Sample records for glucuronide conjugates

  1. Rectal administration of nicomorphine in patients improves biological availability of morphine and its glucuronide conjugates.

    Koopman-Kimenai, P M; Vree, T B; Booij, L H; Dirksen, R


    The pharmacokinetics of 30 mg nicomorphine after rectal administration with a suppository are described in 8 patients under combined general and epidural anaesthesia. No nicomorphine or 6-mononicotinoylmorphine could be detected in the serum. Morphine appeared almost instantaneously with a lag-time of 8 min and had a final elimination half-life of 1.48 +/- 0.48 h. Morphine was metabolized to morphine-3-glucuronide and morphine-6-glucuronide. These glucuronide conjugates appeared after a lag-time of 12 min and the half-life of these two glucuronide conjugates was similar: about 2.8 h (P > 0.8). The glucuronide conjugate of 6-mononicotinoylmorphine was not detected. In the urine only morphine and its glucuronides were found. The renal clearance value for morphine was 162 ml.min-1 and for the glucuronides 81 ml.min-1. This study shows that administration of a suppository with 30 mg nicomorphine gives an excellent absolute bioavailability of morphine and its metabolites of 88%. The lipid-soluble prodrug nicomorphine is quickly absorbed and immediately hydrolysed to morphine.

  2. Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison

    Hintikka, L.; Kuuranne, T.; Leinonen, A.; Thevis, M.; Schanzer, W.; Halket, J.; Cowan, D.; Grosse, J.; Hemmersbach, P.; Nielen, M.W.F.; Kostiainen, R.


    Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for simultaneous and direct detection of 12 glucuronide-conjugated anabolic androgenic steroid (AAS) metabolites in human urine is described. The compounds selected were the main metabolites detected in huma

  3. Quantitative Determination of Common Urinary Odorants and Their Glucuronide Conjugates in Human Urine

    Maria Wagenstaller


    Full Text Available Our previous study on the identification of common odorants and their conjugates in human urine demonstrated that this substance fraction is a little-understood but nonetheless a promising medium for analysis and diagnostics in this easily accessible physiological medium. Smell as an indicator for diseases, or volatile excretion in the course of dietary processes bares high potential for a series of physiological insights. Still, little is known today about the quantitative composition of odorous or volatile targets, as well as their non-volatile conjugates, both with regard to their common occurrence in urine of healthy subjects, as well as in that of individuals suffering from diseases or other physiological misbalancing. Accordingly, the aim of our study was to develop a highly sensitive and selective approach to determine the common quantitative composition of selected odorant markers in healthy human subjects, as well as their corresponding glucuronide conjugates. We used one- and two-dimensional high resolution gas chromatography-mass spectrometry in combination with stable isotope dilution assays to quantify commonly occurring and potent odorants in human urine. The studies were carried out on both native urine and on urine that had been treated by glucuronidase assays, with analysis of the liberated odor-active compounds using the same techniques. Analytical data are discussed with regard to their potential translation as future diagnostic tool.

  4. Pharmacokinetics of epidurally administered nicomorphine with its metabolites and glucuronide conjugates in patients undergoing pulmonary surgery during combined epidural local anaesthetic block and general anaesthesia.

    Koopman-Kimenai, P M; Vree, T B; Booij, L H; Hasenbos, M A


    After epidural administration of 15 mg 3, 6-dinicotinoylmorphine (nicomorphine) in 10 patients undergoing pulmonary surgery, the parent compound was quickly metabolized into the metabolites 6-mononicotinoylmorphine and morphine. The mean apparent half-lives (+/- SD) of elimination were 10 min (0.165 h +/- 0.053 h) for 3,6-dinicotinoylmorphine and 1.77 h +/- 1.23 h for 6-mononicotinoylmorphine. Morphine is subsequently metabolized into morphine-3-glucuronide and morphine-6-glucuronide. The apparent half-lives of morphine, morphine-3-glucuronide, and morphine-6-glucuronide are similar: 3.63 h +/- 1.63 h, 4.10 h +/- 0.57 h, and 4.20 h +/- 1.64 h respectively. The possible glucuronide conjugate of 6-mononicotinoylmorphine was not detected. The prodrug 3,6-dinicotinoylmorphine was biotransformed into three active compounds: 6-mononicotinoylmorphine, morphine, and morphine-6-glucuronide.

  5. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure.

    Su, Guanyong; Letcher, Robert J; Yu, Hongxia; Gooden, David M; Stapleton, Heather M


    In vitro studies using avian hepatocytes or human liver microsomes suggest that hydroxylation is an important pathway in the metabolism of triphenyl phosphate (TPHP), a chemical used as a flame retardant and plasticizer. TPHP metabolism can lead to the formation of para(p)- and meta(m)-hydroxyl-(OH-)TPHP products as well as their glucuronide conjugates. To determine whether the TPHP hydroxylation and depuration pathway also occurs in vivo in humans, the present study developed a sensitive method for quantification of p- and m-OH-TPHP glucuronides in human urine samples. In n = 1 pooled urine sample and n = 12 individual urine samples collected from four human volunteers from Ottawa (ON, Canada), p- and m-OH-TPHP glucuronides were detectable in 13 and 9 of the 13 analyzed samples and at concentrations ranging from glucuronide and diphenyl phosphate concentrations (DPHP, a known dealkylated metabolite of TPHP). To our knowledge, this is the first report demonstrating that TPHP hydroxylation and conjugation occurs in vivo in humans, and further suggests that p-OH-TPHP glucuronide can be used as a specific biomarker of TPHP exposure in humans.

  6. Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation.

    Manevski, Nenad; Swart, Piet; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Camenisch, Gian; Kretz, Olivier; Schiller, Hilmar; Walles, Markus; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Itin, Peter; Ashton-Chess, Joanna; Pognan, Francois; Wolf, Armin; Litherland, Karine


    Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17β-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 μM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17β-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.

  7. Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates.

    Tina Suominen

    Full Text Available An UPLC-MS/MS method was developed for the determination of serotonin (5-HT, dopamine (DA, their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain.

  8. Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells.

    Brand, Walter; Oosterhuis, Berend; Krajcsi, Peter; Barron, Denis; Dionisi, Fabiola; van Bladeren, Peter J; Rietjens, Ivonne M C M; Williamson, Gary


    The citrus flavonoid hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) is the aglycone of hesperidin, the major flavonoid present in sweet oranges. Hesperetin 7-O-glucuronide (H7G) and hesperetin 3'-O-glucuronide (H3'G) are the two most abundant metabolites of hesperetin in vivo. In this study, their interaction with specific ABC transporters, believed to play a role in the disposition and bioavailability of hesperetin, was studied using Sf9 membranes from cells overexpressing human BCRP (ABCG2), MRP2 (ABCC2) and MRP3 (ABCC3). Both H7G and H3'G were tested for their potential to activate and inhibit ATPase activity, and to inhibit vesicular transport by these transporters. Both H7G and H3'G demonstrated interaction with all tested ABC transporters, especially with BCRP and MRP3. An interesting difference between H7G and H3'G was seen with respect to the interaction with BCRP: H7G stimulated the ATPase activity of BCRP up to 76% of the maximal effect generated by the reference activator sulfasalazine, with an EC(50) of 0.45 µM, suggesting that H7G is a high affinity substrate of BCRP, whereas H3'G did not stimulate BCRP ATPase activity. Only moderate inhibition of BCRP ATPase activity at high H3'G concentrations was observed. This study provides information on the potential of hesperetin glucuronide conjugates to act as specific ABC transporter substrates or inhibitors and indicates that regio-specific glucuronidation could affect the disposition of hesperetin.

  9. Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry.

    Kakimoto, Kensaku; Toriba, Akira; Ohno, Takanori; Ueno, Mariko; Kameda, Takayuki; Tang, Ning; Hayakawa, Kazuichi


    To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.

  10. Deconjugation of N-glucuronide conjugated metabolites with hydrazine hydrate - Biomarkers for exposure to the food-borne carcinogen 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)

    Frandsen, Henrik Lauritz


    The metabolism of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has been investigated in rabbit liver S9. Two phase I metabolites, N-2-OH-PhIP and 4'-OH-PhIP were identified based on UV and mass spectra and co-elution with reference standards. Fortification of the incubation...... with UDGPA resulted in a complete glucuronidation of PhIP and N-2-OH-PhIP, while 4'-OH-PhIP was only partly glucuronidated. Also, the PhIP metabolite 5-OH-PhIP was completely glucuronidated by rabbit liver S9, while 5-OH-PhIP was a poor substrate for CYP mediated hydroxylation. The glucuronic acid conjugates...... of PhIP and 5-OH-PhIP. The data show that hydrazine hydrate can hydrolyse N-glucuronides of metabolites of PhIP, glucuronides that are unsusceptible to enzymatic hydrolysis. In addition the data indicate that humans metabolise a large fraction of ingested PhIP to genotoxic metabolites. The chemical...

  11. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity

    Islam, M.A.; Bekele, R.; Berg, van den J.H.J.; Kuswanti, Y.; Thapa, O.; Soltani, S.; Leeuwen, F.X.R.; Rietjens, I.M.C.M.; Murk, A.J.


    Soy isoflavones (SIF) are present in the systemic circulation as conjugated forms of which the estrogenic potency is not yet clear. The present study provides evidence that the major SIF glucuronide metabolites in blood, genistein-7-O-glucuronide (GG) and daidzein-7-O-glucuronide (DG), only become e

  12. Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells

    Brand, W.; Oosterhuis, B.; Krajcsi, P.; Barron, D.; Dionisi, F.; Bladeren, van P.J.; Rietjens, I.; Williamson, G.


    The citrus flavonoid hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) is the aglycone of hesperidin, the major flavonoid present in sweet oranges. Hesperetin 7-O-glucuronide (H7G) and hesperetin 3'-O-glucuronide (H3'G) are the two most abundant metabolites of hesperetin in vivo. In this study, the

  13. Inhibition of P-glycoprotein and multidrug resistance-associated protein 2 regulates the hepatobiliary excretion and plasma exposure of thienorphine and its glucuronide conjugate

    Ling-Lei Kong


    Full Text Available Thienorphine (TNP is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.

  14. Inhibition of P-Glycoprotein and Multidrug Resistance-Associated Protein 2 Regulates the Hepatobiliary Excretion and Plasma Exposure of Thienorphine and Its Glucuronide Conjugate

    Kong, Ling-Lei; Shen, Guo-Lin; Wang, Zhi-Yuan; Zhuang, Xiao-Mei; Xiao, Wei-Bin; Yuan, Mei; Gong, Ze-Hui; Li, Hua


    Thienorphine (TNP) is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G) undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion, and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic. PMID:27555820

  15. A specific immunoassay for the determination of morphine and its glucuronides in human blood.

    Beike, J; Blaschke, G; Mertz, A; Köhler, H; Brinkmann, B


    The development of specific antisera for immunochemical determination of morphine, morphine-3-glucuronide and morphine-6-glucuronide is described. Morphine was N-demethylated to normorphine and N-alkylated to give N-aminopropyl-normorphine as hapten for antisera against morphine. As haptens for antisera against morphine-3-glucuronide and morphine-6-glucuronide, N-aminopropyl-nor-morphine was glucuronidated in position 3 or 6 respectively. Each of these three haptens were coupled to BSA employing the glutaraldehyde method to obtain three different immunogens. Immunisation of rabbits with these conjugates gave anti-morphine, anti-morphine-3-glucuronide and anti-morphine-6-glucuronide antisera, which were tested in a competitive, heterogeneous radioimmunoassay. Tracers for this radioimmunoassay procedure were synthesised by substitution of morphine and morphine-6-glucuronide in position 2 with 125I and indirect iodination of the morphine-3-glucuronide hapten according to the method of Bolton and Hunter. The resulting antisera show very specific reactions with morphine, morphine-3-glucuronide and morphine-6-glucuronide. Cross reactivities of each antiserum with structurally related opiates and opioides are very low. The cross reactivities of the anti-morphine antiserum against morphine-3-glucuronide, morphine-6-glucuronide, codeine, codeine-6-glucuronide or dihydrocodeine were less than 0.3%, the anti-morphine-3-glucuronide antiserum against morphine, morphine-6-glucuronide, codeine, codeine-6-glucuronide or dihydrocodeine less than 0.1% and the anti-morphine-6-glucuronide antiserum against morphine, morphine-3-glucuronide, codeine or dihydrocodeine less than 0.1%, against codeine-6-glucuronide less than 2.3%. The determination of morphine, morphine-3-glucuronide and morphine-6-glucuronide in blood samples (limit of detection= 3, 1, 0.5 ng/g) of nine cases of fatal heroin overdose with this radioimmunoassay method and the comparison with a GC/MS method is described.

  16. Quantitation of Buprenorphine, Norbuprenorphine, Buprenorphine Glucuronide, Norbuprenorphine Glucuronide, and Naloxone in Urine by LC-MS/MS.

    Marin, Stephanie J; McMillin, Gwendolyn A


    Buprenorphine is an opioid drug that has been used to treat opioid dependence on an outpatient basis, and is also prescribed for managing moderate to severe pain. Some formulations of buprenorphine also contain naloxone to discourage misuse. The major metabolite of buprenorphine is norbuprenorphine. Both compounds are pharmacologically active and both are extensively metabolized to their glucuronide conjugates, which are also active metabolites. Direct quantitation of the glucuronide conjugates in conjunction with free buprenorphine, norbuprenorphine, and naloxone in urine can distinguish compliance with prescribed therapy from specimen adulteration intended to mimic compliance with prescribed buprenorphine. This chapter quantitates buprenorphine, norbuprenorphine, their glucuronide conjugates and naloxone directly in urine by liquid chromatography tandem mass spectrometry (LC-MS/MS). Urine is pretreated with formic acid and undergoes solid phase extraction (SPE) prior to analysis by LC-MS/MS.

  17. Biosynthesis of imipramine glucuronide and characterization of imipramine glucuronidation catalyzed by recombinant UGT1A4

    Ming-rong QIAN; Su ZENG


    Aim: To study the profile of imipramine N+-glucuronidation using homogenates of recombinant uridine-5'-diphosphoglucuronosyltransferase 1A4 (UGT1A4) from baculovirus-infected sf9 cells. Methods: Recombinant UGT1A4 was obtained from sf9 cells infected with recombinant baculovirus. Imipramine N+-glucuronide was biosynthesized by incubating imipramine with recombinant UGT1A4 and then purified with solid-phase cartridges. A reversed phase-high pressure liquid chromatography (RP-HPLC) assay method was used to directly measure the concentration of imipramine and its metabolite, imipramine N+-glucuronide, with p-nitrophenol as the internal standard. The validated method was used to characterize the activity of recombinant UGT1A4 and carry out kinetic studies on imipramine glucuronidation in vitro. Results: The high concentration of imipramine inhibited glucuronide conjugation, so the formula V=Vmax·S/(Km+S+S2/Ki) was used to calculate the parameters, using MATLAB software. The values of apparent Km, Ki, and Vmax for imipramine glucuronidation via UGT1A4 were 1.39±0.09mmol/L, 6.24±0.45 mmol/L and 453.81±32.12 pmol/min per mg cell homogenate (n=3), respectively. Conclusion: As a specific substrate of UGT1A4, imipramine was used as a convenient method to characterize the activity of recombinant UGT1A4 by using HPLC. Furthermore, the profile of imipramine glucuronidation was evaluated by using recombinant UGT1A4 in vitro.

  18. Structure- and isoform-specific glucuronidation of six curcumin analogs.

    Lu, Danyi; Liu, Hui; Ye, Wencai; Wang, Ying; Wu, Baojian


    1. In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes. 2. Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides. 3. All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs. 4. UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10). 5. In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.

  19. In vitro glucuronidation of ochratoxin a by rat liver microsomes.

    Han, Zheng; Tangni, Emmanuel K; Di Mavungu, José Diana; Vanhaecke, Lynn; De Saeger, Sarah; Wu, Aibo; Callebaut, Alfons


    Ochratoxin A (OTA), one of the most toxic mycotoxins, can contaminate a wide range of food and feedstuff. To date, the data on its conjugates via glucuronidation request clarification and consolidation. In the present study, the combined approaches of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), UHPLC-Orbitrap-high resolution mass spectrometry (HRMS) and liquid chromatography-multiple stage mass spectrometry (LC-MS(n)) were utilized to investigate the metabolic profile of OTA in rat liver microsomes. Three conjugated products of OTA corresponding to amino-, phenol- and acyl-glucuronides were identified, and the related structures were confirmed by hydrolysis with β-glucuronidase. Moreover, OTA methyl ester, OTα and OTα-glucuronide were also found in the reaction solution. Based on these results, an in vitro metabolic pathway of OTA has been proposed for the first time.

  20. In Vitro Glucuronidation of Ochratoxin A by Rat Liver Microsomes

    Zheng Han


    Full Text Available Ochratoxin A (OTA, one of the most toxic mycotoxins, can contaminate a wide range of food and feedstuff. To date, the data on its conjugates via glucuronidation request clarification and consolidation. In the present study, the combined approaches of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS, UHPLC-Orbitrap-high resolution mass spectrometry (HRMS and liquid chromatography-multiple stage mass spectrometry (LC-MSn were utilized to investigate the metabolic profile of OTA in rat liver microsomes. Three conjugated products of OTA corresponding to amino-, phenol- and acyl-glucuronides were identified, and the related structures were confirmed by hydrolysis with β-glucuronidase. Moreover, OTA methyl ester, OTα and OTα-glucuronide were also found in the reaction solution. Based on these results, an in vitro metabolic pathway of OTA has been proposed for the first time.

  1. Synthesis, isolation and identification of glucuronides and mercapturic acids of a novel antiparasitic agent, licochalcone A

    Nadelmann, L.; Tjornelund, J.; Hansen, S. H.


    1. Four glucuronic acid conjugates of licochalcone A (Lica), and their metabolites, have been synthesized using rabbit and pig liver microsomes and purified by preparative hplc. 2. The glucuronides were identified as E-Lica 4'-O-beta-glucuronide, E and Z-Lica 4-O-beta-glucuronide and a mono......-glucuronide conjugate of a beta-hydroxylated Lica metabolite. The metabolites were identified by hplc-nmr (one and two-dimensional nmr) as well as hplc-ms. 3. At pH 8.5 Lica reacted with N-acetyl-L-cysteine giving the two epimeric conjugates, which were then isolated by preparative hplc and identified by one and two...

  2. Regioselective and stereospecific glucuronidation of trans- and cis-resveratrol in human.

    Aumont, V; Krisa, S; Battaglia, E; Netter, P; Richard, T; Mérillon, J M; Magdalou, J; Sabolovic, N


    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenol present in wine, which has been reported to have anti-inflammatory, anti-platelet, and anti-carcinogenic effects. The glucuronidation of this compound and that of the cis-isomer also naturally present, has been investigated in human liver microsomes. Both isomers were actively glucuronidated. The reaction led to the formation of two glucuronides (3-O- and 4'-O-glucuronides), whose structure was characterized by LC-MS and proton NMR. Glucuronidation was regio- and stereoselective. It occurred at a faster rate with the cis-isomer and preferred the 3-position on both isomers. In addition, the glucuronidation of resveratrol was tested using several recombinant UDP-glucuronosyltransferase (UGT) isoforms. The reaction was catalyzed by UGT of the family 1A (UGT1A1, 1A6, 1A7, 1A9, 1A10). The bilirubin conjugating UGT1A1 was mainly involved in the 3-O-glucuronidation of trans-resveratrol, whereas the phenol conjugating UGT1A6 activity was restricted to cis-resveratrol. The UGT1A9 and 1A10 were active toward both isomers. The activity supported by UGT2B7 and UGT2B15 was very low and restricted to cis-resveratrol. UGT1A3, 1A4, 2B4, and 2B11 were unable to form resveratrol glucuronides.

  3. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity.

    Frizzell, Caroline; Uhlig, Silvio; Miles, Christopher O; Verhaegen, Steven; Elliott, Christopher T; Eriksen, Gunnar S; Sørlie, Morten; Ropstad, Erik; Connolly, Lisa


    Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed and metabolised to α- and β-zearalenol (α-ZOL, β-ZOL), and to a lesser extent α- and β-zearalanol (α-ZAL, β-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination of these toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activity of these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, α-ZOL-14-O-glucuronide, α-ZOL-7-O-glucuronide, β-ZOL-14-O-glucuronide and β-ZOL-16-O-glucuronide, previously obtained as the major products from preparative enzymatic synthesis, were investigated for their potential to cause endocrine disruption through interference with estrogen receptor transcriptional activity. All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reporter gene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17β-estradiol, and also less than that of ZEN, α-ZOL and β-ZOL which have previously shown estrogenic potencies of the order 17β-estradiol>α-ZOL>ZEN>β-ZOL. Confirmatory mass spectrometry revealed that any activity observed was likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formation of ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potential host defence mechanism against ZEN-induced estrogenic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.


    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the p

  5. In vitro antioxidative activity of (-)-epicatechin glucuronide metabolites present in human and rat plasma.

    Natsume, Midori; Osakabe, Naomi; Yasuda, Akiko; Baba, Seigo; Tokunaga, Takashi; Kondo, Kazuo; Osawa, Toshihiko; Terao, Junji


    Recently we identified four conjugated glucuronide metabolites of epicatechin, (-)-epicatechin-3'-O-glucuronide (E3'G), 4'-O-methyl-(-)-epicatechin-3'-O-glucuronide (4'ME3'G), (-)-epicatechin-7-O-glucuronide (E7G) and 3'-O-methyl-(-)-epicatechin-7-O-glucuronide (3'ME7G) from plasma and urine. E3'G and 4'ME3'G were isolated from human urine, while E7G and 3'ME7G were isolated from rats that had received oral administration of (-)-epicatechin (Natsume et al. (2003), Free Radic. Biol. Med. 34,840-849). It has been suggested that these metabolites possess considerable in vivo activity, and therefore we carried out a study to compare the antioxidant activities of the metabolites with that of the parent compound. This was achieved by measuring superoxide scavenging activity, reduction of plasma TBARS production and reduced susceptibility of low-density-lipoprotein (LDL) to oxidation. (-)-Epicatechin was found to have more potent antioxidant activity than the conjugated glucuronide metabolites. Both (-)-epicatechin and E7G had marked antioxidative properties with respect to superoxide radical scavenging activity, plasma oxidation induced by 2,2'-azobis-(2-aminopropane) dihydrochloride (AAPH) and LDL oxidation induced by copper ions or 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN). In contrast, the other metabolites had light antioxidative activities over the range of physiological concentrations found in plasma.

  6. The kinetic basis for age-associated changes in quercetin and genistein glucuronidation by rat liver microsomes.*

    Bolling, Bradley W.; Court, Michael H.; Blumberg, Jeffrey B.; Chen, C-Y. Oliver


    The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4, 18, and 28 mo old rats were 0.100, 0.078, and 0.087 mL/min/mg for quercetin-7-O-glucuronide, 0.138, 0.133, and 0.088 for quercetin-3′-O-glucuronide, and 0.075, 0.077, and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 mo to 3.8 nmol/min/mg at 28 mo, while quercetin-3′-O-glucuronide formation at 28 mo declined by a similar degree (P ≤0.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 mo at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes, and flavonoid structure. PMID:19446449

  7. The kinetic basis for age-associated changes in quercetin and genistein glucuronidation by rat liver microsomes.

    Bolling, Bradley W; Court, Michael H; Blumberg, Jeffrey B; Chen, C-Y Oliver


    The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (V(max)/K(m)) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3'-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4'-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 microM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3'-O-glucuronide formation at 28 months declined by a similar degree (Pglucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.

  8. Direct radioimmunoassay for estriol-16-glucuronide in urine for monitoring pregnancy and induction of ovulation. [Tritium tracer techniques

    Haning, R.V. Jr.; Satin, K.P.; Lynskey, M.T.; Levin, R.M.; Speroff, L.


    Antibodies to estriol-16..cap alpha..-(..beta..-D-glucuronide) were raised in sheep with the use of keyhole limpet hemocyanin and bovine serum albumin conjugates of estriol-16..cap alpha..-(..beta..-D-glucuronide). A simple, rapid method is presented for direct radioimmunoassay of estriol-16..cap alpha..-(..beta..-D-glucuronide) in urine with dextran-coated charcoal used for separation of free from bound and deionized water used for dilutions. The method is thrifty in its use of reagents. The assay has been evaluated in the pregnancy range, and the sensitivity has been extended into the range necessary for monitoring induction of ovulation with pergonal.

  9. Simultaneous determination of sulfation and glucuronidation of flavones in FVB mouse intestine in vitro and in vivo.

    Fan, Yanfang; Tang, Lan; Zhou, Juan; Feng, Qian; Xia, Bijun; Liu, Zhongqiu


    Glucuronidation and sulfation are the two major phase II metabolic pathways for flavones, natural compounds that hold great potential for improving human health. We investigated the positional preference for sulfation and glucuronidation of seven structurally similar flavones in vitro and in situ. An FVB mouse intestinal perfusion model was used in addition to three small intestine S9 fractions catalyzing sulfation only (Sult enzymes), glucuronidation only (Ugt enzymes) or both (Sult and Ugt enzymes). In both the single and co-reaction S9 systems, flavones containing 7-OH groups were conjugated only at 7-OH despite the presence of other hydroxyl groups, and 7-OH glucuronidation was faster than sulfation (P intestinal perfusate, sulfation patterns were the same in the small intestine and colon, and the excretion rate of 7-O-sulfate was the fastest or second fastest. The excretion of 7-O-glucuronidates was faster in small intestine (P excretion rates of the same flavones from perfused intestine. In conclusion, flavone glucuronidation and sulfation rates were sensitive to minor changes in molecular structure. In intestinal S9 fractions, both Ugts and Sults preferentially catalyzed reactions at 7-OH. The sulfation rate was significantly enhanced by simultaneous glucuronidation, but glucuronidation was unaltered by sulfation. Sulfation rates in mouse S9 fractions correlated with sulfation rates in perfused intestine.

  10. Determination of salbutamol and salbutamol glucuronide in human urine by means of liquid chromatography-tandem mass spectrometry.

    Mareck, Ute; Guddat, Sven; Schwenke, Anne; Beuck, Simon; Geyer, Hans; Flenker, Ulrich; Elers, Jimmi; Backer, Vibeke; Thevis, Mario; Schänzer, Wilhelm


    The determination of salbutamol and its glucuronide in human urine following the inhalative and oral administration of therapeutic doses of salbutamol preparations was performed by means of direct urine injection utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and employing d(3)-salbutamol and d(3)-salbutamol glucuronide as internal standards. Unconjugated salbutamol was detected in all administration study urine samples. Salbutamol concentrations following inhalation were commonly (99%) below 1000 ng/ml whereas values after oral administration frequently (48%) exceeded this threshold. While salbutamol glucuronide was not detected in urine samples collected after inhalation of the drug, 26 out of 82 specimens obtained after oral application contained salbutamol glucuronide with a peak value of 63 ng/ml. The percentage of salbutamol glucuronide compared to unconjugated salbutamol was less than 3%. Authentic doping control urine samples indicating screening results for salbutamol less than 1000 ng/ml, showed salbutamol glucuronide concentrations between 2 and 6 ng/ml, whereas adverse analytical findings resulting from salbutamol levels higher than 1000 ng/ml, had salbutamol glucuronide values between 8 and 15 ng/ml. The approach enabled the rapid determination of salbutamol and its glucuronic acid conjugate in human urine and represents an alternative to existing procedures since time-consuming hydrolysis or derivatization steps were omitted. Moreover, the excretion of salbutamol glucuronide in human urine following the administration of salbutamol was proven.

