerie J; Peterson, Anna C

    2012-11-01

    Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians - the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA-sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less-virulent endemic strains of the pathogen (Farrer et al. 2011

  8. Pathogenicity of Shigella in Chickens

    Science.gov (United States)

    Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance. PMID:24949637

  9. Neuroepigenetic regulation of pathogenic memories

    Directory of Open Access Journals (Sweden)

    Stephanie E. Sillivan

    2015-01-01

    Full Text Available Our unique collection of memories determines our individuality and shapes our future interactions with the world. Remarkable advances into the neurobiological basis of memory have identified key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic regulation at the levels of DNA methylation, histone modification, and noncoding RNAs can modulate transcriptional and translational events required for memory processes. By changing the cellular profile in the brain’s emotional, reward, and memory circuits, these epigenetic modifications have also been linked to perseverant, pathogenic memories. In this review, we will delve into the relevance of epigenetic dysregulation to pathogenic memory mechanisms by focusing on 2 neuropsychiatric disorders perpetuated by aberrant memory associations: substance use disorder and post-traumatic stress disorder. As our understanding improves, neuroepigenetic mechanisms may someday be harnessed to develop novel therapeutic targets for the treatment of these chronic, relapsing disorders.

  10. Antimicrobial resistance of mastitis pathogens.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  11. Periodontal pathogens in atheromatous plaque

    OpenAIRE

    Saroj K. Rath; Manish Mukherjee; R Kaushik; Sourav Sen; Mukesh Kumar

    2014-01-01

    Background: There has been increasing attention paid in recent years to the possibility that oral bacterial infection, particularly periodontal disease may influence the initiation and or progression of systemic diseases. These studies confirm the observation that heart disease is the most commonly found systemic condition in patients with periodontal disease. Moreover, the literature has also highlighted substantial evidence indicating the presence of Gram-negative periodontal pathogens in a...

  12. Host-Pathogen Coupled Interactions

    Science.gov (United States)

    2015-01-04

    describe bacterial proliferation in the host (and the host’s immune response), and molecular-level models describing the subversion of the molecular...the pathogen is endocytosed by host immune cells, and in the course of infection can escape back into the tissue or bloodstream of the host. During...host’s overall ( immune ) response. 15. SUBJECT TERMS Mathematical model, signaling pathways, bacterial infection, macrophage, immune system 16. SECURITY

  13. Aeromonas Hydrophila: A Re-Emerging Pathogen

    Digital Repository Service at National Institute of Oceanography (India)

    Lakshmanaperumalsamy, P.; Thayumanavan, T.; Subashkumar, R.

    been initiated by their importance as fish pathogens or as a potential pathogen of humans and have, therefore, tended to focus on commercial and sport fisheries and recreational waters. Mesophilic aeromonads are halotolerant and are associated...

  14. Programmed Pathogen Sense and Destroy Circuits

    National Research Council Canada - National Science Library

    Weiss, Ron

    2009-01-01

    We are creating an anti-microbial sense-and-destroy system by engineering sentinel/killer cells that detect the presence of pathogenic bacteria, report the identity of the pathogen with a coded output...

  15. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Cassell, Gail H; Gutierrez-Fuentes, Jose A; Barquero, Fernando; Nombela, Cesar

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  16. Secreted proteases from pathogenic fungi.

    Science.gov (United States)

    Monod, Michel; Capoccia, Sabrina; Léchenne, Barbara; Zaugg, Christophe; Holdom, Mary; Jousson, Olivier

    2002-10-01

    Many species of human pathogenic fungi secrete proteases in vitro or during the infection process. Secreted endoproteases belong to the aspartic proteases of the pepsin family, serine proteases of the subtilisin family, and metalloproteases of two different families. To these proteases has to be added the non-pepsin-type aspartic protease from Aspergillus niger and a unique chymotrypsin-like protease from Coccidioides immitis. Pathogenic fungi also secrete aminopeptidases, carboxypeptidases and dipeptidyl-peptidases. The function of fungal secreted proteases and their importance in infections vary. It is evident that secreted proteases are important for the virulence of dermatophytes since these fungi grow exclusively in the stratum corneum, nails or hair, which constitutes their sole nitrogen and carbon sources. The aspartic proteases secreted by Candida albicans are involved in the adherence process and penetration of tissues, and in interactions with the immune system of the infected host. For Aspergillus fumigatus, the role of proteolytic activity has not yet been proved. Although the secreted proteases have been intensively investigated as potential virulence factors, knowledge on protease substrate specificities is rather poor and few studies have focused on the research of inhibitors. Knowledge of substrate specificities will increase our understanding about the action of each protease secreted by pathogenic fungi and will help to determine their contribution to virulence.

  17. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  18. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  19. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  20. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host.

  1. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species

    Science.gov (United States)

    Wurtzel, Omri; Sesto, Nina; Mellin, J R; Karunker, Iris; Edelheit, Sarit; Bécavin, Christophe; Archambaud, Cristel; Cossart, Pascale; Sorek, Rotem

    2012-01-01

    Listeria monocytogenes is a human, food-borne pathogen. Genomic comparisons between L. monocytogenes and Listeria innocua, a closely related non-pathogenic species, were pivotal in the identification of protein-coding genes essential for virulence. However, no comprehensive comparison has focused on the non-coding genome. We used strand-specific cDNA sequencing to produce genome-wide transcription start site maps for both organisms, and developed a publicly available integrative browser to visualize and analyze both transcriptomes in different growth conditions and genetic backgrounds. Our data revealed conservation across most transcripts, but significant divergence between the species in a subset of non-coding RNAs. In L. monocytogenes, we identified 113 small RNAs (33 novel) and 70 antisense RNAs (53 novel), significantly increasing the repertoire of ncRNAs in this species. Remarkably, we identified a class of long antisense transcripts (lasRNAs) that overlap one gene while also serving as the 5′ UTR of the adjacent divergent gene. Experimental evidence suggests that lasRNAs transcription inhibits expression of one operon while activating the expression of another. Such a lasRNA/operon structure, that we named ‘excludon', might represent a novel form of regulation in bacteria. PMID:22617957

  2. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  3. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  4. Icu Pathogens: A Continuous Challenge

    International Nuclear Information System (INIS)

    Hafeez, A.; Munir, T.; Najeeb, S.; Rehman, S.; Gilani, M.

    2016-01-01

    Objective: To determine the frequency and antibiogram of pathogens in an intensive care unit (ICU). Study Design: Cross-sectional, observational study. Place and Duration of Study: Department of Microbiology, Army Medical College, National University of Science and Technology, Islamabad, from January 2013 to January 2014. Methodology: Clinical samples, received from patients admitted in ICU, were inoculated on various medias like blood agar, chocolate agar, MacConkey agar and urine samples on CLED. These were then incubated at 37 degree C for 24 hours. Isolates were identified by colony morphology, Gram reaction, catalase test, oxidase test. Species identification in case of Gram Negative Rods was done by using API 20E (BioMerieux). Antibiotic susceptibility was done by using modified KirbyBauer disc diffusion technique. Bacterial isolates were prepared and inoculated on Mueller-Hinton agar plates followed by application of various antibiotic disc (Oxoid, UK) as per manufacturer's instructions. The plates were then incubated at 37 degree C aerobically for 18 - 24 hours. Zone diameters were measured and interpreted as sensitive and resistant, according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Out of the 367 positive cultures, 116 (31.08 percent) were Acinetobacter baumanniisusceptible to minocycline and tigecycline followed by Klebsiella pneumoniae (n=71, 16 percent) susceptible to tigecycline and meropenem. Others were Pseudomonas aeruginosa, Escherichia coli Coagulase Negative Staphylococcus, Staphylococcus aureus, Enterococcus spp., Streptococcus spp., Klebsiella oxytoca, Stenotrophomonas maltophilia, and Candida spp. Conclusion: Acinetobacter baumannii was the most frequently isolated pathogen. Most of the cultures yielding pathogens were from respiratory tract samples. Gram negative isolates were multidrug resistant but most were tigecycline and susceptible to meropenem. (author)

  5. COXIELLA BURNETII PATHOGENICITY MOLECULAR BASIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Panferova

    2016-01-01

    Full Text Available Coxiella burnetii is an obligate intracellular gram-negative bacterial pathogen, an ethiological agent of Q-fever, a zoonotic disease, elapsing as an acute (mostly atypical pneumonia or a chronic (mostly endocarditis form. The host range is represented by wide range of mammal, avian and arthropod species, but the main source of human infection are farm animals. The main route of infection is aerosolic. In case of contact with organism pathogen binds with phagocytal monocytic-macrophagal cell line. C. burnetii promotes maturation of specific phagolysosome-like compartment in host cell, called coxiella-containing vacuole, within this vacuole pathogen becames metabolically activated and actively replicates. Coxiella persists as metabolically inactive spore-like form in environment. Internalisation of C. burnetii occurs using actin-mediated phagocytosis and zipper mechanism. After internalization of bacteria maturation of phagolysosome-like compartment and large coxiella-containing vacuole formation occure, and vacuole can occupy nearly the whole cytoplasm of the host cell. Survivance of infected cells is important for chronic infection with C. burnetii. C. burnetii elongate the viability of host cell by two ways: it actively inhibits apoptotic signal cascades and induce pro-survival factors. Exceptthat C. burnetii involves autophagic pathway during coxiella-containing vacuole formation, and induction of autophagy promotes pathogen replication. During infection C. burnetii translocates effector substrates from bacterial cytosole to euca ryotic host cell cytosole using type IV secretion system, where effectors modulate host cell proteins. Overall approximately 130 secreted effectors of type IV transport system, but function of most of them remains unknown to date. Specific sec reted proteins for variety of strains and isolates were identified, confirmed that certain pathotypes of C. burnetii can exist. Identification and

  6. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  7. Pathogenic mechanisms in centronuclear myopathies

    Directory of Open Access Journals (Sweden)

    Heinz eJungbluth

    2014-12-01

    Full Text Available Centronuclear myopathies (CNMs are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin (X-linked myotubular myopathy, XLMTM, autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9, and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly and disturbance of the excitation-contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features.The following review will provide an overview of clinical, histopathological and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions and indicate promising future lines of enquiry.

  8. Viruses of plant pathogenic fungi.

    Science.gov (United States)

    Ghabrial, Said A; Suzuki, Nobuhiro

    2009-01-01

    Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.

  9. Potentially pathogenic, pathogenic, and allergenic moulds in the urban soils

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2011-01-01

    Full Text Available The dynamics of soil mould populations that can compromise the human immune system was evaluated in experimental plots located at different distances (100, 300, 500, 700 and 900 m from the main source of pollution - the Podgorica Aluminum Plant. Soil samples were collected in July and October 2008 from three different plot zones at a depth of 0-10 cm. The count of potentially pathogenic, keratinolytic and allergenic (melaninogenic moulds was assessed, which can significantly contribute to both diagnosis and prophylaxis. The count of medically important moulds was higher in the urban soil than in the unpolluted (control soil. Their count decreased with increasing distance from the main pollution source (PAP. Their abundance in the soil was considerably higher in autumn than in spring.

  10. The Candida Pathogenic Species Complex

    Science.gov (United States)

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  11. Molecular detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann

    of the VBNC state, and would thus be able to assess the outcome and impact of increasingly applied post-slaughter reduction strategies. A real-time PCR-based method for detection of Salmonella was optimized following a diversified approach to enable the shortest time of analysis possible. Positive effects...... of these pathogens in the food chain, in order to improve intervention strategies and make more effective the control of production lines and single food items. To serve this purpose, rapid and reliable detection and quantification methods are imperative. The culture-based standard methods currently applied...... for detection and enumeration of Salmonella and Campylobacter are time-consuming and laborious. They lack specificity and do not enable detection of viable but non-culturable (VBNC) bacteria. The focus of the present thesis has been development and validation of PCR-based detection methods for Salmonella...

  12. Molecular detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann

    .84) was obtained between the Campylobacter counts obtained by PMA-PCR and culture, indicating that the method presents as a reliable tool for producing accurate quantitative data on viable Campylobacter. DNA from dead cells was not detected by the proposed method, however, it recognized the infectious potential...... of these pathogens in the food chain, in order to improve intervention strategies and make more effective the control of production lines and single food items. To serve this purpose, rapid and reliable detection and quantification methods are imperative. The culture-based standard methods currently applied...... for detection and enumeration of Salmonella and Campylobacter are time-consuming and laborious. They lack specificity and do not enable detection of viable but non-culturable (VBNC) bacteria. The focus of the present thesis has been development and validation of PCR-based detection methods for Salmonella...

  13. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...... is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... and toxicity by utilizing of the fruit fly Drosophila melanogaster as a whole animal model. This was carried out by testing of antimicrobial peptides targeting Gram-positive bacteria exemplified by the important human pathogen methicillin resistant S. aureus (MRSA). The peptide BP214 was developed from...

  14. Molecular diagnostics of foodborne pathogens

    DEFF Research Database (Denmark)

    Hansen, Trine

    or accidental contamination of food, feed and water supplies pose a threat to human health worldwide and the need for generic detection methods that can screen for many pathogens at the time are highly desirable. A metagenomics based direct 16S rDNA sequencing approach was evaluated as a diagnostic tool...... of Salmonellahas an impact on the ability of Salmonellato attach to a pork meat surface and subsequently the possibility of contributing to cross contamination in the slaughter-line. Cells that were grown immobilized prior application on a pork meat surface were found to be more easily removed. In the pork...... processing, Salmonellamight appear in an immobilized state on the pork surfaces where low attachment ability might pose a risk for cross contamination. A stronger attachment to a surface makes on the other hand decontamination steps more difficult. The attachment ability of Salmonellacould to some extend...

  15. Human diseases associated with fish pathogens

    OpenAIRE

    VATSOS N. Ioannis; ANGELIDIS Panagiotis

    2011-01-01

    Until recently, most cases of humans been affected by fish pathogens, bacterial and parasitic, were limited in certain countries, either due to the inappropriate sanitary measures used in those areas, or due to the local habit of eating raw or undercooked fish. However, as new reliable methods to identify fish pathogens in samples collected from sick humans have been developed, the confirmed cases worldwide have increased. The most common fish bacterial pathogens that can affect humans belong...

  16. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  17. Antigenic variation in vector-borne pathogens.

    OpenAIRE

    Barbour, A. G.; Restrepo, B. I.

    2000-01-01

    Several pathogens of humans and domestic animals depend on hematophagous arthropods to transmit them from one vertebrate reservoir host to another and maintain them in an environment. These pathogens use antigenic variation to prolong their circulation in the blood and thus increase the likelihood of transmission. By convergent evolution, bacterial and protozoal vector-borne pathogens have acquired similar genetic mechanisms for successful antigenic variation. Borrelia spp. and Anaplasma marg...

  18. PATHOGENIC PROPERTIES OF INFECTIOUS BURSAL DISEASE VACCINES

    Directory of Open Access Journals (Sweden)

    Iftikhar Hussain, Atif Nisar Ahmad, M. Ashfaque, M.Shahid Mahmood and Masood Akhtar1

    2001-09-01

    Full Text Available The study was conducted to test the pathogenic effect of six commercially available infectious bursal disease (IBD vaccines claimed to be intermediate in their pathogenicity. Three week old chickens were inoculated with these vaccines. The pathogenic effects of the IBD vaccines were evaluated by hemorrhages on the thigh and breast muscles, bursa weight to body weight ratio and virulence; two of the strain were found to be highly virulent; two others were moderate and two could be classified as mild.

  19. Stomata and pathogens: Warfare at the gates

    OpenAIRE

    Gudesblat, Gustavo E; Torres, Pablo S; Vojnov, Adrian A

    2009-01-01

    Bacteria and fungi are capable of triggering stomatal closure through pathogen-associated molecular patterns (PAMPs), which prevents penetration through these pores. Therefore, the stomata can be considered part of the plant innate immune response. Some pathogens have evolved mechanisms to evade stomatal defense. The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc), which infects plants of the Brassicaceae family mainly through hydathodes, has also been reported to infect plants...

  20. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  1. Sumoylation at the Host-Pathogen Interface

    Directory of Open Access Journals (Sweden)

    Van G. Wilson

    2012-04-01

    Full Text Available Many viral proteins have been shown to be sumoylated with corresponding regulatory effects on their protein function, indicating that this host cell modification process is widely exploited by viral pathogens to control viral activity. In addition to using sumoylation to regulate their own proteins, several viral pathogens have been shown to modulate overall host sumoylation levels. Given the large number of cellular targets for SUMO addition and the breadth of critical cellular processes that are regulated via sumoylation, viral modulation of overall sumoylation presumably alters the cellular environment to ensure that it is favorable for viral reproduction and/or persistence. Like some viruses, certain bacterial plant pathogens also target the sumoylation system, usually decreasing sumoylation to disrupt host anti-pathogen responses. The recent demonstration that Listeria monocytogenes also disrupts host sumoylation, and that this is required for efficient infection, extends the plant pathogen observations to a human pathogen and suggests that pathogen modulation of host sumoylation may be more widespread than previously appreciated. This review will focus on recent aspects of how pathogens modulate the host sumoylation system and how this benefits the pathogen.

  2. Atypical Organophosphorus Toxicology of the Herbicides Glufosinate and Ethephon

    OpenAIRE

    Lantz, Stephen R.

    2013-01-01

    Organophosphorus (OP) compounds have found tremendous use as industrial chemicals, pharmaceuticals and chemical warfare agents. The intended toxicity of warfare agents and the unwanted toxicity of industrial and agrochemicals results primarily from inhibition of cholinesterase enzymes, predominantly acetylcholinesterase (AChE). Functionalization of the OP class has led to development of compounds with selective action at various primary protein targets and the identification of numerous sec...

  3. 40 CFR 180.473 - Glufosinate ammonium; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...)-monoammonium salt) and its metabolites, 2-acetamido-4-methylphosphinico-butanoic acid and 3-methylphosphinico... Grain aspirated fractions 25 Grape 0.05 Hog, fat 0.40 Hog, meat 0.15 Hog, meat byproducts 6.0 Horse, fat 0.40 Horse, meat 0.15 Horse, meat byproducts 6.0 Juneberry 0.10 Lingonberry 0.10 Milk 0.15 Nut, tree...

  4. Population genomics of fungal and oomycete pathogens

    Science.gov (United States)

    We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...

  5. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Foliar fungal pathogens and grassland biodiversity

    NARCIS (Netherlands)

    Allan, E.; Ruijven, van J.; Crawley, M.J.

    2010-01-01

    By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and

  7. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  8. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  9. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  10. Tracing pathogens in the food chain

    NARCIS (Netherlands)

    Brul, S.; Fratamico, P.M.; McMeekin, T.A.

    2010-01-01

    Successful methods for the detection and investigation of outbreaks of foodborne disease are essential for ensuring consumer safety. Increased understanding of the transmission of pathogens in food chains will also assist efforts to safeguard public health. Tracing pathogens in the food chain

  11. Innate host defense against intracellular pathogens

    NARCIS (Netherlands)

    Vaart, Michiel van der

    2013-01-01

    This thesis focuses on the recognition of pathogenic bacteria and the defense mechanisms that are activated during the innate immune response to infection. Detection of pathogens, such as bacteria, viruses, and parasites, depends on receptors that bind to evolutionary conserved structures on their

  12. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Periodontal pathogens in atheromatous plaque.

    Science.gov (United States)

    Rath, Saroj K; Mukherjee, Manish; Kaushik, R; Sen, Sourav; Kumar, Mukesh

    2014-01-01

    There has been increasing attention paid in recent years to the possibility that oral bacterial infection, particularly periodontal disease may influence the initiation and or progression of systemic diseases. These studies confirm the observation that heart disease is the most commonly found systemic condition in patients with periodontal disease. Moreover, the literature has also highlighted substantial evidence indicating the presence of Gram-negative periodontal pathogens in atheromatous plaques. This study intends to investigate the possible association between periodontal health and coronary artery disease by evaluating periodontal status, association between the periodontal plaque and coronary atheromatous plaques for presence of micro-organisms such as, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia. A case-control study was designed with seven patients who had undergone coronary endarterectomy for cardiovascular disease and 28 controls. The periodontal examination for cases was performed 1 day before vascular surgery and the controls were clinically examined. The atheromatous plaque sample collected during endarterectomy and the intraoral plaque samples were subjected to polymerase chain reaction for identification of A. actinomycetemcomitans, P. gingivalis, P. intermedia and T. forsythia. The presence of periodontal bacteria DNA in coronary atheromatous plaques and sub-gingival plaque samples of the same patients was confirmed by this study. CONCLUSION A correlation was established between putative bacteria contributing to atheromatous plaques and species associated with periodontal disease. One particularly important study to be carried out is the investigation of a possible clinically meaningful reduction in coronary heart disease resulting from the prevention or treatment of periodontal disease.

  15. Quorum Sensing of Periodontal Pathogens.

    Science.gov (United States)

    Plančak, Darije; Musić, Larisa; Puhar, Ivan

    2015-09-01

    The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  16. Periodontal pathogens in atheromatous plaque

    Directory of Open Access Journals (Sweden)

    Saroj K. Rath

    2014-01-01

    Full Text Available Background: There has been increasing attention paid in recent years to the possibility that oral bacterial infection, particularly periodontal disease may influence the initiation and or progression of systemic diseases. These studies confirm the observation that heart disease is the most commonly found systemic condition in patients with periodontal disease. Moreover, the literature has also highlighted substantial evidence indicating the presence of Gram-negative periodontal pathogens in atheromatous plaques. Aim: This study intends to investigate the possible association between periodontal health and coronary artery disease by evaluating periodontal status, association between the periodontal plaque and coronary atheromatous plaques for presence of micro-organisms such as, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia. Materials and methods: A case-control study was designed with seven patients who had undergone coronary endarterectomy for cardiovascular disease and 28 controls. The periodontal examination for cases was performed 1 day before vascular surgery and the controls were clinically examined. The atheromatous plaque sample collected during endarterectomy and the intraoral plaque samples were subjected to polymerase chain reaction for identification of A. actinomycetemcomitans, P. gingivalis, P. intermedia and T. forsythia. Results: The presence of periodontal bacteria DNA in coronary atheromatous plaques and sub-gingival plaque samples of the same patients was confirmed by this study. CONCLUSION A correlation was established between putative bacteria contributing to atheromatous plaques and species associated with periodontal disease. One particularly important study to be carried out is the investigation of a possible clinically meaningful reduction in coronary heart disease resulting from the prevention or treatment of periodontal disease.

  17. Efferocytosis of Pathogen-Infected Cells

    Directory of Open Access Journals (Sweden)

    Niloofar Karaji

    2017-12-01

    Full Text Available The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via “find me” signals, recognition via “eat me” signals and down-modulation of regulatory “don’t eat me” signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.

  18. Pathogen webs in collapsing honey bee colonies.

    Directory of Open Access Journals (Sweden)

    R Scott Cornman

    Full Text Available Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD, otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  19. Pathogen webs in collapsing honey bee colonies.

    Science.gov (United States)

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  20. Laser inactivation of pathogenic viruses in water

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    Currently there is a situation that makes it difficult to provide the population with quality drinking water for the sanitary-hygienic requirements. One of the urgent problems is the need for water disinfection. Since the emergence of microorganisms that are pathogens transmitted through water such as typhoid, cholera, etc. requires constant cleansing of waters against pathogenic bacteria. In the water treatment process is destroyed up to 98% of germs, but among the remaining can be pathogenic viruses, the destruction of which requires special handling. As a result, the conducted research the following methods have been proposed for combating harmful microorganisms: sterilization of water by laser radiation and using a UV lamp.

  1. Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces.

    Science.gov (United States)

    Zhang, Yucheng; Jiang, Guangde; Ding, Yousong; Loria, Rosemary

    2018-01-09

    With few exceptions, thaxtomin A (ThxA), a nitrated diketopiperazine, is the pathogenicity determinant for plant-pathogenic Streptomyces species. In Streptomyces scabiei (syn. S. scabies), the ThxA biosynthetic cluster is located within a 177-kb mobile pathogenicity island (PAI), called the toxicogenic region (TR). In S. turgidiscabies, the ThxA biosynthetic cluster is located within a 674-kb pathogenicity island (PAIst). The emergence of new plant pathogens occurs in this genus, but not frequently. This raises the question of whether the mobilization of these pathogenicity regions, through mating, is widespread and whether TR and PAIst can confer plant pathogenicity. We showed that ThxA biosynthetic clusters on TR and PAIst were transferred into strains from five non-pathogenic Streptomyces species through mating with S. scabiei and S. turgidiscabies. However, not all of the transconjugants produced ThxA and exhibited the virulence phenotype, indicating that the genetic background of the recipient strains affects the functionality of the ThxA biosynthetic cluster and therefore would be expected to affect the emergence of novel pathogenic Streptomyces species. Thxs have been patented as natural herbicides, but have yet to be commercialized. Our results also demonstrated the potential of the heterologous production of ThxA as a natural and biodegradable herbicide in non-pathogenic Streptomyces species. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  2. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  3. Novel detection techniques for human pathogens that contaminate poultry.

    Science.gov (United States)

    Mandrell, R E; Wachtel, M R

    1999-06-01

    Poultry products are presumed to be a major contributor to human foodborne illness due to their high frequency of contamination with pathogens Salmonella spp. and Campylobacter spp. This has stimulated the development of more sensitive and rapid methods for identifying pathogens present in poultry. These new methods include immunomagnetic separation of pathogen, PCR amplification of pathogen-specific sequences, pathogen-specific DNA and RNA probes, and identification of pathogen-specific ions by mass spectrometry.

  4. Moraxella catarrhalis: from emerging to established pathogen

    NARCIS (Netherlands)

    C.M. Verduin (Cees); C. Hol; A. Fleer; H. van Dijk (Hans); A.F. van Belkum (Alex)

    2002-01-01

    textabstractMoraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M.

  5. The making of a new pathogen

    DEFF Research Database (Denmark)

    Stukenbrock, Eva; Bataillon, Thomas; Dutheil, Julien

    2011-01-01

    The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ~11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect...... that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact....... Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show...

  6. Pathogen reduction in sludges by irradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-01-01

    This paper presents results of pathogen inactivation programs being conducted in Belgium, Czechoslovakia, France, East Germany, West Germany, Hungary, Italy, The Netherlands, Poland, Spain, Sweden, Switzerland, the United Kingdom, and the United States

  7. Genomes of foodborne and waterborne pathogens

    National Research Council Canada - National Science Library

    Fratamico, Pina M; Liu, Yanhong; Kathariou, Sophia

    2011-01-01

    ... of Pathogenic Vibrio cholerae * 85 Salvador Almagro-Moreno, Ronan A. Murphy, and E. Fidelma Boyd 8. Genomics of the Enteropathogenic Yersiniae * 101 Alan McNally, Nicholas R. Thomson, and Brendan W. ...

  8. Promotion and inhibition of mutation in pathogens

    Directory of Open Access Journals (Sweden)

    Maurice Samuel Devaraj

    2014-03-01

    Findings from this research may be used to prevent development of drug resistance, whether epigenetic or arising due to deoxyribonucleic acid (DNA modification, in several pathogens, especially Mycobacterium tuberculosis through the co-administration of adenosine along with antibiotic treatment.

  9. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  10. Surveys for Pathogens of Monoecious Hydrilla 2014

    Science.gov (United States)

    2016-06-01

    monoecious hydrilla management. Fusarium spp.: The genus Fusarium is represented with many necrotrophic plant pathogenic fungi causing disease on...Press Inc.: Boca Raton, FL. Dick, G. O., L. L. Dodd, D. H. Smith, and M. Smart. (In Review ). Native aquatic plant restoration as a component of...74:1035-1036. Joye, G. F., and A. F. Cofrancesco. 1991. Studies on the use of fungal plant pathogens for control of Hydrilla verticillata (L. f

  11. Pathogen Causing Disease of Diagnosis PCR Tecnology

    OpenAIRE

    SEVİNDİK, Emre; KIR, A. Çağrı; BAŞKEMER, Kadir; UZUN, Veysel

    2013-01-01

    Polimerase chain reaction (PCR) with which, the development of recombinant DNA tecnology, a technique commonly used in field of moleculer biology and genetic. Duplication of the target DNA is provided with this technique without the need for cloning. Some fungus species, bacteria, viruses constitutent an important group of pathogenicity in human, animals and plants. There are routinely applied types of PCR in the detection of pathogens infections diseases. These Nested- PCR, Real- Time PCR, M...

  12. Human diseases associated with fish pathogens

    Directory of Open Access Journals (Sweden)

    VATSOS N. Ioannis

    2011-09-01

    Full Text Available Until recently, most cases of humans been affected by fish pathogens, bacterial and parasitic, were limited in certain countries, either due to the inappropriate sanitary measures used in those areas, or due to the local habit of eating raw or undercooked fish. However, as new reliable methods to identify fish pathogens in samples collected from sick humans have been developed, the confirmed cases worldwide have increased. The most common fish bacterial pathogens that can affect humans belong to the genera: Mycobacterium spp. (mainly M. marinum, M. chelonei, M. fortuitum, Nocardia spp., Streptococcus spp (S. iniae, Vibrio spp. (mainly V. vulnificus, V. alginolyticus and V. parahaemolyticus and Aeromonas spp. (mainly A. hydrophila and rarely A. sorbia and A. caviae. Less often, infections of humans with Edwardsiella tarda and Photobacterium damselae sbsp. damselae have been reported. Fish usually act as intermediate hosts to many important parasites of human, as for example the tapeworm Diphyllobothrium latum. To fish, these parasites cause no or little damage, as they are usually found encysted in many fish tissues. Of particular interest are someanisakids (e.g. Anisakis simplex and Pseudoterranova decipiens which can produce some thermostable allergens. Most of the above pathogens can infect humans through skin wounds or after ingesting infected fish. Compromised immune system of the infected humans may result in extensive spread of the pathogens within the body, often causing death.There are no fish viruses or fungi that can affect humans. Fish can also act as carriers for human pathogens, such as Salmonella spp., Escherichia coli and Listeria spp. Recently, few human pathogens have also been isolated from the internal organs of fish, as for example Brucella melitensis. The effects of these human pathogens to fish are still not known.

  13. Aggregatibacter actinomycetemcomitans: Important pathogen in periodontitis

    OpenAIRE

    Ramos Perfecto, Donald; Profesor Auxiliar, Dpto de C. Básicas. Laboratorio de Microbiología UNMSM.; Moromi Nakata, Hilda; Profesor Principal Dpto. de C. Básicas. Laboratorio de Microbiología UNMSM.; Martínez Cadillo, Elba; Profesor Asociado Dpto. de C. Básicas. Laboratorio de Microbiología UNMSM.; Mendoza Rojas, Alejandro; Profesor Principal Dpto. de C. Básicas. Laboratorio de Microbiología UNMSM.

    2014-01-01

    Aggregatibacter actinomycetemcomitans is a pathogen extensively studied in the clinical conditions of the Periodontitis, already identified in the early twentieth century. Over the years it has undergone changes in its denomination and multiple virulence factors that make it an important pathogen in the periodontal disease have been discovered, specifically in the localized Aggressive Periodontitis. This review tries to explain its morphology, virulence factors, culture and other important ch...

  14. Subversion of cell signaling by pathogens.

    Science.gov (United States)

    Alto, Neal M; Orth, Kim

    2012-09-01

    Pathogens exploit several eukaryotic signaling pathways during an infection. They have evolved specific effectors and toxins to hijack host cell machinery for their own benefit. Signaling molecules are preferentially targeted by pathogens because they globally regulate many cellular processes. Both viruses and bacteria manipulate and control pathways that regulate host cell survival and shape, including MAPK signaling, G-protein signaling, signals controlling cytoskeletal dynamics, and innate immune responses.

  15. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  16. Regulatory T cells and immunity to pathogens.

    Science.gov (United States)

    Rouse, Barry T; Suvas, Susmit

    2007-09-01

    Immune responses to pathogens are modulated by one or more types of cells that perform a regulatory function. Some cells with this function, such as CD4+ Foxp3+ natural regulatory T cells (nTreg), pre-exist prior to infections whereas others may be induced as a consequence of infection (adaptive Treg). With pathogens that have a complex pathogenesis, multiple types of regulatory cells could influence the outcome. One major property of Treg is to help minimize collateral tissue damage that can occur during immune reactions to a chronic infection. The consequence is less damage to the host but in such situations the pathogen is likely to establish persistence. In some cases, a fine balance is established between Treg responses, effector components of immunity and the pathogen. Treg responses to pathogens may also act to hamper the efficacy of immune control. This review discusses these issues as well as the likely mechanisms by which various pathogens can signal the participation of Treg during infection.

  17. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  18. Risk factors for drug-resistant pathogens in immunocompetent patients with pneumonia: Evaluation of PES pathogens.

    Science.gov (United States)

    Ishida, Tadashi; Ito, Akihiro; Washio, Yasuyoshi; Yamazaki, Akio; Noyama, Maki; Tokioka, Fumiaki; Arita, Machiko

    2017-01-01

    The new acronym, PES pathogens (Pseudomonas aeruginosa, Enterobacteriaceae extended-spectrum beta-lactamase-positive, and methicillin-resistant Staphylococcus aureus), was recently proposed to identify drug-resistant pathogens associated with community-acquired pneumonia. To evaluate the risk factors for antimicrobial-resistant pathogens in immunocompetent patients with pneumonia and to validate the role of PES pathogens. A retrospective analysis of a prospective observational study of immunocompetent patients with pneumonia between March 2009 and June 2015 was conducted. We clarified the risk factors for PES pathogens. Of the total 1559 patients, an etiological diagnosis was made in 705 (45.2%) patients. PES pathogens were identified in 51 (7.2%) patients, with 53 PES pathogens (P. aeruginosa, 34; ESBL-positive Enterobacteriaceae, 6; and MRSA, 13). Patients with PES pathogens had tendencies toward initial treatment failure, readmission within 30 days, and a prolonged hospital stay. Using multivariate analysis, female sex (adjusted odds ratio [AOR] 1.998, 95% confidence interval [CI] 1.047-3.810), admission within 90 days (AOR 2.827, 95% CI 1.250-6.397), poor performance status (AOR 2.380, 95% CI 1.047-5.413), and enteral feeding (AOR 5.808, 95% CI 1.813-18.613) were independent risk factors for infection with PES pathogens. The area under the receiver operating characteristics curve for the risk factors was 0.66 (95% CI 0.577-0.744). We believe the definition of PES pathogens is an appropriate description of drug-resistant pathogens associated with pneumonia in immunocompetent patients. The frequency of PES pathogens is quite low. However, recognition is critical because they can cause refractory pneumonia and different antimicrobial treatment is required. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. More Pathogenicity or Just More Pathogens?—On the Interpretation Problem of Multiple Pathogen Detections with Diagnostic Multiplex Assays

    Directory of Open Access Journals (Sweden)

    Andreas E. Zautner

    2017-06-01

    Full Text Available Modern molecular diagnostic approaches in the diagnostic microbiological laboratory like real-time quantitative polymerase chain reaction (qPCR have led to a considerable increase of diagnostic sensitivity. They usually outperform the diagnostic sensitivity of culture-based approaches. Culture-based diagnostics were found to be insufficiently sensitive for the assessment of the composition of biofilms in chronic wounds and poorly standardized for screenings for enteric colonization with multi-drug resistant bacteria. However, the increased sensitivity of qPCR causes interpretative challenges regarding the attribution of etiological relevance to individual pathogen species in case of multiple detections of facultative pathogenic microorganisms in primarily non-sterile sample materials. This is particularly the case in high-endemicity settings, where continuous exposition to respective microorganisms leads to immunological adaptation and semi-resistance while considerable disease would result in case of exposition of a non-adapted population. While biofilms in chronic wounds show higher pathogenic potential in case of multi-species composition, detection of multiple pathogens in respiratory samples is much more difficult to interpret and asymptomatic enteric colonization with facultative pathogenic microorganisms is frequently observed in high endemicity settings. For respiratory samples and stool samples, cycle-threshold-value-based semi-quantitative interpretation of qPCR results has been suggested. Etiological relevance is assumed if cycle-threshold values are low, suggesting high pathogen loads. Although the procedure is challenged by lacking standardization and methodical issues, first evaluations have led to promising results. Future studies should aim at generally acceptable quantitative cut-off values to allow discrimination of asymptomatic colonization from clinically relevant infection.

  20. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  1. Susceptibility of pathogenic and nonpathogenic Naegleria ssp

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, L.Y.

    1988-01-01

    The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenic or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.

  2. Stomata and pathogens: Warfare at the gates.

    Science.gov (United States)

    Gudesblat, Gustavo E; Torres, Pablo S; Vojnov, Adrian A

    2009-12-01

    Bacteria and fungi are capable of triggering stomatal closure through pathogen-associated molecular patterns (PAMPs), which prevents penetration through these pores. Therefore, the stomata can be considered part of the plant innate immune response. Some pathogens have evolved mechanisms to evade stomatal defense. The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc), which infects plants of the Brassicaceae family mainly through hydathodes, has also been reported to infect plants through stomata. A recent report shows that penetration of Xcc in Arabidopsis leaves through stomata depends on a secreted small molecule whose synthesis is under control of the rpf/diffusible signal factor (DSF) cell-to-cell signaling system, which also controls genes involved in biofilm formation and pathogenesis. The same reports shows that Arabidopsis ROS- and PAMP-activated MAP kinase 3 (MPK3) is essential for stomatal innate response. Other recent and past findings about modulation of stomatal behaviour by pathogens are also discussed. In all, these findings support the idea that PAMP-triggered stomatal closure might be a more effective and widespread barrier against phytopathogens than previously thought, which has in turn led to the evolution in pathogens of several mechanisms to evade stomatal defense.

  3. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  4. Human pathogen subversion of antigen presentation.

    Science.gov (United States)

    Brodsky, F M; Lem, L; Solache, A; Bennett, E M

    1999-04-01

    Many pathogens have co-evolved with their human hosts to develop strategies for immune evasion that involve disruption of the intracellular pathways by which antigens are bound by class I and class II molecules of the major histocompatibility complex (MHC) for presentation to T cells. Here the molecular events in these pathways are reviewed and pathogen interference is documented for viruses, extracellular and intracellular bacteria and intracellular parasites. In addition to a general review, data from our studies of adenovirus, Chlamydia trachomatis and Coxiella burnetii are summarized. Adenovirus E19 is the first viral gene product described that affects class I MHC molecule expression by two separate mechanisms, intracellular retention of the class I heavy chain by direct binding and by binding to the TAP transporter involved in class I peptide loading. Coxiella and Chlamydia both affect peptide presentation by class II MHC molecules as a result of their residence in endocytic compartments, although the properties of the parasitophorous vacuoles they form are quite different. These examples of active interference with antigen presentation by viral gene products and passive interference by rickettsiae and bacteria are typical of the strategies used by these different classes of pathogens, which need to evade different types of immune responses. Pathogen-host co-evolution is evident in these subversion tactics for which the pathogen crime seems tailored to fit the immune system punishment.

  5. Priority setting of foodborne pathogens: disease burden and costs of selected enteric pathogens

    NARCIS (Netherlands)

    Kemmeren JM; Mangen MJJ; Duynhoven YTHP van; Havelaar AH; MGB

    2006-01-01

    Toxoplasmosis causes the highest disease burden among seven evaluated foodborne pathogens. This is the preliminary conclusion of a major study of the disease burden and related costs of foodborne pathogens. The other micro-organisms that were studied are Campylobacter spp., Salmonella spp.,

  6. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  7. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?

    NARCIS (Netherlands)

    Baarlen, P. van; Belkum, A. van; Summerbell, R.C.; Crous, P.W.; Thomma, B.P.

    2007-01-01

    It is common knowledge that pathogenic viruses can change hosts, with avian influenza, the HIV, and the causal agent of variant Creutzfeldt-Jacob encephalitis as well-known examples. Less well known, however, is that host jumps also occur with more complex pathogenic microorganisms such as bacteria

  8. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    Science.gov (United States)

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  9. Advancing waterborne pathogen modelling: lessons from global nutrient export models

    NARCIS (Netherlands)

    Vermeulen, L.C.; Hofstra, N.; Kroeze, C.; Medema, G.J.

    2015-01-01

    Waterborne pathogens cause health problems worldwide. A global waterborne pathogen model could provide valuable new insights for data-sparse regions, by identifying pathogen hotspots and evaluating global change and risk management scenarios. Global waterborne pathogen modelling is not as advanced

  10. Adenylate cyclases involvement in pathogenicity, a minireview.

    Science.gov (United States)

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  11. Molecular techniques for characterisation of pathogens

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise

    Pathogens have always had a major interest to humans due to their central role in sickness and death. Influenza A annually kills at least 250,000 humans, and has been the cause of millions of further deaths during pandemic years in the past. Plague (Yersinia pestis) has been the cause of the Black...... Death that was leading to the desertion of whole cities, and as a result was for centuries one of the most feared events in human life. For both of these organisms we generally have situations with only very small amounts of pathogen nucleic acids available, usually because many interesting samples...... capture for the detection of Y. pestis in samples from the Justinian plague (600 AD) as an attempt to detect this pathogen as a cause of death in the victims....

  12. Biocontrol of Pathogens in the Meat Chain

    Science.gov (United States)

    Burgess, Catherine M.; Rivas, Lucia; McDonnell, Mary J.; Duffy, Geraldine

    Bacterial foodborne zoonotic diseases are of major concern, impacting public health and causing economic losses for the agricultural-food sector and the wider society. In the United States (US) alone foodborne illness from pathogens is responsible for 76 million cases of illnesses each year (Mead et al., 1999). Salmonella, Campylobacter jejuni and Enterohaemorraghic Escherichia coli (EHEC; predominately serotype O157:H7) and Listeria monocytogenes are the most predominant foodborne bacterial pathogens reported in the developed world (United States Department of Agriculture, 2001). The importance of meat and meat products as a vehicle of foodborne zoonotic pathogens cannot be underestimated (Center for Disease Control, 2006; Gillespie, O’Brien, Adak, Cheasty, & Willshaw, 2005; Mazick, Ethelberg, Nielsen, Molbak, & Lisby, 2006; Mead et al., 2006).

  13. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  14. [RAPD analysis of plant pathogenic coryneform bacteria].

    Science.gov (United States)

    Yin, Yan-Ni; Chen, Yong-Fang; Li, Shi-Mo; Guo, Jian-Hua

    2005-12-01

    RAPD analysis was used for the taxonomy of plant pathogenic coryneform bacteria, especially for the classification of two new pathogens (Curtobacterium flaccumfaciens pv. basellae pv. nov. and Curtobacterium flaccumfaciens pv. beticola pv. nov.). 20 random primers were screened from 50 ones to detect polymorphism among the total strains used. 80.4% were polymorphic bands among the 225 ones produced. The results of pairwise similarity and UPGMA cluster analysis suggest that the two new pathovars of sugar beet (Beta vulgaris var. saccharifera) and malabar spinach (Basella rubra) are genetically close related with Curtobacterium flacumfaciens, and the minimal similarity coefficient is 0.6511. According to the RAPD analysis and previous research, some newly made taxonomic changes of the plant pathogenic coryneform bacteria are discussed.

  15. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  16. Adhesive threads of extraintestinal pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Antão Esther-Maria

    2009-12-01

    Full Text Available Abstract The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC including both human and animal pathogens like Uropathogenic E. coli (UPEC, Newborn meningitic E. coli (NMEC and Avian pathogenic E. coli (APEC, have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.

  17. Differentiation between a pathogenic and a non-pathogenic form of Gyrodactylus salaris using PCR-RFLP

    DEFF Research Database (Denmark)

    Kania, Per Walther; Jørgensen, Thomas Rohde; Buchmann, Kurt

    2007-01-01

    A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form.......A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form....

  18. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  19. Molecular techniques for characterisation of pathogens

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise

    Pathogens have always had a major interest to humans due to their central role in sickness and death. Influenza A annually kills at least 250,000 humans, and has been the cause of millions of further deaths during pandemic years in the past. Plague (Yersinia pestis) has been the cause of the Black...... capture for the detection of Y. pestis in samples from the Justinian plague (600 AD) as an attempt to detect this pathogen as a cause of death in the victims....

  20. Pathogenic Mechanisms of Cryptosporidium and Giardia.

    Science.gov (United States)

    Certad, Gabriela; Viscogliosi, Eric; Chabé, Magali; Cacciò, Simone M

    2017-07-01

    Intestinal protozoa are important etiological agents of diarrhea, particularly in children, yet the public health risk they pose is often neglected. Results from the Global Enteric Multicenter Study (GEMS) showed that Cryptosporidium is among the leading causes of moderate to severe diarrhea in children under 2 years. Likewise, Giardia infects approximately 200 million individuals worldwide, and causes acute diarrhea in children under 5 years. Despite this recognized role as pathogens, the question is why and how these parasites cause disease in some individuals but not in others. This review focuses on known pathogenic mechanisms of Cryptosporidium and Giardia, and infection progress towards disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Viruses - from pathogens to vaccine carriers.

    Science.gov (United States)

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  2. Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens.

    Science.gov (United States)

    Lake, Janice Ann; Wade, Ruth Nicola

    2009-01-01

    Crop losses caused by pests and weeds have been estimated at 42% worldwide, with plant pathogens responsible for almost $10 billion worth of damage in the USA in 1994 alone. Elevated carbon dioxide [ECO(2)] and associated climate change have the potential to accelerate plant pathogen evolution, which may, in turn, affect virulence. Plant-pathogen interactions under increasing CO(2) concentrations have the potential to disrupt both agricultural and natural systems severely, yet the lack of experimental data and the subsequent ability to predict future outcomes constitutes a fundamental knowledge gap. Furthermore, nothing is known about the mechanistic bases of increasing pathogen agressiveness. In the absence of information on crop species, it is shown here that plant pathogen (Erysiphe cichoracearum) aggressiveness is increased under ECO(2), together with changes in the leaf epidermal characteristics of the model plant Arabidopsis thaliana L. Stomatal density, guard cell length, and trichome numbers on leaves developing post-infection are increased under ECO(2) in direct contrast to non-infected responses. As many plant pathogens utilize epidermal features for successful infection, these responses provide a positive feedback mechanism facilitating an enhanced susceptibility of newly developed leaves to further pathogen attack. Furthermore, a screen of resistant and susceptible ecotypes suggest inherent differences in epidermal responses to ECO(2).

  3. Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens

    Science.gov (United States)

    Lake, Janice Ann; Wade, Ruth Nicola

    2009-01-01

    Crop losses caused by pests and weeds have been estimated at 42% worldwide, with plant pathogens responsible for almost $10 billion worth of damage in the USA in 1994 alone. Elevated carbon dioxide [ECO2] and associated climate change have the potential to accelerate plant pathogen evolution, which may, in turn, affect virulence. Plant–pathogen interactions under increasing CO2 concentrations have the potential to disrupt both agricultural and natural systems severely, yet the lack of experimental data and the subsequent ability to predict future outcomes constitutes a fundamental knowledge gap. Furthermore, nothing is known about the mechanistic bases of increasing pathogen agressiveness. In the absence of information on crop species, it is shown here that plant pathogen (Erysiphe cichoracearum) aggressiveness is increased under ECO2, together with changes in the leaf epidermal characteristics of the model plant Arabidopsis thaliana L. Stomatal density, guard cell length, and trichome numbers on leaves developing post-infection are increased under ECO2 in direct contrast to non-infected responses. As many plant pathogens utilize epidermal features for successful infection, these responses provide a positive feedback mechanism facilitating an enhanced susceptibility of newly developed leaves to further pathogen attack. Furthermore, a screen of resistant and susceptible ecotypes suggest inherent differences in epidermal responses to ECO2. PMID:19470658

  4. Development of a multi-pathogen enrichment broth for simultaneous growth of five common foodborne pathogens.

    Science.gov (United States)

    Chen, Juan; Tang, Junni; Bhunia, Arun K; Tang, Cheng; Wang, Changting; Shi, Hui

    2015-01-01

    The objective of the present study was to formulate a multi-pathogen enrichment broth which could support the simultaneous growth of five common foodborne pathogens (Salmonella enterica, Staphylococcus aureus, Shigella flexneri, Listeria monocytogenes and Escherichia coli O157:H7). The formulated broth SSSLE was composed of potassium tellurite, bile salt, lithium chloride, and sodium chloride as growth-inhibitors; glucose, esculin, mannitol and sodium pyruvate as growth-promoters. Compared with the respective specific selective enrichment broths, the individual growth pattern of each target pathogen in SSSLE was equal, or even better, except in the case of S. flexneri. In mixed-culture experiments, the gram-negative bacteria showed higher growth capabilities than the gram-positive bacteria after 8-h enrichment; however, the cell numbers after 24-h enrichment indicated that SSSLE could support the concurrent growth of five target pathogens irrespective of whether pathogens were inoculated initially at equal or unequal levels. For natural food samples under the high background flora, the final cell numbers enriched in SSSLE for five targets were enough to be detected by multiplex PCR. In conclusion, SSSLE was capable of supporting the growth of five target pathogens concurrently. The new broth formulated in this study has the potential of saving time, efforts and costs in multi-pathogen enrichment procedures.