  11. Hepatic glucuronidation of resveratrol: interspecies comparison of enzyme kinetic profiles in human, mouse, rat, and dog.

    Maier-Salamon, Alexandra; Böhmdorfer, Michaela; Thalhammer, Theresia; Szekeres, Thomas; Jaeger, Walter


    The enzyme kinetic profiles of the formation of resveratrol-3-O-glucuronide (R3G) and resveratrol-4'-O-glucuronide (R4'G) by liver microsomes from humans, dogs, and rodents were investigated. Glucuronidation by human and dog liver microsomes to R3G and R4'G occurred for about 65% of applied resveratrol, and was significantly reduced to 10% when substrate concentration was increased 10-fold. In contrast, rodent microsomes glucuronidated about 90% of applied resveratrol independently of substrate concentration. Furthermore, in mouse and rat liver microsomes, resveratrol was almost exclusively conjugated at position 3, whereas human and dog livers also glucuronidated resveratrol at position 4' (ratio R3G:R4'G = 5:1). Interspecies differences were also found when calculating the enzyme kinetic profiles of both conjugates. Formation of R4'G in human and dog microsomes followed Michaelis-Menten kinetics, while R3G showed substrate inhibition at higher resveratrol concentrations. In mouse and rat microsomes, however, both R3G and R4'G formation exhibited auto-activation kinetics. Formation of R3G and R4'G by recombinant UGT1A1 also showed substrate inhibition kinetics that led to decreased intrinsic clearance values, while UGT1A9-catalyzed glucuronidation demonstrated substrate inhibition kinetics at position 3 and Hill kinetics for the formation of R4'G. In conclusion, resveratrol glucuronidation exhibited species-dependent differences, with the dog as the animal model that most closely represents humans in terms of this process.

  12. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  13. Glucuronidation and Sulfation Kinetics of Diflunisal in Man.

    Loewen, Gordon Rapheal

    Diflunisal is a nonsteroidal anti-inflammatory drug used in the treatment of arthritis and musculoskeletal pain. Diflunisal exhibits concentration- and dose-dependent kinetics, the mechanism of which has not been determined. The purpose of this study was to determine the mechanism(s) responsible for non-linear disposition of diflunisal and to examine environmental factors which may affect the elimination of diflunisal. The metabolites of diflunisal, including a new metabolite, the sulphate conjugate, were purified by column and semi-preparative high pressure liquid chromatography. Assays for the quantitation of diflunisal and conjugates in urine and diflunisal in plasma were developed. Plasma protein binding of diflunisal in blank plasma and in plasma obtained following multiple doses of diflunisal was determined by equilibrium dialysis. Total body clearance of diflunisal decreased when dose increased from 100 to 750 mg. Total clearance increased when dose increased from 750 to 1000 mg. The percent of recovered dose eliminated as the acyl glucuronide decreased and the percent eliminated as the sulphate increased with increasing dose of diflunisal. Plasma protein binding of diflunisal was concentration dependent over a range of diflunisal plasma concentrations of 3 to 257 mug/ml. Total clearance, and to a lesser degree, unbound clearance of diflunisal were decreased following multiple dose administration of 250 and 500 mg diflunisal. Percent of recovered dose eliminated as the acyl glucuronide decreased and percent eliminated as the sulphate conjugate increased following multiple dosing. Plasma protein binding of diflunisal was similar in blank plasma and plasma obtained at steady state. Unbound clearance of diflunisal exceeded liver plasma flow. Frequency distributions of the elimination of the conjugates of diflunisal were normally distributed. Sex, smoking, and use of vitamins or oral contraceptives were identified as factors which may affect the elimination of

  14. Ontogeny of midazolam glucuronidation in preterm infants

    S.N. de Wildt (Saskia); G.L. Kearns (Greg); D.J. Murry (Darryl); G. Koren (Gideon); J.N. van den Anker (John)


    textabstractPurpose: In preterm infants, the biotransformation of midazolam (M) to 1-OH-midazolam (OHM) by cytochrome P450 3A4 (CYP3A4) is developmentally immature, but it is currently unknown whether the glucuronidation of OHM to 1-OH-midazolam glucuronide (OHMG) is also decreased. The aim of our

  15. Ontogeny of midazolam glucuronidation in preterm infants

    S.N. de Wildt (Saskia); G.L. Kearns (Greg); D.J. Murry (Darryl); G. Koren (Gideon); J.N. van den Anker (John)


    textabstractPurpose: In preterm infants, the biotransformation of midazolam (M) to 1-OH-midazolam (OHM) by cytochrome P450 3A4 (CYP3A4) is developmentally immature, but it is currently unknown whether the glucuronidation of OHM to 1-OH-midazolam glucuronide (OHMG) is also decreased. The aim of our s

  16. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes.

    Maul, Ronald; Warth, Benedikt; Schebb, Nils Helge; Krska, Rudolf; Koch, Matthias; Sulyok, Michael


    The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate.

  17. Urinary excretion of bile acid glucosides and glucuronides in extrahepatic cholestasis.

    Wietholtz, H; Marschall, H U; Reuschenbach, R; Matern, H; Matern, S


    Recently the formation of bile acid glucosides has been described as a novel conjugation mechanism in vitro and in vivo. In 10 patients with extrahepatic cholestasis caused by carcinoma of the head of the pancreas we investigated excretion rates and profiles of urinary bile acid glucosides. Urinary bile acid glucosides and, for comparison, bile acid glucuronides were extracted and characterized according to established methods. In controls total urinary bile acid glucoside excretion was 0.22 +/- 0.03 mumol/24 hr (mean +/- S.E.M.)-in the range of bile acid glucuronide excretion (0.41 +/- 0.06 mumol/24 hr; mean +/- S.E.M.). A gas chromatography-mass spectrometry-characterized trihydroxy bile acid glucoside of still-unknown hydroxyl positions accounted for 65% of total urinary bile acid glucosides. In extrahepatic cholestasis total urinary bile acid glucoside excretion was 0.52 +/- 0.13 mumol/24 hr (mean +/- SEM), yet significantly lower than bile acid glucuronide excretion (1.53 +/- 0.13 mumol/24 hr; mean +/- SEM; p less than 0.001). In cholestasis the primary bile acid derivatives cholic and chenodeoxycholic acid glucosides amounted to 90%, whereas the trihydroxy bile acid glucoside had decreased to 5% of total bile acid glucoside excretion, indicating its alteration during enterohepatic circulation. The data establish the composition and quantity of urinary bile acid glucosides in healthy controls and cholestasis and constitute a quantitative comparison with another glycosidic conjugation reaction, bile acid glucuronidation.

  18. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes.

    Slovak, J E; Mealey, K; Court, M H


    Use of the immunosuppressant mycophenolic acid (MPA) in cats is limited because MPA elimination depends on glucuronidation, which is deficient in cats. We evaluated formation of major (phenol glucuronide) and minor (acyl glucuronide, phenol glucoside, and acyl glucoside) MPA metabolites using liver microsomes from 16 cats, 26 dogs, and 48 humans. All MPA metabolites were formed by human liver microsomes, while dog and cat liver microsomes formed both MPA glucuronides, but only one MPA glucoside (phenol glucoside). Intrinsic clearance (CLint) of MPA for phenol glucuronidation by cat liver microsomes was only 15-17% that of dog and human liver microsomes. However, CLint for acyl glucuronide and phenol glucoside formation in cat liver microsomes was similar to or greater than that for dog and human liver microsomes. While total MPA conjugation CLint was generally similar for cat liver microsomes compared with dog and human liver microsomes, relative contributions of each pathway varied between species with phenol glucuronidation predominating in dog and human liver microsomes and phenol glucosidation predominating in cat liver microsomes. MPA conjugation variation between cat liver microsomes was threefold for total conjugation and for phenol glucosidation, sixfold for phenol glucuronidation, and 11-fold for acyl glucuronidation. Our results indicate that total MPA conjugation is quantitatively similar between liver microsomes from cats, dogs, and humans despite large differences in the conjugation pathways that are utilized by these species.

  19. Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows.

    Schwartz-Zimmermann, Heidi E; Hametner, Christian; Nagl, Veronika; Fiby, Iris; Macheiner, Lukas; Winkler, Janine; Dänicke, Sven; Clark, Erica; Pestka, James J; Berthiller, Franz


    The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of

  20. In vitro characterization of glucuronidation of vanillin: identification of human UDP-glucuronosyltransferases and species differences.

    Yu, Jian; Han, Jing-Chun; Hua, Li-Min; Gao, Ya-Jie


    Vanillin is a food flavoring agent widely utilized in foods, beverages, drugs, and perfumes and has been demonstrated to exhibit multiple pharmacological activities. Given the importance of glucuronidation in the metabolism of vanillin, the UDP-glucuronosyltransferase conjugation pathway of vanillin was investigated in this study. Vanillin glucuronide was identified by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and a hydrolysis reaction catalyzed by β-glucuronidase. The kinetic study showed that vanillin glucuronidation by HLMs and HIMs followed Michaelis-Menten kinetics and the kinetic parameters were as follows: 134.9 ± 13.5 μM and 81.3 ± 11.3 μM for K(m) of HLMs and HIMs, 63.8 ± 2.0 nmol/min/mg pro and 13.4 ±2.0 nmol/min/mg pro for Vmax of HLMs and HIMs. All UDP-glucuronosyltransferase (UGT) isoforms except UGT1A4, 1A9, and 2B7 showed the capability to glucuronidate vanillin, and UGT1A6 exerted the higher V(max)/K(m) values than other UGT isoforms for the glucuronidation of vanillin when assuming expression of isoforms is similar in recombinant UGTs. Kinetic analysis using liver microsomes from six studied speices indicated that vanillin had highest affinity for the monkey liver microsomes enzyme (K(m)  = 25.6 ± 3.2 μM) and the lowest affinity for the mice liver microsomes enzyme (K(m)  = 149.1 ± 18.4 μM), and intrinsic clearance was in the following order: monkey > dog > minipig > mice > rat ~ human. These data collectively provided important information for understanding glucuronidation of vanillin.

  1. Effect of galactosamine-induced hepatic UDP-glucuronic acid depletion on acetaminophen elimination in rats. Dispositional differences between hepatically and extrahepatically formed glucuronides of acetaminophen and other chemicals.

    Gregus, Z; Madhu, C; Goon, D; Klaassen, C D


    Galactosamine (GAL) markedly depletes hepatic UDP-glucuronic acid (UDP-GA) whereas extrahepatic UDP-GA is minimally affected. This suggests that GAL predominantly inhibits hepatic glucuronidation. Therefore, the effect of GAL-induced hepatic UDP-GA depletion was examined in bile duct-cannulated rats to determine the role of hepatic glucuronidation in the disposition of acetaminophen (AA). GAL markedly altered the fate of AA-glucuronide but had little or no effect upon other AA metabolites. GAL decreased the biliary excretion of AA-glucuronide up to 92%, whereas reductions in blood levels and urinary excretion of AA-glucuronide did not exceed 50%. This suggests that AA-glucuronide excreted in bile is predominantly of hepatic origin whereas AA-glucuronide found in blood and urine is derived from both hepatic and extrahepatic tissues. Data in the present and previous studies [Gregus, Watkins, Thompson, Klaassen: J. Pharmacol. Exp. Ther. 225, 256, (1983)] indicate that GAL greatly reduced the biliary excretion of AA- and valproic acid-glucuronide whereas the biliary excretion of the glucuronides of phenolphthalein, iopanoic acid, bilirubin, and diethylstilbestrol was only partially decreased. This difference appears to be largely due to differential contributions by the liver and extrahepatic tissues in the glucuronidation of various compounds as well as the availability of glucuronides formed in extrahepatic tissues for biliary excretion. Specifically, the extrahepatically formed glucuronide conjugates of AA and valproic acid are not readily available for biliary excretion whereas the glucuronides of the other compounds are readily excreted into bile.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Trans-stilbene oxide administration increased hepatic glucuronidation of morphine but decreased biliary excretion of morphine glucuronide in rats

    Fuhrman-Lane, C.; Fujimoto, J.M.


    The effect of the inducing agent trans-stilbene oxide (TSO) on the metabolism and biliary excretion of (/sup 14/C)morphine was studied in the isolated in situ perfused rat liver. After administration of morphine by intraportal injection or by the segmented retrograde intrabiliary injection technique, the TSO-treated group showed a marked decrease in the biliary recovery of morphine as its glucuronide conjugate (morphine-3-glucuronide (MG)). However, recovery of MG in the venous outflow of the single pass perfusate was greatly increased. These findings suggested that TSO treatment enhanced the formation of MG from morphine and changed the primary route of hepatic elimination of MG. TSO treatment also decreased the excretion of morphine (as MG) in the bile of anesthetized renal-ligated rats. This decreased biliary function required several days to develop and appeared closely associated with the inductive effect of TSO. After i.v. administration of (/sup 14/C)MG itself, biliary recovery was also markedly decreased in TSO-treated rats. It is postulated that the effect of the TSO treatment led to either a decrease in canalicular transport of MG into bile or an increase in the efficiency of transfer of MG to the blood at the sinusoidal side of the hepatocyte. Regardless of the mechanism, the results indicate the need to study compartmentalization of drug transport and metabolism functions.

  3. Multiple UDP- Glucuronosyltransferases in Human Liver Microsomes Glucuronidate Both R- and S-7-Hydroxywarfarin into Two Metabolites

    Pugh, C. Preston; Pouncey, Dakota L; Hartman, Jessica H.; Nshimiyimana, Robert; Desrochers, Linda P.; Goodwin, Thomas E.; Boysen, Gunnar; Miller, Grover P.


    The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin. PMID:25447818

  4. Differences in the glucuronidation of bisphenols F and S between two homologous human UGT enzymes, 1A9 and 1A10.

    Gramec Skledar, Darja; Troberg, Johanna; Lavdas, Jason; Peterlin Mašič, Lucija; Finel, Moshe


    1. Bisphenol S (BPS) and bisphenol F (BPF) are bisphenol A (BPA) analogues commonly used in the manufacturing of industrial and consumer products. 2. Bisphenols are often detoxified through conjugation with glucuronic acid or sulfate. In this work, we have examined the glucuronidation of BPS and BPF by recombinant human UDP-glucuronosyltransferase (UGT) enzymes. In addition, we have reexamined BPA glucuronidation, using extra-hepatic UGTs that were not tested previously. 3. The results revealed that UGT1A9, primarily a hepatic enzyme, is mainly responsible for BPS glucuronidation, whereas UGT1A10, an intestine enzyme that is highly homologous to UGT1A9 at the protein level, is by far the most active UGT in BPF glucuronidation. In contrast to the latter two UGTs that display significant specificity in the glucuronidation of BPS and BPF, UGT2A1 that is mainly expressed in the airways, exhibited high activity toward all the tested bisphenols, BPS, BPF and BPA. UGT1A10 exhibited somewhat higher BPA glucuronidation activity than UGT1A9, but it was lower than UGT2A1 and UGT2B15. 4. The new findings demonstrate interesting differences in the glucuronidation patterns of bisphenols and provide new insights into the role of extra-hepatic tissues in their detoxification.

  5. In silico prediction of acyl glucuronide reactivity

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart


    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  6. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS.

    Goucher, Edward; Kicman, Andrew; Smith, Norman; Jickells, Sue


    The use of fingerprints as an alternative biological matrix to test for the presence of drugs and/or their metabolites is a novel area of research in analytical toxicology. This investigation describes quantitative analysis for the benzodiazepine lorazepam and its 3-O-glucuronide conjugate in fingerprints following the oral administration of a single 2 mg dose of lorazepam to five volunteers. Creatinine was also measured to investigate whether the amount of drug relative to that of creatinine would help to account for the variable amount of secretory material deposited. Fingerprints were deposited on glass cover slips and extracted by dissolving them in a solution of dichloromethane/methanol, containing tetradeuterated lorazepam as an internal standard. The samples were evaporated, reconstituted with mobile phase and analysed by LC-MS/MS. Chromatography was achieved using an RP (C18) column for the analysis of lorazapem and its glucuronide, and a hydrophilic interaction column (HILIC) for the analysis of creatinine. Lorazepam and its glucuronide were only detected where ten prints had been combined, up to 12 h following drug administration. In every case, the amount of lorazepam glucuronide exceeded that of lorazepam, the peak amounts being 210 and 11 pg, respectively. Adjusting for creatinine smoothed the elimination profile. To our knowledge, this represents the first time a drug glucuronide has been detected in deposited fingerprints.

  7. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat.

    Watkins, J B; Klaassen, C D


    Valproic acid (VPA) induces an immediate choleresis in the rat which may be attributable to the osmotic properties of VPA-glucuronic acid conjugates in bile. The influence of inducers and inhibitors of glucuronidation of VPA on the biliary excretion and choleretic effect of VPA was studied. Hepatic UDP-glucuronyltransferase activity toward VPA was determined in vitro. Pretreatment with phenobarbital (75 mg/kg/day for 4 days) enhanced VPA glucuronidation; borneol (750 mg/kg) decreased VPA conjugation; 3-methylcholanthrene (20 mg/kg/day for 4 days) and galactosamine (600 mg/kg) had no effect on glucuronidation of VPA in vitro. Hepatic UDP-glucuronic acid content was decreased by borneol and galactosamine administration and was enhanced by phenobarbital and 3-methylcholanthrene pretreatment. The enzyme inducers increased the plasma disappearance of VPA in vivo but did not augment its biliary excretion or choleretic effect. Borneol and galactosamine, which inhibited the conjugation and plasma disappearance of VPA, decreased its biliary excretion and inhibited the VPA-induced increase in bile flow. Thus, the bile flow rate after VPA administration is closely related to the excretion of VPA-glucuronic acid. These data support the conclusion that the choleretic effect of VPA is due to the osmotic activity of VPA conjugates in bile.

  8. Determination of resveratrol and its sulfate and glucuronide metabolites in plasma by LC-MS/MS and their pharmacokinetics in dogs

    Muzzio, Miguel; Huang, Zhihua; Hu, Shu-Chieh; Johnson, William D.; McCormick, David L.; Kapetanovic, Izet M.


    An analytical approach for the determination of trans-resveratrol (3,5,4′-trihydroxy-trans-stilbene) and its glucuronide and sulfate conjugates in dog plasma by LC-MS/MS (without enzymatic hydrolysis of the conjugates) was validated to support pre-clinical toxicological and pharmacological studies. The approach required two independent sample extractions and consequent instrument runs. Samples for resveratrol determination were prepared by protein precipitation with acetonitrile; acetonitrile...

  9. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation.

    Pilar Galindo

    Full Text Available BACKGROUND: Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3'-sulfate, Q3'S in spontaneously hypertensive rats (SHR. Q3GA and I3GA (1 mg/kg i.v., but not Q3'S, progressively reduced mean blood pressure (MBP, measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml. In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg induced a progressive decrease in MBP, which was also suppressed by SAL. CONCLUSIONS: Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect.

  10. Enzymatic treatment of estrogens and estrogen glucuronide

    Takaaki Tanaka; Toshiyuki Tamura; Yuuichi Ishizaki; Akito Kawasaki; Tomokazu Kawase; Masahiro Teraguchi; Masayuki Taniguchi


    Natural and synthetic estrogens from sewage treatment systems are suspected to influence the reproductive health of the animals in the rivers.In this article we investigated the enzymatic treatment of three estrogens (estrone,17β-estradiol,and 17α-ethynyletstradiol) by a fungal laccase which oxidize phenolic compounds with dissolved oxygen.The elimination of the estrogenic activities by enzymatic oxidation was demonstrated by medaka vitellogenin assay.In addition,we developed an enzymatic treatment system comprised of β-D-glucuronidase and the laccase for 17β-estradiol 3-(β-D-glucuronide) degradation.The two enzymes eliminated 17β-estradiol 3-(β-D-glucuronide) and the intermediate,17β-estradiol,efficiently.

  11. High-Throughput LC-MS/MS Method for Direct Quantification of Glucuronidated, Sulfated and Free Enterolactone in Human Plasma

    Nørskov, Natalja; Kyrø, Cecilie; Olsen, Anja


    Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized that ente......Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized......−MS/MS and a fluoroimmunoassay; however, most of these methods measure the total concentration of enterolactone, without any specification of its conjugation pattern. Here for the first time we present a high-throughput LC−MS/MS method to quantify enterolactone in its intact form as glucuronide, sulfate, and free enterolactone....... The method has shown good accuracy and precision at low concentration and very high sensitivity, with LLOQ for enterolactone sulfate at 16 pM, enterolactone glucuronide at 26 pM, and free enterolactone at 86 pM. The short run time of 2.6 min combined with simple sample clean up and high sensitivity make...

  12. Comparing the glucuronidation capacity of the feline liver with substrate-specific glucuronidation in dogs

    van Beusekom, C D; Fink-Gremmels, J; Schrickx, J A


    This study aimed to assess the overall glucuronidation capacity of cats, using prototypic substrates identified for human UDP-glucuronosyltransferases (UGTs). To this end, Michaelis-Menten kinetics were established for the substrates using feline hepatic microsomal fractions, and results were compar

  13. Comparing the glucuronidation capacity of the feline liver with substrate-specific glucuronidation in dogs

    van Beusekom, C D|info:eu-repo/dai/nl/314836497; Fink-Gremmels, J|info:eu-repo/dai/nl/119949997; Schrickx, J A|info:eu-repo/dai/nl/30483114X

    This study aimed to assess the overall glucuronidation capacity of cats, using prototypic substrates identified for human UDP-glucuronosyltransferases (UGTs). To this end, Michaelis-Menten kinetics were established for the substrates using feline hepatic microsomal fractions, and results were

  14. Optimised deconjugation of androgenic steroid conjugates in bovine urine

    Pedersen, Mikael; Frandsen, Henrik Lauritz; Andersen, Jens Hinge


    with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid......After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase...

  15. Simultaneous Quantification of Buprenorphine, Norbuprenorphine, Buprenorphine-Glucuronide and Norbuprenorphine-Glucuronide in Human Umbilical Cord by Liquid Chromatography Tandem Mass Spectrometry

    Concheiro, Marta; Shakleya, Diaa M.; Huestis, Marilyn A.


    A LCMS method was developed and validated for the simultaneous determination of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc) and norbuprenorphine glucuronide (NBUP-Gluc) in human umbilical cord. Quantification was achieved by selected ion monitoring of precursor ions m/z 468.4 for BUP; 414.3 for NBUP; 644.4 for BUP-Gluc and 590 for NBUP-Gluc. BUP and NBUP were identified by MS2, with m/z 396, 414 and 426 for BUP, and m/z 340, 364 and 382 for NBUP. Glucuronide conjugates were identified by MS3 with m/z 396 and 414 for BUP-Gluc and m/z 340 and 382 for NBUP-Gluc. The assay was linear 1–50 ng/g. Intra, inter-day and total assay imprecision (%RSD) were 66.3%, and process efficiency >73.4%. Matrix effect ranged, in absolute value, from 3.7% to 27.4% (CV<21.8%, n=8). The method was selective with no endogenous or exogenous interferences from 41 compounds evaluated. Sensitivity was high with limits of detection of 0.8 ng/g. In order to prove method applicability, an authentic umbilical cord obtained from an opioid-dependent pregnant woman receiving BUP pharmacotherapy was analyzed. Interestingly, BUP was not detected but concentrations of the other metabolites were NBUP-Gluc 13.4 ng/g, BUP-Gluc 3.5 ng/g and NBUP 1.2 ng/g. PMID:19406593

  16. An immunoassay for the detection of triclosan-O-glucuronide, a primary human urinary metabolite of triclosan.

    Ranganathan, Anupama; Gee, Shirley J; Hammock, Bruce D


    Triclosan-O-glucuronide (TCSG) is one of the primary urinary metabolites of the antibacterial compound triclosan or TCS that is found in many personal care products and consumer goods. We have developed a competitive, indirect heterologous ELISA for the detection of the target TCSG in urine. Such an ELISA for TCSG could be developed as a useful tool to measure this important biomarker of human exposure to TCS. Immunogens were prepared by conjugating TCSG to thyroglobulin, via heterobifunctional cross-linkers AEDP or 3-[(2-aminoethyl)dithio] propionic acid•hydrochloride and TFCS or N-[ε-trifluoroacetylcaproyloxy]succinimide ester. The coating antigen was prepared by the direct conjugation of TCSG to bovine serum albumin. Antibodies raised in rabbits 2619, 2621 (immunogen TCSG-AEDP-Thy), and 2623 (immunogen TCSG-TFCS-Thy), and the coating antigen were screened and characterized to determine their optimal concentrations. The optimized ELISA, developed with antibody 2621, gave an IC50 value of 2.85 ng/mL, with the linear range (IC20-IC80) determined to be 2.6-24.8 ng/mL. Selectivity of the assay was assessed by measuring cross-reactivity of antibody 2621 to related congeners such as the aglycone TCS, triclosan-O-sulfate, triclocarban, a polybrominated diphenyl ether derivative, and 3-phenoxybenzyl alcohol glucuronide. There was virtually no recognition by antibody 2621 to any of these cross-reactants. Graphical Abstract Urinary biomarker analysis of triclosan glucuronide.

  17. Redox state alteration modulates astrocyte glucuronidation.

    Heurtaux, T; Benani, A; Bianchi, A; Moindrot, A; Gradinaru, D; Magdalou, J; Netter, P; Minn, A


    We have investigated the effects of mild oxidative conditions on drug-metabolizing enzyme activity in rat cultured astrocytes. These experimental conditions promoting an oxidative environment were obtained by short exposure to a low concentration of menadione (5 microM) for a short duration (15 min). This resulted in the rapid and transient production of reactive oxygen species (+130%), associated with a decrease in GSH cellular content (-24%), and an increase in total protein oxidation (+26%), but promoted neither PGE(2) nor NO production. This treatment induced a rapid and persistent decrease in astrocyte glucuronidation activities, which was totally prevented by N-acetyl-l-cysteine. These oxidative conditions also affected the specific UGT1A6 activity measured in transfected V79-1A6 cells. Finally, the subsequent recovery of astrocyte glucuronidation activity may result from upregulation of UGT1A6 expression (+62%) as shown by RT-PCR and gene reporter assay. These results show that the catalytic properties and expression of cerebral UGT1A6 are highly sensitive to the redox environment. The protective effect of N-acetyl-l-cysteine suggests both a direct action of reactive oxygen species on the protein and a more delayed action on the transcriptional regulation of UGT1A6. These results suggest that cerebral metabolism can be altered by physiological or pathological redox modifications.

  18. β-Lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells.