  5. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2009-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  6. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2010-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  7. Ewingella Americana: An Emerging True Pathogen

    Directory of Open Access Journals (Sweden)

    Syed Hassan

    2012-01-01

    Full Text Available Infections caused by Ewingella americana have been rarely reported in the literature. Most of the cases that have been reported were among the immunocompromised patients. We report a case of E. americana causing osteomyelitis and septic arthritis of the shoulder joint in a previous intravenous drug abuser. The causative pathogen was identified by synovial fluid analysis and culture.

  8. Isolation of pathogen-containing vacuoles.

    Science.gov (United States)

    Shevchuk, Olga; Steinert, Michael

    2013-01-01

    Dictyostelium discoideum cells are "professional phagocytes," as they ingest a large variety of bacteria, yeast, and inert particles. Several bacterial pathogens are able to survive intracellularly within specialized vacuoles of D. discoideum by interfering with host signaling pathways. To better understand the molecular mechanisms underlying these evolutionary conserved processes we have established a method for the isolation of pathogen-containing vacuoles (PCVs). The isolation protocol describes the infection of D. discoideum cells with the intracellular pathogen Legionella pneumophila, loading of the lysosomal compartment with colloidal iron, mechanical lysis of host cells, iodophenylnitrophenyltetrazolium (INT) heavy labeling of mitochondria, removal of nucleic acid by Benzonase treatment, separation of nuclei by low-speed centrifugation, and the magnetic removal of lysosomes. The subcellular fractionation in a discontinuous sucrose density OptiPrep gradient allows the separation of mitochondria and to prepare PCVs with high purity. The proteins isolated from PCVs have been successfully subjected to mass spectrometry and allowed to analyze pathogen-directed maturation processes of vacuoles. The method can also be applied for subsequent protein modification analyses and lipidome comparisons.

  9. Pathogenicity of Trypanosoma congolense infection following oral ...

    African Journals Online (AJOL)

    Eighty healthy adult albino rats of both sexes weighing 180-200g were used in two experiments to study the effects of oral calcium chloride treatment on the pathogenicity of Trypanosoma congolense infection. Experiment 1 was terminated at the peak of parasitaemia while experiment II was allowed to run a full course.

  10. Carp erythrodermatitis : host defense-pathogen interaction

    NARCIS (Netherlands)

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the

  11. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology...

  12. Plant Fungal Pathogens: Methods and Protocols

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2012-01-01

    Over the course of evolution, fungi have adapted to occupy specific niches, from symbiotically inhabiting the flora of the intestinal tract of mammals to saprophytic growth on leaf litter resting on the forest floor. In Plant Fungal Pathogens: Methods and Protocols, expert researchers in the field

  13. Low-Incidence, High-Consequence Pathogens

    Centers for Disease Control (CDC) Podcasts

    2014-02-21

    Dr. Stephan Monroe, a deputy director at CDC, discusses the impact of low-incidence, high-consequence pathogens globally.  Created: 2/21/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/26/2014.

  14. Incidence of indicator organisms, opportunistic and pathogenic ...

    African Journals Online (AJOL)

    Tilapia from the supermarkets and tilapia and catfish from street vendors were analyzed for the microbial load, presence of indicator microorganisms, opportunistic and pathogenic bacteria using conventional microbiological methods. Though coliforms were found in 84% of fish from the street vendors, only 16% of the fish ...

  15. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  16. Cultural, morphological, pathogenic and molecular characterization ...

    African Journals Online (AJOL)

    Alternaria blotch (Alternaria mali) causes severe foliar damage to apple trees in Kashmir. Twenty one (21) isolates of A. mali were collected from different locations and characterized for cultural, morphological, pathogenic and molecular variations. A. mali colonies varied in their cultural behaviour ranging from velvety to ...

  17. Home Air Purifiers Eradicate Harmful Pathogens

    Science.gov (United States)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  18. Incidence of Bacterial Pathogens following Biomechanical ...

    African Journals Online (AJOL)

    A correlation exists between endodontic microflora in pulpal disease and endodontic treatment failure. This study presents data on the recoverable bacterial pathogens following biomechanical treatment of infected root canals. Standard endodontic procedure were used to access tooth pulp cavity, processed and fluid ...

  19. EPCOT, NASA and plant pathogens in space.

    Science.gov (United States)

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  20. Use of Bacteriophages to control bacterial pathogens

    Science.gov (United States)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  1. PATHOGENIC POTENTIALS OF ESCHERICHIA COLI ISOLATED ...

    African Journals Online (AJOL)

    Electrolyte and haematological parameters in rabbits infected with pathogenic isolates of Escherichia coli from rural water supplies in Rivers State, Nigeria, where monitored. Rabbits were orally infected with suspension containing 3x107 cfu /ml of Escherichia coli to induce diarrhoea, and the electrolyte (sodium, potassium ...

  2. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  3. Multivalent glycoconjugates as anti-pathogenic agents

    NARCIS (Netherlands)

    Bernardi, J.; Jiménez-Barbero, J.; Casnati, A.; Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K.E.; Lahmann, M.; Lindhorst, T.K.; Marradi, M.; Messner, P.; Molinaro, A.; Murphy, P.V.; Nativi, C.; Oscarson, S.; Penadés, S.; Peri, F.; Pieters, R.J.; Renaudet, O.; Reymond, J.L.; Richichi, B.; Rojo, J.; Sansone, F.; Schäffer, C.; Turnbull, W.B.; Velasco-Torrijos, T.; Vidal, S.; Vincent, S.; Wennekes, T.; Zuilhof, H.; Imberty, A.

    2013-01-01

    Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria,

  4. Insect Pathogenic Fungi as Endophytes.

    Science.gov (United States)

    Moonjely, S; Barelli, L; Bidochka, M J

    2016-01-01

    In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Paleogene radiation of a plant pathogenic mushroom.

    Directory of Open Access Journals (Sweden)

    Martin P A Coetzee

    Full Text Available The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species.The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP, Maximum Likelihood (ML and Bayesian Inference (BI. A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach.Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana.The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

  6. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity

    DEFF Research Database (Denmark)

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel

    2017-01-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two...

  7. Rapid methods: the detection of foodborne pathogens

    NARCIS (Netherlands)

    Beumer, R.R.; Hazeleger, W.C.

    2009-01-01

    Although bacteria are the first type of microorganisms that come to mind when discussing microbial food safety, they are by no means the only pathogenic foodborne microorganisms. Mycotoxin producing moulds, human enteric viruses, protozoan parasites and marine biotoxins are also of importance.

  8. Tracking Zoonotic Pathogens in Dairy Production Chains

    Science.gov (United States)

    Dairy farming is a highly productive system producing ample amounts of high-quality milk and meat from fewer cows on less land on fewer, but larger, farms. Despite this consolidation and modernization zoonotic pathogenic bacteria and protozoans remain problems on the modern dairy farm. Although past...

  9. teaching hospital: common bacterial pathogens seen.

    African Journals Online (AJOL)

    pathogens in pyogenic meningitis. Most of the delivery occurred outside the teaching hospital, even those that delivered in the hospital, some come in during labour. ' _ Conclusion: Neonatal bacterial infections are still a cause of high morbidity and mortality of the newborn in our setting. To reduce the morbidity and mortality ...

  10. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  11. Occurrences of pathogenic Vibrio parahaemolyticus from Vellar ...

    African Journals Online (AJOL)

    Vibrio parahaemolyticus is the predominant seafood pathogen associated with human gastroenteritis. Samples were collected from Vellar estuary, shrimp ponds and shrimp for characterization of V. parahaemolyticus. A total of 26 blue green centre (BG) Vibrio strains were isolated and characterized through biochemical ...

  12. Antimicrobial susceptibilty of potentially pathogenic halophilic Vibrio ...

    African Journals Online (AJOL)

    Surveillance of antimicrobial resistance is indispensable for empirical treatment of infections and in preventing the spread of antimicrobial resistant microorganisms. This study is aimed at determining the antibiotic susceptibility of potentially pathogenic halophylic Vibrio species isolated in Lagos, Nigeria. Susceptibility ...

  13. The Role of Pathogenic Autoantibodies in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Merrill J. Rowley

    2015-11-01

    Full Text Available The serological presence of autoantibodies is diagnostic of autoimmunity, and these autoantibodies may be present for many years before the presentation of autoimmune disease (AID. Although a pathogenic role has been demonstrated for various autoantibodies reactive with cell surface and extracellular autoantigens, studies using monoclonal antibodies (mAb show not all antibodies in the polyclonal response are pathogenic. Differences depend on Fab-mediated diversity in epitope specificity, Fc-mediated effects based on immunoglobulin (Ig class and subclass, activation of complement, and the milieu in which the reaction occurs. These autoantibodies often occur in organ-specific AID and this review illustrates their pathogenic and highly specific effects. The role of autoantibodies associated with intracellular antigens is less clear. In vitro they may inhibit or adversely affect well-defined intracellular biochemical pathways, yet, in vivo they are separated from their autoantigens by multiple cellular barriers. Recent evidence that Ig can traverse cell membranes, interact with intracellular proteins, and induce apoptosis has provided new evidence for a pathogenic role for such autoantibodies. An understanding of how autoantibodies behave in the polyclonal response and their role in pathogenesis of AID may help identify populations of culprit B-cells and selection of treatments that suppress or eliminate them.

  14. Pathogenic Responses of Cowpea ( Vigna unguiculata ) Inoculated ...

    African Journals Online (AJOL)

    A study was carried out using potted plants arranged in a randomized complete block experimental design, to evaluate the pathogenic responses of Cowpea that was inoculated with cucumber mosaic virus to soil amendment with neem leaf powder. The amendments were applied at varying rates of 0.125Kg/10kg soil, ...

  15. Host-pathogen interactions in typhoid fever

    NARCIS (Netherlands)

    de Jong, H.K.

    2015-01-01

    This thesis focuses on host-pathogen interactions in Salmonella Typhi and Burkholderia pseudomallei infections and explores the interplay between these bacteria and the innate immune system. Typhoid fever is one of the most common causes of bacterial infection in low-income countries. With adequate

  16. Suppression of soil-borne plant pathogens

    NARCIS (Netherlands)

    Agtmaal, van M.

    2015-01-01

    Soil borne plant pathogens considerably reduce crop yields worldwide and are difficult to control due to their ”masked” occurrence  in the heterogeneous soil environment. This hampers the efficacy of chemical - and microbiological control agents.   Outbreaks of crop

  17. Morphological, cultural, pathogenic and molecular variability ...

    African Journals Online (AJOL)

    Alternaria blight (Alternaria brassicae) causes severe foliar damage to Indian mustard in Uttarakhand. Ten (10) isolates of A. brassicae were collected from different hosts and characterized for cultural, morphological, pathogenic and molecular variations. A. brassicae colonies varied in their cultural behaviour ranging from ...

  18. Genetic characterization of mango anthracnose pathogen ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... from different agroclimatic zones of India. The isolates were evaluated for their pathogenic variability on mango seedlings and genetic characterization using random amplified polymorphic DNA (RAPD molecular techniques). The random primers OPA-1, 3, 5, 9, 11, 15, 16 and 18 were used and the twenty-.

  19. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    Science.gov (United States)

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  20. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of. S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic ...

  1. Microbial minimalism: genome reduction in bacterial pathogens.

    Science.gov (United States)

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  2. CASE REPORT Uncommon Pathogen Bacillus Cereus Causing ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... Uncommon Pathogen Bacillus Cereus Causing Subdural Empyema in a Child. Prastiya Indra Gunawan1*, Leny Kartina1, Dwiyanti Puspitasari1, Erny Erny2. OPEN ACCESS ... secondary to middle ear infection, meningitis, brain surgery, ... classic clinical syndrome is an acute febrile illness punctuated by.

  3. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, Gerwin; Rurenga, P.; Singadji, Z.; Wekema - Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  4. Langerhans cells in innate defense against pathogens

    NARCIS (Netherlands)

    de Jong, Marein A. W. P.; Geijtenbeek, Teunis B. H.

    2010-01-01

    Langerhans cells (LCs) are at the frontline in defense against mucosal infections because they line the mucosal tissues and are ideally situated to intercept pathogens. Recent data suggest that LCs have an innate anti-HIV-1 function. LCs express the LC-specific C-type lectin Langerin that

  5. Pathogen Pressure Puts Immune Defense into Perspective

    NARCIS (Netherlands)

    Horrocks, Nicholas P. C.; Matson, Kevin D.; Tieleman, B. Irene

    2011-01-01

    The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often

  6. Pathogen pressure puts immune defense into perspective

    NARCIS (Netherlands)

    Horrocks, N.P.C.; Matson, K.D.; Tieleman, B.I.

    2011-01-01

    The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often

  7. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic ...

  8. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used...... the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B...... shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes....

  9. The sunflower downy mildew pathogen Plasmopara halstedii.

    Science.gov (United States)

    Gascuel, Quentin; Martinez, Yves; Boniface, Marie-Claude; Vear, Felicity; Pichon, Magalie; Godiard, Laurence

    2015-02-01

    Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers. Downy mildew attacks can have a great economic impact on sunflower crops, and several Pl resistance genes are present in cultivars to protect them against the disease. Nevertheless, some of these resistances have been overcome by the occurrence of novel isolates of the pathogen showing increased virulence. A better characterization of P. halstedii infection and dissemination mechanisms, and the identification of the molecular basis of the interaction with sunflower, is a prerequisite to efficiently fight this pathogen. This review summarizes what is currently known about P. halstedii, provides new insights into its infection cycle on resistant and susceptible sunflower lines using scanning electron and light microscopy imaging, and sheds light on the pathogenicity factors of P. halstedii obtained from recent molecular data. Kingdom Stramenopila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Plasmopara; Species Plasmopara halstedii. Sunflower seedling damping off, dwarfing of the plant, bleaching of leaves, starting from veins, and visible white sporulation, initially on the lower side of cotyledons and leaves. Plasmopara halstedii infection may severely impact sunflower seed yield. In spring, germination of overwintered sexual oospores leads to sunflower root infection. Intercellular hyphae are responsible for systemic plant colonization and the induction of disease symptoms. Under humid and fresh conditions, dissemination structures are produced by the pathogen on all

  10. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  11. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  12. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  13. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practica

    NARCIS (Netherlands)

    Lievens, B.; Thomma, B.P.H.J.

    2005-01-01

    The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection,

  14. Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment

    Science.gov (United States)

    Elaiw, A. M.; Raezah, A. A.; Alofi, B. S.

    2018-02-01

    We study the global dynamics of delayed pathogen infection models with immune impairment. Both pathogen-to-susceptible and infected-to-susceptible transmissions have been considered. Bilinear and saturated incidence rates are considered in the first and second model, respectively. We drive the basic reproduction parameter R0 which determines the global dynamics of models. Using Lyapunov method, we established the global stability of the models' steady states. The theoretical results are confirmed by numerical simulations.

  15. AquaPathogen X--A template database for tracking field isolates of aquatic pathogens

    Science.gov (United States)

    Emmenegger, Evi; Kurath, Gael

    2012-01-01

    AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).

  16. Efficacy of Miswak on Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Adnan Sukkarwalla

    2013-01-01

    Full Text Available The oral cavity harbors a diverse and abundant number of complex oral pathogens causing different oral diseases. The development of dental caries and periodontal diseases has been found to be closely associated with various gram positive and gram negative microrganisms. Miswak, a natural toothbrush, has been documented as a potent antibacterial aid and its use is encouraged in different countries because of its good taste, texture, availability, cost and beneficial effect on teeth and supporting tissues. Different researches have been carried out to evaluate the antimicrobial effects of Miswak. This review encompasses the efficacy of Miswak on suppression of oral pathogens with respect to conducted on fungi as well as cariogenic, periodontal and endodontic bacteria.

  17. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    Incidents of Vibrio-associated diseases in marine aquaculture are increasingly reported on a global scale, incited also by the world’s rising temperature. Administration of antibiotics has been the most commonly applied remedy used for facing vibriosis outbreaks, giving rise to concerns about...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... to studying the interactions between marine pathogenic Vibrio and their corresponding bacteriophages, while discussing the potential and limitations of phage therapy application in the biological control of vibriosis....

  18. Bacteriophages in the control of pathogenic vibrios

    Directory of Open Access Journals (Sweden)

    Nicolás Plaza

    2018-01-01

    Full Text Available Vibrios are common inhabitants of marine and estuarine environments. Some of them can be pathogenic to humans and/or marine animals using a broad repertory of virulence factors. Lately, several reports have indicated that the incidence of Vibrio infections in humans is rising and also in animals constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control.

  19. Common Features of Opportunistic Premise Plumbing Pathogens

    Directory of Open Access Journals (Sweden)

    Joseph O. Falkinham

    2015-04-01

    Full Text Available Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water—not contaminants—that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic, and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control.

  20. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  1. Actinobaculum schaalii: A truly emerging pathogen?

    Science.gov (United States)

    Prigent, G.; Perillaud, C.; Amara, M.; Coutard, A.; Blanc, C.; Pangon, B.

    2016-01-01

    Actinobaculum schaalii is a Gram-positive facultative anaerobe bacillus. It is a commensal organism of the genitourinary tract. Its morphology is nonspecific. Aerobic culture is tedious, and identification techniques have long been inadequate. Thus, A. schaalii has often been considered as a nonpathogen bacterium or a contaminant. Its pathogenicity is now well described in urinary tract infections, and infections in other sites have been reported. This pathogen is considered as an emerging one following the growing use of mass spectrometry identification. In this context, the aim of our study was to evaluate the number of isolations of A. schaalii before and after the introduction of mass spectrometry in our hospital and to study the clinical circumstances in which isolates were found. PMID:27014462

  2. Microretroreflector-sedimentation immunoassays for pathogen detection.

    Science.gov (United States)

    Garvey, Gavin; Shakarisaz, David; Ruiz-Ruiz, Federico; Hagström, Anna E V; Raja, Balakrishnan; Pascente, Carmen; Kar, Archana; Kourentzi, Katerina; Rito-Palomares, Marco; Ruchhoeft, Paul; Willson, Richard C

    2014-09-16

    Point-of-care detection of pathogens is medically valuable but poses challenging trade-offs between instrument complexity and clinical and analytical sensitivity. Here we introduce a diagnostic platform utilizing lithographically fabricated micron-scale forms of cubic retroreflectors, arguably one of the most optically detectable human artifacts, as reporter labels for use in sensitive immunoassays. We demonstrate the applicability of this novel optical label in a simple assay format in which retroreflector cubes are first mixed with the sample. The cubes are then allowed to settle onto an immuno-capture surface, followed by inversion for gravity-driven removal of nonspecifically bound cubes. Cubes bridged to the capture surface by the analyte are detected using inexpensive, low-numerical aperture optics. For model bacterial and viral pathogens, sensitivity in 10% human serum was found to be 10(4) bacterial cells/mL and 10(4) virus particles/mL, consistent with clinical utility.

  3. Efficacy of miswak on oral pathogens.

    Science.gov (United States)

    Sukkarwalla, Adnan; Ali, Salima Mehboob; Lundberg, Pranee; Tanwir, Farzeen

    2013-05-01

    The oral cavity harbors a diverse and abundant number of complex oral pathogens causing different oral diseases. The development of dental caries and periodontal diseases has been found to be closely associated with various gram positive and gram negative microrganisms. Miswak, a natural toothbrush, has been documented as a potent antibacterial aid and its use is encouraged in different countries because of its good taste, texture, availability, cost and beneficial effect on teeth and supporting tissues. Different researches have been carried out to evaluate the antimicrobial effects of Miswak. This review encompasses the efficacy of Miswak on suppression of oral pathogens with respect to conducted on fungi as well as cariogenic, periodontal and endodontic bacteria.

  4. Molecular mechanisms of Escherichia coli pathogenicity.

    Science.gov (United States)

    Croxen, Matthew A; Finlay, B Brett

    2010-01-01

    Escherichia coli is a remarkable and diverse organism. This normally harmless commensal needs only to acquire a combination of mobile genetic elements to become a highly adapted pathogen capable of causing a range of diseases, from gastroenteritis to extraintestinal infections of the urinary tract, bloodstream and central nervous system. The worldwide burden of these diseases is staggering, with hundreds of millions of people affected annually. Eight E. coli pathovars have been well characterized, and each uses a large arsenal of virulence factors to subvert host cellular functions to potentiate its virulence. In this Review, we focus on the recent advances in our understanding of the different pathogenic mechanisms that are used by various E. coli pathovars and how they cause disease in humans.

  5. Susceptibility of Postharvest Pathogens to Esential Oils

    Directory of Open Access Journals (Sweden)

    Božik M.

    2017-09-01

    Full Text Available Antimicrobial volatile substances from plants represent alternatives to synthetic pesticides and food preservatives. In this study, the compositions of some essential oils were determined by gas chromatography with mass spectrometry, and the inhibitory properties of the essential oils and their components against the bacterial postharvest pathogens Pectobacterium carotovorum subsp. carotovorum (CCM 1008, Pseudomonas syringae (CCM 7018, Xanthomonas campestris (CCM 22 were determined by the microdilution method. Essential oils from oregano, cinnamon, lemongrass, lavender, clove, rosemary, tea tree, eucalyptus, garlic, and ginger and their components cinnamaldehyde, eugenol, thymol, and carvacrol were used in the tests. The essential oil components exhibited strong antibacterial activity against all tested bacteria. The oregano and cinnamon essential oils were most effective. The rosemary, lavender, tea tree, eucalyptus, garlic, and ginger oils were not effective at the tested concentrations. In conclusion, certain essential oils, particularly their components, are highly effective and could be used for the control of postharvest bacterial pathogens.

  6. Protein sequence database for pathogenic arenaviruses

    Science.gov (United States)

    Bui, Huynh-Hoa; Botten, Jason; Fusseder, Nicolas; Pasquetto, Valerie; Mothe, Bianca; Buchmeier, Michael J; Sette, Alessandro

    2007-01-01

    Background Arenaviruses are a family of rodent-borne viruses that cause several hemorrhagic fevers. These diseases can be devastating and are often lethal. Herein, to aid in the design and development of diagnostics, treatments and vaccines for arenavirus infections, we have developed a database containing protein sequences from the seven pathogenic arenaviruses (Junin, Guanarito, Sabia, Machupo, Whitewater Arroyo, Lassa and LCMV). Results The database currently contains a non-redundant set of 333 protein sequences which were manually annotated. All entries were linked to NCBI and cited PubMed references. The database has a convenient query interface including BLAST search. Sequence variability analyses were also performed and the results are hosted in the database. Conclusion The database is available at and can be used to aid in studies that require proteomic information from pathogenic arenaviruses. PMID:17288609

  7. Whole-genome sequencing of veterinary pathogens

    DEFF Research Database (Denmark)

    Ronco, Troels

    using whole-genome sequencing. The results showed that NELoc-1 and -3 and the two virulence genes netB and cnaA were significantly more associated with NE isolates from chickens compared to NE isolates from turkeys. Only NELoc-2 was associated with NE isolates from both turkeys and chickens. A putative......-electrophoresis and single-locus sequencing has been widely used to characterize such types of veterinary pathogens. However, DNA sequencing techniques have become fast and cost effective in recent years and whole-genome sequencing data provide a much higher discriminative power and reproducibility than any...... of the traditional molecular techniques. In this PhD project three important veterinary pathogens (Clostridium perfringens, Escherichia coli and Staphylococcus aureus) were investigated using whole-genome sequencing. This was done in five different scientific papers which all have been published. Paper I and II...

  8. Fusobacterium nucleatum: an emerging gut pathogen?

    Science.gov (United States)

    Allen-Vercoe, Emma; Strauss, Jaclyn; Chadee, Kris

    2011-09-01

    The Gram-negative, non-sporulating, obligately anaerobic species, Fusobacterium nucleatum, is rapidly gaining notoriety as a pathogen with a surprising number of associated diseases. Recently, we have found that F. nucleatum is a more common resident of the GI tract than originally thought, and thus, through several studies, we have attempted to determine its gut-relevant potential for virulence. We have found that F. nucleatum possesses a number of pathogenic traits with relevance to gut diseases such as inflammatory bowel disease (IBD), however, we have also documented strain-associated differences in virulence. An intriguing picture emerges that paints F. nucleatum as both conferring beneficial as well as detrimental effects on host cells; and we suggest that the ultimate effects of F. nucleatum infection in the gut are a consequence of the microbes with which this species aggregates.

  9. OSHA Bloodborne Pathogens Standards Exposure Control Plan

    Science.gov (United States)

    Luhrs, Caro Elise; Teitelbaum, Rita

    1993-01-01

    The Hummer Associates Exposure Control Plan is designed to reduce significant occupational exposure to bloodborne pathogens and infectious materials for Hummer Associates health care personnel. Under universal precautions, all patients and all body fluids are considered potentially infectious for bloodborne pathogens. Medical personnel need not be at increased risk if universal precautions are correctly understood and followed. This program covers all employees who could reasonably anticipate contact with blood or other potentially infectious materials during the performance of their job responsibilities. Although HIV and hepatitis B are mentioned most often, this program applies to all bloodborne diseases. The two main components needed to implement this program are universal precautions and engineering/work practice controls. This program covers all employees who may have occupational exposure to blood or other potentially infectious materials. Other aspects of this program are discussed.

  10. Main Concerns of Pathogenic Microorganisms in Meat

    Science.gov (United States)

    Nørrung, Birgit; Andersen, Jens Kirk; Buncic, Sava

    Although various foods can serve as sources of foodborne illness, meat and meat products are important sources of human infections with a variety of foodborne pathogens, i.e. Salmonella spp., Campylobacter jejuni/coli, Yersinia enterocolitica, Verotoxigenic E. coli and, to some extent, Listeria monocytogenes. All these may be harboured in the gastrointestinal tract of food-producing animals. The most frequent chain of events leading to meat-borne illness involves food animals, which are healthy carriers of the pathogens that are subsequently transferred to humans through production, handling and consumption of meat and meat products. Occurrences of Salmonella spp., C. jejuni/coli, Y. enterocolitica and Verotoxigenic E. coli in fresh red meat vary relatively widely, although most often are between 1 and 10%, depending on a range of factors including the organism, geographical factors, farming and/or meat production practices.

  11. Pathogens spectrum of deep human mycosis

    Directory of Open Access Journals (Sweden)

    A. B. Kulko

    2012-01-01

    Full Text Available The article describes characteristics of two different etiology groups of deep human mycosis — extremely dangerous endemic deep mycoses (histoplasmosis, coccidioidomycosis, blastomycosis, paracoccidioidomycosis, penicilliosis due to Penicillium marneffei and opportunistic deep mycosis (candidiasis, cryptococcosis, aspergillosis, mucormycosis. Information on fungal pathogens and antifungal agents is presented. The own results of cultural studies obtained during pneumomycosis diagnosis in patients with tuberculosis are shown.

  12. Synthetic Nanovaccines Against Respiratory Pathogens (SYNARP)

    Science.gov (United States)

    2012-07-01

    increasing amounts of antigen-specific antibody at this time point. Neutralizing activity against an equine infectious anemia virus expressing the...respiratory infections, the leading cause of outpatient illness and a major cause of infectious disease hospitalization in U.S. military personnel...day virus challenged). To determine the minimum amount of virus that would give a 100% mouse infectious dose (MID100) of the low pathogenic

  13. Pathogenic and opportunistic microorganisms in caves

    Directory of Open Access Journals (Sweden)

    Sanchez-Moral Sergio

    2010-01-01

    Full Text Available With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  14. Pathogen survival in chorizos: ecological factors.

    Science.gov (United States)

    Hew, Carrie M; Hajmeer, Maha N; Farver, Thomas B; Riemann, Hans P; Glover, James M; Cliver, Dean O

    2006-05-01

    This study addressed health risks from ethnic sausages produced on a small scale, without inspection, in California and elsewhere. Mexican-style chorizo, a raw pork sausage that is not cured, fermented, or smoked, was contaminated experimentally in the batter with Escherichia coli O157:H7, Listeria monocytogenes, or Salmonella serotypes and stuffed into natural casings. Formulations were based on a market survey in California. Physical parameters that were controlled were pH, water activity (a(w)), and storage temperature. The pH was adjusted with vinegar, stabilizing at 5.0 within 24 h. Initial a(w) levels adjusted with salt were 0.97, 0.95, 0.93, 0.90, and 0.85; levels declined with time because of evaporation. Pathogen numbers declined with storage up to 7 days, with few brief exceptions. Main effects and interactions of constant temperature and pH with declining a(w) on survival of the pathogens were determined. Maximum death rates occurred at higher a(w) for E. coli O157:H7 and Salmonella than for L. monocytogenes. Salt used to adjust a(w) affected palatability. Spices (black pepper, chili pepper, chili powder, cumin, garlic, guajillo pepper, oregano, and paprika) comprised another, potentially significant aspect of the sausage formulation. Some (notably black pepper and cumin) carried an indigenous microflora that contributed significantly to the microbial load of the sausage batter. Only undiluted fresh and powdered garlic exhibited a significant antimicrobial effect on the pathogens. Although each of the tested formulations caused death of the inoculated pathogens, none of the death rates was sufficiently rapid to ensure safety within the probable shelf life of the product.

  15. Outer membrane proteins of pathogenic spirochetes

    OpenAIRE

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2004-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning bi...

  16. Comparative analysis of twelve Dothideomycete plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  17. Cellphones A Modern Stayhouse For Bacterial Pathogens

    OpenAIRE

    Usha Arora; Pushpa Devi; Aarti Chadha; Sita Malhotra

    2009-01-01

    Cellphones are increasingly used by health care personnels for communication. These can harbour variouspotential pathogens and become an exogenous source of nosocomial infections. A total of 160 cellphonesbelonging to doctors and paramedical staff working in various departments at govt. medical college andhospital, Amritsar were screened for bacterial isolates. Sterile swabs moistened with nutrient broth wereused to swab the front, back and the sides of the cellphones and were subjected to cu...

  18. Protein sequence database for pathogenic arenaviruses

    OpenAIRE

    Bui, HH; Botten, J; Fusseder, N; Pasquetto, V; Mothe, B; Buchmeier, MJ; Sette, A

    2007-01-01

    Background: Arenaviruses are a family of rodent-borne viruses that cause several hemorrhagic fevers. These diseases can be devastating and are often lethal. Herein, to aid in the design and development of diagnostics, treatments and vaccines for arenavirus infections, we have developed a database containing protein sequences from the seven pathogenic arenaviruses (Junin, Guanarito, Sabia, Machupo, Whitewater Arroyo, Lassa and LCMV). Results: The database currently contains a non-redundant set...

  19. Occurrence of antimicrobial resistance among bacterial pathogens

    OpenAIRE

    Hendriksen, Rene S.; Mevius, Dik J.; Schroeter, Andreas; Teale, Christopher; Jouy, Eric; Butaye, Patrick; Franco, Alessia; Utinane, Andra; Amado, Alice; Moreno, Miguel; Greko, Christina; Stärk, Katharina D.C.; Berghold, Christian; Myllyniemi, Anna-Liisa; Hoszowski, Andrzej

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003–05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria cau...

  20. PHIDIAS- Pathogen Host Interaction Data Integration and Analysis

    Indian Academy of Sciences (India)

    PHIDIAS- Pathogen Host Interaction Data Integration and Analysis- allows searching of integrated genome sequences, conserved domains and gene expressions data related to pathogen host interactions in high priority agents for public health and security ...

  1. Plant pathology: monitoring a pathogen-targeted host protein.

    Science.gov (United States)

    Ellis, Jeff; Dodds, Peter

    2003-05-13

    A plant protein RIN4 is targeted and modified by bacterial pathogens as part of the disease process. At least two host resistance proteins monitor this pathogen interference and trigger the plant's defence responses.

  2. Surveillance of multidrug resistant bacteria pathogens from female ...

    African Journals Online (AJOL)

    Highest sensitivity was observed with gatifloxacin, imipenam and piperacillin and tazobactum. Thus, according to this study, these antibiotics can be recommended against multi drug resistant bacteria pathogens. Keywords: Multidrug resistance, female infertility, bacteria pathogens. African Journal of Biotechnology Vol.

  3. Biocontrol interventions for inactivation of foodborne pathogens on produce

    Science.gov (United States)

    Post-harvest interventions for control of foodborne pathogens on minimally processed foods are crucial for food safety. Biocontrol interventions have the primary objective of developing novel antagonists in combinations with physical and chemical interventions to inactivate pathogenic microbes. Ther...

  4. Sensitivity of mechanically transmitted pathogens to different disinfectants

    Science.gov (United States)

    The intensive hands-on activities of greenhouse tomato propagation and production favor the spread of mechanically transmitted pathogens, particularly Clavibacter michiganensis subsp. michiganensis (Cmm), viruses, viroids, and Botrytis cinerea. These pathogens can spread during crop handling, graft...

  5. Swiss Army Pathogen: The Salmonella Entry Toolkit

    Directory of Open Access Journals (Sweden)

    Peter J. Hume

    2017-08-01

    Full Text Available Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS, a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.

  6. Pathogenic conversion of coagulase-negative staphylococci.

    Science.gov (United States)

    Yu, Wenqi; Kim, Hwan Keun; Rauch, Sabine; Schneewind, Olaf; Missiakas, Dominique

    2017-02-01

    Humans and animals are colonized by members of the genus Staphylococcus, however only some of these species evolved to cause invasive disease. The genetic basis for conversion of commensal staphylococci into pathogens is not known. We hypothesized that Staphylococcus aureus genes for coagulation and agglutination in vertebrate blood (coa, vwb and clfA) may support pathogenic conversion. Expression of coa and vwb in Staphylococcus epidermidis or Staphylococcus simulans supported a coagulase-positive phenotype but not the ability to cause disease in a mouse model of bloodstream infection. However, the simultaneous expression of coa, vwb and clfA in coagulase-negative staphylococci enabled bacterial agglutination in plasma and enhanced survival of S. simulans in human whole blood. Agglutination of S. simulans in the bloodstream of infected mice upon expression of coa, vwb and clfA provided also a mean for dissemination and replication in distal organs. Thus, the acquisition of genes for bacterial agglutination with fibrin appear sufficient for the conversion of commensal staphylococci into invasive pathogens. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Review of soybean resistance to pathogens

    Directory of Open Access Journals (Sweden)

    Vidić Miloš

    2013-01-01

    Full Text Available This paper presents an overview of the research on soybean resistance to pathogens. The review included most harmful agents of soybean diseases in Serbia, as well as those that are potentially harmful. Development and cultivation of resistant cultivars is the most efficient, economical and environmentally acceptable control measure for plant disease. It points to the variability in pathogenicity (physiological races of parasites, especially expressed in Phytophthora sojae, Peronospora manshurica and Pseudomonas syringae pv. glycinea, which requires continuous breeding for resistance. Resistant, partially resistant and moderately susceptible genotypes, which are used as donors of resistance genes to different pathogens, are listed in this paper. Also, avirulent genes in the parasite and resistance genes in soybean are indicated. Gene mapping significantly contributes to better understanding of the mode of inheritance and consequently, more efficient breeding for disease resistance. Significant improvement is expected by using molecular techniques, especially in dealing with Sclerotinia sclerotiorum, Pseudomonas syringae pv. glycinea and Phomopsis longicolla. For these parasites only partial resistance has been reported but not complete resistance.

  8. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  9. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  10. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    OpenAIRE

    Che, Dongsheng; Hasan, Mohammad Shabbir; Chen, Bernard

    2014-01-01

    High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs). PAI...

  11. PathogenMIPer: a tool for the design of molecular inversion probes to detect multiple pathogens

    Directory of Open Access Journals (Sweden)

    Akhras Michael

    2006-11-01

    Full Text Available Abstract Background Here we describe PathogenMIPer, a software program for designing molecular inversion probe (MIP oligonucleotides for use in pathogen identification and detection. The software designs unique and specific oligonucleotide probes targeting microbial or other genomes. The tool tailors all probe sequence components (including target-specific sequences, barcode sequences, universal primers and restriction sites and combines these components into ready-to-order probes for use in a MIP assay. The system can harness the genetic variability available in an entire genome in designing specific probes for the detection of multiple co-infections in a single tube using a MIP assay. Results PathogenMIPer can accept sequence data in FASTA file format, and other parameter inputs from the user through a graphical user interface. It can design MIPs not only for pathogens, but for any genome for use in parallel genomic analyses. The software was validated experimentally by applying it to the detection of human papilloma virus (HPV as a model system, which is associated with various human malignancies including cervical and skin cancers. Initial tests of laboratory samples using the MIPs developed by the PathogenMIPer to recognize 24 different types of HPVs gave very promising results, detecting even a small viral load of single as well as multiple infections (Akhras et al, personal communication. Conclusion PathogenMIPer is a software for designing molecular inversion probes for detection of multiple target DNAs in a sample using MIP assays. It enables broader use of MIP technology in the detection through genotyping of pathogens that are complex, difficult-to-amplify, or present in multiple subtypes in a sample.

  12. Isolation of antibiotic-resistant pathogenic and potentially ...

    African Journals Online (AJOL)

    Objective: Isolation of potentially pathogenic bacteria from carpets in hospitals has been reported earlier, but not from carpets in mosques. The aim of the present study is to determine the pathogenic and potentially pathogenic bacteria that may exist on the carpets of mosques in Tripoli, Libya. Methods: Dust samples from ...

  13. Comparison of procedures to evaluate the pathogenicity of ...

    African Journals Online (AJOL)

    Ceratocystis fimbriata sensu lato(s.l.) is an important pathogen of Eucalyptus. Pathogenicity of isolates has typically been evaluated by inoculating seedlings under greenhouse conditions. It is, however, not clear how accurately this reflects pathogenicity under field conditions. In this study, five techniques to potentially ...

  14. Isolation and characterization of seed-Borne pathogenic bacteria ...

    African Journals Online (AJOL)

    The isolated bacterial strains were identified based on colony morphology, biochemical, serological and pathogenicity tests. Acidovorax avenae subsp. avenae, the causal agent of brown stripe was detected in 63% of the seed samples tested indicating that this pathogen is widely distributed in Tanzania. Other pathogens ...

  15. A study of pathogenic organisms habitation preferences in fish organs

    African Journals Online (AJOL)

    Fish pathogens may attack any convenient part of the host. But studies indicate that pathogens of fish tend to reveal their preference for particular fish organs. The present study set out with the objective of identifying the organs most inhabited by these pathogenic organisms in fishes. Collecting samples of Clarias gariepinus ...

  16. Cladosporium fulvum effector proteins and their role in pathogen virulence

    NARCIS (Netherlands)

    Esse, van H.P.

    2008-01-01

    Cladosporium fulvum (syn. Passalora fulva) is a biotrophic fungal pathogen that causes leaf mould of tomato (Solanum esculentum). Chapter 1 is a “pathogen profile” describing the biology of the pathogen. During growth in the leaf apoplast, the intercellular space surrounding the mesophyll cells, the

  17. Host-pathogen interactions: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  18. Pathogen propagation in cultured three-dimensional tissue mass

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  19. Isolation of antibiotic-resistant pathogenic and potentially ...

    African Journals Online (AJOL)

    2010-09-13

    Sep 13, 2010 ... aureus. Conclusion: Contamination of carpets in mosques of Tripoli with antibiotic-resistant pathogenic and potentially pathogenic bacteria may pose a .... and S. aureus were detected in carpets from the mosques in Tripoli. Salmonella spp. are important foodborne pathogens worldwide. They are the most.

  20. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Science.gov (United States)

    Korva, Miša; Knap, Nataša; Resman Rus, Katarina; Fajs, Luka; Grubelnik, Gašper; Bremec, Matejka; Knapič, Tea; Trilar, Tomi; Avšič Županc, Tatjana

    2013-01-01

    Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus), A. agrarius (Dobrava virus–Kurkino), M. glareolus (Puumala virus), S. areanus (Seewis virus), M. agrestis, M. arvalis and M. subterraneus (Tula virus). Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS) epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas. PMID:24335778

  1. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    Science.gov (United States)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  2. Mycological assessment of sediments in Ligurian beaches in the Northwestern Mediterranean: pathogens and opportunistic pathogens.

    Science.gov (United States)

    Salvo, Vanessa-Sarah; Fabiano, Mauro

    2007-05-01

    Sediments of five Ligurian beaches in compliance with European Union bathing water regulations were studied based on the characteristics of the fungal assemblage during the tourism season. Among the 179 taxa of filamentous fungi isolated, 120 were opportunistic pathogens, such as Acremonium sp., and the genus Penicillium was also present as the pathogenic species P. citrinum. Furthermore, 5% of the total filamentous fungi belonged to the dermatophyte genus Microsporum, whose species can cause mycoses. Beach sediments showed elevated densities of opportunistic pathogens, of pathogenic filamentous fungi, and of yeasts during the tourism season. Although monitoring of beach sediments for microbiological contamination is not mandatory, and disease transmission from sediments has not yet been demonstrated, our study suggests that beach sediments may act as a reservoir of potential pathogens, including fungi. In addition, the mycoflora displayed high sensitivity to critical environmental situations in the beaches studied. Therefore, the fungal community can be a useful tool for assessing the quality of sandy beaches in terms of sanitary and environmental quality.

  3. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Directory of Open Access Journals (Sweden)

    Miša Korva

    2013-12-01

    Full Text Available Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus, A. agrarius (Dobrava virus–Kurkino, M. glareolus (Puumala virus, S. areanus (Seewis virus,M. agrestis, M. arvalis and M. subterraneus (Tula virus. Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas.

  4. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    Directory of Open Access Journals (Sweden)

    Nidia Leon-Sicairos

    2015-01-01

    Full Text Available Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  5. The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants.

    Science.gov (United States)

    Xue, Chaoyang; Tada, Yasuomi; Dong, Xinnian; Heitman, Joseph

    2007-06-14

    Cryptococcus is a globally distributed human fungal pathogen that primarily afflicts immunocompromised individuals. How and why this human fungal pathogen associates with plants and how this environmental niche influences its life cycle remains a mystery. We established Cryptococcus-Arabidopsis and Cryptococcus-Eucalyptus systems and discovered that Cryptococcus proliferates and mates on plant surfaces. Mating efficiency of C. gattii was markedly enhanced on plants and myo-inositol and indole acetic acid were specific plant products that stimulated mating. On Arabidopsis, dwarfing and chlorosis were observed following infection with a fungal mixture of two opposite mating-type strains, but not with either mating-type alone. This infection process is countered by the plant jasmonate-mediated defense mechanism. These findings reveal that Cryptococcus can parasitically interact with plants to complete its sexual cycle, which may impact an understanding of the origin and evolution of both plant and animal fungal pathogens in nature.

  6. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species.

    Science.gov (United States)

    Patra, Kailash P; Choudhury, Biswa; Matthias, Michael M; Baga, Sheyenne; Bandyopadhya, Keya; Vinetz, Joseph M

    2015-10-30

    Lipopolysaccharides (LPS) are complex, amphipathic biomolecules that constitute the major surface component of Gram-negative bacteria. Leptospira, unlike other human-pathogenic spirochetes, produce LPS, which is fundamental to the taxonomy of the genus, involved in host-adaption and also the target of diagnostic antibodies. Despite its significance, little is known of Leptospira LPS composition and carbohydrate structure among different serovars. LPS from Leptospira interrogans serovar Copenhageni strain L1-130, a pathogenic species, and L. licerasiae serovar Varillal strain VAR 010, an intermediately pathogenic species, were studied. LPS prepared from aqueous and phenol phases were analyzed separately. L. interrogans serovar Copenhageni has additional sugars not found in L. licerasiae serovar Varillal, including fucose (2.7%), a high amount of GlcNAc (12.3%), and two different types of dideoxy HexNAc. SDS-PAGE indicated that L. interrogans serovar Copenhageni LPS had a far higher molecular weight and complexity than that of L. licerasiae serovar Varillal. Chemical composition showed that L. interrogans serovar Copenhageni LPS has an extended O-antigenic polysaccharide consisting of sugars, not present in L. licerasiae serovar Varillal. Arabinose, xylose, mannose, galactose and L-glycero-D-mannoheptose were detected in both the species. Fatty acid analysis by gas chromatography-mass spectrometry (GC-MS) showed the presence of hydroxypalmitate (3-OH-C16:0) only in L. interrogans serovar Copenhageni. Negative staining electron microscopic examination of LPS showed different filamentous morphologies in L. interrogans serovar Copenhageni vs. L. licerasiae serovar Varillal. This comparative biochemical analysis of pathogenic and intermediately pathogenic Leptospira LPS reveals important carbohydrate and lipid differences that underlie future work in understanding the mechanisms of host-adaptation, pathogenicity and vaccine development in leptospirosis.

  7. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  8. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  9. Volatile metabolites of pathogens: a systematic review.

    Directory of Open Access Journals (Sweden)

    Lieuwe D J Bos

    2013-05-01

    Full Text Available Ideally, invading bacteria are detected as early as possible in critically ill patients: the strain of morbific pathogens is identified rapidly, and antimicrobial sensitivity is known well before the start of new antimicrobial therapy. Bacteria have a distinct metabolism, part of which results in the production of bacteria-specific volatile organic compounds (VOCs, which might be used for diagnostic purposes. Volatile metabolites can be investigated directly in exhaled air, allowing for noninvasive monitoring. The aim of this review is to provide an overview of VOCs produced by the six most abundant and pathogenic bacteria in sepsis, including Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Such VOCs could be used as biological markers in the diagnostic approach of critically ill patients. A systematic review of existing literature revealed 31 articles. All six bacteria of interest produce isopentanol, formaldehyde, methyl mercaptan, and trimethylamine. Since humans do not produce these VOCs, they could serve as biological markers for presence of these pathogens. The following volatile biomarkers were found for identification of specific strains: isovaleric acid and 2-methyl-butanal for Staphylococcus aureus; 1-undecene, 2,4-dimethyl-1-heptane, 2-butanone, 4-methyl-quinazoline, hydrogen cyanide, and methyl thiocyanide for Pseudomonas aeruginosa; and methanol, pentanol, ethyl acetate, and indole for Escherichia coli. Notably, several factors that may effect VOC production were not controlled for, including used culture media, bacterial growth phase, and genomic variation within bacterial strains. In conclusion, VOCs produced by bacteria may serve as biological markers for their presence. Goal-targeted studies should be performed to identify potential sets of volatile biological markers and evaluate the diagnostic accuracy of these markers in critically

  10. Pathogenic bacterial contaminations in hospital cafeteria foods.

    Science.gov (United States)

    Rattanasena, Paweena; Somboonwatthanakul, Issaraporn

    2010-02-01

    This study aims to examine the pathogenic bacterial contaminations in foods sold in hospital cafeteria. A study was conducted between April and September of 2008 using cafeteria located in Mahasarakham provincial hospital, Thailand, as a study area. The cafeteria foods were evaluated for contaminations with Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Streptococcus faecalis, which have been earlier reported to cause nosocomial outbreaks. Of 33 different types of ready-to-eat foods, the majority (54.54%) were found to have bacteria >10(7) colony forming units per gram of food (cfu g(-1)), whereas 36.36% and only 9.10% of them were found to have bacteria at 10(6)-10(7) and foods were also shown to be contaminated with Escherichia coli (57.57%), followed by Streptococcus faecalis (51.51%), Staphylococcus aureus (48.48%) and Salmonella typhimurium (27.27%), respectively. In contrast, of 7 different types of freshly-made foods, the majority (71.42%) were found to have bacterial foods (42.85%), followed by Escherichia coli and Streptococcus faecalis at equal percentages (14.28%). None of the freshly-made foods were found to be contaminated with Streptococcus typhimurium. The results concluded that a number of ready-to-eat foods sold in the Mahasarakham hospital cafeteria were contaminated with several pathogenic bacteria at unacceptable levels. Healthcare authorities should be more aware that ready-to-eat cafeteria foods that are heavily contaminated with pathogenic bacteria may be harmful to healthcare workers and visitors and may result in nosocomial infections of the patients.

  11. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  12. Campylobacter ureolyticus: an emerging gastrointestinal pathogen?

    LENUS (Irish Health Repository)

    Bullman, Susan

    2011-03-01

    A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBio(®) , a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen.

  13. Acanthamoeba: ecology, pathogenicity and laboratory detection.

    Science.gov (United States)

    Walker, C W

    1996-06-01

    Acanthamoeba spp. are ubiquitous free-living protozoa found in a wide range of environmental niches. They are resistant to disinfectants, temperature variation and desiccation and are responsible for two recognised diseases in humans, granulomatous amoebic encephalitis and keratitis. Both infections are rare, although the latter is currently receiving more attention following the association between Acanthamoeba and the wearing of contact lenses. Laboratory diagnosis is unusual but not beyond the bounds of most routine clinical microbiology departments. In this review the various aspects surrounding the ecology, pathogenicity and laboratory detection of Acanthamoeba spp. are considered.

  14. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    of disease, are used to place the various seafood products in risk categories and to identify areas of concern. It is concluded that the presence of pathogens in molluscs and the growth of Listeria monocytogenes in lightly preserved fish products are hazards which are presently not under control. In order...... to prevent growth and toxin production by Clostridium botulinum when products are stored at abuse temperature, it is recommended that additional barriers to growth are included in lightly preserved (e.g. cold smoked salmon) and low-heat treated (e.g REPFEDS) products. It is finally pointed out...

  15. Enterobacter agglomerans: the clinically important plant pathogen.

    Science.gov (United States)

    Geere, I. W.