    Malebari, Azizah M; Greene, Lisa M; Nathwani, Seema M; Fayne, Darren; O'Boyle, Niamh M; Wang, Shu; Twamley, Brendan; Zisterer, Daniela M; Meegan, Mary J


    Glucuronidation by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) is a cause of intrinsic drug resistance in cancer cells. Glucuronidation of combretastatin A-4 (CA-4) was previously identified as a mechanism of resistance in hepatocellular cancer cells. Herein, we propose chemical manipulation of β-lactam bridged analogues of Combretastatin A-4 as a novel means of overcoming drug resistance associated with glucuronidation due to the expression of UGTs in the CA-4 resistant human colon cancer HT-29 cells. The alkene bridge of CA-4 is replaced with a β-lactam ring to circumvent potential isomerisation while the potential sites of glucuronate conjugation are deleted in the novel 3-substituted-1,4-diaryl-2-azetidinone analogues of CA-4. We hypothesise that glucuronidation of CA-4 is the mechanism of drug resistance in HT-29 cells. Ring B thioether containing 2-azetidinone analogues of CA-4 such as 4-(4-(methylthio)phenyl)-3-phenyl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27) and 3-hydroxy-4-(4-(methylthio)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (45) were identified as the most potent inhibitors of tumour cell growth, independent of UGT status, displaying antiproliferative activity in the low nanomolar range. These compounds also disrupted the microtubular structure in MCF-7 and HT-29 cells, and caused G2/M arrest and apoptosis. Taken together, these findings highlight the potential of chemical manipulation as a means of overcoming glucuronidation attributed drug resistance in CA-4 resistant human colon cancer HT-29 cells, allowing the development of therapeutically superior analogues.

  19. Isolation and characterization of a β-glucuronide of hydroxylated SARM S1 produced using a combination of biotransformation and chemical oxidation.

    Rydevik, Axel; Lagojda, Andreas; Thevis, Mario; Bondesson, Ulf; Hedeland, Mikael


    In this study, using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, it has been confirmed that biotransformation with the fungus Cunninghamella elegans combined with chemical oxidation with the free radical tetramethylpiperidinyl-1-oxy (TEMPO) can produce drug glucuronides of β-configuration. Glucuronic acid conjugates are a common type of metabolites formed by the human body. The detection of such conjugates in doping control and other kinds of forensic analysis would be beneficial owing to a decrease in analysis time as hydrolysis can be omitted. However the commercial availability of reference standards for drug glucuronides is poor. The selective androgen receptor modulator (SARM) SARM S1 was incubated with the fungus C. elegans. The sample was treated with the free radical TEMPO oxidizing agent and was thereafter purified by SPE. A glucuronic acid conjugate was isolated using a fraction collector connected to an ultra high performance liquid chromatographic (UHPLC) system. The isolated compound was characterized by NMR spectroscopy and mass spectrometry and its structure was confirmed as a glucuronic acid β-conjugate of hydroxylated SARM S1 bearing the glucuronide moiety on carbon C-10. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7.

    Stone, Andrew N; Mackenzie, Peter I; Galetin, Aleksandra; Houston, J Brian; Miners, John O


    Morphine elimination involves UDP-glucuronosyltransferase (UGT) catalyzed conjugation with glucuronic acid to form morphine 3- and 6-glucuronides (M3G and M6G, respectively). It has been proposed that UGT2B7 is the major enzyme involved in these reactions, but there is evidence to suggest that other isoforms also catalyze morphine glucuronidation in man. Thus, we have characterized the selectivity and kinetics of M3G and M6G formation by recombinant human UGTs. UGT 1A1, 1A3, 1A6, 1A8, 1A9, 1A10, and 2B7 all catalyzed M3G formation, but only UGT2B7 formed M6G. The kinetics of M3G formation by the UGT1A family isoforms was consistent with a single enzyme Michaelis-Menten model, with apparent Km values ranging from 2.6 to 37.4 mM. In contrast, M3G and M6G formation by UGT2B7 exhibited atypical kinetics. The atypical kinetics may be described by a model with high- and low-affinity Km values (0.42 and 8.3 mM for M3G, and 0.97 and 7.4 mM for M6G) from fitting to a biphasic Michaelis-Menten model. However, a multisite model with an interaction between two identical binding sites in a negative cooperative manner provides a more realistic approach to modeling these data. According to this model, the respective binding affinities (Ks) for M3G and M6G were 1.76 and 1.41 mM, respectively. These data suggest that M6G formation may be used as a selective probe for UGT2B7 activity, and morphine glucuronidation by UGT2B7 appears to involve the simultaneous binding of two substrate molecules, highlighting the need for careful analysis of morphine glucuronidation kinetics in vitro.

  1. Human UDP-Glucuronosyltransferase 1A1 is the Primary Enzyme Responsible for the N-glucuronidation of N-hydroxy-PhIP in vitro

    Malfatti, M A; Felton, J S


    UDP-Glucuronosyltransferase 1A proteins (UGT1A) catalyze the glucuronidation of many endogenous and xenobiotic compounds including heterocyclic amines and their hydroxylated metabolites (the main topic of this study). Studies have shown that in humans UGT1A mediated glucuronidation is an important pathway in the detoxification of food-borne carcinogenic heterocyclic amines. The biotransformation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant heterocyclic amine found in cooked meats, is highly dependent on cytochrome P4501A2 hydroxylation followed by UGT catalyzed glucuronidation of the N-hydroxy-PhIP reactive intermediate. To determine which UGT1A proteins are involved in the glucuronidation of N-hydroxy-PhIP, microsomal preparations from baculovirus infected insect cells that express all of the known functional human UGT1A isozymes (UGT1A1, -1A3, -1A4, -1A6, -1A7, -1A8, -1A9, -1A10) were exposed to N-hydroxy-PhIP and the reaction products were isolated by HPLC. All UGT1A proteins except UGT1A6 showed some degree of activity towards N-hydroxy-PhIP. The formation of both N-hydroxy-PhIP-N{sup 2}-glucuronide and N-hydroxy-PhIP-N3-glucuronide was both time and substrate concentration dependent in all the microsomal incubations that showed appreciable activity. UGT1A1 was the most efficient in converting N-hydroxy-PhIP to both conjugates producing 5 times more of the N{sup 2}-conjugate than UGT1A4, the next active UGT, and 286 times more than UGT1A7, the least active UGT. With an apparent Km of 52 {micro}M and a K{sub cat} of 114 min-1, UGT1A1 was also the most catalytically efficient in forming N-hydroxy-PhIP-N{sup 2}-glucuronide. Catalytic constants for UGT1A4, UGT1A8 and UGT1A9 were 52 min-1, 35 min{sup -1} and 3.7 min{sup -1}, respectively. The catalytic efficiency for N-hydroxy-PhIP-N3-glucuronide formation was 8, 10, and 6 times lower for UGT1A1, -1A4, and -1A8, respectively, when compared to the k{sub cat} values for N

  2. Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes.

    Kutsuno, Yuki; Sumida, Kyohei; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi


    Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various endogenous and exogenous substrates. Among 19 functional human UGTs, UGT1A family enzymes largely contribute to the metabolism of clinically used drugs. While the UGT1A locus is conserved in mammals such as humans, mice, and rats, species differences in drug glucuronidation have been reported. Recently, humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) have been developed. To evaluate the usefulness of hUGT1 mice to predict human glucuronidation of drugs, UGT activities, and inhibitory effects on UGTs were examined in liver microsomes of hUGT1 mice as well as in those of wild-type mice and humans. Furosemide acyl-glucuronidation was sigmoidal and best fitted to the Hill equation in hUGT1 mice and human liver microsomes, while it was fitted to the substrate inhibition equation in mouse liver microsomes. Kinetic parameters of furosemide glucuronidation were very similar between hUGT1 mice and human liver microsomes. The kinetics of S-naproxen acyl-glucuronidation and inhibitory effects of compounds on furosemide glucuronidation in hUGT1 liver microsomes were also slightly, but similar to those in human liver microsomes, rather than in wild-type mice. While wild-type mice lack imipramine and trifluoperazine N-glucuronidation potential, hUGT1 mice showed comparable N-glucuronidation activity to that of humans. Our data indicate that hUGT1 mice are promising tools to predict not only in vivo human drug glucuronidation but also potential drug-drug interactions.

  3. The Impact of Glucuronidation on the Bioactivation and DNA Adduction of the Cooked-Food Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in vivo

    Malfatti, M A; Ubick, E A; Felton, J S


    UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of many different chemicals. Glucuronidation is especially important for detoxifying reactive intermediates from metabolic reactions, which otherwise can be biotransformed into highly reactive cytotoxic or carcinogenic species. Detoxification of certain food-borne carcinogenic heterocyclic amines (HAs) is highly dependent on UGT1A-mediated glucuronidation. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant carcinogenic HA found in well-done cooked meat, is extensively glucuronidated by UGT1A proteins. In humans, CYP1A2 catalyzed N-hydroxylation and subsequent UGT1A-mediated glucuronidation is a dominant pathway in the metabolism of PhIP. Therefore, changes in glucuronidation rates could significantly alter PhIP metabolism. To determine the importance of UGT1A-mediated glucuronidation in the biotransformation of PhIP, UGT1A proficient Wistar and UGT1A deficient Gunn rats were exposed to a single 100 {micro}g/kg oral dose of [{sup 14}C]-PhIP. Urine was collected over 24 h and the PhIP urinary metabolite profiles were compared between the two strains. After the 24 h exposure, livers and colon were removed and analyzed for DNA adduct formation by accelerator mass spectrometry. Wistar rats produced several PhIP and N-hydroxy-PhIP glucuronides that accounted for {approx}25% of the total amount of recovered urinary metabolites. In the Gunn rats, PhIP and N-hydroxy-PhIP glucuronides were reduced by 68-92%, compared to the Wistar rats, and comprised only 4% of the total amount of recovered urinary metabolites. PhIP-DNA adduct analysis from the Gunn rats revealed a correlation between reduced PhIP and N-hydroxy-PhIP glucuronide levels in the urine and increased hepatic DNA adducts, compared to the Wistar rats. These results indicate that UGT1A-mediated glucuronidation of PhIP and N-hydroxy-PhIP is an important pathway for PhIP detoxification. Failure to form glucuronide conjugates

  4. Androstanediol glucuronide isomers in normal men and women and in men infused with labeled dihydrotestosterone

    Rittmaster, R.S.; Thompson, D.L.; Listwak, S.; Loriaux, D.L.


    3 alpha-Androstanediol glucuronide (Adiol G) is a major metabolite of dihydrotestosterone (DHT). Adiol G actually represents 2 different compounds, since the glucuronide can be conjugated at the 3-carbon position (Adiol 3-G) or at the 17-carbon position (Adiol 17-G). To determine which glucuronide represents the predominant physiological DHT metabolite and which isomer is the major circulating form, we developed a RIA to directly measure Adiol 3-G in serum extracts. In 10 normal men, mean serum Adiol 3-G and total Adiol G levels were 4.44 +/- 0.49 (+/- SE) nmol/L (208 +/- 23 ng/dL) and 27.9 +/- 2.8 nmol/L (1310 +/- 129 ng/dL), respectively (13.9 +/- 3.0% of Adiol G was Adiol 3-G). In 10 normal women sampled during the early follicular phase, mean serum Adiol 3-G and total Adiol G levels were 2.64 +/- 0.64 nmol/L (124 +/- 30 ng/dL) and 14.9 +/- 1.5 nmol/L (697 +/- 69 ng/dL), respectively (17.4 +/- 3.6% of Adiol G was Adiol 3-G). In 4 normal men infused for 8 h with tritiated DHT, 17.4 +/- 3.4% of the resulting tritiated Adiol G was Adiol 3-G. These results indicate that Adiol 17-G is the predominant circulating form of Adiol G in normal men and women and that it is also the major Adiol G isomer derived from DHT.

  5. [Glucuronidation of antitumour therapeutics--detoxification, mechanism of resistance or prodrug formation?].

    Mróz, Anna; Mazerska, Zofia


    The physiological role of phase I and II of xenobiotic biotransformations is their detoxification and better excretion outside the organism. UDP-glucuronosyltransferases (UGTs) being the enzymes of phase II metabolism catalyse the conjugation of glucuronic acid to the lipophilic substrate by its specific nucleophilic group. UGT isoenzymes of various substrate specificities and different expression profiles in selected tissues belong to the large UGT superfamily. Usually, glucuronidation is the detoxification process, but sometimes (morphine, tamoxifen) glucuronides express biological activity higher than or comparable to the native compound. The level of UGT gene expression is individual for patients, because of their genetic status as well as epigenetic conditions. Also, xenobiotics are able to modulate UGT level and gene expression by the interaction with nuclear receptors. Moreover, one can find a lower level of UGT in the tumour compared to normal tissue, which results in the protection against deactivation of the drug and in the promotion of its selective activity in tumor tissue. On the other hand, UGT activity is considered as the possible cause of resistance to chemotherapy. Metabolism by hepatic and intestinal UGT isoenzymes is responsible for the "first-pass effect", whereas acquired resistance consists in the induction of UGT gene expression by the chemotherapeutic or its metabolite. Moreover, UGT induction can be associated with the induction of membrane transporters, particularly proteins of the ABC family, responsible for drug excretion outside the cell. The above resistance effects can be fortified by the overexpression of selected UGT isoenzymes sometimes observed in specific types of tumours. It is also considered that many advanced tumours are characterized by a higher level of β-glucuronidase. This enzyme has a chance to be the molecular target of directed antitumour therapy, as it catalyses β-glucuronide hydrolysis, leading to active aglycones.

  6. Glucuronidation of the oxidative cytochrome P450-mediated phenolic metabolites of the endocrine disruptor pesticide: methoxychlor by human hepatic UDP-glucuronosyl transferases.

    Hazai, Eszter; Gagne, Peter V; Kupfer, David


    Methoxychlor, a currently used pesticide, is a proestrogen exhibiting estrogenic activity in mammals in vivo. Methoxychlor undergoes oxidative metabolism by cytochromes P450, yielding 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M) and 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane (bis-OH-M) as main metabolites. Since humans may be exposed to these estrogenic metabolites, which are potential substrates of UDP-glucuronosyltransferases (UGTs), their glucuronide conjugation was investigated with human liver preparations and individual UGTs. Incubation of both mono-OH-M and bis-OH-M with human liver microsomes formed monoglucuronides. The structures of the glucuronides were identified by liquid chromatography/tandem mass spectometry. Examination of cDNA-expressed recombinant human hepatic UGTs revealed that several catalyze glucuronidation of both compounds. Among the cDNA-expressed UGT1A enzymes, UGT1A9 seemed to be the main catalyst of formation of mono-OH-M-glucuronide, whereas UGT1A3 seemed to be the most active in bis-OH-M-glucuronide formation. Furthermore, the chiral selectivity of mono-OH-M glucuronidation was examined. The results of the incubation of single enantiomers generally agreed with the chiral analyses of mono-OH-M derived from the glucuronidase digestion of the glucuronides of the racemic mono-OH-M. There was a relatively slight but consistent enantioselective preference of individual UGT1A1, UGT1A3, UGT1A9, and UGT2B15 enzymes for glucuronidation of the S- over the R-mono-OH-M, whereas in human liver microsomes differences were observed among donors in generating the respective R/S-mono-OH-M ratio. Since it was previously shown that human liver microsomes demethylate methoxychlor mainly into S-mono-OH-M, the observation that UGT1A isoforms preferentially glucuronidate the S-mono-OH-M suggests a suitable mechanism for eliminating this major enantiomer. This enantiomeric preference, however, is not extended to all samples of

  7. Cross-reactivity of some commercially available DON and ZEN immunoaffinity columns to DON and ZEN conjugated forms and metabolites

    Versilovskis, Aleksandrs; Huybrecht, Bart; Tangni, Emmanuel K; Luc, Pussemier; De Saeger, Sarah; Callebaut, Alfons


    Abstract Abstract Seven commercially available deoxynivalenol (DON) and zearalenone (ZEN) immunoaffinity columns (IACs) were tested for cross-reactivity to conjugated forms (3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, DON-3-glucoside, DON-3-glucuronide, ZEN-glucosides, ZEN-glucuronide) and metabolites (de-epoxydeoxynivalenol, ?-zearalenol, ?-zearalenol) and nivalenol (NIV), using a semi-quantitative multi-mycotoxin ultra performance liquid chromatography ? tandem ...


    Jungong, Christian S.; Novikov, Alexei V.


    A practical synthesis of resveratrol 3-O-β-D-glucuronide, suitable for preparation of large quantities, was developed using selective deacetylation of resveratrol triacetate with ammonium acetate. A simplified procedure for large scale preparation of resveratrol is also reported.


    Jungong, Christian S.; Novikov, Alexei V.


    A practical synthesis of resveratrol 3-O-β-D-glucuronide, suitable for preparation of large quantities, was developed using selective deacetylation of resveratrol triacetate with ammonium acetate. A simplified procedure for large scale preparation of resveratrol is also reported.




    Monitoring of ovulation is necessary for induction of ovulation in clinical trials. Bakerfound that the conoentration of estrogen glucuronides was high in female urine and devel-oped a RIA method for direct measurment. Adlevcrefutz and some other five groups

  11. Influence of dosage forms on pharmacokinetics of daidzein and its main metabolite daidzein-7-O-glucuronide in rats

    Feng QIU; Xiao-yan CHEN; Bo SONG; Da-fang ZHONG; Chang-xiao LIU


    Aim: To investigate the influence of dosage forms on the pharmacokinetics of daidzein and its main metabolite daidzein-7-O-glucuronide in Wistar rats. Methods:After administration of two typical dosage forms (daidzein solution and suspension), the concentrations of daidzein and daidzein-7-O-glucuronide were determined by an LC-MS-MS method. The pharmacokinetic parameters were calculated and analyzed statistically using the Student's t-test. Results: Absorption of daidzein after administration of daidzein solution (truax=0.46 h) was more rapid than that of the suspension (tmax=5.00 h). The peak plasma concentrations of daidzein after administration of daidzein solution and suspension were 601.1 μg/L and 127.3 μg/L, respectively, and those of daidzein-7-O-glucuronide were 3000 μg/L and 192.6 μg/L, respectively. The absolute bioavailabilities of free daidzein in rats after administration of daidzein solution and suspension were 12.8% and 6.1%, respectively, which were calculated to be 47.0% and 12.2%, respectively, in the form of total daidzein (free plus conjugated daidzein). Conclusion: Absorption of daidzein solution was better than absorption of suspension (P<0.05).

  12. Effect of MK-906, a specific 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates in normal men.

    Rittmaster, R S; Stoner, E; Thompson, D L; Nance, D; Lasseter, K C


    To determine the hormonal effects of MK-906, an orally active 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates, 12 healthy men were given 10, 20, 50, and 100 mg MK-906 2 weeks apart in randomized order in a 4-period crossover design. Serum testosterone (T), dihydrotestosterone (DHT), androstanediol glucuronide, and androsterone glucuronide were measured before and 24 hours after each dose. The effect of MK-906 on glucuronyl transferase activity, the enzyme responsible for androstanediol glucuronide and androsterone glucuronide formation, was assessed in vitro using rat prostate tissue. Serum T levels were unchanged after all doses. Serum DHT, androstanediol glucuronide, and androsterone glucuronide were suppressed by 70, 40, and 56%, respectively, after the 10-mg dose, and by 82, 52, and 66% after the 100-mg dose (P less than 0.02 for the comparison between the 10 and 100-mg doses for all three steroids), respectively. Baseline serum T and DHT levels were strongly correlated (R = 0.89, P = 0.0002), as were androstanediol glucuronide and androsterone glucuronide levels (R = 0.78, P = 0.003), but there was no correlation between DHT levels and the levels of either conjugated steroid. MK-906 had no effect on glucuronyl transferase activity in vitro. It was concluded that single doses of MK-906 suppress both conjugated and unconjugated 5 alpha-reduced androgens. While all three steroids appeared to be good markers of systemic 5 alpha-reductase inhibition, further research will be needed to determine which steroid best reflects tissue DHT levels in patients receiving these inhibitors.

  13. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari


    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI).

  14. In vitro biological properties of flavonoid conjugates found in vivo.

    Williamson, G; Barron, D; Shimoi, K; Terao, J


    For some flavonoids such as quercetin, isoflavones and catechins, the pathways of absorption and metabolism are now reasonably well characterised and understood. By definition, for biological activity of flavonoids to be manifest, the target tissue, which includes the blood and vascular system, must respond to the form(s) of flavonoid that it encounters. Bioavailability studies have shown that the circulating form of most flavonoids is as conjugates, with a few notable exceptions. There have been several recent papers on the in vitro biological properties of conjugates that have been found in vivo. This paper reviews the properties of these conjugates. Most of the information currently available is on quercetin glucuronides, but also on isoflavone and catechin conjugates. In addition to the biological properties of the conjugates, the partition coefficients and methods of synthesis are also presented.

  15. A rapid and specific derivatization procedure to identify acyl-glucuronides by mass spectrometry.

    Vaz, Alfin D N; Wang, Wei Wei; Bessire, Andrew J; Sharma, Raman; Hagen, Anne E


    A simple procedure is described to identify acyl-glucuronides by coupled liquid chromatography/mass spectrometry after derivatization to a hydroxamic acid with hydroxylamine. The reaction specificity obviates the need for isolation of the acyl-glucuronide from an extract. Glucuronides derived from carbamic acids, and alkyl- and aromatic amines, are inert to the derivatization reaction conditions, making the hydroxamic acid derivative a fingerprint for acyl-glucuronides.

  16. The Uptake by Plants of Diethylstilboestrol and of Its Glucuronide

    Gregers Hansen, B.


    The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments. It is con......The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments...

  17. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    Zhu, Liangliang; Xiao, Ling [The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011 (China); Xia, Yangliu [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou, Kun [College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600 (China); Wang, Huili; Huang, Minyi [The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011 (China); Ge, Guangbo, E-mail: [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Wu, Yan; Wu, Ganlin [The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011 (China); Yang, Ling, E-mail: [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)


    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0–6.25 μM), K{sub m} values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V{sub max} values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V{sub max} from 0.016 to 0.81 nmol/min/mg, while lifting K{sub m} in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K{sub A}, α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via activating the

  18. Effect of pregnancy or treatment with ethinylestradiol or phenobarbital on the glucuronidation of. beta. -estradiol at the C/sub 3/-OH vs C/sub 17/-OH in female rat liver microsomes

    Connors, M.S.


    The glucuronidation of (/sup 3/H)-estradiol-17..beta.. (E/sub 2/) at the C/sub 3/ vs the C/sub 17/ hydroxyl groups was determined in female Sprague-Dawley rat liver microsomes. An HPLC method was developed to resolve the glucuronide conjugates which were then quantitated by liquid scintillation counting. The rates of formation of 17..beta..-estradiol 3-(..beta..-D-glucuronide) (E/sub 2/3G) and ..beta..-estradiol 17-(..beta..-D-glucuronide) (E/sub 2/17G) were 0.49 +- 0.03 and 0.40 +- 0.02 nmolminmg protein respectively. The apparent K/sub m/ and V/sub max/ of E/sub 2/ glucuronidation were determined in control, pregnant (day 19 of gestation), phenobarbital treated (PB; 80 mgkgday ip for 5 days) and ethinylestradiol treated (EE/sub 2/; 5 mgkgday ip for 5 days) female rats. Two methods were chosen for data analysis and the validity of these methods was compared. The least squares estimates of K/sub m/ and V/sub max/ values as well as the confidence contours of the joint sums of squares for the parameter spaces were calculated

  19. The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs.

    Uchaipichat, Verawan; Suthisisang, Chuthamanee; Miners, John O


    The widely used hypnosedative-anxiolytic agent R,S-lorazepam is cleared predominantly by conjugation with glucuronic acid in humans, but the enantioselective glucuronidation of lorazepam has received little attention. The present study characterized the kinetics of the separate R and S enantiomers of lorazepam by human liver microsomes (HLMs) and by a panel of recombinant human UDP-glucuronosyltransferase (UGT) enzymes. Respective mean K(m) and V(max) values for R- and S-lorazepam glucuronidation by HLM were 29 ± 8.9 and 36 ± 10 µM, and 7.4 ± 1.9 and 10 ± 3.8 pmol/min ⋅ mg. Microsomal intrinsic clearances were not significantly different, suggesting the in vivo clearances of R- and S-lorazepam are likely to be similar. Both R- and S-lorazepam were glucuronidated by UGT2B4, 2B7, and 2B15, whereas R-lorazepam was additionally metabolized by the extrahepatic enzymes UGT1A7 and 1A10. Based on in vitro clearances and consideration of available in vivo and in vitro data, UGT2B15 is likely to play an important role in the glucuronidation of R- and S-lorazepam. However, the possible contribution of other enzymes and the low activities observed in vitro indicate that the lorazepam enantiomers are of limited use as substrate probes for UGT2B15. To identify potential drug-drug interactions, codeine, fluconazole, ketamine, ketoconazole, methadone, morphine, valproic acid, and zidovudine were screened as inhibitors of R- and S-lorazepam glucuronidation by HLM. In vitro-in vivo extrapolation suggested that, of these drugs, only ketoconazole had the potential to inhibit lorazepam clearance to a clinically significant extent.

  20. Ethyl glucuronide and ethyl sulfate in autopsy samples 27 years after death.

    Politi, Lucia; Morini, Luca; Mari, Francesco; Groppi, Angelo; Bertol, Elisabetta


    The unique case of a 50-year-old known alcoholic whose corpse was exhumed 27 years after death is reported. The man apparently committed suicide by hanging, but many years later the case was questioned and homicide-linked to a long-lasting serial killer case-was suspected. Thus, the corpse was exhumed, and at the autopsy it was found to be naturally mummified. This fact permitted the analysis of body tissues with the aim to investigate the persistence of ethanol conjugates in the biological material 27 years after death. Fragments of liver and kidney, a blood clot, and a hair strand were collected and submitted to liquid chromatography tandem mass spectrometry analysis. Ethyl glucuronide (EtG) and ethyl sulfate (EtS) were identified and quantified in the liver, the kidney, and the blood clot. Hair analysis was found to be severely affected by ion suppression even after solid phase extraction. Consequently, EtG was identified in all hair segments (0-3 cm, 3-6 cm, and 6-10 cm), but no reliable quantification could be carried out. In summary, our findings demonstrate that, notwithstanding the expected conjugate degradation, EtG and EtS can be indicative of ante-mortem use of alcohol even many years after death.

  1. Medicinal chemistry of drugs with active metabolites following conjugation.

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia


    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  2. Expanding analytical possibilities concerning the detection of stanozolol misuse by means of high resolution/high accuracy mass spectrometric detection of stanozolol glucuronides in human sports drug testing.

    Schänzer, Wilhelm; Guddat, Sven; Thomas, Andreas; Opfermann, Georg; Geyer, Hans; Thevis, Mario


    Anabolic-androgenic steroids (AAS) represent one of the most frequently detected classes of prohibited substances in doping controls. Due to their long-lasting beneficial effects on athletic performance, utmost retrospectivity via urine analysis is desirable and accomplished by targeting long-term metabolites of the respective drugs. In case of stanozolol, a substantial variety of metabolites has enabled the identification of numerous adverse analytical findings in the past, and recent studies concerning complementary phase-I and phase-II metabolites has further expanded the windows of opportunity for detecting the abuse of stanozolol. In this study, the utility of liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry (LC-MS/MS) for the detection of 3'-OH-stanozolol glucuronide in sports drug testing is presented and the identification of two additional and so far unreported metabolites is shown. The structures of the complementary glucuronic acid conjugates were attributed to stanozolol-N-glucuronide and 17-epistanozolol-N-glucuronide. By means of chemical synthesis, stanozolol-N-glucuronide was prepared and used to corroborate the suggested structures. The 3'-OH-stanozolol glucuronide and the newly identified target compounds were implemented into routine sports drug test assays consisting of direct injection LC-MS/MS or solid-phase extraction (SPE) followed by LC-MS/MS. A considerably expanded detection window for stanozolol abuse was demonstrated compared to the use of conventional phase-I metabolites and methodologies based on, for example, low resolution LC-MS/MS or gas chromatography-tandem mass spectrometry (GC-MS/MS). The commercial availability of 3'-OH-stanozolol glucuronide has been of great value for confirmatory purposes, and 17-epistanozolol-N-glucuronide was found to be a favourable long-term metabolite for doping controls as it was observed up to 28 days post-administration of the drug. Applying the established




    In this report we describe the conditions of collection, storage and handling of urine samples, collected after oral dosing with indometacin in man, in order to maintain the integrity of the labile glucuronide formed. We found that the body clearance occurs predominantly by renal metabolism, due to

  4. Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children.

    Lee, K.H.; Vermeulen, R.C.H.; Lenters, V.C.; Cho, S.H.; Strickland, P.; Kang, D.


    OBJECTIVES: This study was conducted to investigate the dominant sources of the urinary pyrene metabolite, 1-hydroxypyrene glucuronide (1-OHPG), in South Korean children. METHODS: Urine samples were collected from 102 non-smoking children (aged 10-14). Urinary 1-OHPG was assayed by synchronous fluor

  5. Stereoselective glucuronidation of carvedilol by Chinese liver microsomes


    Objective: To study the stereoselective glucuronidation of carvedilol (CARV) by three Chinese liver microsomes.Methods: The metabolites of CARV were identified by a hydrolysis reaction with β-glucuronidase and HPLC-MS/MS. The enzyme kinetics for CARV enantiomers glucuronidation was determined by a reversed phase-high pressure liquid chromatography (RP-HPLC) assay using (S)-propafenone as internal standard after precolumn derivatization with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylisothiocyanate. Results: Two CARV glucuronides were found in three Chinese liver microsomes incubated with CARV. The non-linear regression analysis showed that the values of Km and Vmax for (S)-CARV and (R)-CARV enantiomers were (118±44) μmol/L, (2 500±833) pmol/( protein) and (24±7) μmol/L, (953+399) pmol/( protein),respectively. Conclusion: These results suggested that there was a significant (P<0.05) stereoselective glucuronidation of CARV enantiomers in three Chinese liver microsomes, which might partly explain the enantioselective pharmacokinetics of CARV.

  6. A New Glucuronidated Metabolite of Andrographolide in Human

    Liang CUI; Feng QIU; Nai Li WANG; Xin Sheng YAO


    A new andrographolide metabolite 1 was isolated from human urine samples after oral administration. The structure was determined to be 3-carbonylandrographolide-19-O-β-D-glucuronide on the basis of chemical evidences and spectral analysis, especially by 2D-NMR techniques.

  7. Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children.

    Lee, K.H.; Vermeulen, R.C.H.; Lenters, V.C.; Cho, S.H.; Strickland, P.; Kang, D.


    OBJECTIVES: This study was conducted to investigate the dominant sources of the urinary pyrene metabolite, 1-hydroxypyrene glucuronide (1-OHPG), in South Korean children. METHODS: Urine samples were collected from 102 non-smoking children (aged 10-14). Urinary 1-OHPG was assayed by synchronous fluor

  8. Blood-brain distribution of morphine-6-glucuronide in sheep

    Villesen, H H; Foster, D J R; Upton, R N;


    At present there are few data regarding the rate and extent of brain-blood partitioning of the opioid active metabolite of morphine, morphine-6-glucuronide (M6G). In this study the cerebral kinetics of M6G were determined, after a short-term intravenous infusion, in chronically instrumented consc...

  9. Skin of the male African catfish, Clarias gariepinus: a source of steroid glucuronides

    Ali, S.A.; Schoonen, W.G.; Lambert, J.G.; Van den Hurk, R.; Van Oordt, P.G.


    Steroid metabolism in the skin of mature male African catfish, Clarias gariepinus, reared in the laboratory, was studied in vitro by tissue incubations with (/sup 3/H)pregnenolone, (/sup 3/H)dehydroepiandrosterone, (/sup 3/H)17 alpha-hydroxyprogesterone, (/sup 3/H)androstenedione, (/sup 14/C)11 beta-hydroxyandrostenedione, and (/sup 3/H)testosterone as precursors. While pregnenolone was not converted to any other steroid, dehydroepiandrosterone was transformed mainly to 5-androstene-3 beta, 17 beta-diol. The products of 17 alpha-hydroxyprogesterone incubations were 5 beta-pregnane-3 alpha,17 alpha-diol-20-one, 5 beta-pregnane-3 alpha,17 alpha, 20 beta-triol, and 5 beta-pregnan-17 alpha-o1-3,20-dione. The major steroids of androstenedione incubations were etiocholanolone, testosterone, and androsterone. Testosterone was converted mainly to etiocholanolone and androstenedione, and only small quantities of 11 beta-hydroxytestosterone, 11-ketotestosterone, and 11-ketoandrostenedione were the metabolites found in 11 beta-hydroxyandrostenedione incubation. These results demonstrated the presence of the enzymes 5 alpha- and 5 beta-reductases and 3 alpha-, 11 beta-, 17 beta-, and 20 beta-hydroxysteroid dehydrogenases in the skin. From enzymehistochemical results it appeared that the steroid conversions take place in the epithelial cells. Moreover, the presence of UDP-glucose dehydrogenase, an enzyme involved in the synthesis of glucuronic acid, in these cells indicates the possibility of steroid glucuronide formation. Indeed significant amounts of water-soluble steroid conjugates, particularly 5 beta-dihydrotestosterone- and testosterone-glucuronide, were found in the incubations with androstenedione and testosterone, indicating the presence of the UDP-glucuronosyl transferase in the catfish skin.

  10. Investigation on possible transformations of cortisol, cortisone and cortisol glucuronide in bovine faecal matter using liquid chromatography-mass spectrometry.

    Arioli, Francesco; Fidani, Marco; Casati, Alessio; Fracchiolla, Maria L; Pompa, Giuseppe


    Given the close resemblance of the ring A structure of prednisolone and prednisone on the one hand, and of androstadienedione on the other, the transformation of cortisol and cortisone into prednisolone and prednisone in cattle faeces was evaluated. A simple method that does not involve extraction but only the 1:100 dilution of cattle faeces, spiking with 400ng/mL cortisol, cortisone or cortisol glucuronide and incubation of the suspension, was used. The analyses were performed by HPLC-MS(3) to detect the supposed Delta(1) dehydrogenation of the glucocorticoids. The decision limits (CCalpha) and detection capabilities (CCbeta) were 2.0 and 3.0ng/mL for cortisol, cortisone and prednisolone, 3.0 and 4.0ng/mL for cortisol glucuronide and 7.0 and 10.0ng/mL for prednisone, respectively. Intra-day and inter-day coefficients of variation (CV%), were 5.6-6.2 and 5.2-6.6 for cortisol glucuronide, cortisol, cortisone and prednisolone, and 16.0 and 16.2 for prednisone, respectively. The recoveries were in the range 110-143% for all analytes. Regression coefficients (R2) were in the range 0.996-0.999 for all analytes. The results show the hydrolysis of the conjugated form and the dehydrogenation in ring A in diluted faeces. It is therefore predicted that urine contaminated with faeces may be positive for prednisone and prednisolone in the same way as they are positive for boldenone, i.e. as a result of microbiological dehydrogenase activity on cortisol and cortisone.

  11. In vivo biological evaluation of {sup 131}I radiolabeled-paclitaxel glucuronide ({sup 131}I-PAC-G)

    Aslan, O.; Biber Muftuler, F.Z.; Yurt Kilcar, A.; Ichedef, C.; Unak, P. [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications


    Paclitaxel (PAC) is a natural occurring diterpene alkoloid originally isolated from the bark of Taxus Brevifolia. It is one of the most important antitumor agents for clinical treatment of ovarian, breast non-small cell lung and prostate cancers. It is known that these types of cancer cells have high {beta}-glucuronidase enzyme which can catalyze the hydrolysis of glucuronides. This is why the synthesis compounds which undergo glucuronidation come into question in the imaging and therapy of these cancer cells. The aim of current study is conjugation of glucuronic acid (G) to the starting substance PAC, labeling with {sup 131}I and to perform its in vivo biological evaluation. Glucuronic acid derived paclitaxel compound [paclitaxel-glucuronide (PAC-G)] was labeled with {sup 131}I using iodogen method. According to thin layer radio chromatography (TLRC) method, the radiochemical yield of {sup 131}I-PAC-G was 84.30 {+-} 7.40% (n=10). The biodistribution of {sup 131}I-PAC-G in healthy female and male Wistar Albino rats has been investigated. Imaging studies on male Balb-C mice were performed by using the Kodak FX PRO in vivo Imaging System. The range of the breast/blood, breast/muscle; ovary/blood, ovary/muscle ratios is approximately between 1.29 and 11.34 in 240 min, and between 0.71 and 8.24 in 240 min for female rats. The prostate/blood and prostate/muscle ratio is between 1.94 and 6.95 in 30 min for male rats. All these experimental studies indicate that {sup 131}I-PAC-G may potentially be used in breast, ovary and prostate tissues as an imaging agent. Also it is thought that {sup 131}I-PAC-G bears a therapy potential because of the {sup 131}I radionuclide and can be improved with further investigations. (orig.)

  12. Glucuronidation of zearalenone, zeranol and four metabolites in vitro: formation of glucuronides by various microsomes and human UDP-glucuronosyltransferase isoforms.

    Pfeiffer, Erika; Hildebrand, Andreas; Mikula, Hannes; Metzler, Manfred


    Glucuronidation constitutes an important pathway in the phase II metabolism of the mycotoxin zearalenone (ZEN) and the growth promotor α-zearalanol (α-ZAL, zeranol), but the enzymology of their formation is yet unknown. In the present study, ZEN, α-ZAL and four of their major phase I metabolites were glucuronidated in vitro using hepatic microsomes from steer, pig, rat and human, intestinal microsomes from humans, and eleven recombinant human UDP-glucuronosyltransferases (UGTs). After assigning chemical structures to the various glucuronides by using previously published information, the enzymatic activities of the various microsomes and UGT isoforms were determined together with the patterns of glucuronides generated. All six compounds were good substrates for all microsomes studied. With very few exceptions, glucuronidation occurred preferentially at the sterically unhindered phenolic 14-hydroxyl group. UGT1A1, 1A3 and 1A8 had the highest activities and gave rise to the phenolic glucuronide, whereas glucuronidation of the aliphatic hydroxyl group was mostly mediated by UGT2B7 with low activity. Based on these in vitro data, ZEN, α-ZAL and their metabolites must be expected to be readily glucuronidated both in the liver and intestine as well as in other extrahepatic organs of humans and various animal species.

  13. In vitro glucuronidation of the primary metabolite of 10-chloromethyl-11-demethyl-12-oxo-calanolide A by human liver microsomes and its interactions with UDP-glucuronosyltransferase substrates.

    Liu, Xin; Sheng, Li; Zhao, Manman; Mi, Jiaqi; Liu, Zhihao; Li, Yan


    F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide), an analog of (+)-Calanolide A, is a novel small-molecule nonnucleoside reverse transcriptase inhibitor for the therapy of human immunodeficiency virus (HIV) infection. M3, the most abundant primary metabolite of F18 in human liver microsomes (HLMs) and rat liver microsomes (RLMs), is mainly excreted in bile as a glucuronide conjugate in rats after oral administration. The aim of this study was to identify the UDP glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of M3 by HLMs and recombinant human UGTs and investigate the metabolic interactions of M3 with the substrates of UGTs in HLMs. As a result, UGT1A1 was the major isozyme responsible for the glucuronidation of M3, followed by UGT1A4, UGT1A9 and UGT2B7. M3 exhibited significant inhibition against UGT1A9 and UGT2B7 in both HLMs and recombinant human UGTs. In addition, M3 inhibited UGT1A9 catalyzed mycophenolic acid (MPA) glucuronidation with Ki of 0.39 μM, and M3 also inhibited the glucuronidation of 3'-azido-3'-deoxythymidine (AZT) by a "mixed-type" mechanism with Ki of 16.8 μM. The results suggest that UGT1A1 provides the major contribution to M3 glucuronidation in vitro and M3 has the potential to interact with xenobiotics and endogenous chemicals that are UGT1A9 and UGT 2B7 substrates.




    Full Text Available This study describes the in vitro degradation studies of the diastereomeric ketoprofen glucuronides, under physiological conditions (pH 7.4, 37°C, (R-ketoprofen glucuronide t½ = 30 min, (S-ketoprofen glucuronide t½ = 70 min and the irreversible binding of diastereomeric ketoprofen glucuronides (15 μg/ml to human serum albumin (HSA (289 μM and human plasma under physiological conditions (pH 7.4, 37ºC. The (R-ketoprofen glucuronide irreversibly bound to a greater extent in both human plasma and human serum albumin. This is the reverse to that found in previous studies. These findings further support the hypothesis that faster degradation of 1-O-acyl glucuronide (in this case the (R-diastereomer is associated with a greater extent of irreversible binding.

  15. Species-Associated Differences in the Inhibition of Propofol Glucuronidation by Magnolol


    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and...

  16. Glucuronidation of edaravone by human liver and kidney microsomes: biphasic kinetics and identification of UGT1A9 as the major UDP-glucuronosyltransferase isoform.

    Ma, Liping; Sun, Jianguo; Peng, Ying; Zhang, Rong; Shao, Feng; Hu, Xiaoling; Zhu, Jianping; Wang, Xiaojin; Cheng, Xuefang; Zhu, Yinci; Wan, Ping; Feng, Dong; Wu, Hui; Wang, Guangji


    Edaravone was launched in Japan in 2001 and was the first neuroprotectant developed for the treatment of acute cerebral infarction. Edaravone is mainly eliminated as glucuronide conjugate in human urine (approximately 70%), but the mechanism involved in the elimination pathway remains unidentified. We investigated the glucuronidation of edaravone in human liver microsomes (HLM) and human kidney microsomes (HKM) and identified the major hepatic and renal UDP-glucuronosyltransferases (UGTs) involved. As we observed, edaravone glucuronidation in HLM and HKM exhibited biphasic kinetics. The intrinsic clearance of glucuronidation at high-affinity phase (CL(int1)) and low-affinity phase (CL(int2)) were 8.4 ± 3.3 and 1.3 ± 0.2 μl · min(-1) · mg(-1), respectively, for HLM and were 45.3 ± 8.2 and 1.8 ± 0.1 μl · min(-1) · mg(-1), respectively, for HKM. However, in microsomal incubations contained with 2% bovine serum albumin, CL(int1) and CL(int2) were 16.4 ± 1.2 and 3.7 ± 0.3 μl · min(-1) · mg(-1), respectively, for HLM and were 78.5 ± 3.9 and 3.6 ± 0.5 μl · min(-1) · mg(-1), respectively, for HKM. Screening with 12 recombinant UGTs indicated that eight UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B17) produced a significant amount of glucuronide metabolite. Thus, six UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A9, UGT2B7, and UGT2B17) expressed in human liver or kidney were selected for kinetic studies. Among them, UGT1A9 exhibited the highest activity (CL(int1) = 42.4 ± 9.5 μl · min(-1) · mg(-1)), followed by UGT2B17 (CL(int) = 3.3 ± 0.4 μl · min(-1) · mg(-1)) and UGT1A7 (CL(int) = 1.7 ± 0.2 μl · min(-1) · mg(-1)). Inhibition study found that inhibitor of UGT1A9 (propofol) attenuated edaravone glucuronidation in HLM and HKM. In addition, edaravone glucuronidation in a panel of seven HLM was significantly correlated (r = 0.9340, p = 0.0021) with propofol glucuronidation. Results indicated that UGT1A9 was the main UGT isoform

  17. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A.

    Gauderat, Glenn; Picard-Hagen, Nicole; Toutain, Pierre-Louis; Corbel, Tanguy; Viguié, Catherine; Puel, Sylvie; Lacroix, Marlène Z; Mindeguia, Pierre; Bousquet-Melou, Alain; Gayrard, Véronique


    Previous studies in experimental animals have shown that maternal exposure to bisphenol A (BPA) during late pregnancy leads to high plasma concentrations of BPA glucuronide (BPAG) in fetus compared to mother due to the inability of BPAG to cross the placental barrier. A recent in vitro study has reported that BPAG can exert adipogenic effect underlining the need for characterization of the fetal disposition of BPAG. Experiments were conducted in chronically catheterized fetal sheep to determine the contribution of BPAG hydrolysis to BPA to the elimination of BPAG from the fetal compartment and its resulting effect on the overall fetal exposure to free BPA. Serial sampling of fetal arterial blood, amniotic fluid, maternal venous blood and urine was performed following separate single doses of BPA and BPAG administered intravenously to eight fetal/maternal pairs after cesarean section, and repeated BPAG doses given to two fetal sheep. On average 67% of the BPA entering the fetal circulation was rapidly eliminated through fetal to maternal clearance, with a very short half-life (20 min), while the remaining fraction (24%) was glucuronoconjugated. BPA conjugation-deconjugation cycling was responsible for a 43% increase of the overall fetal exposure to free BPA. A very specific pattern of fetal exposure to free BPA was observed due to its highly increased persistence with a hydrolysis-dependent plasma terminal free BPA half-life of several tens of hours. These findings suggest that although the high fetal to maternal clearance of free BPA protects the fetus from transient increases in free BPA plasma concentrations associated with maternal BPA intake, low but sustained basal free BPA concentrations are maintained in the fetus through BPA conjugation-deconjugation cycling. The potential health implications of these low but sustained basal concentrations of free BPA in fetal plasma should be addressed especially when considering time-dependent effects.

  18. Influence of Gilbert's syndrome on the formation of ethyl glucuronide.

    Huppertz, Laura M; Gunsilius, Leonie; Lardi, Christelle; Weinmann, Wolfgang; Thierauf-Emberger, Annette


    A drinking experiment with participants suffering from Gilbert's syndrome was performed to study the possible influence of this glucuronidation disorder on the formation of ethyl glucuronide (EtG). Gilbert's syndrome is a rather common and, in most cases, asymptomatic congenital metabolic aberration with a prevalence of about 5 %. It is characterized by a reduction of the enzyme activity of the uridine diphosphate glucuronosyltransferase (UGT) isoform 1A1 up to 80 %. One of the glucuronidation products is EtG, which is formed in the organism following exposure to ethanol. EtG is used as a short-term marker for ethyl alcohol consumption to prove abstinence in various settings. After 2 days of abstinence from ethanol and giving a void urine sample, 30 study participants drank 0.1 L of sparkling wine (9 g ethanol). 3, 6, 12, and 24 h after drinking, urine samples were collected. 3 hours after drinking, an additional blood sample was taken, in which liver enzyme activities, ethanol, hematological parameters, and bilirubin were measured. EtG and ethyl sulfate (EtS), another short-term marker of ethanol consumption, were determined in the urine samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS); creatinine was measured photometrically. In all participants, EtG and EtS were detected in concentrations showing a wide range (EtG: 3 h sample 0.5-18.43 mg/L and 6 h sample 0.67-13.8 mg/L; EtS: 3 h sample 0.87-6.87 mg/L and 6 h sample 0.29-4.48 mg/L). No evidence of impaired EtG formation was found. Thus, EtG seems to be a suitable marker for ethanol consumption even in individuals with Gilbert's syndrome.

  19. Deconjugation Kinetics of Glucuronidated Phase II Flavonoid Metabolites by B-glucuronidase from Neutrophils

    Bartholomé, R.; Haenen, G.; Hollman, P.C.H.; Bast, A.; Dagnelie, P.C.; Roos, D.; Keijer, J.; Kroon, P.A.; Needs, P.W.; Arts, I.C.W.


    Flavonoids are inactivated by phase II metabolism and occur in the body as glucuronides. Mammalian ß-glucuronidase released from neutrophils at inflammatory sites may be able to deconjugate and thus activate flavonoid glucuronides. We have studied deconjugation kinetics and pH optimum for four sourc

  20. The gusBC genes of Escherichia coli encode a glucuronide transport system

    Liang, WJ; Wilson, KJ; Xie, H; Knol, J; Suzuki, S; Rutherford, NG; Henderson, PJF; Jefferson, RA


    Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [C-14] phenyl-l-thio-beta-D-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the

  1. Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation

    Lee, Y.Y.; Stolaki, M.; Berkel, van W.J.H.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M.


    Quercetin is a flavonoid reported to have health-promoting properties. Due to its extensive metabolism to glucuronides in vivo, questions were raised if studies conducted with quercetin aglycone, stating its health-promoting activity, are of actual relevance. Here we show that glucuronides of querce

  2. A fluorescent assay amenable to measuring production of beta-D-glucuronides produced from recombinant UDP-glycosyl transferase enzymes.

    Trubetskoy, O V; Shaw, P M


    Beta-glucuronidase cleavage of 4-methylumbelliferyl beta-D-glucuronide generates the highly fluorescent compound, 4-methylumbelliferone. We show that other beta-D-glucuronide compounds act as competitors in this assay. The 4-methylumbelliferyl beta-D-glucuronide cleavage assay can easily be adapted to high throughput formats to detect the presence of beta-D glucuronides generated using recombinant glycosyl transferase preparations.

  3. Influence of Body Mass Index on Hair Ethyl Glucuronide Concentrations.

    Crunelle, Cleo L; Neels, Hugo; Maudens, Kristof; De Doncker, Mireille; Cappelle, Delphine; Matthys, Frieda; Dom, Geert; Fransen, Erik; Michielsen, Peter; De Keukeleire, Steven; Covaci, Adrian; Yegles, Michel


    Analysis of ethyl glucuronide (EtG) concentrations in hair is increasingly used to estimate the consumption of alcohol of the prior months. Linear correlations between the amount of alcohol consumed and the concentration of EtG in hair have been reported, and several variables that may influence this correlation have been investigated: e.g. cosmetic hair treatments, gender influences or hair color. Here, we investigate the influence of body mass index (BMI) on this correlation. A post hoc analysis on the influence of BMI on the relation between amounts of alcohol consumed and the measured EtG concentrations in hair in 199 participants. Our data show higher EtG concentrations in participants with high BMI (≥25) compared to participants with low BMI (hair EtG concentrations. Ethyl glucuronide concentrations in hair (hEtG) can be used to estimate the consumption of alcohol of the prior months. Body mass index (BMI) influences this relation and BMI should be taken into account when interpreting hEtG concentrations in participants with high BMI (≥25) compared to participants with low BMI (<25). © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  4. High-throughput screening technologies for drug glucuronidation profiling.

    Trubetskoy, Olga; Finel, Moshe; Trubetskoy, Vladimir


    A significant number of endogenous and exogenous compounds, including many therapeutic agents, are metabolized in humans via glucuronidation, catalysed by uridine diphosphoglucuronosyltransferases (UGTs). The study of the UGTs is a growing field of research, with constantly accumulated and updated information regarding UGT structure, purification, substrate specificity and inhibition, including clinically relevant drug interactions. Development of reliable UGT assays for the assessment of individual isoform substrate specificity and for the discovery of novel isoform-specific substrates and inhibitors is crucial for understanding the function and regulation of the UGT enzyme family and its clinical and pharmacological relevance. High-throughput screening (HTS) is a powerful technology used to search for novel substrates and inhibitors for a wide variety of targets. However, application of HTS in the context of UGTs is complicated because of the poor stability, low levels of expression, low affinity and broad substrate specificity of the enzymes, combined with difficulties in obtaining individual UGT isoforms in purified format, and insufficient information regarding isoform-specific substrates and inhibitors. This review examines the current status of HTS assays used in the search for novel UGT substrates and inhibitors, emphasizing advancements and challenges in HTS technologies for drug glucuronidation profiling, and discusses possible avenues for future advancement of the field.

  5. In vitro evaluation of the effects of anti-fungals, benzodiazepines and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone: implications on doping control analysis.

    Palermo, Amelia; Alessi, Beatrice; Botrè, Francesco; de la Torre, Xavier; Fiacco, Ilaria; Mazzarino, Monica


    We have studied whether the phase II metabolism of 19-norandrosterone, the most representative metabolite of 19-nortestosterone (nandrolone), can be altered in the presence of other drugs that are not presently included on the Prohibited List of the World Anti-Doping Agency. In detail, we have evaluated the effect of non-prohibited drugs belonging to the classes of anti-fungals, benzodiazepines, and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone. In vitro assays based on the use of either pooled human liver microsomes or specific recombinant isoforms of uridine diphosphoglucuronosyl-transferase were designed and performed to monitor the formation of 19-norandrosterone glucuronide from 19-norandrosterone. Determination of 19-norandrosterone (free and conjugated fraction) was performed by gas chromatography - mass spectrometry after sample pretreatment consisting of an enzymatic hydrolysis (performed only for the conjugated fraction), liquid/liquid extraction with tert-butylmethyl ether, and derivatization to form the trimethylsilyl derivative. In parallel, a method based on reversed-phase liquid chromatography coupled to tandem mass spectrometry in positive electrospray ionization with acquisition in selected reaction monitoring mode was also developed to identify the non-prohibited drugs considered in this study. Incubation experiments have preliminarily shown that the glucuronidation of 19-norandrosterone is principally carried out by UGT2B7 (39%) and UGT2B17 (31%). Inhibition studies have shown that the yield of the glucuronidation reaction is reduced in the presence of the anti-fungals itraconazole, ketoconazole, and miconazole, of the benzodiazepine triazolam and of the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen, while no alteration was recorded in the presence of all other compounds considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.

  6. HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes.

    Welsch, Tanja; Humpf, Hans-Ulrich


    Glucuronides of the mycotoxin T-2 toxin and its phase I metabolite HT-2 toxin are important phase II metabolites under in vivo and in vitro conditions. Since standard substances are essential for the direct quantitation of these glucuronides, a method for the enzymatic synthesis of T-2 and HT-2 toxin glucuronides employing liver microsomes was optimized. Structure elucidation by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry revealed that besides T-2 toxin glucuronide and HT-2 toxin 3-glucuronide also the newly identified isomer HT-2 toxin 4-glucuronide was formed. Glucuronidation of T-2 and HT-2 toxin in liver microsomes of rat, mouse, pig, and human was compared and metabolites were analyzed directly by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). A distinct, species specific pattern of glucuronidation of T-2 and HT-2 toxin was observed with interesting interindividual differences. Until recently, glucuronides have frequently been analyzed indirectly by quantitation of the aglycone after enzymatic cleavage of the glucuronides by β-glucuronidase. Therefore, the hydrolysis efficiencies of T-2 and HT-2 toxin glucuronides using β-glucuronidases from Helix pomatia, bovine liver, and Escherichia coli were compared.

  7. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism.

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David


    To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  8. Glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes.