    1977-01-01

    During a 5-month period Enterobacter agglomerans, now described as a member of the phytopathogenic genus Erwinia, was isolated from 13 patients in a general hospital; in 1 patient it was isolated from two sites. In six instances the organism was the sole pathogen isolated, in two instances it may have contributed to infection and in the remaining instances it was probably a transient saprophyte. The strains showed some variation in biochemical reactions but were similar in colonial morphology and were consistently sensitive to several antibiotics. Although this organism is prevalent in the general environment and usually relatively benign, it does have a potential for nosocomial infection. PMID:837319

  16. Survival of foodborne pathogens on inshell walnuts.

    Science.gov (United States)

    Blessington, Tyann; Theofel, Christopher G; Mitcham, Elizabeth J; Harris, Linda J

    2013-09-16

    The survival of Salmonella enterica Enteritidis PT 30 or five-strain cocktails of S. enterica, Escherichia coli O157:H7, and Listeria monocytogenes was evaluated on inshell walnuts during storage. Inshell walnuts were separately inoculated with an aqueous preparation of the pathogens at levels of 10 to 4 log CFU/nut, dried for 24 h, and then stored at either 4 °C or ambient conditions (23-25 °C, 25-35% relative humidity) for 3 weeks to more than 1 year. During the initial 24-h drying period, bacterial levels declined by 0.7 to 2.4 log CFU/nut. After the inoculum dried, further declines of approximately 0.1 log CFU/nut per month of Salmonella Enteritidis PT 30 levels were observed on inshell walnuts stored at 4 °C; at ambient conditions the rates of decline ranged from 0.55 to 2.5 log CFU/nut per month. Rates of decline were generally greater during the first few weeks of storage, particularly at lower inoculum levels. The survival of the five-strain cocktails inoculated at very low levels (under 400 CFU/nut) was determined during storage at ambient conditions. The pathogens could be recovered by either enumeration or enrichment from most samples throughout the 3-month storage period; reductions in bacterial levels from the beginning to end of storage were 0.7, 0.2, and 2.3 log CFU/nut for Salmonella, E. coli O157:H7, and L. monocytogenes, respectively. For 6% of all nut samples (14 of 234 samples), pathogens were isolated from the second but not first 24-h enrichment, suggesting that bacterial cells were viable but not easily culturable. Salmonella-inoculated walnuts were exposed for 2 min to water or a 3% solution of sodium hypochlorite (to mimic commercial brightening) either 24 h or 7 days after inoculation; treated nuts were dried for 24h and held at ambient conditions. Salmonella levels were reduced by less than 0.5 log or 2.4 to 2.6 log CFU/nut on water- or chlorine- treated walnuts, respectively, regardless of postinoculation treatment time. Additional

  17. Epidemiology and pathogenicity of zoonotic streptococci.

    Science.gov (United States)

    Fulde, Marcus; Valentin-Weigand, Peter

    2013-01-01

    Zoonotic infections caused by Streptococcus spp. have been neglected in spite of the fact that frequency and severity of outbreaks increased dramatically in recent years. This may be due to non-identification since respective species are often not considered in human medical diagnostic procedures. On the other hand, an expanding human population concomitant with an increasing demand for food and the increased number of companion animals favour conditions for host species adaptation of animal streptococci. This review aims to give an overview on streptococcal zoonoses with focus on epidemiology and pathogenicity of four major zoonotic species, Streptococcus canis, Streptococcus equi sub. zooepidemicus, Streptococcus iniae and Streptococcus suis.

  18. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  19. Development of saliva-based exposure assays for detecting exposure to waterborne pathogens

    Science.gov (United States)

    Identifying which pathogens we are exposed to can be challenging because many types of pathogens can be found in water and many pathogens have similar symptoms. EPA scientists have developed a simple way to measure human exposure to waterborne pathogens.

  20. Emerging microbial biocontrol strategies for plant pathogens.

    Science.gov (United States)

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Proteomics of survival structures of fungal pathogens.

    Science.gov (United States)

    Loginov, Dmitry; Šebela, Marek

    2016-09-25

    Fungal pathogens are causal agents of numerous human, animal, and plant diseases. They employ various infection modes to overcome host defense systems. Infection mechanisms of different fungi have been subjected to many comprehensive studies. These investigations have been facilitated by the development of various '-omics' techniques, and proteomics has one of the leading roles in this regard. Fungal conidia and sclerotia could be considered the most important structures for pathogenesis as their germination is one of the first steps towards a host infection. They represent interesting objects for proteomic studies because of the presence of unique proteins with unexplored biotechnological potential required for pathogen viability, development and the subsequent host infection. Proteomic peculiarities of survival structures of different fungi, including those of biotechnological significance (e.g., Asperillus fumigatus, A. nidulans, Metarhizium anisopliae), in a dormant state, as well as changes in the protein production during early stages of fungal development are the subjects of the present review. We focused on biological aspects of proteomic studies of fungal survival structures rather than on an evaluation of proteomic approaches. For that reason, proteins that have been identified in this context are discussed from the point of view of their involvement in different biological processes and possible functions assigned to them. This is the first review paper summarizing recent advances in proteomics of fungal survival structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Helicobacter pylori: a poor man's gut pathogen?

    Directory of Open Access Journals (Sweden)

    Khalifa Mohammed

    2010-03-01

    Full Text Available Abstract Helicobacter pylori is one of the human pathogens with highest prevalence around the world; yet, its principal mode of transmission remains largely unknown. The role of H. pylori in gastric disease and cancer has not been established until the end of the 20th century. Since then, its epidemiology has been extensively studied, and an accruing body of literature suggests that not all humans are equally at risk of infection by this gut pathogen. Here, we briefly review the different epidemiological aspects of H. pylori infection with emphasis on those factors related to human poverty. The epidemiology of H. pylori infection is characterized by marked differences between developing and developed countries, notably among children. In addition, congruent lines of evidence point out to socioeconomic factors and living standards as main determinants of the age-dependent acquisition rate of H. pylori, and consequently its prevalence. These data are alarming in the light of the changing global climate and birth rate, which are expected to change the demography of our planet, putting more children at risk of H. pylori and its complications for years to come.

  3. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  4. Fusarium species as pathogen on orchids.

    Science.gov (United States)

    Srivastava, Shikha; Kadooka, Chris; Uchida, Janice Y

    2018-03-01

    The recent surge in demand for exotic ornamental crops such as orchids has led to a rise in international production, and a sharp increase in the number of plant and plant products moving between countries. Along with the plants, diseases are also being transported and introduced into new areas. Fusarium is one of the major diseases causing pathogens infecting orchids that is spreading through international trade. Studies have identified several species of Fusarium associated with orchids, some are pathogenic and cause symptoms such as leaf and flower spots, leaf or sheath blights, pseudostem or root rots, and wilts. Infection and damage caused by Fusarium reduces the quality of plants and flowers, and can cause severe economic losses. This review documents the current status of the Fusarium-orchid interaction, and illustrates challenges and future perspectives based on the available literature. This review is the first of Fusarium and orchid interactions, and integrates diverse results that both furthers the understanding and knowledge of this disease complex, and will enable the development of effective disease management practices. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  6. Hybrid histidine kinases in pathogenic fungi.

    Science.gov (United States)

    Defosse, Tatiana A; Sharma, Anupam; Mondal, Alok K; Dugé de Bernonville, Thomas; Latgé, Jean-Paul; Calderone, Richard; Giglioli-Guivarc'h, Nathalie; Courdavault, Vincent; Clastre, Marc; Papon, Nicolas

    2015-03-01

    Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs. © 2015 John Wiley & Sons Ltd.

  7. Burkholderia glumae: next major pathogen of rice?

    Science.gov (United States)

    Ham, Jong Hyun; Melanson, Rebecca A; Rush, Milton C

    2011-05-01

    Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. Seed sterilization, planting partially resistant lines (no completely resistant line is available). KNOWN VIRULENCE FACTORS: Toxoflavin, lipase, type III effectors. © 2010 LSU AGCENTER. MOLECULAR PLANT PATHOLOGY © 2010 BSPP AND BLACKWELL PUBLISHING LTD.

  8. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks.

    Science.gov (United States)

    Wasilenko, J L; Arafa, A M; Selim, A A; Hassan, M K; Aly, M M; Ali, A; Nassif, S; Elebiary, E; Balish, A; Klimov, A; Suarez, D L; Swayne, D E; Pantin-Jackwood, M J

    2011-01-01

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. In this study, two H5N1 HPAI viruses belonging to clade 2.2.1 isolated in Egypt in 2007 and 2008 were analyzed for their pathogenicity in domestic Pekin ducks. Both viruses produced clinical signs and mortality, but the 2008 virus was more virulent, inducing early onset of neurological signs and killing all ducks with a mean death time (MDT) of 4.1 days. The 2007 virus killed 3/8 ducks with a MDT of 7 days. Full-genome sequencing and phylogenetic analysis were used to examine differences in the virus genes that might explain the differences observed in pathogenicity. The genomes differed in 49 amino acids, with most of the differences found in the hemagglutinin protein. This increase in pathogenicity in ducks observed with certain H5N1 HPAI viruses has implications for the control of the disease, since vaccinated ducks infected with highly virulent strains shed viruses for longer periods of time, perpetuating the virus in the environment and increasing the possibility of transmission to susceptible birds.

  9. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  10. Effect of electron beam irradiation on pathogenicity and pathogenic enzyme activity of botrytis cinerea

    International Nuclear Information System (INIS)

    Chen Zhaoliang; Wang Haihong; Qiao Yongjin

    2013-01-01

    In order to define the effect of electron beam irradiation on pathogenicity of Botrytis cinerea mycelia, the disease parameters of strawberry fruits inoculated with mycelia of B. cinerea irradiated by electron beam with different dose were tested in vivo, the production and activity of pectinase and cellulase secreted by B. cinerea irradiated by electron beam were also tested by DNS method. The results showed that pathogenicity of irradiated B. cinerea decreased significantly. The disease incidence and disease index of strawberry inoculated by irradiated B. cinerea after 3 days and 5 days was only 15.00% and 11.39 compared to control (91.67% and 77.78), respectively. The activity of pectinase and cellulase of B. cinerea irradiated by electron beam with above 2.0 kGy were inhibited obviously. The activity of PMG of irradiated B. cinerea decreased by 37.65% and 57.46% compared with control 3 days and 5 days cultured at 20℃, and the activity of CX and BG decreased by over 60% than that of control. The hardness of strawberry treated by enzyme solution which producted by B. cinerea irradiated by electron beam at 2.0 kGy was higher than that of control strawberry and it mainted disease resistance well. Electron beam can inhibited the pathogenic enzyme activity and pathogenicity of B. cinerea obviously. So it can control gray mold of postharvest strawberry effectively. (authors)

  11. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    Science.gov (United States)

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  12. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    Science.gov (United States)

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  13. Transport and fate of microbial pathogens in agricultural settings

    Science.gov (United States)

    Bradford, Scott A.; Morales, Veronica L.; Zhang, Wei; Harvey, Ronald W.; Packman, Aaron I.; Mohanram, Arvind; Welty, Claire

    2013-01-01

    An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk

  14. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Directory of Open Access Journals (Sweden)

    Boyang Cao

    Full Text Available Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  15. Pathogen metadata platform: software for accessing and analyzing pathogen strain information.

    Science.gov (United States)

    Chang, Wenling E; Peterson, Matthew W; Garay, Christopher D; Korves, Tonia

    2016-09-15

    Pathogen metadata includes information about where and when a pathogen was collected and the type of environment it came from. Along with genomic nucleotide sequence data, this metadata is growing rapidly and becoming a valuable resource not only for research but for biosurveillance and public health. However, current freely available tools for analyzing this data are geared towards bioinformaticians and/or do not provide summaries and visualizations needed to readily interpret results. We designed a platform to easily access and summarize data about pathogen samples. The software includes a PostgreSQL database that captures metadata useful for disease outbreak investigations, and scripts for downloading and parsing data from NCBI BioSample and BioProject into the database. The software provides a user interface to query metadata and obtain standardized results in an exportable, tab-delimited format. To visually summarize results, the user interface provides a 2D histogram for user-selected metadata types and mapping of geolocated entries. The software is built on the LabKey data platform, an open-source data management platform, which enables developers to add functionalities. We demonstrate the use of the software in querying for a pathogen serovar and for genome sequence identifiers. This software enables users to create a local database for pathogen metadata, populate it with data from NCBI, easily query the data, and obtain visual summaries. Some of the components, such as the database, are modular and can be incorporated into other data platforms. The source code is freely available for download at https://github.com/wchangmitre/bioattribution .

  16. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Science.gov (United States)

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  17. Atypical pathogen infection in community-acquired pneumonia.

    Science.gov (United States)

    Yu, Yun; Fei, Aihua

    2016-02-01

    Community-acquired pneumonia (CAP) is a world wide cause of morbidity and mortality. The etiology of CAP is different between countries and changes over time. With the increasing incidence, atypical pathogens are attracting more and more attention all over the world. In many countries, atypical pathogens are one of the main pathogens of CAP, and even could be the most prevalent etiology in China. Atypical pathogen infections can cause multi-system complications, which leads to a worse prognosis. Although still controversial, empirical antibiotic coverage of atypical pathogens in CAP may improve outcomes, shorten length of hospitalization, reduce mortality and lower total hospitalization costs. The macrolide resistance rate of atypical pathogens, especially Mycoplasma Pneumoniae (M. Pneumoniae) is high, so fluoroquinolones or tetracyclines should be considered as alternative therapy.

  18. Opportunistic respiratory pathogens in the oral cavity of the elderly.

    Science.gov (United States)

    Tada, Akio; Hanada, Nobuhiro

    2010-10-01

    The oral cavity of the hospitalized or bedridden elderly is often a reservoir for opportunistic pathogens associated with respiratory diseases. Commensal flora and the host interact in a balanced fashion and oral infections are considered to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. The definition of the process involved in colonization by opportunistic respiratory pathogens needs to elucidate the factors responsible for the transition of the microbiota from commensal to pathogenic flora. The regulatory factors influencing the oral ecosystem can be divided into three major categories: the host defense system, commensal bacteria, and external pathogens. In this article, we review the profile of these categories including the intricate cellular interaction between immune factors and commensal bacteria and the disturbance in homeostasis in the oral cavity of hospitalized or bedridden elderly, which facilitates oral colonization by opportunistic respiratory pathogens. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Pseudomnas syringae – a Pathogen of Fruit Trees in Serbia

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2009-01-01

    Full Text Available Data about symptomatology, pathogenicity and bacteriological characteristics of Pseudomonas syringae, and PCR methods for fast and reliable detection of the pathogen are given in this paper. P. syringae has been experimentaly proved as a pathogen of pear, apple, apricot, plum cherry, and raspberry, and pathogen strains have also been isolated from necrotic peach buds. Two pathogen varieties, syringae and morsprunorum, were found in our research in Serbia, the former being dominant on fruit trees.The most reliable method for detection of this bacteria is PCR, using BOX and REP primers. This method has also revealed significant differences among the strains originating from fruit trees in Serbia. Thus, it was proved that the population of P. syringae in Serbia is heterogeneous, which is very important for future epidemiologocal studies. Control of this pathogen includes mechanical, cultural and chemical measures, but integrated approach is very important for sustainable control.

  20. Pathogen refuge: a key to understanding biological control.

    Science.gov (United States)

    Johnson, Kenneth B

    2010-01-01

    Pathogen refuge is the idea that some potentially infectious pathogen propagules are not susceptible to the influence of an antagonistic microbial agent. The existence of a refuge can be attributable to one or more factors, including temporal, spatial, structural, and probabilistic, or to the pathogen's evolved ability to acquire antagonist-free space prior to ingress into a plant host. Within a specific pathosystem, refuge size can be estimated in experiments by measuring the proportion of pathogen propagules that remain infective as a function of the amount of antagonist introduced to the system. Refuge size is influenced by qualities of specific antagonists and by environment but less so by the quantity of antagonist. Consequently, most efforts to improve and optimize biological control are in essence efforts to reduce refuge size. Antagonist mixtures, optimal timing of antagonist introductions, integrated biological and chemical control, environmental optimization, and the utilization of disarmed pathogens as antagonists are strategies with potential to minimize a pathogen refuge.

  1. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  2. Social barriers to pathogen transmission in wild animal populations

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1995-03-01

    Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviors may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.

  3. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria.

    Science.gov (United States)

    Cunha, Larissa D; Zamboni, Dario S

    2013-01-01

    Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  4. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview

    Science.gov (United States)

    Mysak, Jaroslav; Podzimek, Stepan; Sommerova, Pavla; Lyuya-Mi, Yelena; Bartova, Jirina; Janatova, Tatjana; Prochazkova, Jarmila; Duskova, Jana

    2014-01-01

    Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity. PMID:24741603

  5. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview

    Directory of Open Access Journals (Sweden)

    Jaroslav Mysak

    2014-01-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity.

  6. Specialized Pathogen of a Social Insect

    DEFF Research Database (Denmark)

    Małagocka, Joanna

    Entomopathogenic fungi from the order Entomophthorales are highly specialized, host-specific and obligatory pathogens, which infect, consume and eventually kill their host insect within a few days. Established infection can effectively wipe out the majority of a host population. Social insects......, on the other hand, are remarkably efficient at preventing disease, a trait which necessarily arose together with social organization. In the one known example of social insects, in this case wood ants of the genus Formica, being attacked by an entomophthoralean fungus – Pandora formicae, social behaviors......, various aspects of the interaction with a social insect host are studied. Like a number of other entomophthoralean fungi, P. formicae manipulates pre-death behavior of its host to secure favorable position for transmission of actively discharged conidia to new hosts. Before dying, infected ants climb...

  7. Pathogens in Ornamental Waters: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Maria Nascimento

    2016-02-01

    Full Text Available In parks, ornamental waters of easy access and populated with animals are quite attractive to children and yet might hide threats to human health. The present work focuses on the microbiota of the ornamental waters of a Lisboa park, characterized during 2015. The results show a dynamic microbiota integrating human pathogens such as Klebsiella pneumoniae, Aeromonas spp. and Enterobacter spp., and also antibiotic resistant bacteria. K. pneumoniae and Aeromonas spp. were present as planktonic and biofilm organized bacteria. In vitro K. pneumoniae and Aeromonas spp. showed an enhanced ability to assemble biofilm at 25 °C than at 37 °C. Bacteria recovered from biofilm samples showed an increased antibiotic resistance compared to the respective planktonic counterparts.

  8. Infection strategies of enteric pathogenic Escherichia coli.

    Science.gov (United States)

    Clements, Abigail; Young, Joanna C; Constantinou, Nicholas; Frankel, Gad

    2012-01-01

    Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection.

  9. Separation of pathogenic bacteria by chain length.

    Science.gov (United States)

    Beech, Jason P; Ho, Bao Dang; Garriss, Geneviève; Oliveira, Vitor; Henriques-Normark, Birgitta; Tegenfeldt, Jonas O

    2018-02-13

    Using Deterministic Lateral Displacement devices optimized for sensitivity to particle length, we separate subpopulations of bacteria depending on known properties that affect their capability to cause disease (virulence). For the human bacterial pathogen Streptococcus pneumoniae, bacterial chain length and the presence of a capsule are known virulence factors contributing to its ability to cause severe disease. Separation of cultured pneumococci into subpopulations based on morphological type (single cocci, diplococci and chains) will enable more detailed studies of the role they play in virulence. Moreover, we present separation of mixed populations of almost genetically identical encapsulated and non-encapsulated pneumococcal strains in our device. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2011-05-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  11. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  12. Algodystrophy: recent insight into the pathogenic framework.

    Science.gov (United States)

    Varenna, Massimo; Zucchi, Francesca

    2015-01-01

    Algodystrophy, nowadays called CRPS I, is a painful syndrome characterized by sensory and vasomotor disturbance, edema and functional impairment. Significant progress in knowledge about the pathogenic mechanisms of the disease have been recently achieved, but they are not yet fully understood and some clinical aspects are still lacking of a whole pathogenetic comprehension. The local release of pro-inflammatory neuropeptides and some cytokines may be the event that triggers and maintains the disease, causing hyperalgesia and allodynia. In the following phases, the impaired capillary permeability, the interstitial edema and the consequent hypoxia and local acidosis have been proposed as possible pathophysiological pathways. The local hyperactivity of the sympathetic nervous system supposed in the past has not be confirmed and the hypothesis of an altered nociceptive processing at CNS level has limited evidences in acute phases of the disease. The steady bone involvement could be confirmed by the efficacy of bisphosphonates in the treatment of early disease.

  13. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  14. Campylobacter ureolyticus: an emerging gastrointestinal pathogen?

    Science.gov (United States)

    Bullman, Susan; Corcoran, Daniel; O'Leary, James; Lucey, Brigid; Byrne, Deirdre; Sleator, Roy D

    2011-03-01

    A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBio(®) , a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Shellfish as reservoirs of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Harry Hariharan

    2016-04-01

    Full Text Available The objective of this article is to present an overview on bacterial pathogens associated with shellfish in Grenada and other countries including the authors’ experience. Although there have been considerable published work on vibrios, there is a lack of information on Salmonella serovars associated with various shellfish. In Grenada, for instance the blue land crabs collected from their habitats were found to harbor several Salmonella serovars. Also, it is notable that only minimal research has been done on shellfish such as conchs and whelks, which are common in the Caribbean and West Indies. Information on anaerobic bacteria, particularly, non-spore forming bacteria associated with shellfish, in general, is also scanty. This review re-examines this globally important topic based on the recent findings as well as past observations. Strategies for reduction of bacteria in oysters are briefly mentioned because of the fact that oysters are consumed commonly without complete cooking.

  16. Fusobacterium nucleatum: a commensal-turned pathogen.

    Science.gov (United States)

    Han, Yiping W

    2015-02-01

    Fusobacterium nucleatum is an anaerobic oral commensal and a periodontal pathogen associated with a wide spectrum of human diseases. This article reviews its implication in adverse pregnancy outcomes (chorioamnionitis, preterm birth, stillbirth, neonatal sepsis, preeclampsia), GI disorders (colorectal cancer, inflammatory bowel disease, appendicitis), cardiovascular disease, rheumatoid arthritis, respiratory tract infections, Lemierre's syndrome and Alzheimer's disease. The virulence mechanisms involved in the diseases are discussed, with emphasis on its colonization, systemic dissemination, and induction of host inflammatory and tumorigenic responses. The FadA adhesin/invasin conserved in F. nucleatum is a key virulence factor and a potential diagnostic marker for F. nucleatum-associated diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  18. Identifying and controlling emerging foodborne pathogens: research needs.

    OpenAIRE

    Buchanan, R. L.

    1997-01-01

    Systems for managing the risks associated with foodborne pathogens are based on detailed knowledge of the microorganisms and the foods with which they are associated--known hazards. An emerging pathogen, however, is an unknown hazard; therefore, to control it, key data must be acquired to convert the pathogen from an unknown to a known hazard. The types of information required are similar despite the identity of the new agent. The key to rapid control is rapid mobilization of research capabil...

  19. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    OpenAIRE

    Cunha, Larissa D.; Zamboni, Dario S.

    2013-01-01

    Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen ...

  20. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  1. Molecular Diagnosis of Pathogenic Sporothrix Species.

    Science.gov (United States)

    Rodrigues, Anderson Messias; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2015-12-01

    Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective. We developed a panel of novel markers, based on calmodulin (CAL) gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens. Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10-100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals. This PCR-based method could successfully detect and identify a single species in samples from cultures and from clinical specimens. The

  2. Molecular Diagnosis of Pathogenic Sporothrix Species.

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporotrichosis is a chronic (subcutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective.We developed a panel of novel markers, based on calmodulin (CAL gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens.Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10-100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals.This PCR-based method could successfully detect and identify a single species in samples from cultures and from clinical

  3. Investigating Ebola virus pathogenicity using molecular dynamics.

    Science.gov (United States)

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  4. Persistence of Nosocomial Pathogens on Various Fabrics

    Science.gov (United States)

    Koca, Ozlem; Altoparlak, Ulku; Ayyildiz, Ahmet; Kaynar, Hasan

    2012-01-01

    Objective: Fabrics can become contaminated with high numbers of microorganisms that may be pathogenic to patients in a hospital setting and can play an important role in the chain of infection. The aim of this study was to investigate the survival of several clinical bacterial and fungal isolates on several fabrics commonly used in hospitals. Materials and Methods: Bacterial and fungal survival was tested on the following materials, each of which are commonly used in our hospital: 100% smooth cotton, 60% cotton-40% polyester, 100% wool and 100% silk. One isolate each of Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, Geotrichum candidum, Aspergillus fumigatus, Cryptococcus neoformans, vancomycin resistant Enterococcus faecium (VRE, methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL) positive Escherichia coli, inducible beta-lactamase (IBL) positive Pseudomonas aeruginosa, IBL-positive Acinetobacter baumannii and Stenotrophomonas maltophilia were used to contaminate fabrics. The survival of these microorganisms was studied by testing the fabric swatches for microbial growth. Results: The median survival times for all the tested bacteria and fungi were as follows: 26 days on cotton, 26.5 days on cotton-polyester, 28 days on silk, and 30 days on wool. Among the bacterial species tested, E. faecium had the longest survival time on cotton-polyester fabrics. For the fungal isolates, it was observed that C. tropicalis and C. krusei survived for the shortest amount of time on cotton fabrics in the present study. Conclusion: This survival data indicate that pathogenic microorganisms can survive from days to months on commonly used hospital fabrics. These findings indicate that current recommendations for the proper disinfection or sterilization of fabrics used in hospitals should be followed to minimize cross-contamination and prevent nosocomial infections. PMID:25610201

  5. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  6. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  7. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  8. Integrated dataset of screening hits against multiple neglected disease pathogens.