    Yamanaka, Hiroyuki; Nakajima, Miki; Katoh, Miki; Yokoi, Tsuyoshi


    Glucuronidation of thyroxine is a major metabolic pathway facilitating its excretion. In this study, we characterized the glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes, and identified human UDP-glucuronosyltransferase (UGT) isoforms involved in the activity. Human jejunum microsomes showed a lower K(m) value (24.2 microM) than human liver (85.9 microM) and kidney (53.3 microM) microsomes did. Human kidney microsomes showed a lower V(max) value (22.6 pmol/min/mg) than human liver (133.4 pmol/min/mg) and jejunum (184.6 pmol/min/mg) microsomes did. By scaling-up, the in vivo clearances in liver, intestine, and kidney were estimated to be 1440, 702, and 79 microl/min/kg body weight, respectively. Recombinant human UGT1A8 (108.7 pmol/min/unit), UGT1A3 (91.6 pmol/min/unit), and UGT1A10 (47.3 pmol/min/unit) showed high, and UGT1A1 (26.0 pmol/min/unit) showed moderate thyroxine glucuronosyltransferase activity. The thyroxine glucuronosyltransferase activity in microsomes from 12 human livers was significantly correlated with bilirubin O-glucuronosyltransferase (r = 0.855, p microsomes was mainly catalyzed by UGT1A8 and UGT1A10 and to a lesser extent by UGT1A1, and the activity in human kidney microsomes was mainly catalyzed by UGT1A7, UGT1A9, and UGT1A10. The changes of activities of these UGT1A isoforms via inhibition and induction by administered drugs as well as genetic polymorphisms may be a causal factor of interindividual differences in the plasma thyroxine concentration.

  9. Optimised deconjugation of androgenic steroid conjugates in bovine urine.

    Pedersen, Mikael; Frandsen, Henrik L; Andersen, Jens H


    After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid in ethyl acetate were used for deconjugation and the extract was purified by solid-phase extraction. The final extract was evaporated to dryness, re-dissolved and analysed by LC-MS/MS.

  10. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability.

    Wang, Zhican; Wong, Timothy; Hashizume, Takanori; Dickmann, Leslie Z; Scian, Michele; Koszewski, Nicholas J; Goff, Jesse P; Horst, Ronald L; Chaudhry, Amarjit S; Schuetz, Erin G; Thummel, Kenneth E


    25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated. Two isozymes, UGT1A4 and UGT1A3, were identified as the principal catalysts of 25OHD3 glucuronidation in human liver. Three 25OHD3 monoglucuronides (25OHD3-25-glucuronide, 25OHD3-3-glucuronide, and 5,6-trans-25OHD3-25-glucuronide) were generated by recombinant UGT1A4/UGT1A3, human liver microsomes, and human hepatocytes. The kinetics of 25OHD3 glucuronide formation in all systems tested conformed to the Michaelis-Menten model. An association between the UGT1A4*3 (Leu48Val) gene polymorphism with the rates of glucuronide formation was also investigated using human liver microsomes isolated from 80 genotyped livers. A variant allele dose effect was observed: the homozygous UGT1A4*3 livers (GG) had the highest glucuronidation activity, whereas the wild type (TT) had the lowest activity. Induction of UGT1A4 and UGT1A3 gene expression was also determined in human hepatocytes treated with pregnane X receptor/constitutive androstane receptor agonists, such as rifampin, carbamazepine, and phenobarbital. Although UGT mRNA levels were increased significantly by all of the known pregnane X receptor/constitutive androstane receptor agonists tested, rifampin, the most potent of the inducers, significantly induced total 25OHD3 glucuronide formation activity in human hepatocytes measured after 2, but not 4 and 24 hours, of incubation. Finally, the presence of 25OHD3-3-glucuronide in both human plasma and bile was confirmed, suggesting that the glucuronidation pathway might be physiologically relevant and contribute to vitamin D homeostasis in humans.


    House, Larry; Ramirez, Jacqueline; Seminerio, Michael; Mirkov, Snezana; Ratain, Mark J.


    Aprepitant, an oral antiemetic, commonly used in the prevention of chemotherapy-induced nausea and vomiting, is primarily metabolized by CYP3A4. Aprepitant glucuronidation has yet to be evaluated in humans. The contribution of human UDP-glucuronosyltransferase (UGT) isoforms to the metabolism of aprepitant was investigated by performing kinetic studies, inhibition studies, and correlation analyses. In addition, aprepitant was evaluated as an inhibitor of UGTs.Glucuronidation of aprepitant was...

  12. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra


    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  13. Identification of UDP-glucuronosyltransferase isoforms responsible for leonurine glucuronidation in human liver and intestinal microsomes.

    Tan, Bo; Cai, Weimin; Zhang, Jinlian; Zhou, Ning; Ma, Guo; Yang, Ping; Zhu, Qing; Zhu, Yizhun


    Leonurine is a potent component of herbal medicine Herba leonuri. The detail information on leonurine metabolism in human has not been revealed so far. Two primary metabolites, leonurine O-glucuronide and demethylated leonurine, were observed and identified in pooled human liver microsomes (HLMs) and O-glucuronide is the predominant one. Among 12 recombinant human UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A8, UGT1A9, and UGT1A10 showed catalyzing activity toward leonurine glucuronidation. The intrinsic clearance (CLint) of UGT1A1 was approximately 15-to 20-fold higher than that of UGT1A8, UGT1A9, and UGT1A10, respectively. Both chemical inhibition study and correlation study demonstrated that leonurine glucuronidation activities in HLMs had significant relationship with UGT1A1 activities. Leonurine glucuronide was the major metabolite in human liver microsomes. UGT1A1 was principal enzyme that responsible for leonurine glucuronidation in human liver and intestine microsomes.

  14. Glucuronidation of drugs and drug-induced toxicity in humanized UDP-glucuronosyltransferase 1 mice.

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi


    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans.

  15. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))


    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  16. Identification of the human UDP-glucuronosyltransferase isoforms involved in the glucuronidation of the phytochemical ferulic acid.

    Li, Xiaojun; Shang, Liang; Wu, Yaohua; Abbas, Suzanne; Li, Dong; Netter, Patrick; Ouzzine, Mohamed; Wang, Hui; Magdalou, Jacques


    Ferulic acid (FA), a member of the hydroxycinnamate family, is an abundant dietary antioxidant that may offer beneficial effects against cancer, cardiovascular disease, diabetes, osteoarthritis and Alzheimer's disease. In this study, evidence for sulfation and glucuronidation of FA was investigated upon incubation with human liver microsomes and cytosol. Two main glucuronides, M1 (ether O-glucuronide) and M2 (ester acylglucuronide), were formed with a similar affinity (apparent K(m) 3.53 and 5.15 mM, respectively). A phenol sulfoconjugate was also formed with a higher affinity (K(m) 0.53 mM). Identification of the UDP-glucuronosyltransferase (UGT) isoforms involved in FA glucuronidation was investigated with 12 human recombinant enzymes. FA was mainly glucuronidated by UGT1A isoforms and by UGT2B7. UGT1A4, 2B4, 2B15 and 2B17 failed to glucuronidate the substance. Examination of the kinetic constants revealed that FA was mainly glucuronidated by UGT1A1 at the two nucleophilic groups. UGT1A3 was able to glucuronidate these two positions with the same, but low, efficiency. UGT1A6 and 1A8 were involved in the formation of the ether glucuronide only, whereas UGT1A7, 1A10 and 2B7 preferentially glucuronidated the carboxyl group. Moreover, octyl gallate, a marker substrate of UGT1A1, competitively inhibited FA glucuronidation mediated by this isoform. Altogether, the results suggest that FA glucuronidation is primarily mediated by UGT1A1.

  17. [Carbohydrate deficient transferrin and ethyl glucuronide: markers for alcohol use].

    Paling, Erik P; Mostert, Leendert J


    In this article, we report on the usefulness of physicians testing for carbohydrate deficient transferrin (CDT) and ethyl glucuronide (EtG) when there are doubts about alcohol use by their patients. A 44-year-old male consulted his general practitioner with depressive symptoms and denied using alcohol. Laboratory examination revealed an elevated CDT value. The latter was caused by chronic alcohol use. The second patient, a 32-year-old female with known alcohol dependence and receiving inpatient treatment at an addiction clinic, came back from leave. She denied having consumed alcohol and her blood alcohol concentration was zero. Examination of her urine showed an elevated EtG/creatinine ratio. This was caused by having had a few drinks during her leave and could not have been caused by using mouthwash or disinfection soap. We describe how to use the results of CDT and EtG testing in the therapeutic process and give recommendations for patient communication before performing these two tests.

  18. Glucuronidation of odorant molecules in the rat olfactory system: activity, expression and age-linked modifications of UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, and relation to mitral cell activity.

    Leclerc, Séverine; Heydel, Jean-Marie; Amossé, Valérie; Gradinaru, Daniela; Cattarelli, Martine; Artur, Yves; Goudonnet, Hervé; Magdalou, Jacques; Netter, Patrick; Pelczar, Hélène; Minn, Alain


    The aim of the present study was to examine the glucuronidation of a series of odorant molecules by homogenates prepared either with rat olfactory mucosa, olfactory bulb or brain. Most of the odorant molecules tested were efficiently conjugated by olfactory mucosa, whereas olfactory bulb and brain homogenates displayed lower activities and glucuronidated only a few molecules. Important age-related changes in glucuronidation efficiency were observed in olfactory mucosa and bulb. Therefore, we studied changes in expression of two UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, in 1-day, 1- and 2-week-, 3-, 12- and 24-month-old rats. UGT1A6 was expressed at the same transcriptional level in the olfactory mucosa, bulb and brain, throughout the life period studied. UGT2A1 mRNA was expressed in both olfactory mucosa and olfactory bulb, in accordance with previous results [Mol. Brain Res. 90 (2001) 83], but UGT2A1 transcriptional level was 400-4000 times higher than that of UGT1A6. Moreover, age-dependent variations in UGT2A1 mRNA expression were observed. As it has been suggested that drug metabolizing enzymes could participate in olfactory function, mitral cell electrical activity was recorded during exposure to different odorant molecules in young, adult and old animals. Age-related changes in the amplitude of response after stimulation with several odorant molecules were observed, and the highest responses were obtained with molecules that were not efficiently glucuronidated by olfactory mucosa. In conclusion, the present work presents new evidence of the involvement of UGT activity in some steps of the olfactory process.

  19. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta.

    Corbel, T; Gayrard, V; Puel, S; Lacroix, M Z; Berrebi, A; Gil, S; Viguié, C; Toutain, P-L; Picard-Hagen, N


    The widespread human exposure to Bisphenol A (BPA), an endocrine disruptor interfering with developmental processes, raises the question of the risk for human health of BPA fetal exposure. In humans, highly variable BPA concentrations have been reported in the feto-placental compartment. However the human fetal exposure to BPA still remains unclear. The aim of the study was to characterize placental exchanges of BPA and its main metabolite, Bisphenol A-Glucuronide (BPA-G) using the non-recirculating dual human placental perfusion. This high placental bidirectional permeability to the lipid soluble BPA strongly suggests a transport by passive diffusion in both materno-to-fetal and feto-to-maternal direction, leading to a calculated ratio between fetal and maternal free BPA concentrations of about 1. In contrast, BPA-G has limited placental permeability, particularly in the materno-to-fetal direction. Thus the fetal exposure to BPA conjugates could be explained mainly by its limited capacity to extrude BPA-G.

  20. Effect of UDP-glucuronosyltransferase 1A8 polymorphism on raloxifene glucuronidation.

    Kokawa, Yuki; Kishi, Naoki; Jinno, Hideto; Tanaka-Kagawa, Toshiko; Narimatsu, Shizuo; Hanioka, Nobumitsu


    Raloxifene is an antiestrogen marketed for the treatment of osteoporosis. The major metabolic pathway of raloxifene is glucuronidation at 6- and/or 4'-positions, which is mainly catalyzed by UDP-glucuronosyltransferase 1A8 (UGT1A8) expressed in extrahepatic tissues such as the small intestine and colon. Two non-synonymous allelic variants, termed UGT1A8*2 (518C>G, A173G) and UGT1A8*3 (830G>A, C277Y), have been found in Caucasian, African-American and Asian populations. In this study, the effect of amino acid substitutions in UGT1A8 on raloxifene glucuronidation was studied using recombinant UGT1A8 enzymes of wild-type (UGT1A8.1) and variant UGT1A8 (UGT1A8.2 and UGT1A8.3) expressed in Sf9 cells. Raloxifene 6- and 4'-glucuronidation by UGT1A8.1 exhibited negative allosteric kinetics. The Km and Vmax values of UGT1A8.1 were 15.0 μM and 111 pmol/min/mg protein for 6-glucuronidation, and 9.35 μM and 232 pmol/min/mg protein for 4'-glucuronidation, respectively. The kinetics of raloxifene 6-glucuronidation by UGT1A8.2 was positive allosteric, whereas the kinetics of raloxifene 4'-glucuronidation was negative allosteric. The S50 value of raloxifene 6-glucuronidation was markedly low (1.2%) compared with the Km value of UGT1A8.1, and the Km value for raloxifene 4'-glucuronidation was 29% that of UGT1A8.1. The Vmax value for raloxifene 6-glucuronidation by UGT1A8.2 was comparable to that of UGT1A8.1, whereas the Vmax value for raloxifene 4'-glucuronidation was significantly lower (54%) than that of UGT1A8.1. The activities of raloxifene 6- and 4'-glucuronidation in UGT1A8.3 were markedly lower than those of UGT1A8.1. In mycophenolic acid glucuronidation, the kinetics by wild-type and variant UGT1A8s fitted the Michaelis-Menten model. The Km and Vmax values of UGT1A8.1 were 123 μM and 4820 pmol/min/mg protein, respectively. The Km and Vmax values of UGT1A8.2 were comparable to those of UGT1A8.1. The Km value of UGT1A8.3 was similar to that of UGT1A8.1, whereas the Vmax

  1. Separation and Purification of Two Flavone Glucuronides from Erigeron multiradiatus (Lindl. Benth with Macroporous Resins

    Zhi-feng Zhang


    Full Text Available Scutellarein-7-O-β-D-glucuronide (SG and apigenin-7-O-β-D-glucuronide (AG are two major bioactive constituents with known pharmacological effects in Erigeron multiradiatus. In this study, a simple method for preparative separation of the two flavone glucuronides was established with macroporous resins. The performance and adsorption characteristics of eight macroporous resins including AB-8, HPD100, HPD450, HPD600, D100, D101, D141, and D160 have been evaluated. The results confirmed that D141 resin offered the best adsorption and desorption capacities and the highest desorption ratio for the two glucuronides among the tested resins. Sorption isotherms were constructed for D141 resin under optimal ethanol conditions and fitted well to the Freundlich and Langmuir models (R2>0.95. Dynamic adsorption and desorption tests was performed on column packed with D141 resin. After one-run treatment with D141 resin, the two-constituent content in the final product was increased from 2.14% and 1.34 % in the crude extract of Erigeron multiradiatus to 24.63% and 18.42% in the final products with the recoveries of 82.5% and 85.4%, respectively. The preparative separation of SG and AG can be easily and effectively achieved via adsorption and desorption on D141 resin, and the method developed can be referenced for large-scale separation and purification of flavone glucuronides from herbal raw materials.

  2. Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide.

    Dahl, Helen; Stephanson, Nikolai; Beck, Olof; Helander, Anders


    This study compared the urinary excretion characteristics of ethyl glucuronide (EtG) with that of ethanol, with focus on the effect of water-induced diuresis. Six healthy volunteers ingested an ethanol dose of 0.5 g/kg (range 25.0-41.5 g) as 5% (v/v) beer in 30 min and the same volume of water after 3 h. Urine collections were made before starting the experiment and at timed intervals over 31.5 h. The concentration of EtG was determined by an LC-MS method (LOQ = 0.1 mg/L). The urine samples collected immediately before starting drinking were all negative for ethanol and EtG, thus confirming that the participants had not recently ingested alcohol. Intake of beer resulted in a marked increase in excreted urine volume and a concomitant drop in creatinine concentration. The concentration of ethanol peaked at a mean value of 17 mmol/L in the 1.5-h urine collection. Except for one subject, EtG was first detectable (range 0.9-5.5 mg/L) at 1 h. Intake of water at 3 h produced another increase in urine volume and a drop in creatinine. The ethanol concentration curve was not influenced by the water diuresis, whereas this caused a distinct drop in the EtG concentration. When EtG was expressed relative to the creatinine value, this ratio was seemingly not affected by the intake of water. The ethanol concentration returned to zero at 6.5 h, whereas EtG was still detectable for up to 22.5-31.5 h, albeit at low levels in the end (water prior to voiding, whereas this strategy did not influence the EtG/creatinine ratio or the concentration of ethanol.

  3. Simplified analysis of acetaminophen glucuronide for quantifying gluconeogenesis and glycogenolysis using deuterated water.

    Jones, J; Kahl, S; Carvalho, F; Barosa, C; Roden, M


    Measurement of acetaminophen glucuronide (AG) (2)H enrichment from deuterated water ((2)H2O) by (2)H nuclear magnetic resonance (NMR) analysis of its monoacetone glucose (MAG) derivative provides estimation of gluconeogenic and glycogenolytic contributions to endogenous glucose production (EGP). However, AG derivatization to MAG is laborious and unsuitable for high-throughput studies. An alternative derivative, 5-O-acetyl monoacetone glucuronolactone (MAGLA), was tested. Eleven healthy subjects ingested (2)H2O to 0.5% body water enrichment and 500 mg of acetaminophen. Plasma glucose and urinary glucuronide positional (2)H enrichments were measured by (2)H NMR spectroscopy of MAG and MAGLA, respectively. A Bland-Altman analysis indicated agreement at the 95% confidence level between glucose and glucuronide estimates.

  4. Loss of exogenous androgen dependence by prostate tumor cells is associated with elevated glucuronidation potential

    Zimmer, Brenna M.; Howell, Michelle E.; Wei, Qin; Ma, Linlin; Romsdahl, Trevor; Loughman, Eileen G.; Markham, Jonathan E.; Seravalli, Javier; Barycki, Joseph J.; Simpson, Melanie A.


    Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD+-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate, and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen dependent versus castration resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration resistant tumor cells expressed higher levels of UGDH, UGT2B15, and UGT2B17. However, the magnitude of androgen-activated UGDH and PSA expression, as well as the AR-dependent repression of UGT2B15 and UGT2B17, was blunted several-fold in these cells. Consistent with these results, the ligand-activated binding of AR to the PSA promoter and subsequent transcriptional activation were also significantly reduced in castration resistant cells. Analysis of the UDP-sugar pools and flux through pathways downstream of UDP-glucuronate production revealed that these glucuronidation precursor metabolites were channeled through proteoglycan and glycosaminoglycan biosynthetic pathways, leading to increased surface expression of Notch 1. Knockdown of UGDH diminished Notch1 and increased glucuronide output. Overall, these results support a model in which the aberrant partitioning of UDP-glucuronate and other UDP-sugars into alternative pathways during androgen deprivation contributes to the loss of prostate tumor cell androgen sensitivity by promoting altered cell surface proteoglycan expression. PMID:27307252

  5. Structural modifications at the C-4 position strongly affect the glucuronidation of 6,7-dihydroxycoumarins.

    Xia, Yang-Liu; Ge, Guang-Bo; Wang, Ping; Liang, Si-Cheng; He, Yu-Qi; Ning, Jing; Qian, Xing-Kai; Li, Yan; Yang, Ling


    Esculetin (6,7-dihydroxycoumarin) and its C-4 derivatives have multiple pharmacologic activities, but the poor metabolic stability of these catechols has severely restricted their application in the clinic. Glucuronidation plays important roles in catechols elimination, although thus far the effects of structural modifications on the metabolic selectivity and the catalytic efficacy of the human UDP-glucuronosyltransferase (UGT) enzymes remain unclear. This study was aimed at exploring the structure-glucuronidation relationship of esculetin and its C-4 derivatives, including 4-methyl esculetin, 4-phenyl esculetin, and 4-hydroxymethyl esculetin as well as 4-acetic acid esculetin. It was achieved by identifying the main human UGTs responsible for the different reactions and by careful characterization of the reactions kinetics. These catechols, with the exception of 4-acetic acid esculetin, are selectively metabolized to the corresponding 7-O-glucuronides. UGT1A6 and UGT1A9 are the two major UGTs involved in the 7-O-glucuronidation of 4-methyl esculetin and esculetin. UGT1A6 was the major contributor for 7-O-glucuronidation of 4-hydroxymethyl esculetin, and UGT1A9 played a significant role in the 7-O-glucuronidation of 4-phenyl esculetin. The results of the kinetic analyses revealed that the Km values of the compounds, in both UGT1A9 and human liver microsomes, decreased with increasing hydrophobicity of the C-4 substitutions. The outcome of this was that C-4 hydrophobic and hydrophilic groups on 6,7-dihydroxycoumarin exhibited contrasting effects on UGT affinity. All of these findings provide helpful guidance for further structural modification of 6,7-dihydroxycoumarins with improved metabolic stability.

  6. Revisiting conjugate schedules.

    MacAleese, Kenneth R; Ghezzi, Patrick M; Rapp, John T


    The effects of conjugate reinforcement on the responding of 13 college students were examined in three experiments. Conjugate reinforcement was provided via key presses that changed the clarity of pictures displayed on a computer monitor in a manner proportional to the rate of responding. Experiment 1, which included seven parameters of clarity change per response, revealed that responding decreased as the percentage clarity per response increased for all five participants. These results indicate that each participant's responding was sensitive to intensity change, which is a parameter of conjugate reinforcement schedules. Experiment 2 showed that responding increased during conjugate reinforcement phases and decreased during extinction phases for all four participants. Experiment 3 also showed that responding increased during conjugate reinforcement and further showed that responding decreased during a conjugate negative punishment condition for another four participants. Directions for future research with conjugate schedules are briefly discussed.

  7. Determination of salbutamol and salbutamol glucuronide in human urine by means of liquid chromatography-tandem mass spectrometry

    Mareck, Ute; Guddat, Sven; Schwenke, Anne;


    The determination of salbutamol and its glucuronide in human urine following the inhalative and oral administration of therapeutic doses of salbutamol preparations was performed by means of direct urine injection utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and employing d(3......)-salbutamol and d(3)-salbutamol glucuronide as internal standards. Unconjugated salbutamol was detected in all administration study urine samples. Salbutamol concentrations following inhalation were commonly (99%) below 1000 ng/ml whereas values after oral administration frequently (48%) exceeded...... this threshold. While salbutamol glucuronide was not detected in urine samples collected after inhalation of the drug, 26 out of 82 specimens obtained after oral application contained salbutamol glucuronide with a peak value of 63 ng/ml. The percentage of salbutamol glucuronide compared to unconjugated...

  8. Chemosystematic value of flavonoids from Crataegus x macrocarpa (Rosaceae) with special emphasis on (R)- and (S)-eriodictyol-7-O-glucuronide and luteolin-7-O-glucuronide.

    Ringl, Alexandra; Prinz, Sonja; Huefner, Antje; Kurzmann, Michael; Kopp, Brigitte


    The chemotaxonomic investigation of Crataegus x macrocarpa, a hybrid of C. laevigata and C. rhipidophylla, presents the qualitative and quantitative composition of its flavonoid pattern in relationship to its parent species for the first time. Six flavonoids were identified as vitexin-2''-O-rhamnoside (1), vitexin (2), isovitexin (3), rutin (4), hyperoside (5), and isoquercitrin (6). Furthermore, two flavonoids were isolated from C. x macrocarpa and identified as a diastereoisomeric mixture of (R)- and (S)-eriodictyol-7-O-beta-D-glucuronide (7) and luteolin-7-O-beta-D-glucuronide (8) by means of 1D- and 2D-NMR, MS, and UV experiments. Compounds 7 and 8 were isolated for the first time from Crataegus species. While missing in C. laevigata, their occurrence in C. rhipidophylla additionally emphasizes its chemotaxonomic relationship to C. x macrocarpa.

  9. Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases.

    Oleson, Lauren; Court, Michael H


    Glucuronidation studies using microsomes and recombinant uridine diphosphoglucuronosyltransferases (UGTs) can be complicated by the presence of endogenous beta-glucuronidases, leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used beta-glucuronidase inhibitor, although it is not clear whether this reagent should be added routinely to glucuronidation incubations. Here we have determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and recombinant UGTs (rUGTs). Despite the use of buffered incubation solutions, it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM did not enhance any of the glucuronidation activities evaluated that could be considered consistent with inhibition of beta-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for glucuronidation of 5-hydroxytryptamine and estradiol by pHLMs, with a 35% decrease at 20 mM saccharolactone concentration. Endogenous beta-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes and insect-cell expressed rUGTs, but not for kidney, intestinal or human embryonic kidney HEK293 microsomes. However, the extent of hydrolysis was relatively small, representing only 9-19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations. If saccharolactone is used, concentrations should be titrated to achieve activity enhancement without inhibition.

  10. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin.

    Xin, Hong; Xia, Yang-Liu; Hou, Jie; Wang, Ping; He, Wei; Yang, Ling; Ge, Guang-Bo; Xu, Wei


    This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM). HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM. AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4'-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4'-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4'-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4'-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process. UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4'-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM. © 2015 Royal Pharmaceutical Society.

  11. Influence of renal function on the elimination of morphine and morphine glucuronides

    Wolff, Jesper; Bigler, Dennis Richard; Christensen, C B


    plasma. No significant correlation was found between total body clearance of unconjugated morphine and 51Cr-EDTA clearance. However, patients with renal insufficiency had impaired elimination of morphine glucuronides, and the apparent clearance was significantly correlated with the 51Cr-EDTA clearance (r...

  12. Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker

    McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.


    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

  13. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier


    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  14. Pharmacokinetics of morphine-6-glucuronide following oral administration in healthy volunteers

    Villesen, Hanne H.; Kristensen, Kim; Hansen, Steen Honoré


    After oral administration, morphine-6-glucuronide (M6G) displays an atypical absorption profile with two peak plasma concentrations. A proposed explanation is that M6G is hydrolysed to morphine in the colon, which is then absorbed and subsequently undergoes metabolism in the liver to morphine-3-g...

  15. Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants

    E.H.J. Krekels (Elke); S. Van Ham (Saskia); K. Allegaert (Karel); J.N. de Hoon; D. Tibboel (Dick); M. Danhof (Meindert); C.A.J. Knibbe (Catherijne)


    textabstractPurpose: Based on recovered metabolite ratios in urine, it has been concluded that paracetamol glucuronidation may be up-regulated upon multiple dosing. This study investigates paracetamol clearance in neonates and infants after single and multiple dosing using a population modelling app

  16. In vitro stereoselective covalent binding of carprofen glucuronides to human serum albumin: characterization of the mechanism.

    Greige-Georges, Hélène; Buronfosse, Thierry; Netter, Patrcik; Magdalou, Jacques; Lapicque, Françoise


    The reactivity, in terms of covalent binding, of R- and S-carprofen acylglucuronides with human serum albumin (HSA) has been investigated in vitro. The irreversible binding of these metabolites to the HSA 580 mM occurred at pH 7.4 and 37 degrees C instantaneously and stereoselectively in favour of the R-enentiomer glucuronide. The amount of carprofen adducts remained stable with time up to 48 hr, and increased with the glucuronide concentration. It was not modified by addiction of imine-trapping reagents, suggesting that the reaction is not mediated by a Schiff base mechanism. Moreover the extreme rapidity of the covalent binding supports a mechanism of nucleophilic attack. Competition studies with ligands known to bind to different sites of HSA, indicated that carprofen glucuronides interacted mainly with site II. The extent of the binding of R-carprofen glucuronide increased with pH, thus suggesting the participation of an alkaline group in the process. The modification of HSA by amino-acid directed chemicals led to the conclusion that Tyr, Lys or Arg residues in site II were mainly involved.

  17. Age-related increases in F344 rat intestine microsomal quercetin glucuronidation

    The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...

  18. A validated method for simultaneous determination of codeine, codeine-6-glucuronide, norcodeine, morphine, morphine-3-glucuronide and morphine-6-glucuronide in post-mortem blood, vitreous fluid, muscle, fat and brain tissue by LC-MS.

    Frost, Joachim; Løkken, Trine N; Brede, Wenche R; Hegstad, Solfrid; Nordrum, Ivar S; Slørdal, Lars


    The toxicodynamics and, to a lesser degree, toxicokinetics of the widely used opiate codeine remain a matter of controversy. To address this issue, analytical methods capable of providing reliable quantification of codeine metabolites alongside codeine concentrations are required. This article presents a validated method for simultaneous determination of codeine, codeine metabolites codeine-6-glucuronide (C6G), norcodeine and morphine, and morphine metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in post-mortem whole blood, vitreous fluid, muscle, fat and brain tissue by high-performance liquid chromatography mass spectrometry. Samples were prepared by solid-phase extraction. The validated ranges were 1.5-300 ng/mL for codeine, norcodeine and morphine, and 23-4,600 ng/mL for C6G, M3G and M6G, with exceptions for norcodeine in muscle (3-300 ng/mL), morphine in muscle, fat and brain (3-300 ng/mL) and M6G in fat (46-4,600 ng/mL). Within-run and between-run accuracy (88.1-114.1%) and precision (CV 0.6-12.7%), matrix effects (CV 0.3-13.5%) and recovery (57.8-94.1%) were validated at two concentration levels; 3 and 150 ng/mL for codeine, norcodeine and morphine, and 46 and 2,300 ng/mL for C6G, M3G and M6G. Freeze-thaw and long-term stability (6 months at -80°C) was assessed, showing no significant changes in analyte concentrations (-12 to +8%). The method was applied in two authentic forensic autopsy cases implicating codeine in both therapeutic and presumably lethal concentration levels.

  19. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity.

    Ming Li

    Full Text Available Bisphenol AF (BPAF, an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER. However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G, BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR. After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM, and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings.

  20. Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide.

    Schwab, Nicole; Skopp, Gisela


    Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS-MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis-Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V(max)) and the substrate concentration at which the reaction rate is half of V(max) (Michaelis-Menten constant, K(m)) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of Et

  1. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths.

    Frost, Joachim; Løkken, Trine Nordgård; Helland, Arne; Nordrum, Ivar Skjåk; Slørdal, Lars


    This article presents levels and tissue distribution of codeine, codeine-6-glucuronide (C6G), norcodeine, morphine and the morphine metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in post-mortem blood (peripheral and heart blood), vitreous fluid, muscle, fat and brain tissue in a series of 23 codeine-related fatalities. CYP2D6 genotype is also determined and taken into account. Quantification of codeine, C6G, norcodeine, morphine, M3G and M6G was performed with a validated solid phase extraction LC-MS method. The series comprise 19 deaths (83%) attributed to mixed drug intoxication, 4 deaths (17%) attributed to other causes of death, and no cases of unambiguous monointoxication with codeine. The typical peripheral blood concentration pattern in individual cases was C6G≫codeine≫norcodeine>morphine, and M3G>M6G>morphine. In matrices other than blood, the concentration pattern was similar, although in a less systematic fashion. Measured concentrations were generally lower in matrices other than blood, especially in brain and fat, and in particular for the glucuronides (C6G, M3G and M6G) and, to some extent, morphine. In brain tissue, the presumed active moieties morphine and M6G were both below the LLOQ (0.0080mg/L and 0.058mg/L, respectively) in a majority of cases. In general, there was a large variability in both measured concentrations and calculated blood/tissue concentration ratios. There was also a large variability in calculated ratios of morphine to codeine, C6G to codeine and norcodeine to codeine in all matrices, and CYP2D6 genotype was not a reliable predictor of these ratios. The different blood/tissue concentration ratios showed no systematic relationship with the post-mortem interval. No coherent degradation or formation patterns for codeine, morphine, M3G and M6G were observed upon reanalysis in peripheral blood after storage.

  2. Segmented conjugated polymers

    G Padmanaban; S Ramakrishnan


    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying excitation energies. The latter feature, especially when the chromophores are fluorescent, like in MEHPPV, makes these systems particularly interesting from the photophysics point of view. Segmented MEHPPV- samples, where x represents the mole fraction of conjugated segments, were prepared by a novel approach that utilizes a suitable precursor wherein selective elimination of one of the two eliminatable groups is affected; the uneliminated units serve as conjugation truncations. Control of the composition x of the precursor therefore permits one to prepare segmented MEHPPV- samples with varying levels of conjugation (elimination). Using fluorescence spectroscopy, we have seen that even in single isolated polymer chains, energy migration from the shorter (higher energy) chromophores to longer (lower energy) ones occurs – the extent of which depends on the level of conjugation. Further, by varying the solvent composition, it is seen that the extent of energy transfer and the formation of poorly emissive inter-chromophore excitons are greatly enhanced with increasing amounts of non-solvent. A typical S-shaped curve represents the variation of emission yields as a function of composition suggestive of a cooperative collapse of the polymer coil, reminiscent of conformational transitions seen in biological macromolecules.

  3. Biosynthesis and stereoselective analysis of (-)- and (+)-zaltoprofen glucuronide in rat hepatic microsomes and its application to the kinetic analysis.

    Wang, Haina; Ji, Jianbo; Zeng, Su


    Zaltoprofen, available commercially as a racemic mixture, is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs). Firstly, (+)- and (-)-zaltoprofen glucuronide was biosynthesized and purified. Then a simple and rapid RP-HPLC analysis method for direct determination of (+)- and (-)-zaltoprofen glucuronide in rat hepatic microsomes was developed and validated. The calibration curves of (+)- and (-)-zaltoprofen glucuronide both showed good linearity in the concentration range from 0.15 to 31.13 μM. The lower limit of quantification was 0.15 μM. Finally, this method was used to investigate the enantioselectivity of zaltoprofen glucuronidation in rat hepatic microsomes. The kinetics of zaltoprofen glucuronidation in rat hepatic microsomes for 40 min incubation fit the Michaelis-Menten model. Kinetic analysis indicated that (-)-zaltoprofen had a higher glucuronidation rate in rat liver microsome than that of (+)-zaltoprofen. The catalyzing efficiency (V(max)/K(m)) ratio of (+)-zaltoprofen to (-)-enantiomer is 0.8 times in rat liver microsomes.

  4. Is THC-COOH-glucuronide a useful marker for Tetrahydrocannabinol (THC) in DUID cases?

    Telving, Rasmus; Hasselstrøm, Jørgen Bo; Andreasen, Mette Findal

    Is THC-COOH-glucuronide a useful marker for Tetrahydrocannabinol (THC) in DUID cases? Retrospective data analysis on UPLC-HR-TOFMS data files from 2 years of DUID cases. Telving R.(*, Hasselstrøm J.B., Andreasen M.F. Department of Forensic Medicine, Aarhus University (Denmark......). Introduction The physical and chemical nature of THC makes it difficult to include in traditional screening procedures along with other common legal and illegal drugs. Development of multi-component toxicological screening procedures that include THC is therefore a challenge but also highly desirable in high...... throughput laboratories. Aims The aim of the present study was to evaluate the detection of THC indirectly by detecting the presence of THC-COOH-glucuronide in whole blood from individuals suspected of driving under the influence of drugs (DUID). We will compare existing data from THC screening...

  5. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

    Ueda, Haruki; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanaka-Ueno, Tomoko; Ishizuka, Mayumi


    The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

  6. Species and sex differences in propofol glucuronidation in liver microsomes of humans, monkeys, rats and mice.

    Mukai, M; Isobe, T; Okada, K; Murata, M; Shigeyama, M; Hanioka, N


    Propofol (2,6-diisopropylphenol) is a short-acting anesthetic commonly used in clinical practice, and is rapidly metabolized into glucuronide by UDP-glucuronosyltransferase (UGT). In the present study, propofol glucuronidation was examined in the liver microsomes of male and female humans, monkeys, rats, and mice. The kinetics of propofol glucuronidation by liver microsomes fit the substrate inhibition model for humans and mice, the Hill model for monkeys, and the isoenzyme (biphasic) model for rats. The K(m), V(max), and CL(int) values of human liver microsomes were 50 μM, 5.6 nmol/min/mg protein, and 110 μL/min/mg protein, respectively, for males, and 46 μM, 6.0 nmol/min/mg protein, and 130 μL/min/mg protein, respectively, for females. The rank order of the CL(int) or CL(max) (in vitro clearance) values of liver microsomes was mice humans > monkeys > rats (high-affinity phase) rats (low-affinity phase) in both males and females. Although no significant sex differences were observed in the values of kinetic parameters in any animal species, the in vitro clearance values of liver microsomes were males females in monkeys, rats (high-affinity phase), and mice. These results demonstrated that the kinetic profile of propofol glucuronidation by liver microsomes markedly differed among humans, monkeys, rats, and mice, and suggest that species and sex differences exist in the roles of UGT isoform(s), including UGT1A9, involved in its metabolism.

  7. A new cyclopamine glucuronide prodrug with improved kinetics of drug release.

    Renoux, Brigitte; Legigan, Thibaut; Bensalma, Souheyla; Chadéneau, Corinne; Muller, Jean-Marc; Papot, Sébastien


    We prepared a new glucuronide prodrug of cyclopamine designed to target selectively the Hedgehog signalling pathway of cancer cells. This prodrug includes a novel self-immolative linker bearing a hydrophilic side chain that can be easily introduced via"click chemistry". With this design, the prodrug exhibits reduced toxicity compared to the free drug on U87 glioblastoma cells. However, in the presence of β-glucuronidase, the prodrug conducts to the quick release of cyclopamine thereby restoring its antiproliferative activity.

  8. Sequestered endoplasmic reticulum space for sequential metabolism of salicylamide. Coupling of hydroxylation and glucuronidation.

    Tirona, R G; Pang, K S


    The metabolic disposition of simultaneously delivered [14C]salicylamide (SAM) (100 microM) and a tracer concentration of its hydroxylated metabolite [3H]gentisamide (GAM) was studied with single-pass followed by recirculating rat liver perfusion (10 ml/min). The use of dual radiolabeling of precursor-product pairs in single-pass and recirculating perfusions allowed for characterization of the differential metabolism of preformed [3H]GAM and formed [14C]GAM, which arose in situ in the liver with [14C]SAM single-pass perfusion, and the behavior of circulating [14C]GAM, which behaved as a preformed species in recirculation. In both modes of perfusion, [14C]SAM was mainly sequentially metabolized to [14C]GAM-5-glucuronide, whereas [3H]GAM predominantly formed [3H]GAM-5-sulfate. The steady-state and time-averaged clearances of SAM were identical and approached the value of flow, yielding a high hepatic extraction ratio (E = 0.98). The apparent extraction ratio of formed GAM [E(mi) = 0.96] was greater than that of the preformed species [E(pmi) approximately 0.7]. Because the coupling of (SAM) oxidation and (GAM) glucuronidation was a plausible explanation for the observation, a novel physiological pharmacokinetic model was developed to interpret the data. In this model, the liver was divided into three zonal units, within which acinar distribution of enzymatic activities was considered, namely periportal sulfation, evenly distributed glucuronidation, and perivenous hydroxylation. Each zonal region was subdivided into extracellular, cytosolic, and endoplasmic reticulum compartments, with cytosolic (sulfotransferases) and microsomal (cytochromes P-450 and UDP-glucuronosyltransferase) enzymes being segregated intracellularly into the cytosolic compartment and endoplasmic reticulum compartment, respectively. The simulations provided a good prediction of the present experimental data as well as previously obtained data with increasing SAM concentration and retrograde flow and

  9. Qualidade conjugal: mapeando conceitos

    Clarisse Mosmann


    Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.

  10. Polymers for Protein Conjugation

    Gianfranco Pasut


    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  11. Characterization of oligomeric procyanidins and identification of quercetin glucuronide from lotus ( Nelumbo nucifera Gaertn.) seedpod.

    Xiao, Jun-Song; Xie, Bi-Jun; Cao, Yan-Ping; Wu, Hua; Sun, Zhi-Da; Xiao, Di


    Procyanidins are a class of polyphenols in the plant kingdom. Lotus ( Nelumbo nucifera Gaertn.) seedpods, the inedible part of lotus and a byproduct during the production of lotus seeds, were found to be a new source rich in procyanidins. Detailed information about oligomeric procyanidins in lotus seedpods remains unknown. In this study, lotus seedpods were extracted using 60% aqueous methanol and characterized with phloroglucinolysis and liquid chromatography (mass spectrometry with an electrospray ionization source). The results indicate that the oligomeric and polymeric fraction had a mean degree of polymerization of 3.2 and 15.4, respectively, and consisted of (+)-catechin (m/z 289), gallocatechin or epigallocatechin (m/z 305), quercetin glycoside (m/z 463), quercetin glucuronide (m/z 477), procyanidin dimers (m/z 577.1), proanthocyanidin dimer gallate (m/z 593.3), prodelphinidin dimers (m/z 609.1), procyanidin trimers (m/z 865.1), etc. Quercetin glucuronide was further purified using flash chromatography and identified as quercetin-3-O-β-glucuronide by determining its exact mass using ion-trap time-of-flight mass spectrometry and ¹H and ¹³C nuclear magnetic resonance, ¹H-detected heteronuclear single-quantum coherence, and ¹H-detected heteronuclear multiple-bond correlation analyses.

  12. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages.

    Akari Ishisaka

    Full Text Available Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA, a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS. Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor and siRNA-knockdown of Atg7 (an essential gene for autophagy. The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results

  13. Pharmacokinetics of dilevalol and its conjugates in man. Assay method for plasma, blood, urine and bile samples and preliminary pharmacokinetic studies.

    Neubeck, M; Becker, C; Henke, D; Rösch, W; Spahn-Langguth, H; Mutschler, E


    The renal and biliary excretion of the beta-adrenoceptor blocking agent dilevalol (CAS 75659-07-3) and its conjugates was examined in a preliminary pharmacokinetic study. Plasma, urine and bile dilevalol concentrations were determined with a simplified procedure that is based on alkaline liquid-liquid extraction using diethyl ether and subsequent reversed-phase HPLC separation of the reconstituted samples (on a PRP-1 stationary phase using a mixture of methanol and pH 9.8 carbonate buffer as mobile phase). Triamterene was used as internal standard. The quantification of the conjugates was accomplished indirectly via enzymatic hydrolysis (glusulase) with and without addition of the beta-glucuronidase inhibitor 1,4-saccharolactone (at a final concentration of 5.5 mmol/l). In the pharmacokinetic study healthy volunteers and cholecystectomised patients with a T-drain received a single oral dose of 200 mg dilevalol. Furthermore, to healthy volunteers an i.v. dose of 60 mg dilevalol was given in order to estimate the absolute bioavailability. From the obtained data the systemic plasma clearance was calculated to be 1708 ml/min. The oral bioavailability was calculated to be 16%. The log concentration-time curves of the metabolites paralleled those of dilevalol in the terminal section with average terminal half-lives of approx. 5 h. In volunteers the fractions of the dose excreted renally were 0.5% for parent drug, 23% for the glucuronide(s) and 8% for the sulfate. The corresponding values found for the patients were not significantly different. In the patients' bile only 1.2% of the total dose were found (0.03% dilevalol, 1.1% dilevalol glucuronide(s), 0.1% dilevalol sulfate).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11).

    Chen, Shujuan; Yueh, Mei-Fei; Bigo, Cyril; Barbier, Olivier; Wang, Kepeng; Karin, Michael; Nguyen, Nghia; Tukey, Robert H


    Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1(ΔHep)) and the intestine (Ugt1(ΔGI)). Control (Ugt1(F/F)), Ugt1(ΔHep), and Ugt1(ΔGI) adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11-treated Ugt1(ΔHep) mice showed a similar lethality rate to the CPT-11-treated Ugt1(F/F) mice. However, Ugt1(ΔGI) mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.

  15. Voucher-based reinforcement for alcohol abstinence using the ethyl-glucuronide alcohol biomarker.

    McDonell, Michael G; Howell, Donelle N; McPherson, Sterling; Cameron, Jennifer M; Srebnik, Debra; Roll, John M; Ries, Richard K


    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase. The percentage of negative urines was 35% during the first baseline phase, 69% during the C phase, and 20% during the return-to-baseline phase. Results suggest that EtG urine tests may be a feasible method to deliver CM to promote alcohol abstinence.

  16. Conjugation in "Escherichia coli"

    Phornphisutthimas, Somkiat; Thamchaipenet, Arinthip; Panijpan, Bhinyo


    Bacterial conjugation is a genetic transfer that involves cell-to-cell between donor and recipient cells. With the current method used to teach students in genetic courses at the undergraduate level, the transconjugants are identified using bacterial physiology and/or antibiotic resistance. Using physiology, however, is difficult for both…

  17. DNA-cell conjugates

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki


    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  18. Peptide-Carrier Conjugation

    Hansen, Paul Robert


    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  19. In vitro glucuronidation of Armillarisin A: UDP-glucuronosyltransferase 1A9 acts as a major contributor and significant species differences.

    Sun, Dongxue; Zhu, Liangliang; Xiao, Ling; Xia, Yangliu; Ge, Guangbo; Cao, Yunfeng; Wu, Yan; Yin, Jun; Yang, Ling


    1. This study is performed to investigate liver microsomal glucuronidation of Armillarisin A (A.A), an effective cholagogue drug, aiming at characterizing the involved UDP-glucuronosyltranferases (UGT) and revealing potential species differences. 2. A.A glucuronidation in human liver microsomes (HLM) generates one metabolite (M2) glucuronidated at the phenol hydroxyl group, obeying Michaelis-Menten kinetic model. Multiple isoforms including UGT1A1, 1A7, 1A9 and 2B15 can catalyze A.A glucuronidation. Kinetic assays and chemical inhibition studies both demonstrate that UGT1A9 is responsible for A.A glucuronidation in HLM. A.A glucuronidation in Cynomolgus monkey microsomes (CyLM) also follows Michaelis-Menten model, but can additionally catalyze the traced glucuronosyl substitution at the alcohol hydroxyl group (M1). The reactions in liver microsomes from Sprague-Dawley rats (RLM), ICR/CD-1 mouse (MLM), Beagle dog (DLM) all display biphasic kinetics and only M2 is detected. HLM, RLM and CyLM exhibit very similar catalytic activities towards A.A glucuronidation, with the intrinsic clearance values of respective 38, 37 and 37 μL/min/mg, which are much higher than MLM and DLM. 3. This in vitro study indicates that UGT1A9 acts as a major contributor to A.A glucuronidation in human liver, and the reaction displays large species differences.

  20. LC-H-1 NMR used for determination of the elution order of S-naproxen glucuronide isomers in two isocratic reversed-phase LC-systems

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus;


    .D. Wilson, J.K. Nicholson, J. Chromatogr. B Biomed. Appl. 685 (1996) 113-122]. The alpha -1-O-acyl isomer was found to be present at approximately 3% of the initial S-naproxen-beta -1-O-acyl glucuronide concentration in the glucuronide isomer mixture after 6 h of incubation at pH 7.40 and 37 degrees...

  1. A Review of Morphine and Morphine-6-Glucuronide's Pharmacokinetic-Pharmacodynamic Relationships in Experimental and Clinical Pain

    Sverrisdóttir, Eva; Lund, Trine Meldgaard; Olesen, Anne Estrup


    a detailed overview of the published human population pharmacokinetic-pharmacodynamic studies for morphine analgesia in addition to basic drug disposition and pharmacological properties of morphine and its analgesic active metabolite, morphine-6-glucuronide, that may help identify future covariates....... Furthermore, based on simulations from key pharmacokinetic-pharmacodynamic models, the contribution of morphine-6-glucuronide to the analgesic response in patients with renal insufficiency was investigated. Simulations were also used to examine the impact of effect-site equilibration half-life on time course...

  2. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes.

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao


    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-D-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-D-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4.

  3. In vitro glucuronidation of 2,2-bis(bromomethyl)-1,3-propanediol by microsomes and hepatocytes from rats and humans.

    Rad, Golriz; Hoehle, Simone I; Kuester, Robert K; Sipes, I Glenn


    2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice > hamsters > monkeys > humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents.

  4. Stereoselective urinary excretion of S-(-)- and R-(+)-propranolol glucuronide following oral administration of RS-propranolol in Chinese Han subjects

    Luan, Lian-Jun; Shao, Qing; Ma, Jian-Yin; Zeng, Su


    AIM: To study the stereoselectivity of phase II glucuronidation metabolism of side-chain propranolol in Chinese Han population. METHODS: Sixteen adult Chinese Han volunteers with an average age of 20 years were given a single oral dose of 20 mg racemic propranolol. Human urine at indicated time after administration was collected and S-(-)-propranolol glucuronide and R-(+)-propranolol glucuronide were determined simultaneously by using RP-HPLC. RESULTS: The mean values of k were 0.19±0.04 h-1 and 0.28±0.06 h-1, of t1/2 3.56±0.73 h and 2.45±0.50 h, of Tmax 2.21±0.45 and 1.75±0.33 h, and of Xu0-24 5.65±0.98 and 2.95±0.62 μmoL for S-(-)- and R-(+)-propranolol glucuronide, respectively. The cumulative excretion percentages in urine of doses were 14.7±2.46% and 7.68±1.60% for S-(-)- and R-(+)-propranolol glucuronide, respectively. The results showed the elimination rate constant k of S-(-)-propranolol glucuronide was less than that of R-(+)-propranolol glucuronide; and the elimination half-life (t1/2), Tmax and the cumulative excretion amount(Xu0-24) of R-(+)-propranolol glucuronide were significantly less than that of S-(-)-propranolol glucuronide. CONCLUSION: The propranolol glucuronidation of the side-chain undergoes stereoselective excretion in Chinese Han population after an oral administration of racemic propranolol. PMID:15793873

  5. Stereoselective urinary excretion of S-(-)- and R-(+)-propranolol glucuronide following oral administration of RS-propranolol in Chinese Han subjects

    Lian-Jun Luan; Qing Shao; Jian-Yin Ma; Su Zeng


    AIM: To study the stereoselectivity of phase Ⅱglucuronidation metabolism of side-chain propranolol in Chinese Hah population.METHODS: Sixteen adult Chinese Hah volunteers with an average age of 20 years were given a single oral dose of 20 mg racemic propranolol. Human urine at indicated time after administration was collected and S-(-)-propranolol glucuronide and R-(+)-propranolol glucuronide were determined simultaneously by using RP-HPLC.RESULTS: The mean values of kwere 0.19±0.04 h-1 and 0.28±0.06 h-1, of t1/2 3.56±0.73 h and 2.45±0.50 h, of Tmax 2.21±0.45 and 1.75±0.33 h, and of Xu0-24 5.65±0.98 and 2.95±0.62 μmoL for S-(-)- and R-(+)-propranolol glucuronide, respectively. The cumulative excretion percentages in urine of doses were 14.7±2.46% and 7.68±1.60% for S-(-)- and R-(+)-propranolol glucuronide,respectively. The results showed the elimination rate constant kof S-(-)-propranolol glucuronide was less than that of R-(+)-propranolol glucuronide; and the elimination half-life (t1/2), Tmax and the cumulative excretion amount (Xu0-24) of R-(+)-propranolol glucuronide were significantly less than that of S-(-)-propranolol glucuronide.CONCLUSION: The propranolol glucuronidation of the side-chain undergoes stereoselective excretion in Chinese Han population after an oral administration of racemic propranolol.

  6. Identification of flunixin glucuronide and depletion of flunixin and its marker residue in bovine milk.

    Jedziniak, P; Olejnik, M; Szprengier-Juszkiewicz, T; Smulski, S; Kaczmarowski, M; Żmudzki, J


    Residues of flunixin [and its marker residue 5-hydroxyflunixin (5OHFLU)] were determined in milk from cows that intravenously received therapeutic doses of the drug. The samples were collected during each milking (every 12 h) for six consecutive days, and concentrations of flunixin and its metabolites were determined by the method with and without enzymatic hydrolysis (beta-glucuronidase). The highest flunixin concentration in milk was observed 12 h after dosing (2.4 ± 1.42 μg/kg, mean ± SD). Flunixin concentrations in the samples determined with enzymatic hydrolysis were significantly higher (P flunixin glucuronide to the milk. Additionally, unambiguous identification of flunixin glucuronide in the bovine milk was performed with linear ion-trap mass spectrometry. The 5OHFLU concentrations analyzed without enzymatic hydrolysis (22.3 ± 16.04 μg/kg) were similar to this obtained with enzymatic hydrolysis. Flunixin and 5OHFLU concentrations dropped below the limits of detection at 48 h after last dosing.

  7. Regioselective glucuronidation of oxyresveratrol, a natural hydroxystilbene, by human liver and intestinal microsomes and recombinant UGTs.

    Hu, Nan; Mei, Mei; Ruan, Jianqing; Wu, Wenjin; Wang, Yitao; Yan, Ru


    Oxyresveratrol (OXY) is a natural hydroxystilbene that shows similar bioactivity but better water solubility than resveratrol. This study aims to characterize its glucuronidation kinetics in human liver (HLMs) and intestinal (HIMs) microsomes and identify the main UDP-glucuronosyltransferase (UGT) isoforms involved. Three and four mono-glucuronides of OXY were generated in HIMs and HLMs, respectively, with oxyresveratrol-2-O-β-D-glucuronosyl (G4) as the major metabolite in both organs. The kinetics of G4 formation fit a sigmoidal model in HLMs and biphasic kinetics in HIMs. Multiple UGT isoforms catalyzed G4 formation with the highest activity observed with UGT1A9 followed by UGT1A1. G4 formation by both isoforms followed substrate inhibition kinetics. Propofol (UGT1A9 inhibitor) effectively blocked G4 generation in HLMs (IC50 63.7 ± 11.6 µM), whereas the UGT1A1 inhibitor bilirubin only produced partial inhibition in HLMs and HIMs. These findings shed light on the metabolic mechanism of OXY and arouse awareness of drug interactions.

  8. Identification of a new metabolite of GHB: gamma-hydroxybutyric acid glucuronide.

    Petersen, Ida Nymann; Tortzen, Christian; Kristensen, Jesper Langgaard; Pedersen, Daniel Sejer; Breindahl, Torben


    Gamma-hydroxybutyric acid (GHB) is an important analyte in clinical and forensic toxicology with a narrow detection window of 3-6 h. In the search of improved detection methods, the existence in vivo of a glucuronated GHB metabolite (GHB-GLUC) was hypothesized. Chemically pure standards of GHB-GLUC and a deuterated analogue for chromatography were synthesized. Liquid chromatography and tandem mass spectrometry were used for targeted analysis in anonymous clinical urine samples (n = 50). GHB-GLUC was found in concentrations ranging from 0.11 to 5.0 µg/mL (mean: 1.3 ± 1.2 µg/mL). Thus far, this is the first report of a GHB glucuronide detected in biological samples. Given that glucuronides generally have longer half-life values than their corresponding free drugs, GHB-GLUC should theoretically be a biomarker of GHB intoxication. It is also proposed that the hitherto unexplained reports of elevated GHB concentrations in some biological samples, which has caused the setting of a relatively high cutoff value (10 µg/mL), represent total GHB measurements (sum of free GHB and actively chemically hydrolyzed GHB-GLUC). To address these challenges, the present study must be followed by comprehensive pharmacokinetic and stability studies after the controlled administration of GHB.