    Directory of Open Access Journals (Sweden)

    Solomon Nwaka

    2011-12-01

    Full Text Available New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach.

  9. Pathogenic and molecular characterisation of Pythium spp. inducing ...

    African Journals Online (AJOL)

    Pathogenic and molecular characterisation of Pythium spp. inducing root rot symptoms in other crops intercropped with beans in Southwestern Uganda. Virginia Gichuru, Robin Buruchara, Patrick Okori ...

  10. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  11. Pathogens distribution and drug sensitivity of chronic dacryocystitis

    Directory of Open Access Journals (Sweden)

    Yang-Yang Xie

    2014-10-01

    Full Text Available AIM: To analyze the pathogens and drug sensitivity of chronic dacryocystitis in order to provide evidence for clinical drug use.METHODS: Lacrimal secretion of 171 cases with chronic dacryocystitis was sampled for pathogenic bacteria culture identification and drug sensitivity test. Based on the results, the isolation rate of pathogens strains, the pathogens kind of chronic dacryoeystitis, main pathogens of chronic dacryocystitis, and sensitive drug for pathogens were analyzed.RESULTS: The isolation rate of pathogens strains was 76.61%(131 cases. The pathogens constituting the chronic dacryocystitis were predominantly gram-positive coccus,the percentage was 72.52%(95 cases, among which staphylococcus hominis occupied 27.48%(36 cases, staphylococcus epidermidis 16.79%(22 cases, streptococcus viridans 12.98%(17 cases. The majority of these bacteria were sensitive to cefoperazone-sulbactam, tobramycin, gentamicin and levofloxacin. For gram-positive coccus, cefoperazone-sulbactam, gentamicin and tobramycin were the most sensitive drug. For gram-negative bacilli, cefoperazone-sulbactam, tobramycin and levofloxacin were most sensitive drug.CONCLUSION: Staphylococcus hominis is the main pathogen of chronic dacryocystitis, tobramycin can be used as the first choice for local treatment of chronic dacryocystitis.

  12. Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!!

    Directory of Open Access Journals (Sweden)

    Nargis Khan

    Full Text Available Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb, HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the "code of conduct" of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens.

  13. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    Science.gov (United States)

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  14. LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species

    OpenAIRE

    Dieterich, Guido; Kärst, Uwe; Fischer, Elmar; Wehland, Jürgen; Jänsch, Lothar

    2005-01-01

    Listeria species are ubiquitous in the environment and often contaminate foods because they grow under conditions used for food preservation. Listeria monocytogenes, the human and animal pathogen, causes Listeriosis, an infection with a high mortality rate in risk groups such as immune-compromised individuals. Furthermore, L.monocytogenes is a model organism for the study of intracellular bacterial pathogens. The publication of its genome sequence and that of the non-pathogenic species Lister...

  15. Use of Molecular Pathogenicity Indices to Identify Pathogenic Strains of Pasteurella multocida.

    Science.gov (United States)

    Furian, Thales Quedi; Borges, Karen Apellanis; Pilatti, Roberta Marmitt; de Almeida, Camila Neves; Streck, André Felipe; de Emery, Brunna Dias; Nascimento, Vladimir Pinheiro do; Salle, Carlos Tadeu Pippi; de Souza Moraes, Hamilton Luiz

    2016-12-01

    In addition to being the causative agent of fowl cholera (FC), Pasteurella multocida is also one of the most prevalent opportunistic pathogens associated with respiratory diseases in various hosts. However, understanding of the traits that distinguish the virulent isolates that cause FC is still limited. The objective of this study was to characterize P. multocida isolates of Brazil by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis in order to determine if strain-type correlates with virulence or with 22 previously studied virulence genes. The PCR-RFLP was used to classify the isolates into seven strain types, and the isolates in Profile II had a higher pathogenicity index (P multocida .

  16. Isoenzyme patterns of pathogenic and non-pathogenic Naegleria spp. using agarose isoelectric focusing.

    Science.gov (United States)

    De Jonckheere, J F

    1982-01-01

    Using agarose isoelectric focusing, the isoenzyme patterns of 7 different enzymes were compared in 52 Naegleria strains. The pathogenic N. fowleri was found the most homogeneous species. N. lovaniensis seems to be constituted of different types which form nevertheless a cohesive group. Within N. gruberi, large interstrain band variations were found in almost all enzyme systems. A re-examination of the taxonomic position of this species may therefore be taken into consideration. High temperature strains from Australia were confirmed to be different from N. lovaniensis. Members of a new pathogenic Naegleria sp., N. australiensis, seem to occur in Europe. Large thermophilic strains with many large pores in the cysts show identical zymograms and may constitute a new species or genus.

  17. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.

  18. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Science.gov (United States)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J

    2016-02-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.

  19. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  20. Periodontal pathogen CaZymes: host-pathogen biology, biochemistry and biotechnological exploitation

    OpenAIRE

    Stafford, Graham P.; Frey, Andrew M.; Satur, Marianne J.

    2017-01-01

    ABSTRACT One often neglected aspect of the host-pathogen interface is the presence of myriad glycoproteins and the carbohydrate glycans that they present. These are often the first point of contact for bacteria, with the oral cavity being rich in glycoprotein mucins within secretions such as saliva and crevicular fluid. Therefore, unsurprisingly, bacteria have evolved a myriad of enzymes (that one can consider virulence attributes) to access these glycans to allow attachment to host surfaces,...

  1. Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater.

    Science.gov (United States)

    Dobrowsky, P H; De Kwaadsteniet, M; Cloete, T E; Khan, W

    2014-04-01

    The harvesting of rainwater is gaining acceptance among many governmental authorities in countries such as Australia, Germany, and South Africa, among others. However, conflicting reports on the microbial quality of harvested rainwater have been published. To monitor the presence of potential pathogenic bacteria during high-rainfall periods, rainwater from 29 rainwater tanks was sampled on four occasions (during June and August 2012) in a sustainable housing project in Kleinmond, South Africa. This resulted in the collection of 116 harvested rainwater samples in total throughout the sampling period. The identities of the dominant, indigenous, presumptive pathogenic isolates obtained from the rainwater samples throughout the sampling period were confirmed through universal 16S rRNA PCR, and the results revealed that Pseudomonas (19% of samples) was the dominant genus isolated, followed by Aeromonas (16%), Klebsiella (11%), and Enterobacter (9%). PCR assays employing genus-specific primers also confirmed the presence of Aeromonas spp. (16%), Klebsiella spp. (47%), Legionella spp. (73%), Pseudomonas spp. (13%), Salmonella spp. (6%), Shigella spp. (27%), and Yersinia spp. (28%) in the harvested rainwater samples. In addition, on one sampling occasion, Giardia spp. were detected in 25% of the eight tank water samples analyzed. This study highlights the diverse array of pathogenic bacteria that persist in harvested rainwater during high-rainfall periods. The consumption of untreated harvested rainwater could thus pose a potential significant health threat to consumers, especially children and immunocompromised individuals, and it is recommended that harvested rainwater be treated for safe usage as an alternative water source.

  2. Infectious bursal disease: evaluation of pathogenicity of commercial vaccines from Brazil in specific pathogen free chichens

    Directory of Open Access Journals (Sweden)

    HLS Moraes

    2004-12-01

    Full Text Available Infectious Bursal Disease (IBD is a chicken disease economically important for the poultry industry in function of the immune depression that it causes. Disease control is made with different vaccines and vaccination programs. In present work, the pathogenicity of 3 intermediate vaccines (I1, I2 and I3, 2 intermediate more pathogenic (IP1 and IP2 and 3 vaccines containing strong virus (F1, F2 and F3 was evaluated. Birds vaccinated with IP1, IP2, F1, F2 and F3 showed significantly lower bursa size in relation to control animals and animals vaccinated with I1, I2 and I3. On the other hand, vaccines I1 and I3 induced antibody titers higher than the control and lower than I2, IP1, IP2, F1, F2 and F3. Histological scores showed that vaccines I1, I2 and I3 induced similar injury degree, although I2 and I3 were not different from the control, whereas I1 was slightly different. Strong vaccines induced more pronounced lesions than the other tested vaccines. These findings suggest that strong vaccines are able to cause severe bursal injuries. However, bursometry and relative weight of the bursa of Fabricius were considered inadequate to evaluate vaccine pathogenicity. Moreover, strong vaccines induced higher antibody titers than the other vaccines, although some intermediate vaccines induced similar titers.

  3. Pathogenicity of FtsK mutant of avian pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xu Xiaojing

    2016-03-01

    Full Text Available Introduction: Avian pathogenic Escherichia coli (APEC is a leading cause of extraintestinal infection and heavy economic losses. Imparting immunity after vaccination with live attenuated strain vaccination is an ideal strategy for infection control. This study considers an FtsK knockout mutant strain as a candidate. Material and Methods: An FtsK knockout mutant of APEC strain E058 was constructed and the pathogenicity of the mutant and wild-type strains was further evaluated in chickens. Results: The 50% lethal doses of each strain for one-day-old specific-pathogen-free (SPF chickens challenged experimentally via trachea were 105.5 and 107.0 colony-forming units (CFU respectively. Chickens challenged with the wild-type strain exhibited typical signs and lesions of avian colibacillosis, while those inoculated with the mutant strain showed mild pericarditis and pulmonary congestion. The growth rate of the FtsK mutant strain was much slower than the wild-type strain in the heart, spleen, liver, and lung of infected chickens. Conclusion: These results indicated that the APEC FtsK mutant can be attenuated for chickens, and that this mutant has the potential for the development of an APEC vaccine.

  4. Single-molecule analysis of the major glycopolymers of pathogenic and non-pathogenic yeast cells

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Sarazin, Aurore; Jouault, Thierry; Dufrêne, Yves F.

    2013-05-01

    Most microbes are coated with carbohydrates that show remarkable structural variability and play a crucial role in mediating microbial-host interactions. Understanding the functions of cell wall glycoconjugates requires detailed knowledge of their molecular organization, diversity and heterogeneity. Here we use atomic force microscopy (AFM) with tips bearing specific probes (lectins, antibodies) to analyze the major glycopolymers of pathogenic and non-pathogenic yeast cells at molecular resolution. We show that non-ubiquitous β-1,2-mannans are largely exposed on the surface of native cells from pathogenic Candida albicans and C. glabrata, the former species displaying the highest glycopolymer density and extensions. We also find that chitin, a major component of the inner layer of the yeast cell wall, is much more abundant in C. albicans. These differences in molecular properties, further supported by flow cytometry measurements, may play an important role in strengthening cell wall mechanics and immune interactions. This study demonstrates that single-molecule AFM, combined with immunological and fluorescence methods, is a powerful platform in fungal glycobiology for probing the density, distribution and extension of specific cell wall glycoconjugates. In nanomedicine, we anticipate that this new form of AFM-based nanoglycobiology will contribute to the development of sugar-based drugs, immunotherapeutics, vaccines and diagnostics.

  5. Modeling the intracellular pathogen-immune interaction with cure rate

    Science.gov (United States)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  6. Pathogenic amoebae in power-plant cooling lakes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-06-01

    Cooling waters and associated algae and sediments from four northern and four southern/western electric power plants were tested for the presence of pathogenic amoebae. Unheated control waters and algae/sediments from four northern and five southern/western sites were also tested. When comparing results from the test versus control sites, a significantly higher proportion (P less than or equal to 0.05) of the samples from the test sites were positive for thermophilic amoeba, thermophilic Naegleria and pathogenic Naegleria. The difference in number of samples positive for thermophilic Naegleria between heated and unheated waters, however, was attributable predominantly to the northern waters and algae/sediments. While two of four northern test sites yielded pathogenic Naegleria, seven of the eight isolates were obtained from one site. Seasonality effects relative to the isolation of the pathogen were also noted at this site. One pathogen was isolated from a southwestern test site. Pathogens were not isolated from any control sites. Some of the pathogenic isolates were analyzed serologically and classified as pathogenic Naegleria fowleri. Salinity, pH, conductivity, and bacteriological profiles did not obviously correlate with the presence or absence of pathogenic Naegleria. While thermal addition was significantly associated with the presence of thermophilic Naegleria (P less than or equal to 0.05), the data implicate other as yet undefined parameters associated with the presence of the pathogenic thermophile. Until further delineation of these parameters is effected, generalizations cannot be made concerning the effect of thermal impact on the growth of pathogenic amoeba in a particular cooling system.

  7. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  8. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  9. Field application of pathogen detection technologies

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Call, Douglas R.; Bruckner-Lea, Cindy J.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Ozanich, Richard M.; Jarman, Kristin H.

    2016-06-29

    Over the last 10 years there has been a significant increase in commercial products designed for field-based detection of microbial pathogens. This is due, in part, to the anthrax attacks in the United States in 2001, and the need for first responders to quickly identify the composition of suspected white powders and other potential biothreats. Demand for rapid detection is also driven by the need to ensure safe food, water, and environmental systems. From a technology perspective, rapid identification methods have largely capitalized on PCR and other molecular recognition techniques that can be deployed as robust field instrumentation. Examples of the relevant needs include the ability to: 1) declare a water distribution system free of microbial pathogens after a pipe/main break repair; 2) assess risks of contamination such as when produce production and processing plants are located near concentrated animal feeing operations; 3) evaluate the safety of ready-to-eat products; 4) determine the extent of potential serious disease outbreaks in remote and/or disaster stricken areas where access to clinical laboratories is not an immediate option; and 5) quickly assess credible biological terrorism events. Many of the principles underlying rapid detection methods are derived from methods for environmental microbiology, but there is a dearth of literature describing and evaluating field-based detection systems. Thus, the aims of this chapter are to: 1) summarize the different kinds of commercially available sampling kits and field-based biological detectors; 2) highlight some of the continued challenges of sample preparation to stimulate new research towards minimizing the impact of inhibitors on PCR-based detection systems; 3) describe our general rationale and statistically-based approach for instrument evaluation; 4) provide statistical and spatial guidelines for developing valid sampling plans; and 5) summarize some current needs and emerging technologies. This

  10. Specific recognition of fungal pathogens by plants

    International Nuclear Information System (INIS)

    Knogge, W.; Gierlich, A.; Max-Planck-Institute for Plant Breeding,; Van't Slot, K.A.E.; Papavoine, T.

    2001-01-01

    Full text: Induction of plant defence reactions and, hence, genotype-specific disease resistance results from the interaction of highly specific plant resistance (R) genes with matching pathogen avirulence (Avr) genes (gene-for-gene interactions). More than thirty R genes acting against different types of pathogens (viruses, bacteria, fungi, oomycetes, nematodes) have been isolated from various plants species. However, with few exceptions it remains to be shown how their products recognise the complementary Avr gene products. To date, Avr genes and their products have been characterised from only three fungal species. These include the NIP1 gene from Rhynchosporium secalis, the causal agent of barley leaf scald. It encodes a small, secreted protein, NIP1, that triggers defence reactions exclusively in barley cultivars expressing the R gene Rrs1. NIP1 also non-specifically stimulates the H + -ATPase activity in barley plasma membranes, suggesting that the host recognition system targets a putative fungal virulence factor. Virulent fungal strains lack the gene or carry an allele encoding a non-functional product. Four NIP1 iso-forms have been characterised; NIP1-I and NIP1-II although both elicitor-active display different levels of activity, whereas the isoforms NIP1-III and NIP1-IV are inactive. After establishing a heterologous expression system, the single amino acids specifying NIP1-III and NIP1-IV were integrated into the NIP1-I sequence and yielded the inactive mutant proteins NIP1-III* and NIP1-IV*. The elicitor-inactive isoforms were also unable to stimulate the H + -ATPase, suggesting that both functions of NIP1 are mediated by a single plant receptor. The 3D structure of NIP1-I has been elucidated by 1 H- and 15 N-NMR spectroscopy. Binding studies using 125 I-NIP1-I revealed a single class of high-affinity binding sites on membranes from both Rrs1- and rrs1-cultivars, suggesting that NIP1-binding is not sufficient for defence triggering and that an

  11. Pathogen-avoidance mechanisms and the stigmatization of obese people

    NARCIS (Netherlands)

    Park, Justin H.; Schaller, Mark; Crandall, Christian S.

    2007-01-01

    Humans possess pathogen-avoidance mechanisms that respond to the visual perception of morphological anomalies in others. We investigated whether obesity may trigger these mechanisms. Study I revealed that people who are chronically concerned about pathogen transmission have more negative attitudes

  12. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  13. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    NARCIS (Netherlands)

    Butler, G.; Rasmussen, M.D.; Lin, M.F.; Santos, M.A.S.; Sakthikumar, S.; Munro, C.A.; Rheinbay, E.; Grabherr, M.; Forche, A.; Reedy, J.L.; Agrafioti, I.; Arnaud, M.B.; Bates, S.; Brown, A.J.P.; Brunke, S.; Costanzo, M.C.; Fitzpatrick, D.A.; de Groot, P.W.J.; Harris, D.; Hoyer, L.L.; Hube, B.; Klis, F.M.; Kodira, C.; Lennard, N.; Logue, M.E.; Martin, R.; Neiman, A.M.; Nikolaou, E.; Quail, M.A.; Quinn, J.; Santos, M.C.; Schmitzberger, F.F.; Sherlock, G.; Shah, P.; Silverstein, K.A.T.; Skrzypek, M.S.; Soll, D.; Staggs, R.; Stansfield, I.; Stumpf, M.P.H.; Sudbery, P.E.; Srikantha, T.; Zeng, Q.; Berman, J.; Berriman, M.; Heitman, J.; Gow, N.A.R.; Lorenz, M.C.; Birren, B.W.; Kellis, M.; Cuomo, C.A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in

  14. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  15. Isolation and Characterization of Seed-Borne Pathogenic Bacteria

    African Journals Online (AJOL)

    Acidovorax avenae subsp. avenae, the causal agent of brown stripe was detected in 63% of the seed samples tested indicat- ing that this pathogen is widely distributed in Tanzania. Other pathogens identified were Pantoea agglomerans causing palea brpwning, Xanthomonas oryzae pv. oryzae causing bacterial blight and.

  16. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  17. Potential of Fungal Pathogens for Biological Control of Water Hyacinth

    African Journals Online (AJOL)

    ... fungal pathogens associated with water hyacinth. Several potential pathogen isolates including Alternaria eichhorniae, Cercospora sp. and Acremonium zonatum were identified. Isolates of Cercospora sp. and A. eichhorniae were evaluated for their effectiveness on water hyacinth plants in the screen bouse. The disease ...

  18. Sequencing the Major Mycosphaerella Pathogens of Wheat and Banana

    NARCIS (Netherlands)

    Kema, G.H.; Dunkle, L.D.; Churchill, A.C.; Carlier, J.; James, A.; Souza, M.T.; Crous, P.W.; Roux, N.; Lee, T.A. van der; Wiitenberg, A.; Lindquist, E.; Grigoriev, I.; Bristow, J.; Goodwin, S.B.

    2007-01-01

    Mycosphaerella is one of the largest genera of plant pathogenic fungi with more than 1,000 named species, many of which are important pathogens causing leaf spotting diseases in a wide variety of crops including cereals, citrus, banana, eucalypts, soft fruits, and horticultural crops. A few species

  19. Sequencing the Major Mycosphaerella Pathogens of Wheat and Banana

    NARCIS (Netherlands)

    Kema, G.H.J.

    2009-01-01

    Mycosphaerella is one of the largest genera of plant-pathogenic fungi with more than 1,000 named species, many of which are important pathogens causing leaf spotting diseases in a wide variety of crops including cereals, citrus, banana, eucalypts, soft fruits and horticultural crops. A few species

  20. Methods to classify bacterial pathogens in cystic fibrosis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Nielsen, Xiaohui Chen; Johansen, Ulla

    2011-01-01

    Many bacteria can be detected in CF sputum, pathogenic and commensal. Modified Koch's criteria for identification of established and emerging CF pathogens are therefore described. Methods are described to isolate bacteria and to detect bacterial biofilms in sputum or lung tissue from CF patients ...

  1. Neonatal intensive care unit: Reservoirs of Nosocomial pathogens ...

    African Journals Online (AJOL)

    Improvement in the care and treatment of neonates had contributed to their increased survival. Nosocomial infection remains an important problem in intensive care units. Hospital wards had been shown to act as reservoirs of pathogenic microorganisms associated with infection. To assess the prevalence of pathogenic ...

  2. Antibiogram profile of pathogens isolated from processed cow meat ...

    African Journals Online (AJOL)

    ... the antibiotic resistance tests revealed varied, but interesting susceptibility patterns. Our findings does highlight the fact that there exist obvious vehicles for pathogenic bacteria proliferation within our abattoirs, and hence, the need for caution. Key words: Abattoirs, Bos taurus, Pathogenic bacteria, Antibiotics, Resistance ...

  3. Pathogen removal using saturated sand colums supplemented with hydrochar

    NARCIS (Netherlands)

    Chung, J.W.

    2015-01-01

    This PhD study has evaluated hydrochars derived from biowastes as adsorbents for pathogen removal in water treatment. Pathogen removal experiments were conducted by carrying out breakthrough analysis using a simple sand filtration set-up. Glass columns packed by 10 cm sand bed supplemented with

  4. Disease burden of foodborne pathogens in the Netherlands, 2009

    NARCIS (Netherlands)

    Havelaar, A.H.|info:eu-repo/dai/nl/072306122; Haagsma, J.A.; Mangen, M.J.J.; Kemmeren, J.M.; Verhoef, L.; Vijgen, S.M.; Wilson, M; Friesema, I.H.; Kortbeek, L.M.; van Duynhoven, Y.T.; van Pelt, W.

    2012-01-01

    To inform risk management decisions on control, prevention and surveillance of foodborne disease, the disease burden of foodborne pathogens is estimated using Disability Adjusted Life Years as a summary metric of public health. Fourteen pathogens that can be transmitted by food are included in the

  5. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  6. Enteric pathogen modification by anaecic earthworm, Lampito Mauritii

    African Journals Online (AJOL)

    The biosolids from municipal wastewater treatment plant contains several enteric microbial pathogens, predominantly Salmonella and Escherichia species in the range of 15-18 x 104 CFU/g and 11-12 x 104 CFU/g respectively. The present study investigates the influence of earthworm, Lampito mauritii on enteric pathogen ...

  7. Effector-triggered defence against apoplastic fungal pathogens

    NARCIS (Netherlands)

    Stotz, H.U.; Mitrousia, G.K.; Wit, de P.J.G.M.; Fitt, B.D.L.

    2014-01-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed

  8. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  9. Pathogenicity of Cryptosporidium parvum - evaluation of an animal infection model

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Bille-Hansen, Vivi; Lind, Peter

    2003-01-01

    With the intention of developing a standardised method for assessment of pathogenicity of Cryptosporidium parvum, the CPB-0 isolate was studied by propagation in 1-day-old calves followed by inoculation into specific pathogen free (SPF) piglets. The experiment was repeated. Diarrhoea and shedding...

  10. Characterisation of a haemoglobin protease secreted by pathogenic Escherichia coli.

    NARCIS (Netherlands)

    Otto, B.R.; van Dooren, S.J.M.; Nuijens, J.H.; Luirink, S.; Oudega, B.

    1998-01-01

    Many pathogenic bacteria can use heme compounds as a source of iron. Pathogenic Escherichia coli strains are capable of using hemoglobin as an iron source. However, the mechanism of heme acquisition from hemoglobin is not understood for this microorganism. We present the first molecular

  11. Metabolic host responses to infection by intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wolfgang eEisenreich

    2013-07-01

    Full Text Available The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defence answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.

  12. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  13. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  14. Finding all BRCA pathogenic mutation carriers : best practice models

    NARCIS (Netherlands)

    Hoogerbrugge, Nicoline; Jongmans, Marjolijn CJ

    Identifying germline BRCA pathogenic mutations in patients with ovarian or breast cancer is a crucial component in the medical management of affected patients. Furthermore, the relatives of affected patients can be offered genetic testing. Relatives who test positive for a germline BRCA pathogenic

  15. Finding all BRCA pathogenic mutation carriers: best practice models

    NARCIS (Netherlands)

    Hoogerbrugge, N.; Jongmans, M.C.