  9. CM2 antigen, a potential novel molecule participating in glucuronide transport on rat hepatocyte canalicular membrane

    L. Wang


    Full Text Available The polarized molecules predominately distributing at hepatocyte canalicular surface play a vital role in disclosing the process of bile formation and etiopathogenisis of cholestatic live diseases. Therefore, it is important to find novel polarized molecules on hepatocyte canalicular membrane. In the present study, canalicular membrane vesicles (CMVs isolated from rat hepatocyte by density gradient centrifugation were used as immunogens to produce hybridoma and 46 strains of monoclonal antibodies (mAb against CMVs were obtained. With a series of morphological assay methods, including immunohistochemistry, immunofluorescence and immuno-electron microscope, the antigens recognized by canalicular mAb1 (CM1 and canalicular mAb2 (CM2 were confirmed to predominately distribute at hepatocyte canalicular membrane. Transport activity assay revealed that CM2 could inhibit ATP-dependent E217βG uptake of rat hepatocyte CMVs. Meanwhile, Western blotting analysis showed that the molecular mass of CM2 antigen was approximately 110kDa, which was much less than Mr 180kDa of multidrug resistance-associated protein 2 (MRP2 involved in glucuronide transport. These data indicated that CM2 antigen might be a potential novel molecule participating in glucuronide transport on the hepatocyte canalicular membrane.

  10. Efflux Transport Characterization of Resveratrol Glucuronides in UDP-Glucuronosyltransferase 1A1 Transfected HeLa Cells: Application of a Cellular Pharmacokinetic Model to Decipher the Contribution of Multidrug Resistance-Associated Protein 4.

    Wang, Shuai; Li, Feng; Quan, Enxi; Dong, Dong; Wu, Baojian


    Resveratrol undergoes extensive metabolism to form biologically active glucuronides in humans. However, the transport mechanisms for resveratrol glucuronides are not fully established. Here, we aimed to characterize the efflux transport of resveratrol glucuronides using UGT1A1-overexpressing HeLa cells (HeLa1A1 cells), and to determine the contribution of multidrug resistance-associated protein (MRP) 4 to cellular excretion of the glucuronides. Two glucuronide isomers [i.e., resveratrol 3-O-glucuronide (R3G) and resveratrol 4'-O-glucuronide (R4'G)] were excreted into the extracellular compartment after incubation of resveratrol (1-100 μM) with HeLa1A1 cells. The excretion rate was linearly related to the level of intracellular glucuronide, indicating that glucuronide efflux was a nonsaturable process. MK-571 (a dual inhibitor of UGT1A1 and MRPs) significantly decreased the excretion rates of R3G and R4'G while increasing their intracellular levels. Likewise, short-hairpin RNA (shRNA)-mediated silencing of MRP4 caused a significant reduction in glucuronide excretion but an elevation in glucuronide accumulation. Furthermore, β-glucuronidase expressed in the cells catalyzed the hydrolysis of the glucuronides back to the parent compound. A cellular pharmacokinetic model integrating resveratrol transport/metabolism with glucuronide hydrolysis/excretion was well fitted to the experimental data, allowing derivation of the efflux rate constant values in the absence or presence of shRNA targeting MRP4. It was found that a large percentage of glucuronide excretion (43%-46%) was attributed to MRP4. In conclusion, MRP4 participated in cellular excretion of R3G and R4'G. Integration of mechanistic pharmacokinetic modeling with transporter knockdown was a useful method to derive the contribution percentage of an exporter to overall glucuronide excretion.

  11. Theory of Digitized Conjugate Surface and Solution to Conjugate Surface

    Xiao Lai-yuan; Liao Dao-xun; Yi Chuan-yun


    In order to meet the needs of designing and processing digitized surfaces, the method to spreading digitized surface has been proposed. The key technique is to solve the problem of digitized conjugate surface. In the paper, the digitized conjugate surface was theoretically investigated, and the solution of conjugate surface based on digitized surface was also studied. The digitized conjugate surface theory was then proposed, and applied to build the model of solving conjugate surface based on digitized surface. A corresponding algorithm was developed. This paper applies the software Conjugater-1.0 that is developed by ourselves to compute the digitized conjugate surfaces of the drum-tooth surface. This study provides theoretical and technical bases for analyzing engagement of digitized surface, simulation and numerical processing technique.

  12. Inhibition of genistein glucuronidation by bisphenol A in human and rat liver microsomes.

    Coughlin, Janis L; Thomas, Paul E; Buckley, Brian


    Genistein is a natural phytoestrogen of the soybean, and bisphenol A (BPA) is a synthetic chemical used in the production of polycarbonate plastics. Both genistein and BPA disrupt the endocrine system in vivo and in vitro. Growing concerns of altered xenobiotic metabolism due to concomitant exposures from soy milk in BPA-laden baby bottles has warranted the investigation of the glucuronidation rate of genistein in the absence and presence (25 μM) of BPA by human liver microsomes (HLM) and rat liver microsomes (RLM). HLM yield V(max) values of 0.93 ± 0.10 nmol · min(-1) · mg(-1) and 0.62 ± 0.05 nmol · min(-1) · mg(-1) in the absence and presence of BPA, respectively. K(m) values for genistein glucuronidation by HLM in the absence and presence of BPA are 15.1 ± 7.9 μM and 21.5 ± 7.7 μM, respectively, resulting in a K(i) value of 58.7 μM for BPA. Significantly reduced V(max) and unchanged K(m) in the presence of BPA in HLM are suggestive of noncompetitive inhibition. In RLM, the presence of BPA resulted in a K(i) of 35.7 μM, an insignificant change in V(max) (2.91 ± 0.26 nmol · min(-1) · mg(-1) and 3.05 ± 0.41 nmol · min(-1) · mg(-1) in the absence and presence of BPA, respectively), and an increase in apparent K(m) (49.4 ± 14 μM with no BPA and 84.0 ± 28 μM with BPA), indicative of competitive inhibition. These findings are significant because they suggest that BPA is capable of inhibiting the glucuronidation of genistein in vitro, and that the type of inhibition is different between HLM and RLM.

  13. Raloxifene glucuronidation in liver and intestinal microsomes of humans and monkeys: contribution of UGT1A1, UGT1A8 and UGT1A9.

    Kishi, Naoki; Takasuka, Akane; Kokawa, Yuki; Isobe, Takashi; Taguchi, Maho; Shigeyama, Masato; Murata, Mikio; Suno, Manabu; Hanioka, Nobumitsu


    1. Raloxifene is an antiestrogen that has been marketed for the treatment of osteoporosis, and is metabolized into 6- and 4'-glucuronides by UDP-glucuronosyltransferase (UGT) enzymes. In this study, the in vitro glucuronidation of raloxifene in humans and monkeys was examined using liver and intestinal microsomes and recombinant UGT enzymes (UGT1A1, UGT1A8 and UGT1A9). 2. Although the K(m) and CL(int) values for the 6-glucuronidation of liver and intestinal microsomes were similar between humans and monkeys, and species differences in Vmax values (liver microsomes, humans > monkeys; intestinal microsomes, humans monkeys) were observed, no significant differences were noted in the K(m) or S50, Vmax and CL(int) or CLmax values for the 4'-glucuronidation of liver and intestinal microsomes between humans and monkeys. 3. The activities of 6-glucuronidation in recombinant UGT enzymes were UGT1A1 > UGT1A8 >UGT1A9 for humans, and UGT1A8 > UGT1A1 > UGT1A9 for monkeys. The activities of 4'-glucuronidation were UGT1A8 > UGT1A1 > UGT1A9 in humans and monkeys. 4. These results demonstrated that the profiles for the hepatic and intestinal glucuronidation of raloxifene by microsomes were moderately different between humans and monkeys.

  14. N-glucuronidation catalyzed by UGT1A4 and UGT2B10 in human liver microsomes: Assay optimization and substrate identification.

    Lu, Danyi; Xie, Qian; Wu, Baojian


    N-glucuronidation is an important pathway for metabolism and disposition of tertiary amines in humans. This reaction is mainly catalyzed by the enzymes UGT1A4 and UGT2B10. However, the metabolic patterns of UGT1A4- and UGT2B10-mediated N-glucuronidation are not fully clear. In this study, we first optimized in vitro reaction conditions for N-glucuronidation by using specific substrates (i.e., trifluoperazine for UGT1A4, cotinine and amitriptyline for UGT2B10). Furthermore, we found that hepatic N-glucuronidation showed significant species differences. In addition, UGT1A4 and UGT2B10 were primarily responsible for N-glucuronidation of many tertiary amines, including asenapine, loxapine, clozapine, chlorpromazine, dothiepin, doxepin, mirtazapine, mianserin, chlorcyclizine, cyclizine, promethazine, cyclobenzaprine, imatinib, retrorsine, strychnine and brucine. In conclusion, this study provides an in vitro assay system for evaluating N-glucuronidation of amines. Also, UGT1A4- and UGT2B10-mediated N-glucuronidation might play significant roles in metabolism and detoxification of tertiary amines in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré


    in the drug induced liver injury (DILI) by fenbufen, the inhibitory effect of fenbufen and its conjugated metabolites on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria was investigated. Fenbufen glucuronide (F-GlcA), fenbufen-N-acetyl cysteine-thioester (F-NAC) and fenbufen...... in inhibiting ATP synthesis. Fenbufen showed time and concentration dependent inhibition of ATP synthesis with Kinact of 4.4 min(-1) and KI of 0.88 μM and Kinact/KI ratio of 5.01 min(-1) μM(-1). Data show that fenbufen did not act through opening MPT pore, nor did incubation of mitochondria with reduced GSH...... and fenbufen show any protective effect on fenbufen mediated inhibition of oxidative phosphorylation. Inclusion of NADPH in mitochondrial preparations with fenbufen did not modulate the inhibitory effects, suggesting no role of CYP mediated oxidative metabolites on the ATP synthesis in isolated mitochondria...

  16. Hydrolysis of soy isoflavone conjugates using enzyme may underestimate isoflavone concentrations in tissue

    Hebron C. Chang; Myriam Laly; Melody Harrison; Thomas M. Badger


    Objective: To investigate the differences of using enzymatic hydrolysis and acid hydrolysis for identification and quantification of isoflavone aglycones from biomatrices. Methods: β-glucuronidase/sulfatase isolated from Helix pomatia for routine enzymatic hydrolysis or 6N HCl was used to release glucuronide and sulfate conjugates in the serum, urine and tissue samples. Profiles of soy isoflavones after enzymatic hydrolysis or acid hydrolysis in several tissues of rat fed with diets containing soy protein isolate were also compared using LC/MS and HPLC-ECD. Results: Acid hydrolysis released more aglycone than enzymatic digestion ( P <0.05) in liver tissue. The total genistein, daidzein and other metabolites were 20% to 60% lower in samples from enzymatic hydrolysis than in acid hydrolysis. Conclusion: These results indicated that unknown factors in tissues reduced the enzymatic hydrolytic efficiency for releasing isoflavone aglycones even in optimized condition. This would underestimate isoflavone tissue concentrations up to 60%.

  17. Free and conjugated estrogen exports in surface-runoff from poultry litter-amended soil.

    Dutta, Sudarshan; Inamdar, Shreeram; Tso, Jerry; Aga, Diana S; Sims, J Tom


    Land application of animal manures such as poultry litter is a common practice, especially in states with surplus manure. Past studies have shown that animal manure may contain estrogens, which are classified as endocrine-disrupting chemicals and may pose a threat to aquatic and wildlife species. We evaluated the concentrations of estrogens in surface runoff from experimental plots (5 x 12 m each) receiving raw and pelletized poultry litter. We evaluated the free (estrone, E1; 17beta-estradiol, E2beta; estriol, E3) and conjugate forms (glucuronides and sulfates) of estrogens, which differ in their toxicity. Sampling was performed for 10 natural storm events over a 4-mo period (April-July 2008). Estrogen concentrations were screened using enzyme-linked immunosorbent assay (ELISA), followed by quantification using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Concentrations of estrogens from ELISA were much higher than the LC/MS/MS values, indicating crossreactivity with organic compounds. Exports of estrogens were much lower from soils amended with pelletized poultry litter than the raw form of the litter. No-tillage management practice also resulted in a lower export of estrogens with surface runoff compared with reduced tillage. The concentrations and exports of conjugate forms of estrogens were much higher than the free forms for some treatments, indicating that the conjugate forms should be considered for a comprehensive assessment of the threat posed by estrogens.

  18. Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress.

    Hou, Ning; Cai, Bin; Ou, Cai-Wen; Zhang, Zhen-Hui; Liu, Xia-Wen; Yuan, Mu; Zhao, Gan-Jian; Liu, Shi-Ming; Xiong, Long-Gen; Luo, Jian-Dong; Luo, Cheng-Feng; Chen, Min-Sheng


    This study aimed to investigate the anti-oxidant and anti-hypertrophic effects of puerarin-7-O-glucuronide, a water-soluble puerarin metabolite. The anti-oxidant effects of puerarin-7-O-glucuronide were assessed by measurement of intracellular superoxide levels, total superoxide dismutase (SOD) activity, total anti-oxidant capacity, and glutathione (GSH)/glutathione disulfide (GSSG) ratio in cultured neonatal rat cardiomyocytes (NRCMs) stimulated with the xanthine oxidase (XO)/xanthine (X) system or angiotensin II. The activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and expression of NADPH oxidase subunits p22(phox) and p47(phox) were determined. The anti-hypertrophic effects of puerarin-7-O-glucuronide in angiotensin II-challenged NRCMs were characterized by changes in cell morphology and expression of hypertrophic genes. In the pharmacokinetic study, the plasma concentration of puerarin-7-O-glucuronide was determined by rapid resolution-liquid chromatography-tandem mass spectrometry (RR-LC-MS/MS). Puerarin-7-O-glucuronide prevented XO/X-induced increase in intracellular superoxide production and decreases in total SOD activity, GSH/GSSG ratio, and total anti-oxidant capacity. Puerarin-7-O-glucuronide also reversed angiotensin II-induced increases in intracellular superoxide production and NADPH oxidase activity and decreases in total SOD activity. These anti-oxidant effects of puerarin-7-O-glucuronide were accompanied by downregulation of p22(phox) and p47(phox). Furthermore, puerarin-7-O-glucuronide prevented angiotensin II-induced increases in cell surface area and perimeter, as well as changes in Nppa, Myh7, and Myh6. In the pharmacokinetic study, puerarin-7-O-glucuronide was cleared with a half-life of 0.94 h after intravenous administration. Puerarin could be detected in rat plasma, albeit in low concentration, as early as 5 min after intravenous administration of puerarin-7-O-glucuronide. These anti-oxidant and anti

  19. Simultaneous modelling of the Michaelis-Menten kinetics of paracetamol sulphation and glucuronidation.

    Reith, David; Medlicott, Natalie J; Kumara De Silva, Rohana; Yang, Lin; Hickling, Jeremy; Zacharias, Mathew


    1. The aim of the present study was to perform an in vivo estimation of the Michaelis-Menten constants of the major metabolic pathways of paracetamol (APAP). 2. A two-occasion, single-dose cross-over trial was performed using 60 and 90 mg/kg doses of APAP in healthy patients undergoing third molar dental extraction. Plasma samples were collected over 24 h and urine was collected for 8 h after dosing. Twenty patients were enrolled in the study and complete data for plasma and urine were available for both doses for 13 volunteers who were included in the analysis; seven of the volunteers were men, the median age (range) was 22 years (19-31) and the median weight (range) was 68 kg (50-86). 3. The mean (95% CI) k(m) for APAP glucuronidation was 6.89 mmol/L (3.57-10.22) and the V(max) was 0.97 mmol/h per kg (0.65-1.28). The k(m) for APAP sulphation was 0.097 mmol/L (0.041-0.152) and the V(max) was 0.011 mmol/h per kg (0.009-0.013). For the combined excretion of APAP-cysteine and APAP-mercapturate, the k(m) was 0.303 mmol/L (0.131-0.475) and the V(max) was 0.004 mmol/h per kg (0.002-0.005). 4. The estimates for in vivo Michaelis-Menten constants for APAP glucuronidation and sulphation were in the order of those reported previously using in vitro methods.

  20. Organometallic B12-DNA conjugate

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander


    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  1. Hepatic UDP-glucose 13C isotopomers from [U-13C]glucose: a simple analysis by 13C NMR of urinary menthol glucuronide.

    Mendes, Ana C; Caldeira, M Madalena; Silva, Claudia; Burgess, Shawn C; Merritt, Matthew E; Gomes, Filipe; Barosa, Cristina; Delgado, Teresa C; Franco, Fatima; Monteiro, Pedro; Providencia, Luis; Jones, John G


    Menthol glucuronide was isolated from the urine of a healthy 70-kg female subject following ingestion of 400 mg of peppermint oil and 6 g of 99% [U-(13)C]glucose. Glucuronide (13)C-excess enrichment levels were 4-6% and thus provided high signal-to-noise ratios (SNRs) for confident assignment of (13)C-(13)C spin-coupled multiplet components within each (13)C resonance by (13)C NMR. The [U-(13)C]glucuronide isotopomer derived via direct pathway conversion of [U-(13)C]glucose to [U-(13)C]UDP-glucose was resolved from [1,2,3-(13)C(3)]- and [1,2-(13)C(2)]glucuronide isotopomers derived via Cori cycle or indirect pathway metabolism of [U-(13)C]glucose. In a second study, a group of four overnight-fasted patients (63 +/- 10 kg) with severe heart failure were given peppermint oil and infused with [U-(13)C]glucose for 4 hr (14 mg/kg prime, 0.12 mg/kg/min constant infusion) resulting in a steady-state plasma [U-(13)C]glucose enrichment of 4.6% +/- 0.6%. Menthol glucuronide was harvested and glucuronide (13)C-isotopomers were analyzed by (13)C NMR. [U-(13)C]glucuronide enrichment was 0.6% +/- 0.1%, and the sum of [1,2,3-(13)C(3)] and [1,2-(13)C(2)]glucuronide enrichments was 0.9% +/- 0.2%. From these data, flux of plasma glucose to hepatic UDPG was estimated to be 15% +/- 4% that of endogenous glucose production (EGP), and the Cori cycle accounted for at least 32% +/- 10% of GP. (c) 2006 Wiley-Liss, Inc.

  2. Hierarchically deflated conjugate residual

    Yamaguchi, Azusa


    We present a progress report on a new class of multigrid solver algorithm suitable for the solution of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike HDCG \\cite{Boyle:2014rwa}, the algorithm works directly on a nearest neighbour fine operator. The fine operator used is Hermitian indefinite, for example $\\Gamma_5 D_{dwf}$, and convergence is achieved with an indefinite matrix solver such as outer iteration based on conjugate residual. As a result coarse space representations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81 point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements of the little Dirac operator in an HMC evolution.

  3. Dihydroazulene-buckminsterfullerene conjugates

    Santella, Marco; Mazzanti, Virginia; Jevric, Martyn;


    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has recently attracted interest as a molecular switch for molecular electronics. In this field, Buckminsterfullerene, C(60), has been shown to be a useful anchoring group for adhering a molecular wire to an electrode. Here we have...... combined the two units with the overall aim to elucidate how C(60) influences the DHA-VHF switching events. Efficient synthetic protocols for making covalently linked DHA-C(60) conjugates were developed, using Prato, Sonogashira, Hay, and Cadiot-Chodkiewicz reactions. These syntheses provide as well...... of DHA to its corresponding VHF. Thus, C(60) was found to significantly quench this conversion when situated closely to the DHA unit....

  4. Generalized conjugate gradient squared

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)


    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  5. Structure-activity relationship (SAR): effort towards blocking N-glucuronidation of indazoles (PF-03376056) by human UGT1A enzymes.

    Rose, Kelly; Yang, Young-Sun; Sciotti, Richard; Cai, Hongliang


    GyrATPase is a cellular enzyme that has been used as an antibacterial target for treatment of nosocomial and community acquired bacterial infections. The leading chemical series targeted at inhibiting this enzyme, indazoles, were rapidly cleared in rats (CL > 70 mL/min/kg). The predominant metabolite identified in both urine and bile samples from a bile duct-cannulated study corresponded to direct glucuronidation of the parent compound and was excreted rapidly. Subsequently, a carefully designed analog was used to pinpoint the site of glucuronidation (N-glucuronidation) by incubation with rat hepatocytes and followed by mass spectrometry analysis. Reaction mapping with an array of recombinant UGT isozymes revealed that N-glucuronidation was predominantly catalyzed by the UGT1A family of enzymes. Based on the results, the following approaches were considered to reduce or eliminate glucuronidation: 1) adding sterically hindered substitutions on the phenyl ring of the indazole core; 2) changing the electron distribution by substituting with electron-donating or -withdrawing groups; 3) replacing the site of glucuronidation. The resulted compounds were evaluated in vitro in rat hepatocytes to assess their metabolic stabilities followed by in vivo efficacy studies in the murine peritonitis sepsis model (at 50 mg/kg) for selected compounds.

  6. Effect of T(3) treatment and food ration on hepatic deiodination and conjugation of thyroid hormones in rainbow trout, Oncorhynchus mykiss.

    Finnson, K W; Eales, J G


    We studied the 7-day effects of 3,5,3'-triiodothyronine (T(3)) hyperthyroidism (induced by 12 ppm T(3) in food) and food ration (0, 0.5, or 2% body weight/day) on in vitro hepatic glucuronidation, sulfation, and deiodination of thyroxine (T(4)), T(3), and 3,3', 5'-triiodothyronine (rT(3)). T(3) treatment doubled plasma T(3) with no change in plasma T(4), depressed hepatic low-K(m) (1 nM) outer-ring deiodination (ORD) of T(4), induced low-K(m) (1 nM) inner-ring deiodination (IRD) of both T(4) and T(3) but did not alter high-K(m) (1 microM) rT(3)ORD, glucuronidation, or sulfation of T(4), T(3), or rT(3). Plasma T(4) levels were greater for 0 and 2% rations than for a 0.5% ration. Fasting decreased low-K(m) T(4)ORD activity and increased high-K(m) rT(3)ORD activity but did not alter T(4)IRD or T(3)IRD activities. T(4), T(3), and rT(3) glucuronidation were greater for 0 and 0.5% rations than for a 2% ration. T(3) glucuronidation was greater for a 0.5% ration than for a 0% ration. T(3) and rT(3) sulfation were greater for a 2% ration than for a 0 or a 0.5% ration; ration did not change T(4) sulfation. We conclude that (i) modest experimental T(3) hyperthyroidism induces T(3) autoregulation by adjusting hepatic low-K(m) ORD and IRD activities but not high-K(m) rT(3)ORD or conjugation activities; (ii) in contrast, ration level changes both deiodination and conjugation pathways, suggesting that the response to ration does not solely reflect altered T(3) production; (iii) deiodination and conjugation appear complementary in regulating thyroidal status in response to ration; and (iv) high-K(m) rT(3)ORD in trout differs from rat type I deiodination in that it does not respond to T(3) hyperthyroidism and it increases, rather than decreases, its activity during fasting. Copyright 1999 Academic Press.

  7. Elucidation of the mechanism of inhibition of cyclooxygenases by acyl-coenzyme A and acylglucuronic conjugates of ketoprofen.

    Levoin, Nicolas; Blondeau, Céline; Guillaume, Cécile; Grandcolas, Line; Chretien, Françoise; Jouzeau, Jean-Yves; Benoit, Etienne; Chapleur, Yves; Netter, Patrick; Lapicque, Françoise


    Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) isoforms which accounts for their clinical effects. The differential inhibition of COX-1 and COX-2 is not sufficient to explain the absence of a correlation between in vitro and in vivo effects, especially for 2-aryl-propionates, thus indicating the participation of metabolites. Conjugates to glucuronic acid and to coenzyme-A are mainly produced, and have been shown to be chemically reactive. Therefore, we studied the interaction of the ketoprofen metabolites with the COX enzymes. After incubation with bovine pulmonary artery endothelial cells (BPAEC), COX-1 was inhibited stereoselectively by S-ketoprofen acylglucuronide, and more significantly by CoA-thioester. After washing-out the medium, COX-1 activity was essentially recovered, indicating a reversible inhibition. In LPS-stimulated J774.2 cells, COX activity (mainly inducible COX-2) was inhibited reversibly and stereospecifically by S-ketoprofen glucuronide, whereas it disappeared totally and was not recovered after incubation with CoA-thioester. Correspondingly, inhibition of purified COX-2 with this compound was observed to be rapid and irreversible. Using an anti-ketoprofen antibody, COX immunoprecipitated from cells exhibited adduct formation for COX-2 but not for COX-1. This was observed after incubation with CoA-thioester, and, surprisingly, also with glucuronide. Molecular docking gave support to explain this discrepancy: the glucuronide was found to establish a strong interaction with Y115 located in the membrane binding domain, whereas the thioester was preferentially bound to the active site of the enzyme. Overall, our results suggest a contribution of CoA-thioester metabolites of carboxylic NSAIDs to their pharmacological action by irreversibly and selectively inhibiting COX-2.

  8. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    Ohara, Kazuaki, E-mail: [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)


    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  9. Morphine-3-D glucuronide stability in postmortem specimens exposed to bacterial enzymatic hydrolysis.

    Carroll, F T; Marraccini, J V; Lewis, S; Wright, W


    Medical examiners frequently rely on the finding of free morphine present in postmortem specimens to assist in certifying deaths associated with narcotics. In vitro hydrolysis of morphine-3-D glucuronide (M3DG) to free morphine was studied using variable specimen pH, initial degree of specimen putrefaction, storage temperature and time, and the effectiveness of sodium fluoride (NaF) preservation. Reagent M3DG was added to opiate-free fresh blood and urine and to autopsy-derived blood specimens. Reagent bovine glucuronidase was also added to certain specimens. Freshly collected and refrigerated NaF-preserved blood produced minimal free morphine, whereas four of five autopsy blood specimens produced free morphine from M3DG. Increased storage time, temperature, and initial degree of putrefaction resulted in greater free morphine generation despite the absence of viable bacteria. Hydrolysis occurring during specimen storage can generate free morphine from M3DG and may result in erroneous conclusions in certifying narcotic deaths.

  10. Ovarian Hormone Estrone Glucuronide (E1G) quantification-impedimetric electrochemical spectroscopy approach

    Zia, Asif I.


    A study was conducted on detection and concentration measurement of estrone glucuronide (E1G), an important metabolite of the ovarian hormone estradiol, by using Electrochemical Impedance Spectroscopy (EIS) technique. A miniature planar Inter-digital (ID) capacitive sensor fabricated on single crystal silicon substrate with sputtered gold electrodes coupled with EIS was used to measure conductivity, permeability and dielectric properties of the said hormone metabolite. A thin film of Silicon Nitride (50 um) was coated on the sensor as passivation layer to avoid Faradic currents through the sensor. Impedance spectrums were obtained with various concentrations of E1G in buffer solution by exposing the samples to electrical perturbations at certain frequency range. Relationship of sample conductance with E1G concentration was studied on basis Randle\\'s equivalent circuit model and results were analyzed to deduce Constant Phase Equivalent (CPE) Circuit model in order to evaluate the double layer capacitance produced at the solution-electrode interface due to kinetic processes taking place in the electrochemical cell. The sensitivity of the sensor was evaluated against concentration. The result analysis confirmed that fabricated ID sensor together with EIS can provide a rapid and successful low cost sensing system which can help a lay user to determine peak time for feminine reproductive fertility at home without submitting samples for an expensive and time consuming laboratory test. © 2013 IEEE.