    2016-01-01

    Identifying germline BRCA pathogenic mutations in patients with ovarian or breast cancer is a crucial component in the medical management of affected patients. Furthermore, the relatives of affected patients can be offered genetic testing. Relatives who test positive for a germline BRCA pathogenic

  16. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi

    NARCIS (Netherlands)

    Gomes, R.R.; Glienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W.

    2013-01-01

    Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on

  17. Occurrence Of Foodborne Bacterial Pathogens In Smoked Fish At ...

    African Journals Online (AJOL)

    Sixty five (65) smoked fish samples (30 catfish and 35 Tilapia) were obtained form three retail market locations in Jos South, Nigeria, and screened for foodborne bacterial pathogens. Potential human pathogens were isolated from all the samples studied through culture, growth characteristics, morphological, physiological ...

  18. Pathology smorgasboard: Biocontrol, pathogen movement, and recent fumigation results

    Science.gov (United States)

    Research on soilborne pathogens, disease control, and new forest diseases of interest were presented at the Western Forest and Conservation Nursery Association meeting in 2016. Research topics included reduced-rate soil fumigation, Pythium diversity and biocontrol, pathogen movement among nurseries,...

  19. The public health implications of pathogens in polluted aquatic ...

    African Journals Online (AJOL)

    Pathogen with its disease causing potential constitutes public health threat such as diseases breakout, risk of spread of pathogen related infections, loss of aquatic biodiversity, scarcity of public water supply and most importantly, increased rate of human mortality. Several researches in many regions of the world have ...

  20. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  1. Surveillance of potential pathogenic fungi associated with water ...

    African Journals Online (AJOL)

    ... by the International Mycoherbicide Programme for Eichhornia crassipes Control in Africa (IMPECCA) for development into a mycoherbicide. Other fungal pathogens isolated included Rhizoctonia solani, Acremonium zonatum and Cercospora piaropi. Key words: Bio-control, pathogenic fungi, Kainji Lake, water hyacinth, ...

  2. The Top 10 oomycete pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-01-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In

  3. Microbial control of root-pathogenic fungi and oomycetes

    NARCIS (Netherlands)

    Thomashow, L.S.; Bakker, P.A.H.M.

    2015-01-01

    The rhizosphere is a complex and dynamic environment in which microbes introduced to control root pathogens must establish and maintain populations of sufficient size and activity to antagonize pathogens directly or by manipulating the host plant’s own defenses. Genetic and physiological studies of

  4. Disturbance in forest ecosystems caused by pathogens and insects

    Science.gov (United States)

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  5. Mechanisms of PGPR-induced resistance against pathogens

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1997-01-01

    Plant growth-promoting rhizobacteria can suppress diseases through antagonism between the bacteria and soilborne pathogens, as well as by inducing a systemic resistance in the plant against both root and foliar pathogens. Specific Pseudomonas strains induce systemic resistance in carnation,

  6. Lyophilization as a method for pathogens long term preservation

    Directory of Open Access Journals (Sweden)

    Milošević Mirjana B.

    2007-01-01

    Full Text Available Lyophilization (freeze-drying is one of the most suitable methods used for a long term preservation of pathogens. The aim of this paper was the application of lyophilization for storage of three significant plant pathogens: Fusarium graminearum, Helminthosporium gramineum, and Pseudomonas syringae pv. gylicinea, respectively. The plant material was collected continuously (during a four year period 2002-2006, depending on a plant development stage, from different localities in Vojvodina. Pathogens were isolated from diseased parts with characteristic symptoms, and placed on nutritive media specific for a certain pathogen, using standard phytopathological methods. Lyophilization was carried out in marked and coded ampoules by freezing and drying of pathogen suspension and nutritive medium. Revitalization of lyophilized isolates was done after four days. High percentage of revitalization was characteristic for all studied isolates, and it ranged from 85-92%, confirming that lyophilized pathogens would be capable of keeping viability for a long time in the collection. Besides above mentioned pathogens, there were 200 isolates in the collection, originating mostly from field and vegetable crops. Each isolate that was put into the Collection, was followed by all the necessary data such as: name of the pathogen, number of isolates, locality, host plant year of isolation, name of the researcher and other relevant data.

  7. Antimicrobial properties of tropical plants against 12 pathogenic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... fish farming system, medications are needed to maintain ... pathogens of fish. Incorporating antibiotic into fish feed exposed antibiotic into environment, subsequently the emergence of antibiotic resistance among pathogenic bacterial was ..... stomach, to prevent swelling and pain and to reduce fever.

  8. Pathogenicity and fungicide sensitivity of the causal agent of ...

    African Journals Online (AJOL)

    The pathogenicity of the fungus and its cross-infection potential were determined on mango, avocado, papaya and banana fruits. The sensitivity of the pathogen to fungicides was determined by assessing radial mycelial growth on potato dextrose agar (PDA) amended with nine different fungicides (Bendazim, Funguran, ...

  9. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  10. Seed diseases and seedborne pathogens of North America

    Science.gov (United States)

    Michelle Cram; Stephen Fraedrich

    2010-01-01

    Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...

  11. The burden, antibiogram and pathogenicity of bacteria found in ...

    African Journals Online (AJOL)

    Municipal wastes may harbour microbial pathogens but the quantum and diseasecausing capacities of such organisms are rarely investigated. This study sought to establish the burden, antibiogram and pathogenicity of bacteria in 4 selected waste dumpsites and those found on hands and clothings of the respective waste ...

  12. Host-pathogen interplay in viral transmission and immune evasion

    NARCIS (Netherlands)

    Mesman, A.W.

    2014-01-01

    Dendritic cell (DC) subsets and macrophages are located in mucosal tissues to identify intruding pathogens. In order to do so, these innate immune cells express pattern recognition receptors, including C-type lectin receptors (CLR) on the cell surface. Activation of these receptors promotes pathogen

  13. Immune evasion by pathogens of bovine respiratory disease complex.

    Science.gov (United States)

    Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna

    2007-12-01

    Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.

  14. tkt1, located on a novel pathogenicity island, is prevalent in avian and human extraintestinal pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Li Ganwu

    2012-04-01

    Full Text Available Abstract Background Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. Results The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96 of pathogenic Escherichia coli strains, while only 6.25% (3/48 of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. Conclusion These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism.

  15. [Screening of three novel antimicrobial peptides with antifungal pathogens].

    Science.gov (United States)

    Lan, Jinping; Li, Liyun; Wang, Yang; Wang, Xianyun; Liu, Lijuan; Liu, Gouzhen; Cheng, Xiongying

    2011-12-01

    In order to discover novel antimicrobial peptides against important crop pathogens, we designed and screened a high capacity random peptide library and isolated a number of clones expressing peptides with antifungal activity. We selected 96 peptides from the library and synthesized their sequence, which were used to assay their activity against crop fungal pathogens. Using agar diffusion assay, these peptides were assayed for their activity against pathogens that cause cotton Fusarium wilt (Fusarium f. sp, vasinfecum), cotton red rot (Fusarium moniliforme), wheat spot blotch (Bipolaris sorokiniana) and potato early blight (Alternaria solani). The three random peptides, A6, D4 and F10, showed the strongest activity against the above four crop fungal pathogens. Through Blastp analysis, we did not find they have homologous sequences with known antimicrobial peptides. The novel antimicrobial peptides will provide gene resources for preventing important crop pathogens.

  16. Hidden memories: frontline memory T cells and early pathogen interception.

    Science.gov (United States)

    Masopust, David; Picker, Louis J

    2012-06-15

    Immunologic memory reflects the ability of a host to more effectively respond to a re-encounter with a particular pathogen than the first encounter, and when a vaccine mimics the first encounter, comprises the basis of vaccine efficacy. For T cells, memory is often equated with the anamnestic response, the ability of secondary lymphoid tissue-based (central) memory T cells to respond to pathogen exposure with a more rapid and higher magnitude production and infection-site delivery of pathogen-specific effector cells than observed in naive hosts. However, increasing evidence supports a fundamentally different kind of T cell memory in which differentiated, long-lived effector memory T cells, prepositioned in sites of potential pathogen invasion or rapidly mobilized to such sites from blood and marginated pools, intercept and potentially control/eliminate pathogen within hours of infection. In this article, we review the evidence for this "hidden" T cell memory and its implication for vaccine development.

  17. Pathogens in drinking water: Are there any new ones

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  18. [Rapid identification of meningitis due to bacterial pathogens].

    Science.gov (United States)

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  19. Pathogen subversion of cell-intrinsic innate immunity.

    Science.gov (United States)

    Roy, Craig R; Mocarski, Edward S

    2007-11-01

    The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.

  20. The Role of Autophagy in Intracellular Pathogen Nutrient Acquisition

    Directory of Open Access Journals (Sweden)

    Shaun eSteele

    2015-06-01

    Full Text Available Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates and amino acids. It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells

  1. The Neglected Intrinsic Resistome of Bacterial Pathogens

    Science.gov (United States)

    Fajardo, Alicia; Martínez-Martín, Nadia; Mercadillo, María; Galán, Juan C.; Ghysels, Bart; Matthijs, Sandra; Cornelis, Pierre; Wiehlmann, Lutz; Tümmler, Burkhard; Baquero, Fernando; Martínez, José L.

    2008-01-01

    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature. PMID:18286176

  2. Nonhost resistance of rice to rust pathogens.

    Science.gov (United States)

    Ayliffe, Michael; Devilla, Rosangela; Mago, Rohit; White, Rosemary; Talbot, Mark; Pryor, Anthony; Leung, Hei

    2011-10-01

    Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P. triticina, P. striiformis, and P. hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.

  3. Conditionally pathogenic fungi in recreational waters

    Directory of Open Access Journals (Sweden)

    Matavulj Milan N.

    2005-01-01

    Full Text Available The improvement of health and life conditions depends on various environmental factors. The exposition to organic and inorganic pollutants, as well as to the broad spectar of microorganisms is one of these factors. Medically important fungi have been increasing their number recently especially in urban and in recreational zones. Some of them, first of all molds and yeasts, are involved by different means in causing more or less serious diseases of man and animals. Frequency of alergic symptoms and human mycotic lesions increased significantly during last decades. Such phenomena have provoked more scientific attention recently. According to the available literature data, micro-fungi, causing mycoses and "environmental" fungi too could be considered as an important factor of health risk, being neglected and underestimated so far, especially in analyses of safe use of recreational waters and surrounding areas, among them swimming pools, river and sea beaches. On the basis of such statement there arises conclusion that water and ground of recreational zones could serve as vectors in transmission pathways of potentially or conditionally pathogenic fungi, being dangerous especially for immunocompromised individuals, which suggests inclusion of qualitative and quantitative composition of fungal community into a continual monitoring of hygienic status of recreational zones.

  4. Actinobaculum schaalii an emerging pediatric pathogen?

    Directory of Open Access Journals (Sweden)

    Zimmermann Petra

    2012-08-01

    Full Text Available Abstract Background Actinobaculum schaalii was first described as a causative agent for human infection in 1997. Since then it has mainly been reported causing urinary tract infections (UTI in elderly individuals with underlying urological diseases. Isolation and identification is challenging and often needs molecular techniques. A. schaalii is increasingly reported as a cause of infection in humans, however data in children is very limited. Case presentation We present the case of an 8-month-old Caucasian boy suffering from myelomeningocele and neurogenic bladder who presented with a UTI. An ultrasound of the urinary tract was unremarkable. Urinalysis and microscopy showed an elevated leukocyte esterase test, pyuria and a high number of bacteria. Empiric treatment with oral co-trimoxazole was started. Growth of small colonies of Gram-positive rods was observed after 48 h. Sequencing of the 16S rRNA gene confirmed an A. schaalii infection 9 days later. Treatment was changed to oral amoxicillin for 14 days. On follow-up urinalysis was normal and urine cultures were negative. Conclusions A.schaalii is an emerging pathogen in adults and children. Colonization and subsequent infection seem to be influenced by the age of the patient. In young children with high suspicion of UTI who use diapers or in children who have known abnormalities of their urogenital tract, infection with A. schaalii should be considered and empiric antimicrobial therapy chosen accordingly.

  5. Removing pathogenic memories: a neurobiology of psychotherapy.

    Science.gov (United States)

    Centonze, Diego; Siracusano, Alberto; Calabresi, Paolo; Bernardi, Giorgio

    2005-10-01

    Experimental research examining the neural bases of nondeclarative memory has offered intriguing insight into how functional and dysfunctional implicit learning affects the brain. Long-term modifications of synaptic transmission, in particular, are currently considered the most plausible mechanism underlying memory trace encoding and compulsions, addiction, anxiety, and phobias. Therefore, an effective psychotherapy must be directed to erase maladaptive implicit memories and aberrant synaptic plasticity. This article describes the neurobiological bases of pathogenic memory disruption to provide some insight into how psychotherapy works. At least two mechanisms of unwanted memory erasing appear to be implicated in the effects of psychotherapy: inhibition of memory consolidation/reconsolidation and extinction. Behavioral evidence demonstrated that these two ways to forget are profoundly distinct in nature, and it is increasingly clear that their cellular, synaptic, and molecular underpinnings are different. Accordingly, the blockade of consolidation/reconsolidation erases memories by reversing the plasticity associated with memory maintenance, whereas extinction is a totally new form of plasticity that, similar to the plasticity underlying the old memory, requires protein synthesis-dependent synaptic remodeling.

  6. KIR/HLA Interactions and Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Khaleel M. Jamil

    2011-01-01

    Full Text Available The innate immune system is the first line of defence in response to pathogen infection. Natural killer (NK cells perform a vital role in this response with the ability to directly kill infected cells, produce cytokines, and cross-talk with the adaptive immune system. These effector functions are dependent on activation of NK cells which is determined by surface receptor interactions with ligands on target cells. Of these receptors, the polymorphic killer immunoglobulin-like receptors (KIRs, which interact with MHC class 1 (also highly polymorphic, are largely inhibitory, and exhibit substantial genetic diversity. The result is a significant variation of NK cell repertoire between individuals and also between populations, with a multitude of possible KIR:HLA combinations. As each KIR:ligand interaction may have differential effects on NK cell activation and inhibition, this diversity has important potential influences on the host response to infections. Genetic studies have demonstrated associations between specific KIR:ligand combinations and the outcome of viral (and other infections, in particular hepatitis C and HIV infection. Detailed functional studies are not required to define the mechanisms underpinning these disease associations.

  7. Spread of pathogens through rain drop impact

    Science.gov (United States)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  8. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  9. Outer membrane proteins of pathogenic spirochetes.

    Science.gov (United States)

    Cullen, Paul A; Haake, David A; Adler, Ben

    2004-06-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.

  10. Detection of pathogens from periodontal lesions

    Directory of Open Access Journals (Sweden)

    Malheiros Veruska de João

    2004-01-01

    Full Text Available OBJECTIVE: To comparatively detect A. actinomycetemcomitans and F. nucleatum from periodontal and healthy sites. METHODS: Subgingival clinical samples from 50 periodontitis adult patients and 50 healthy subjects were analyzed. Both organisms were isolated using a trypticase soy agar-bacitracin-vancomycin (TSBV medium and detected by PCR. Conventional biochemical tests were used for bacteria identification. RESULTS: A. actinomycetemcomitans and F. nucleatum were isolated in 18% and 20% of the patients, respectively, and in 2% and 24% of healthy subjects. Among A. actinomycetemcomitans isolates, biotype II was the most prevalent. Primer pair AA was 100% sensitive in the detection of A. actinomycetemcomitans from both subject groups. Primers ASH and FU were also 100% sensitive to detect this organism in healthy subject samples. Primer pair FN5047 was more sensitive to detect F. nucleatum in patients or in healthy samples than primer 5059S. Primers ASH and 5059S were more specific in the detection of A. actinomycetemcomitans and F. nucleatum, respectively, in patients and in healthy subject samples. CONCLUSIONS: PCR is an effective tool for detecting periodontal pathogens in subgingival samples, providing a faster and safer diagnostic tool of periodontal diseases. The method's sensitivity and specificity is conditioned by the choice of the set of primers used.

  11. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  12. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  13. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  14. Ameobal pathogen mimivirus infects macrophages through phagocytosis.

    Directory of Open Access Journals (Sweden)

    Eric Ghigo

    2008-06-01

    Full Text Available Mimivirus, or Acanthamoeba polyphaga mimivirus (APMV, a giant double-stranded DNA virus that grows in amoeba, was identified for the first time in 2003. Entry by phagocytosis within amoeba has been suggested but not demonstrated. We demonstrate here that APMV was internalized by macrophages but not by non-phagocytic cells, leading to productive APMV replication. Clathrin- and caveolin-mediated endocytosis pathways, as well as degradative endosome-mediated endocytosis, were not used by APMV to invade macrophages. Ultrastructural analysis showed that protrusions were formed around the entering virus, suggesting that macropinocytosis or phagocytosis was involved in APMV entry. Reorganization of the actin cytoskeleton and activation of phosphatidylinositol 3-kinases were required for APMV entry. Blocking macropinocytosis and the lack of APMV colocalization with rabankyrin-5 showed that macropinocytosis was not involved in viral entry. Overexpression of a dominant-negative form of dynamin-II, a regulator of phagocytosis, inhibited APMV entry. Altogether, our data demonstrated that APMV enters macrophages through phagocytosis, a new pathway for virus entry in cells. This reinforces the paradigm that intra-amoebal pathogens have the potential to infect macrophages.

  15. Collagen-like proteins of pathogenic streptococci.

    Science.gov (United States)

    Lukomski, Slawomir; Bachert, Beth A; Squeglia, Flavia; Berisio, Rita

    2017-03-01

    The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals. © 2016 John Wiley & Sons Ltd.

  16. Photodynamic inactivation of pathogens causing infectious keratitis

    Science.gov (United States)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  17. Pathogen Decontamination of Food Crop Soil: A Review.

    Science.gov (United States)

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  18. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10 9 CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology. Copyright © 2016. Published by Elsevier Ltd.

  19. Pathogen dynamics in a partial migrant : Interactions between mallards (Anas platyrhynchos) and avian influenza viruses

    NARCIS (Netherlands)

    Dijk, J.G.B. van

    2014-01-01

    Zoonotic pathogens may pose a serious threat for humans, requiring a better understanding of the ecology and transmission of these pathogens in their natural (wildlife) hosts. The zoonotic pathogen studied in this thesis is low pathogenic avian influenza virus (LPAIV). This pathogen circulates

  20. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    Science.gov (United States)

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  1. Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands.

    Science.gov (United States)

    Zhang, Yucheng; Loria, Rosemary

    2017-01-01

    The main pathogenicity factor of Streptomyces species associated with the potato common scab disease is a nitrated diketopiperazine called thaxtomin A (ThxA). In Streptomyces scabiei (syn. S. scabies), which is thought to be the most ancient pathogenic Streptomyces species, the ThxA biosynthetic cluster is located within a mobile genomic island called the toxicogenic region (TR). Three attachment (att) sites further separate TR into two subregions (TR1 and TR2). TR1 contains the ThxA biosynthetic cluster and is conserved among several pathogenic Streptomyces species. However, TR2, an integrative and conjugative element, is missing in most pathogenic species. In our previous study, we demonstrated the mobilization of the whole TR element or TR2 alone between S. scabiei and nonpathogenic Streptomyces species. TR1 alone did not mobilize in these experiments. These data suggest that TR2 is required for the mobilization of TR1. Here, we show that TR2 can self mobilize to pathogenic Streptomyces species harboring only TR1 and integrate into the att site of TR1, leading to the tandem accretion of resident TR1 and incoming TR2. The incoming TR2 can further mobilize resident TR1 in cis and transfer to a new recipient cell. Our study demonstrated that TR1 is a nonautonomous cis-mobilizable element and that it can hijack TR2 recombination and conjugation machinery to excise, transfer, and integrate, leading to the dissemination of pathogenicity genes and emergence of novel pathogenic species. Additionally, comparative genomic analysis of 23 pathogenic Streptomyces isolates from ten species revealed that the composite pathogenicity island (PAI) formed by TR1 and TR2 is dynamic and various compositions of the island exist within the population of newly emerged pathogenic species, indicating the structural instability of this composite PAI.

  2. Diagnostics and Resistance Profiling of Bacterial Pathogens.

    Science.gov (United States)

    Hornischer, Klaus; Häußler, Susanne

    Worldwide infectious disease is one of the leading causes of death. Despite improvements in technology and healthcare services, morbidity and mortality due to infections have remained unchanged over the past few decades. The high and increasing rate of antibiotic resistance is further aggravating the situation. Growing resistance hampers the use of conventional antibiotics, and substantial higher mortality rates are reported in patients given ineffective empiric therapy mainly due to resistance to the agents used. These infections cause suffering, incapacity, and death and impose an enormous financial burden on both healthcare systems and on society in general. The accelerating development of multidrug resistance is one of the greatest diagnostic and therapeutic challenges to modern medicine. The lack of new antibiotic options underscores the need for optimization of current diagnostics, therapies, and prevention of the spread of multidrug-resistant organisms. The so-called -omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have yielded large-scale datasets that advanced the search for biomarkers of infectious diseases in the last decade. One can imagine that in the future the implementation of biomarker-driven molecular test systems will transform diagnostics of infectious diseases and will significantly accelerate the identification of the bacterial pathogens at the infected host site. Furthermore, molecular tests based on the identification of markers of antibiotic resistance will dramatically change resistance profiling. The replacement of culturing methods by molecular test systems for early diagnosis will provide the basis not only for a prompt and targeted therapy, but also for a much more effective stewardship of antibiotic agents and a reduction of the spread of multidrug resistance as well as the appearance of new antibiotic resistances.

  3. Virus Pathogenity of Newcastle Disease in Chicken

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2011-06-01

    Full Text Available Newcastle disease (ND is one of the highly infectious diseases in poultry industry. Newcastle disease causes high morbidity and mortality in birds, then it causes significant loss for poultry industry. This disease is caused by Avian paramyxovirus-1, included in the genus of Avulavirus and family of Paramyxoviridae. This virus has six prior proteins and two non structural proteins that evolving its genom. Those proteins are Nucleocapsid protein (N, Phosphoprotein (P, Matrix protein (M, Fusion protein (F, Hemagglutinin-neuraminidase protein (HN and Large polymerase protein (L and two non structural proteins iVe and W protein which are produced during the transcriptation process of P gen on editing process. Each of the protein has a specific role that responsible for the virulence of the virus. The previous result showed that HN and F proteins have significant contribution in the virulence and spreading of ND virus in the hosts. Virulence of ND virus primarily is determined by the cleavage site of F protein, but the recent research showed that the cleavage site motiv of F0 protein is not the only factor to determine the virulence of ND virus. Besides F protein, other proteins also contribute patern to the virulence of ND virus. ND virus can infect more than 200 species of birds, but the severity level of the disease varies depending on the host and strain of ND virus. Chicken has the highest pathogenicity index compared to other birds. Generally, the immunity system in chicken against infection of ND virus is similar to the immunity system of other birds. Cell mediated and humoral immunity responses play an important role in overcome ND virus.

  4. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  5. Purification and proteomics of pathogen-modified vacuoles and membranes.

    Science.gov (United States)

    Herweg, Jo-Ana; Hansmeier, Nicole; Otto, Andreas; Geffken, Anna C; Subbarayal, Prema; Prusty, Bhupesh K; Becher, Dörte; Hensel, Michael; Schaible, Ulrich E; Rudel, Thomas; Hilbi, Hubert

    2015-01-01

    Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.

  6. Interactions of periodontal pathogens with megakaryocytic cells and platelets

    Science.gov (United States)

    Andrews, A.M.; Haywood-Small, S.; Smith, T.; Stafford, P.

    2017-01-01

    ABSTRACT Introduction: Cardiovascular disease (CVD) is a leading cause of morbidity, accounting for around 17.3 million deaths worldwide. Recent studies have linked periodontitis to CVD with the periodonto-pathogens Porphyromonas gingivalis and Tannerella forsythia thought to contribute and exacerbate atherosclerosis through interactions with platelets. To date, while platelet activation following challenge with periodonto-pathogens has been reported, the underlying mechanisms of these interactions are yet to be elucidated. The aim of this study is to determine how periodonto-pathogens interact with platelets using both megakaryocytic cells and isolated platelets. Methods: To characterise expression levels of surface markers including ubiquitously expressed platelet-specific markers (CD41, CD42b) and platelet activation markers (CD62P, PAC-1), a multi-colour flow cytometry panel was developed using undifferentiated megakaryocytic cells CHRF-288-11 before validation using platelets isolated from healthy donors. Changes in levels of surface markers following bacterial challenge both with megakaryocytic cells and isolated platelets were determined using flow cytometry. Interaction with pathogens was visualised by platelet aggregometry and fluorescence microscopy using pathogen-specific antibodies. Results and conclusions: Both pathogens invaded megakaryocytic cells as visualised by immunofluorescence microscopy. The pathogens also bound platelets causing increased levels of aggregation and upregulated expression of activation markers including in CD62P in flow cytometric assays.

  7. Healthcare Workers’ Hand Microbiome May Mediate Carriage of Hospital Pathogens

    Directory of Open Access Journals (Sweden)

    Mariana Rosenthal

    2013-12-01

    Full Text Available One function of skin microbiota is to resist colonization and infection by external microorganisms. We sought to detect whether the structure of the hand microbiota of 34 healthcare workers (HCW in a surgical intensive care unit mediates or modifies the relationship between demographic and behavioral factors and potential pathogen carriage on hands after accounting for pathogen exposure. We used a taxonomic screen (16S rRNA to characterize the bacterial community, and qPCR to detect presence of Staphylococcus aureus, Enterococcus spp., methicillin-resistant Staphylococcus aureus (MRSA, and Candida albicans on their dominant hands. Hands were sampled weekly over a 3-week period. Age, hand hygiene, and work shift were significantly associated with potential pathogen carriage and the associations were pathogen dependent. Additionally, the overall hand microbiota structure was associated with the carriage of potential pathogens. Hand microbiota community structure may act as a biomarker of pathogen carriage, and modifying that structure may potentially limit pathogen carriage among HCW.

  8. Weeding and grooming of pathogens in agriculture by ants.

    Science.gov (United States)

    Currie, C R; Stuart, A E

    2001-05-22

    The ancient mutualism between fungus-growing ants and the fungi they cultivate for food is a textbook example of symbiosis. Fungus-growing ants' ability to cultivate fungi depends on protection of the garden from the aggressive microbes associated with the substrate added to the garden as well as from the specialized virulent garden parasite Escovopsis. We examined ants' ability to remove alien microbes physically by infecting Atta colombica gardens with the generalist pathogen Trichoderma viride and the specialist pathogen Escovopsis. The ants sanitized the garden using two main behaviours: grooming of alien spores from the garden (fungus grooming) and removal of infected garden substrate (weeding). Unlike previously described hygienic behaviours (e.g. licking and self-grooming), fungus-grooming and garden-removal behaviours are specific responses to the presence of fungal pathogens. In the presence of pathogens, they are the primary activities performed by workers, but they are uncommon in uninfected gardens. In fact, workers rapidly eliminate Trichoderma from their gardens by fungus grooming and weeding, suggesting that these behaviours are the primary method of garden defence against generalist pathogens. The same sanitary behaviours were performed in response to the presence of the specialist pathogen Escovopsis. However, the intensity and duration of these behaviours were much greater in this treatment. Despite the increased effort, the ants were unable to eliminate Escovopsis from their gardens, suggesting that this specialized pathogen has evolved counter-adaptations in order to overcome the sanitary defences of the ants.

  9. Experimental evolution of insect immune memory versus pathogen resistance.

    Science.gov (United States)

    Khan, Imroze; Prakash, Arun; Agashe, Deepa

    2017-12-20

    Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms. © 2017 The Author(s).

  10. Subversion of nutritional immunity by the pathogenic Neisseriae.

    Science.gov (United States)

    Cornelissen, Cynthia Nau

    2018-02-01

    The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The molecular pathways underlying host resistance and tolerance to pathogens.

    Science.gov (United States)

    Glass, Elizabeth J

    2012-01-01

    Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  12. The molecular pathways underlying host resistance and tolerance to pathogens

    Directory of Open Access Journals (Sweden)

    Elizabeth Janet Glass

    2012-12-01

    Full Text Available Breeding livestock that are better able to withstand the onslaught of endemic and exotic pathogens is high on the wish list of breeders and farmers world-wide. However the defence systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host’s ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  13. Pathogenic microbial ancient DNA: a problem or an opportunity?

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2006-01-01

    -controlled and rigorous studies that address technical issues and reliability criteria. This is unfortunate, as the rapid evolutionary rate of many pathogens offers a unique means to establish the authenticity of ancient pathogen sequences-since they should clearly be ancestral to modern genetic diversity (e.g. Reid et...... cloning. Yet these studies have used mobile insertion elements (e.g. IS 6110 in tuberculosis) or conserved loci (e.g. 16S) to detect the presence of pathogens, and very similar or identical sequences have been reported from environmental bacteria (Gilbert et al. 2004). For example, Rollo & Marota (1999...

  14. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  15. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Surveillance of Foodborne Pathogens: Towards Diagnostic Metagenomics of Fecal Samples

    DEFF Research Database (Denmark)

    Andersen, Sandra Christine; Hoorfar, Jeffrey

    2018-01-01

    Diagnostic metagenomics is a rapidly evolving laboratory tool for culture-independent tracing of foodborne pathogens. The method has the potential to become a generic platform for detection of most pathogens and many sample types. Today, however, it is still at an early and experimental stage...... for data analysis are being developed, and several studies applying diagnostic metagenomics to human clinical samples have been published, detecting, and sometimes, typing bacterial infections. It is possible to obtain a draft genome of the pathogen and to develop methods that can theoretically be applied...... in fecal samples from animals and humans....

  17. Prophylaxis against exposure to bloodborne pathogens during compounding.

    Science.gov (United States)

    Williams, Angie; Mixon, William

    2010-01-01

    Unintentional exposure to biologic pathogens can occur when preparations that contain blood or its components are compounded. For example, autologous eye drops, which are not commercially manufactured, incorporate serum that must be handled by various staff members in a compounding pharmacy. In this report, we describe workplace practices and materials used to inform our staff members who handle or compound that preparation and other similar formulations about the safe and appropriate handling of blood or body fluids that could contain biologic pathogens. Compounding pharmacists who must develop and implement a standard operating procedure for managing exposures to bloodborne pathogens will find the prototype plan presented in this article of interest.

  18. Understanding the behavior of foodborne pathogens in the food chain

    DEFF Research Database (Denmark)

    Rantsiou, Kalliopi; Mataragas, Marios; Jespersen, Lene

    2011-01-01

    as the commonly employed preservation/storage techniques throughout the food chain, have on the virulence of pathogens. Quantitative PCR and microarrays are, nowadays, powerful tools used for such determinations. The application of these approaches for the determination of the gene expression in situ, is a new......In recent years and with the significant advancements in instrumentation for molecular biology methods, the focus of food microbiologists, dealing with pathogenic microorganisms in foods, is shifting. Scientists specifically aim at elucidating the effect that the food composition, as well...... field of research for food microbiologists and provides new information regarding virulence potential of foodborne pathogens....

  19. A Review of Membrane-Based Biosensors for Pathogen Detection.

    Science.gov (United States)

    van den Hurk, Remko; Evoy, Stephane

    2015-06-15

    Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.

  20. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    Science.gov (United States)

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  1. Pathogen transfer and high variability in pathogen removal by detergent wipes.

    Science.gov (United States)

    Ramm, Lauren; Siani, Harsha; Wesgate, Rebecca; Maillard, Jean-Yves

    2015-07-01

    The rise in health care-associated infections has placed a greater emphasis on cleaning and disinfection practices. The majority of policies advocate using detergent-based products for routine cleaning, with detergent wipes increasingly being used; however, there is no information about their ability to remove and subsequently transfer pathogens in practice. Seven detergent wipes were tested for their ability to remove and transfer Staphylococcus aureus, Acinetobacter baumannii, and Clostridium difficile spores using the 3-stage wipe protocol. The ability of the detergent wipes to remove S aureus, A baumannii, and C difficile spores from a stainless steel surface ranged from 1.50 log10 (range, 0.24-3.25), 3.51 log10 (range, 3.01-3.81), and 0.96 log10 (range, 0.26-1.44), respectively, following a 10-second wiping time. All wipes repeatedly transferred significant amounts of bacteria/spores over 3 consecutive surfaces, although the percentage of total microorganisms transferred from the wipes after wiping was low for a number of products. Detergent-based wipe products have 2 major drawbacks: their variability in removing microbial bioburden from inanimate surfaces and a propensity to transfer pathogens between surfaces. The use of additional complementary measures such as combined detergent/disinfectant-based products and/or antimicrobial surfaces need to be considered for appropriate infection control and prevention. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Molecular approaches for biosurveillance of the cucurbit downy mildew pathogen, Pseudoperonospora cubensis

    Science.gov (United States)

    Globalization has allowed for rapid movement of plant pathogens that threaten food security. Successful disease management largely depends in timely and accurate detection of plant pathogens causing epidemics. Thus, biosurveillance of epidemic plant pathogens such as Pseudoperonospora cubensis, the ...

  3. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  4. Comparative Radiosensitivity of Pathogenic Bacteria and Viruses

    International Nuclear Information System (INIS)

    Ghys, R.; Vandergoten, R.; Paquette, J.-C.; Fredette, V.; Plante, C.; Pavilanis, V.; Gilker, J.-C.

    1967-01-01

    The authors exposed to gamma rays from a MCo source (''Gammacell 220'' from Atomic Energy of Canada, Ltd.) various pathogenic micro-organisms: a slow-growing aerobic bacterium (Mycobacterium tuberculosis, 10 varieties of the strain B. C. G.), a fast-growing anaerobic bacterium (Clostridium perfringens, strain SWG-121) and 4 strains of influenza virus (2 from group A and 2 from group B). In the case of B. C. G., an LD 90 of 29 ± 1 kR is reported for bacilli irradiated immediately before subculture and subsequently cultivated for at most 14 days. If the microbes are cultivated for 28 days, the yield from cultures after exposures of up to 50 kR is at least equal to that of control specimens; it then decreases rapidly, and a dose of 140 kR inhibits bacterial growth completely. It is reported that the LD 90 of the strain of Cl. perfringens used in the study is very much dependent on die culture conditions and die conditions under which die microbe growth measurements are made; 24 h after irradiation it is at least 1 MR. Although no spores are seen in the microscope, this would seem to demonstrate the presence in the cultures of extremely radioresistant sporulated individuals. Group A influenza viruses are found to be more radioresistant than those of group B. The LD 90 of relatively low radiation doses varies between 75 and 100 kR, and is higher if irradiation is performed at -78.5°C. It is very difficult to inactivate the last virus particles; multiplicity reactivation seems to occur in certain experimental conditions. Haemagglutinant activity does not vary, even after die highest exposures used (4 MR). Two important practical conclusions are drawn: (1) The use of a single dose (e. g. 2.5 Mrad) for radiosterilization gives an exposure which is unnecessarily high in some cases and insufficient in others, and (2) Selective radiosterilization is sometimes possible: the viability of a micro-organism used, for example, to produce a vaccine may not be

  5. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  6. Conference Report: The 6th International Symposium on Waterborne Pathogens

    Data.gov (United States)

    U.S. Environmental Protection Agency — A review of current literature on the occurrence of waterborne pathogens in DW systems. This dataset is not publicly accessible because: I am using published data...

  7. Antibiotic resistance in bacterial pathogens causing meningitis in ...

    African Journals Online (AJOL)

    Antibiotic resistance in bacterial pathogens causing meningitis in children at Harare Central Hospital, Zimbabwe. M Gudza-Mugabe, R.T. Mavenyengwa, M.P. Mapingure, S Mtapuri-Zinyowera, A Tarupiwa, V.J. Robertson ...

  8. Detection of mastitis pathogens by analysis of volatile bacterial metabolites

    NARCIS (Netherlands)

    Hettinga, K.A.; Valenberg, van H.J.F.; Lam, T.J.G.M.; Hooijdonk, van A.C.M.

    2008-01-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In

  9. Hafnia alvei: A new pathogen in open fractures

    Directory of Open Access Journals (Sweden)

    Jody Litrenta

    2017-04-01

    Full Text Available Background: Deep infection following open both bone forearm fractures is a rare complication. Prophylactic antibiotic regimens are targeted at the most common pathogens, which include primarily Staph aureus followed by gram-negative bacteria. Hafnia alvei is an unusual pathogen that is rarely pathogenic in humans and has never been reported as a cause of infection following open fracture. Methods: We present a 12-year-old male with an open forearm fracture who developed a late deep infection. Cultures grew only Hafnia alvei. The patient was treated with debridement, placement of antibiotic beads, and ciprofloxacin. Results: At 6 months following the initial debridement, the patient had no clinical evidence of infection and regained full function of the affected forearm without any residual deficits. Conclusions: This is the first report of deep infection following an open forearm fracture owing to Hafnia alvei, a pathogen rarely responsible for human infection. Keywords: Hafnia alvei, Open fracture, Forearm fracture, Osteomyelitis

  10. New and Improved Techniques for the Study of Pathogenic Fungi.

    Science.gov (United States)

    Cairns, Timothy C; Studholme, David J; Talbot, Nicholas J; Haynes, Ken

    2016-01-01

    Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Isolation, genetic diversity and identification of a virulent pathogen of ...

    African Journals Online (AJOL)

    Isolation, genetic diversity and identification of a virulent pathogen of eriophyid mite, Aceria guerreronis (Acari: Eriophyidae) by DNA marker in Karnataka, India. Basavaraj Kalmath, B Mallik, S Onkarappa, R Girish, N Srinivasa ...

  12. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens.

    Science.gov (United States)

    Ewer, Katie; Sebastian, Sarah; Spencer, Alexandra J; Gilbert, Sarah; Hill, Adrian V S; Lambe, Teresa

    2017-12-02

    The 2014-15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.

  13. Reduction of periodontal pathogens adhesion by antagonistic strains

    NARCIS (Netherlands)

    Van Hoogmoed, C. G.; Geertsema-Doornbusch, G. I.; Teughels, W.; Quirynen, M.; Busscher, H. J.; Van der Mei, H. C.

    Introduction: Periodontitis results from a shift in the subgingival micro. ora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift

  14. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    Science.gov (United States)

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  15. Frequent gene fissions associated with human pathogenic bacteria.

    Science.gov (United States)

    Karamichali, Ioanna; Koumandou, V Lila; Karagouni, Amalia D; Kossida, Sophia

    2014-01-01

    Gene fusion and fission events are important for evolutionary studies and for predicting protein-protein interactions. Previous studies have shown that fusion events always predominate over fission events and, in their majority, they represent singular events throughout evolution. In this project, the role of fusion and fission events in the genome evolution of 104 human bacterial pathogens was studied. 141 protein pairs were identified to be involved in gene fusion or fission events. Surprisingly, we find that, in the species analyzed, gene fissions prevail over fusions. Moreover, while most events appear to have occurred only once in evolution, 23% of the gene fusion and fission events identified are deduced to have occurred independently multiple times. Comparison of the analyzed bacteria with non-pathogenic close relatives indicates that this impressive result is associated with the recent evolutionary history of the human bacterial pathogens, and thus is probably caused by their pathogenic lifestyle. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hybridization and emergence of virulence in opportunistic human yeast pathogens.

    Science.gov (United States)

    Mixão, Verónica; Gabaldón, Toni

    2018-01-01

    Hybridization between different species can result in the emergence of new lineages and adaptive phenotypes. Occasionally, hybridization in fungal organisms can drive the appearance of opportunistic lifestyles or shifts to new hosts, resulting in the emergence of novel pathogens. In recent years, an increasing number of studies have documented the existence of hybrids in diverse yeast clades, including some comprising human pathogens. Comparative and population genomics studies performed on these clades are enabling us to understand what roles hybridization may play in the evolution and emergence of a virulence potential towards humans. Here we survey recent genomic studies on several yeast pathogenic clades where hybrids have been identified, and discuss the broader implications of hybridization in the evolution and emergence of pathogenic lineages. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  17. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes

    DEFF Research Database (Denmark)

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen

    2015-01-01

    proteome analysis have the potential to discover both classes of proteins and hence form an important tool for discovering therapeutic targets. Adherent-invasive Escherichia coli (AIEC) and Enterotoxigenic E. coli (ETEC) are pathogenic variants of E. coli which cause intestinal disease in humans. AIEC......-term protection are still needed. In order to identify proteins with therapeutic potential, we have used mass spectrometry-based Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative proteomics method which allows us to compare the proteomes of pathogenic strains to commensal E. coli....... In this study, we grew the pathogenic strains ETEC H10407, AIEC LF82 and the non-pathogenic reference strain E. coli K-12 MG1655 in parallel and used SILAC to compare protein levels in OMVs and culture supernatant. We have identified well-known virulence factors from both AIEC and ETEC, thus validating our...

  18. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    Directory of Open Access Journals (Sweden)

    Christopher N. LaRock

    2015-10-01

    Full Text Available Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.

  19. Risk factors for intestinal pathogens in Danish finishing pig herds

    DEFF Research Database (Denmark)

    Stege, H.; Jensen, Tim Kåre; Møller, Kristian

    2001-01-01

    The objective of this investigation was to identify risk factors for infection with the intestinal bacteria: Lawsonia intracellularis, Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens, Brachyspira pilosicoli and swine-pathogenic Escherichia coli (serogroups O138, O139, O141...

  20. Impact of electromagnetic field on the pathogenicity of selected ...

    African Journals Online (AJOL)

    Rhipicephalus decoloratus) to variable intensities of electromagnetic field for different periods of time was examined on their pathogenicity on tick. Some bacterial isolates from the macerate of tick cadavers were used in the infection of healthy engorged ...

  1. Suppression of soilborne pathogens in mixed cropping systems

    NARCIS (Netherlands)

    Hiddink, G.A.

    2008-01-01

    Since the green revolution, agricultural production has increased tremendously due to synthetic fertilizers, chemical crop protectants and high yielding plant varieties. However, soilborne pathogens remain yield-limiting factors in agricultural production. Hardly any sustainable solutions are

  2. Pathogen Recognition by the Long Pentraxin PTX3

    Directory of Open Access Journals (Sweden)

    Federica Moalli

    2011-01-01

    Full Text Available Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs that recognise pathogen-associated molecular patterns (PAMPs and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.

  3. Simulated Pathogen Concentrations in Locally-Collected Greywater and Wastewater

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains simulated pathogen concentrations in locally-collected greywater and wastewater. Each .zip file includes 21 .csv files, each containing 10,000...

  4. Occurrence and survival of pathogens at different sludge depths in ...

    African Journals Online (AJOL)

    Occurrence and survival of pathogens at different sludge depths in unlined pit latrines in Kampala slums. Sylivia Nabateesa, Ahamada Zziwa, Isa Kabenge, Robert Kambugu, Joshua Wanyama, Allan John Komakech ...

  5. Stress Hormones Bring Birds, Pathogens and Mosquitoes Together.

    Science.gov (United States)

    Dhondt, André A; Dobson, Andrew P

    2017-05-01

    Do stress hormones, such as corticosterone, enhance bird susceptibility to mosquitoes in ways that enhance rates of co-infection? Does this then enhance pathogen emergence? Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The listeriosis triangle: Pathogen, host and the environment

    Directory of Open Access Journals (Sweden)

    Abram Maja

    2012-01-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen well known for its adaptability to diverse environment and host niches and its high fatality rate among infected immunocompromised populations. Infection in the immunocompetent host occurs but risk factors for the disease primarily points to abnormalities in cell-mediated and innate immunity as major predispositions to listeriosis. After ingestion of contaminated food, this pathogen is able to cross the intestinal, blood-brain and placental barrier and leads to gastroenteritis, meningitis and maternofetal infections which may result in abortion and spontaneous stillbirth. Despite the extensive use of this bacterium in the study of cell-mediated immunity and intracellular growth, our understanding of the host, pathogen and environmental factors that impact the pathogenesis of listeriosis is still incomplete. This review will summarize current knowledge, including our own efforts, about pathogen, host and environmental factors that influence, and contribute to the pathogenesis of Listeria monocytogenes infection.

  7. The listeriosis triangle: Pathogen, host and the environment

    Directory of Open Access Journals (Sweden)

    Abram Maja

    2012-03-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen well known for its adaptability to diverse environment and host niches and its high fatality rate among infected immunocompromised populations. Infection in the immunocompetent host occurs but risk factors for the disease primarily points to abnormalities in cell-mediated and innate immunity as major predispositions to listeriosis. After ingestion of contaminated food, this pathogen is able to cross the intestinal, blood-brain and placental barrier and leads to gastroenteritis, meningitis and maternofetal infections which may result in abortion and spontaneous stillbirth. Despite the extensive use of this bacterium in the study of cell-mediated immunity and intracellular growth, our understanding of the host, pathogen and environmental factors that impact the pathogenesis of listeriosis is still incomplete. This review will summarize current knowledge, including our own efforts, about pathogen, host and environmental factors that influence, and contribute to the pathogenesis of Listeria monocytogenes infection.

  8. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  9. Capturing the dynamics of pathogens with many strains

    DEFF Research Database (Denmark)

    Kucharski, Adam; Andreasen, Viggo; Gog, Julia

    2016-01-01

    Pathogens that consist of multiple antigenic variants are a serious public health concern. These infections, which include dengue virus, influenza and malaria, generate substantial morbidity and mortality. However, there are considerable theoretical challenges involved in modelling such infections...

  10. Pathogens and host immunity in the ancient human oral cavity

    Science.gov (United States)

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  11. Phytohormone mediation of interactions between herbivores and plant pathogens

    NARCIS (Netherlands)

    Lazebnik, J.; Frago, E.; Dicke, M.; Loon, van J.J.A.

    2014-01-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in

  12. Bacterial pathogens associated with infected wounds in Ogun State ...

    African Journals Online (AJOL)

    OSUTH) between August 1999 and July 2000 in the Orthopaedics, Obstetrics and Gynaecological units to identify the bacterial pathogens associated with infected wounds as well as their antibiotic sensitivity profile. A total of 1670 patients were ...

  13. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  14. Genome Sequence of the Human Pathogen Vibrio cholerae Amazonia

    Science.gov (United States)

    Thompson, Cristiane C.; Marin, Michel A.; Dias, Graciela M.; Dutilh, Bas E.; Edwards, Robert A.; Iida, Tetsuya; Thompson, Fabiano L.; Vicente, Ana Carolina P.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains. PMID:21952545

  15. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen.

    Directory of Open Access Journals (Sweden)

    Dara A Satterfield

    Full Text Available Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha that infects monarch butterflies (Danaus plexippus. We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect.

  16. Fate and transport of pathogens in lakes and reservoirs.

    Science.gov (United States)

    Brookes, Justin D; Antenucci, Jason; Hipsey, Matthew; Burch, Michael D; Ashbolt, Nicholas J; Ferguson, Christobel

    2004-07-01

    Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.

  17. Manganese acquisition and homeostasis at the host-pathogen interface

    OpenAIRE

    Lisher, John P.; Giedroc, David P.

    2013-01-01

    Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and i...

  18. Photodynamic action on some pathogenic microorganisms of oral cavity

    Science.gov (United States)

    Ovchinnikov, Ilya S.; Tuchin, Valery V.

    2001-10-01

    The work is devoted to an analysis of pre-clinical and clinical experiments on photodynamic action of HeNe laser radiation in aggregate with a cation thiazinium dye Methylene Blue (MB) on a mix of pathogenic and conditionally pathogenic aerobic bacteria being activators of pyoinflammatory diseases of oral cavity. Concentration of photosensitizes at which there is no own bactericidal influence on dying microflora, and parameters of influence at which the efficiency of irradiated microflora defeat reaches 99 % are determined.

  19. Sieve analysis using the number of infecting pathogens.

    Science.gov (United States)

    Follmann, Dean; Huang, Chiung-Yu

    2017-12-14

    Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a single identifiable pathogen for each subject. The similarity between this single entity and the vaccine immunogen is quantified, for example, by exact match or number of mismatched amino acids. With new technology, we can now obtain the actual count of genetically distinct pathogens that infect an individual. Let F be the number of distinct features of a species of pathogen. We assume a log-linear model for the expected number of infecting pathogens with feature "f," f=1,…,F. The model can be used directly in studies with passive surveillance of infections where the count of each type of pathogen is recorded at the end of some interval, or active surveillance where the time of infection is known. For active surveillance, we additionally assume that a proportional intensity model applies to the time of potentially infectious exposures and derive product and weighted estimating equation (WEE) estimators for the regression parameters in the log-linear model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying distributions of pathogens. We give conditions where sieve parameters have a per-exposure interpretation under passive surveillance. We evaluate the methods by simulation and analyze a phase III trial of a malaria vaccine. © 2017, The International Biometric Society.

  20. Host Genes and Resistance/Sensitivity to Military Priority Pathogens

    Science.gov (United States)

    2010-06-01

    macrophages) was significantly elevated in DBA/2 versus C57BL/6 (Figure 2A). By contrast, the number of CD4 positive cells (T helper and NKT cells ) was similar...on ongoing studies for the different pathogens related to this objective. Objective 1b. Infection of primary cells with DoD-priority pathogens and...studies in which immune cell influx into the lungs of mice was determined following infection with FT we have found that FT delays neutrophil recruitment