  11. Aptamer-Drug Conjugates.

    Zhu, Guizhi; Niu, Gang; Chen, Xiaoyuan


    Western medicine often aims to specifically treat diseased tissues or organs. However, the majority of current therapeutics failed to do so owing to their limited selectivity and the consequent "off-target" side effects. Targeted therapy aims to enhance the selectivity of therapeutic effects and reduce adverse side effects. One approach toward this goal is to utilize disease-specific ligands to guide the delivery of less-specific therapeutics, such that the therapeutic effects can be guided specifically to diseased tissues or organs. Among these ligands, aptamers, also known as chemical antibodies, have emerged over the past decades as a novel class of targeting ligands that are capable of specific binding to disease biomarkers. Compared with other types of targeting ligands, aptamers have an array of unique advantageous features, which make them promising for developing aptamer-drug conjugates (ApDCs) for targeted therapy. In this Review, we will discuss ApDCs for targeted drug delivery in chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and photothermal therapy, primarily of cancer.

  12. Sequential measurements of conjugate observables

    Carmeli, Claudio [Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Heinosaari, Teiko [Department of Physics and Astronomy, Turku Centre for Quantum Physics, University of Turku, 20014 Turku (Finland); Toigo, Alessandro, E-mail:, E-mail:, E-mail: [Dipartimento di Matematica ' Francesco Brioschi' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)


    We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl-Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite- and infinite-dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.

  13. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies.

    Chau, Nuy; Elliot, David J; Lewis, Benjamin C; Burns, Kushari; Johnston, Martin R; Mackenzie, Peter I; Miners, John O


    Morphine 3-β-D-glucuronide (M3G) and morphine 6-β-D-glucuronide (M6G) are the major metabolites of morphine in humans. More recently, morphine-3-β-d-glucoside (M-3-glucoside) was identified in the urine of patients treated with morphine. Kinetic and inhibition studies using human liver microsomes (HLM) and recombinant UGTs as enzyme sources along with molecular modeling were used here to characterize the relationship between morphine glucuronidation and glucosidation. The M3G to M6G intrinsic clearance (C(Lint)) ratio (∼5.5) from HLM supplemented with UDP-glucuronic acid (UDP-GlcUA) alone was consistent with the relative formation of these metabolites in humans. The mean C(Lint) values observed for M-3-glucoside by incubations of HLM with UDP-glucose (UDP-Glc) as cofactor were approximately twice those for M6G formation. However, although the M3G-to-M6G C(Lint) ratio remained close to 5.5 when human liver microsomal kinetic studies were performed in the presence of a 1:1 mixture of cofactors, the mean C(Lint) value for M-3-glucoside formation was less than that of M6G. Studies with UGT enzyme-selective inhibitors and recombinant UGT enzymes, along with effects of BSA on morphine glycosidation kinetics, were consistent with a major role of UGT2B7 in both morphine glucuronidation and glucosidation. Molecular modeling identified key amino acids involved in the binding of UDP-GlcUA and UDP-Glc to UGT2B7. Mutagenesis of these residues abolished morphine glucuronidation and glucosidation. Overall, the data indicate that morphine glucuronidation and glucosidation occur as complementary metabolic pathways catalyzed by a common enzyme (UGT2B7). Glucuronidation is the dominant metabolic pathway because the binding affinity of UDP-GlcUA to UGT2B7 is higher than that of UDP-Glc.

  14. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno


    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  15. Estimation of measurement uncertainty for the quantification of 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid and its glucuronide in urine using liquid chromatography-tandem mass spectrometry.

    Kim, Jin Young; Kwon, Woonyong; Kim, Hee Seung; Suh, Sungill; In, Moon Kyo


    Recently, the estimation of the measurement uncertainty has become a significant issue in the quality control of forensic drug testing. In the present study, the uncertainty of the measurement was calculated for the quantification of 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) and its glucuronide conjugate (THC-COOH-glu) in urine using liquid chromatography-tandem mass spectrometry. The procedure was based on liquid-liquid extraction of a volume of urine (800 µL) with ethyl acetate. The sources of uncertainty were identified and classified into four major categories as follows: standard preparation, calibration curve, method precision and bias. The overall contribution of combined standard uncertainty on THC-COOH increased in the order of standard preparation (0.9%), method precision (10.4%), calibration curve (30.3%) and bias (58.4%) and, while calibration curve (53.0%) and bias (40.4%) gave the bigger contributions to the combined standard uncertainty for THC-COOH-glu than method precision and standard preparation, which accounted for 6.3 and 0.3%, respectively. The reliability of a measurement was expressed by stating the expanded uncertainty of the measurement result at 95% confidence level. The concentrations of THC-COOH and THC-COOH-glu in the urine sample with their expanded uncertainties were 10.20 ± 1.14 ng/mL and 25.42 ± 5.01 ng/mL, respectively.

  16. Identification of combined conjugation of nabumetone phase I metabolites with glucuronic acid and glycine in minipig biotransformation using coupling high-performance liquid chromatography with electrospray ionization mass spectrometry.

    Česlová, Lenka; Holčapek, Michal; Nobilis, Milan


    High-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) was applied for the analysis of nabumetone metabolites during the biotransformation in minipigs. In addition to known phase I metabolites, the identification of phase II metabolites was achieved on the basis of their full-scan mass spectra and subsequent MS(n) analysis using both positive-ion and negative-ion ESI mode. Some phase I metabolites are conjugated with both glucuronide acid and glycine, which is quite unusual type of phase II metabolite not presented so far for nabumetone. These metabolites were found in small intestine content, but they were absent in minipigs urine.

  17. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes.

    Dai, Peimin; Luo, Feifei; Wang, Ying; Jiang, Huangyu; Wang, Liping; Zhang, Guiyu; Zhu, Lijun; Hu, Ming; Wang, Xinchun; Lu, Linlin; Liu, Zhongqiu


    Flavonoids occur naturally as glucosides and aglycones. Their common phenolic hydroxyl groups may trigger extensive UDP-glucuronosyltransferase (UGT)- catalysed metabolism. Unlike aglycones, glucosides contain glucose moieties. However, the influence of these glucose moieties on glucuronidation of glucosides and aglycones remains unclear. In this study, the flavonoid glucoside tilianin and its aglycone acacetin were used as model compounds. The glucuronidation characteristics and enzyme kinetics of tilianin and acacetin were compared using human UGT isoforms, liver microsomes and intestinal microsomes obtained from different animal species. Tilianin and acacetin were metabolized into different glucuronides, with UGT1A8 produced as the main isoform. Assessment of enzyme kinetics in UGT1A8, human liver microsomes and human intestinal microsomes revealed that compared with tilianin, acacetin displayed lower Km (0.6-, 0.7- and 0.6-fold, respectively), higher Vmax (20-, 60- and 230-fold, respectively) and higher clearance (30-, 80- and 300-fold, respectively). Furthermore, glucuronidation of acacetin and tilianin showed significant species- and gender-dependent differences. In conclusion, glucuronidation of flavonoid aglycones is faster than that of glucosides in the intestine and the liver. Understanding the metabolism and species- and gender-dependent differences between glucosides and aglycones is crucial for the development of drugs from flavonoids.

  18. Research study of conjugate materials; Conjugate material no chosa kenkyu



    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  19. Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h.

    Maskell, Peter D; Albeishy, Mohammed; De Paoli, Giorgia; Wilson, Nathan E; Seetohul, L Nitin


    The interpretation of postmortem drug levels is complicated by changes in drug blood levels in the postmortem period, a phenomena known as postmortem drug redistribution. We investigated the postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in a rabbit model. Heroin (1 mg/kg) was injected into anesthetised rabbit; after 1 h, an auricular vein blood sample was taken and the rabbit was euthanised. Following death rabbits were placed in a supine position at room temperature and divided into three groups namely (1) immediate autopsy, (2) autopsy after 30 minutes and (3) autopsy 24 h after death. Various samples which included femoral blood, cardiac blood, lung, liver, kidney, vitreous humour, subcutaneous and abdominal fat, liver, bone marrow and skeletal muscle were taken. The samples were analysed with a validated LC-MS/MS method. It was observed that within minutes there was a significant increase in free morphine postmortem femoral blood concentration compared to the antemortem sample (0.01 ± 0.01 to 0.05 ± 0.02 mg/L).Various other changes in free morphine and metabolite concentrations were observed during the course of the experiment in various tissues. Principal component analysis was used to investigate possible correlations between free morphine in the various samples. Some correlations were observed but gave poor predictions (>20 % error) when back calculating. The results suggest that rabbits are a good model for further studies of postmortem redistribution but that further study and understanding of the phenomena is required before accurate predictions of the blood concentration at the time of death are possible.

  20. Influence of thermal hair straightening on ethyl glucuronide content in hair.

    Ettlinger, Jana; Kirchen, Luc; Yegles, Michel


    Hair analysis of ethyl glucuronide (EtG) has become a valuable marker for the detection of moderate and chronic alcohol consumption. It has been shown that bleaching and perming may decrease EtG content in hair. So far, no studies exist about the influence of thermal hair straightening on EtG content in hair. Forty-one positive EtG hair samples were treated in vitro with a hair straightener at 200°C. Duration of treatment of 1 min was chosen for this study. After washing, pulverization, incubation in ultrasonic bath, solid-phase extraction, and derivatization with heptafluorobutyric anhydride, EtG was determined by gas chromatography-mass spectrometry - negative ion chemical ionization (GC-MS-NICI). The EtG contents in straightened hair strands were then compared with those in the corresponding untreated strands. In 20 of 41 hair samples, a decrease of EtG content was found ranging from 0.7% to 79.3% (average 20%) whereas in 21 cases an increase was shown ranging from 2.0% to 50.9% (average 15%). The variation of the results seems to depend on hair colour. The decrease may be explained by thermic in vitro destruction of EtG. The increase may be explained by denaturation of the hair matrix by thermal treatment possibly causing a better extraction of EtG during incubation in ultrasonic bath. This in vitro study indicates that thermal hair straightening has an impact on the EtG content in hair. This has to be considered for a correct interpretation of EtG results in hair. However, these results should be confirmed by in vivo studies. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats

    Abbott, F.V.; Palmour, R.M.


    The antinociceptive effects of morphine-6-glucuronide (M6G) were examined in two animal models of pain, the tail immersion test (reflex withdrawal to noxious heat) and the formalin test (behavioral response to minor tissue injury). In the tail immersion test, M6G produced and increase in withdrawal latency that rose rapidly between 0.01 and 0.025 ug ICV or 1 and 2 mg/kg SC. A further increase occurred at doses greater than 0.2 ug ICV or 4 mg/kg SC and was associated with marked catelepsy and cyanosis. Naloxone, 0.1 mg/kg SC, shifted the lower component of the dose-effect relation by a factor of 24. In the formalin test, 0.01 ug M6G ICV produced hyperalgesia, while between 0.05 and 0.2 ug ICV, antinociception increased rapidly without toxicity. The dose effect relations for hyperalgesia and antinociception were shifted to the right by factors of 20- and 3-fold, respectively. By comparison, ICV morphine was 60 (formalin test) to 145-200 (tail immersion test) times less potent than M6G. At sub-nanomolar concentrations, M6G enhanced the binding of (/sup 3/H)-etorphine, (/sup 3/H)-dihydromorphine and (/sup 3/H)-naloxone to rat brain membrane receptors by 20-40%. At higher concentrations, M6G displaced each ligand from binding sites, with K/sub i/ values of about 30 nM, as compared to morphine K/sub i/ values of about 3 nM.

  2. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry

    Priyamvada Sharma


    Full Text Available Background & objectives: Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG, a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE and gas chromatography (GC with mass spectrometric detection (MS was developed and validated. Methods: De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Results: Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853 and urine EtG and time since last abuse (r = -0.903 in clinical samples. Interpretation & conclusions: In the absence of other standardized techniques to quantitate EtG in biological samples, this gc0 - ms0 method was found to have high throughput and was sensitive and specific.

  3. Plasma and Urine Concentrations of Bioactive Dietary Benzoxazinoids and Their Glucuronidated Conjugates in Rats Fed a Rye Bread-Based Diet

    B. Adhikari, Khem; Lærke, Helle N.; Mortensen, Anne G.


    Thorough knowledge of the absorption and metabolism of dietary benzoxazinoids is needed to understand their health-promoting effects. In this study, the fates of these bioactive compounds were examined by LC-MS/MS in plasma, urine, and feces after ingesting a daily dose of 4780 ± 68 nmol benzoxazi...

  4. Plasma and Urine Concentrations of Bioactive Dietary Benzoxazinoids and Their Glucuronidated Conjugates in Rats Fed a Rye Bread-Based Diet

    B. Adhikari, Khem; Lærke, Helle N.; Mortensen, Anne G.;


    Thorough knowledge of the absorption and metabolism of dietary benzoxazinoids is needed to understand their health-promoting effects. In this study, the fates of these bioactive compounds were examined by LC-MS/MS in plasma, urine, and feces after ingesting a daily dose of 4780 ± 68 nmol...

  5. Conjugated polymer nanoparticles, methods of using, and methods of making

    Habuchi, Satoshi


    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  6. Conjugate Gradient with Subspace Optimization

    Karimi, Sahar


    In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for "conjugate gradient with subspace optimization". It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other CG algorithms, the update step on each iteration is a linear combination of the last gradient and last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical complexity bound of $O(\\sqrt{L/l} \\log(1/\\epsilon))$, where the ratio $L/l$ characterizes the strong convexity of the objective function. In practice, CGSO competes with other CG-type algorithms by incorporating some second order information in each iteration.

  7. Persistence Mechanisms of Conjugative Plasmids

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes


    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting...... the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...... maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid...

  8. Hypercube Solutions for Conjugate Directions


    alternative term that emphasizes the role of A in this definition. We also say that x and y are A-orthogonal. [Ref. 18: p. 410] The method of conjugate...conjugate (A-orthogonal). begin CG u0 =zeros(n) (arbitrary initial guess) Po = r0 = b- Auo for i = 0 : n = pTAp , (denominator used below) ai = (pTri...application, it could characterize water or chemical penetration in soil. We shall continue to use the term "heat equation", though, for the sake of

  9. A modern approach to the synthesis of 2-(4-chlorophenyl)[2-(14)C]thiazol-4-ylacetic acid ([(14)C] fenclozic acid) and its acyl glucuronide metabolite.

    Killick, David A; Bushby, Nick


    An updated approach to the 1960s synthesis of [(14)C] fenclozic acid from labelled potassium cyanide is presented. By employing modern synthetic methodology and purification techniques, many of the inherent hazards in the original synthesis are avoided or significantly reduced. The concomitant labelled stereoselective synthesis of the key acyl glucuronide metabolite (the 1-β-O-acyl glucuronide) is also described.

  10. Acetaminophen glucuronide and plasma glucose report identical estimates of gluconeogenesis and glycogenolysis for healthy and prediabetic subjects using the deuterated water method.

    Barosa, Cristina; Jones, John G; Rizza, Robert; Basu, Ananda; Basu, Rita


    Plasma glucose (2) H-enrichment in positions 5 ((2) H5) and 2 ((2) H2) from deuterated water ((2) H2 O) provides a measure of the gluconeogenic contribution to endogenous glucose production. Urinary glucuronide analysis can circumvent blood sampling but it is not known if glucuronide and glucose enrichments are equal. Thirteen subjects with impaired fasting glucose/impaired glucose tolerance and 11 subjects with normal fasting glucose and normal glucose tolerance ingested (2) H2 O to ∼0.5% body water and acetaminophen. Glucose and glucuronide (2) H5 and (2) H2 were measured by (2) H NMR spectroscopy of monoacetone glucose. For normal fasting glucose/normal glucose tolerance, (2) H5 was 0.23 ± 0.02% and 0.25 ± 0.02% for glucose and glucuronide, respectively, whereas (2) H2 was 0.47 ± 0.01% and 0.49 ± 0.02%, respectively. For impaired fasting glucose/impaired glucose tolerance, (2) H5 was 0.22 ± 0.01% and 0.26 ± 0.02% for glucose and glucuronide, respectively, whereas (2) H2 was 0.46 ± 0.01% and 0.49 ± 0.02%, respectively. The gluconeogenic contribution to endogenous glucose production measured from glucose and glucuronide were identical for both normal fasting glucose/normal glucose tolerance (48 ± 4 vs. 51 ± 3%) and impaired fasting glucose/impaired glucose tolerance (48 ± 2 vs. 53 ± 3%).

  11. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements.

    Wang, Jianyao; Davis, Margaret; Li, Fangbiao; Azam, Farooq; Scatina, JoAnn; Talaat, Rasmy


    A novel technique to study the reactivity of acyl glucuronide metabolites to protein has been developed and is described herein. Considered here are acyl glucuronide metabolites, which have undergone the rearrangement of the glucuronic acid moiety at physiological temperature and pH. The investigation of the reactivity of these electrophilic metabolites was carried out by measuring the rate of reaction of rearranged AG metabolites in forming the corresponding acyl glucuronide-peptide adduct in the presence of Lys-Phe. This differs from the parallel technique used in forming AG adducts of proteins that have been previously reported. In the study described here, the Schiff base adduct, diclofenac acyl glucuronide-Lys-Phe product, was generated and structurally elucidated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis. The product structure was proved to be a Schiff base adduct by chemical derivatization by nucleophilic addition of HCN and chemical reduction with NaCNBH(3), followed by LC/MS/MS analysis. It is proposed here that the degree of reactivity of acyl glucuronides as measured by covalent binding to protein is proportional to the amount of its peptide adduct generated with the peptide technique described. The application of this technique to the assessment of the degree of reactivity of acyl glucuronide metabolites was validated by developing a reactivity rank of seven carboxylic acid-containing drugs. Consistency was achieved between the ranking of reactivity in the peptide technique for these seven compounds and the rankings found in the literature. In addition, a correlation (R(2) = 0.95) was revealed between the formation of a peptide adduct and the rearrangement rate of the primary acyl glucuronide of seven tested compounds. A structure effect on the degree of reactivity has demonstrated the rate order: acetic acid > propionic acid > benzoic acid derivatives. A rational explanation of this order was proposed, based on the inherent

  12. On contravariant product conjugate connections

    A. M. Blaga


    Full Text Available Invariance properties for the covariant and contravariant connections on a Riemannian manifold with respect to an almost product structure are stated. Restricting to a distribution of the contravariant connections is also discussed. The particular case of the conjugate connection is investigated and properties of the extended structural and virtual tensors for the contravariant connections are given.

  13. Actinomycete integrative and conjugative elements

    Poele, Evelien M. te; Bolhuis, Henk; Dijkhuizen, Lubbert


    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative eleme

  14. Immunoassay for ethyl glucuronide in vitreous humor: a new tool for postmortem diagnostics of alcohol use.

    Rainio, Juha; Kultti, Johanna; Kangastupa, Päivikki; Tuomi, Heidi; Ahola, Sanna; Karhunen, Pekka J; Helander, Anders; Niemelä, Onni


    Although excessive alcohol consumption plays a major role in fatal events, the role of alcohol use as a possible contributing factor at the time of death is not easy to establish due to lack of suitable biomarkers for postmortem analyses. We used an immunological approach to measure ethyl glucuronide (EtG) concentrations from vitreous humor (VH) and serum from 58 individuals representing a forensic autopsy population of cases with either a well-documented history of excessive alcohol use (n=37) or cases without such history (n=21), according to medical and police records and blood alcohol determinations (BAC). The immunoassay was based on the Microgenics DRI-EtG EIA reagents applied on an automated Abbott Architect c8000 clinical chemistry analyzer. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination of EtG and ethyl sulfate (EtS) was used as a reference method. At a cut-off of 0.3mg/l for VH-EtG, the immunoassay correctly identified 92% of the cases with a history of excessive alcohol use, whereas the BAC was positive (cut-off 10mg/dl) in 68% of the cases. A significant correlation emerged between VH-EtG and serum EtG (r=0.77, p<0.001) and between VH-EtG and BAC (r=0.62, p<0.001), although VH-EtG was frequently elevated also in cases with no detectable BAC. The EtG immunoassay showed a strong correlation with the LC-MS/MS reference method (r=0.94, p<0.001) and there was 100% agreement in the frequency of marker positive and negative findings between the immunoassay EtG results and the LC-MS/MS analysis of EtG and EtS. The present data indicate that the immunoassay for VH-EtG is a useful forensic tool for screening of antemortem alcohol use.

  15. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    Wright, Trista H; Ferslew, Kenneth E


    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  16. Effect of bleaching on ethyl glucuronide in hair: an in vitro experiment.

    Morini, Luca; Zucchella, Alessandra; Polettini, Aldo; Politi, Lucia; Groppi, Angelo


    Ethyl glucuronide in hair (HEtG) has recently gained great attention, because of its high sensitivity and specificity in the diagnosis of chronic alcohol abuse. Due to its high polarity hydrophilicity, a strong hair treatment followed by a shampooing may lead to removal/degradation of this molecule from hair matrix. To set up an in vitro study in order to evaluate the ability of bleaching of modifying HEtG test results. Thirty hair samples from teetotalers (n=5), social drinkers (n=4) and heavy drinkers (n=21), after an informed written consent, were collected and divided longitudinally into four aliquots. The first aliquot was kept untreated and was processed following the method routinely used in our lab for the determination of HEtG (double washing with methanol/dichloromethane, overnight incubation in water, and LC-MS/MS analysis, LLOQ: 3pg/mg). To the other three aliquots a commercially available bleaching solution was applied, according to the manufacturer's instructions. One out of the three aliquots was submitted to the analysis by following the same procedure used for the untreated sample. The other two were submitted to a purification step before LC-MS/MS analysis, by using two different SPE cartridges (aminopropyl and dimethyl butylamine). HEtG levels in the untreated samples from social drinkers and heavy drinkers ranged from 7.7 to 149.0pg/mg. All the samples from teetotalers tested negative. The treated samples processed without any SPE extraction and with aminopropyl cartridges showed a relevant ion suppression for both EtG and D(5)-EtG (IS) signals. Samples treated with the bleaching solution and extracted with dimethyl butylamine cartridge allowed to sensitively reduce ion suppression (less than 35%) and to verify that EtG, after a strong treatment like bleaching, completely disappears. This in vitro study showed that HEtG disappears from hair matrix after a strong hair treatment. It is not clear whether the mechanism involved is chemical

  17. Influence of bleaching and coloring on ethyl glucuronide content in human hair.

    Petzel-Witt, Silvana; Pogoda, Werner; Wunder, Cora; Paulke, Alexander; Schubert-Zsilavecz, Manfred; Toennes, Stefan W


    Ethyl glucuronide (EtG) is increasingly used in forensic toxicology as a marker for alcohol use in analyses of hair samples, especially in abstinence control. Some cosmetic treatments are considered to markedly reduce the EtG content. In view of especially many women with coloured hair the present study was performed to further investigate the effect of a variety of colouring procedures (bleaching, tinting, permanent and semi-permanent dyeing, henna) on the EtG content. Untreated hair samples (n = 12, EtG 13.9-64.7 pg/mg) were re-analyzed (gas chromatography- negative chemical ionization mass spectrometry, 0.8 pg/mg quantification limit) after different treatment procedures. A decrease of the EtG content of at least 10% occurred in every case. The reduction in comparison to the untreated hair was expectedly high for permanent dyeing and bleaching with 18.1% of the initial content (median, range 0.0-50.9%) and 18.4% (0.0-46.7%), respectively. For henna this was 38.3% (0.0-83.0%), for tinting 70.4% (29.0-90.8%), for semi-permanent dyeing 41.9% (0.0-77.4%). With permanent hair dye the EtG content was decreased to below 7 pg/mg in 10 of 12 cases, in 3 cases even below the LOD (0.2 pg/mg). Surprisingly henna treatment without oxidative component had a marked influence, EtG was below 2 pg/mg in 2 of 12 samples. The study showed that all tested coloration procedures markedly affected the deposited EtG content. Even temporary or henna coloration may have a marked effect. The present data support the recommendation to exclude hair samples with colour manipulations for analysis on the EtG content as a precaution in alcohol abstinence programs. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. A review of morphine and morphine-6-glucuronide's pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain.

    Sverrisdóttir, Eva; Lund, Trine Meldgaard; Olesen, Anne Estrup; Drewes, Asbjørn Mohr; Christrup, Lona Louring; Kreilgaard, Mads


    Morphine is a widely used opioid for treatment of moderate to severe pain, but large interindividual variability in patient response and no clear guidance on how to optimise morphine dosage regimen complicates treatment strategy for clinicians. Population pharmacokinetic-pharmacodynamic models can be used to quantify dose-response relationships for the population as well as interindividual and interoccasion variability. Additionally, relevant covariates for population subgroups that deviate from the typical population can be identified and help clinicians in dose optimisation. This review provides a detailed overview of the published human population pharmacokinetic-pharmacodynamic studies for morphine analgesia in addition to basic drug disposition and pharmacological properties of morphine and its analgesic active metabolite, morphine-6-glucuronide, that may help identify future covariates. Furthermore, based on simulations from key pharmacokinetic-pharmacodynamic models, the contribution of morphine-6-glucuronide to the analgesic response in patients with renal insufficiency was investigated. Simulations were also used to examine the impact of effect-site equilibration half-life on time course of response. Lastly, the impact of study design on the likelihood of determining accurate pharmacodynamic parameters for morphine response was evaluated.

  19. Glutathione conjugation as a bioactivation reaction

    Bladeren, P.J. van


    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  20. Glutathione conjugation as a bioactivation reaction

    Bladeren, P.J. van


    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  1. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman


    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation.

  2. The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds.

    Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad


    In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on

  3. The fate and transport of reproductive hormones and their conjugates in the environment (Invited)

    Casey, F. X.; Shrestha, S. L.; Hakk, H.; Smith, D. J.; Larsen, G. L.; Padmanabhan, G.


    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17β-estradiol (E2) and estrone (E1), undergo various fate and transport processes, and laboratory studies have shown that they do not persist long (hours to few days), and have very little if any mobility in soil. Nonetheless, steroid hormones are detected at frequencies and concentrations of concern in the natural environment that would suggest their moderate persistence and mobility. One theory that may partially explain the disparity between field and laboratory studies is that conjugated forms of hormones are more mobile than their deconjugated counterparts. Glucuronide and sulfate conjugates are found in abundance in animal waste and are more soluble than their deconjugated forms. Laboratory studies were conducted to study the fate of a major urinary E2 conjugate, 17β-estradiol glucuronide (E2G), in a Hamar soil (Sandy, mixed, frigid typic Endoaquolls) from the surface and subsurface horizons. Speciation studies using batch sorption indicated that E2G degraded to E2 and E1 within 24 hours in the upper horizon soil with organic carbon content (OC) of 1.35%; whereas it persisted more in the lower horizon soil containing 0.32% OC. For initial concentrations of 2.8-28 mg/L, more than 15% of the applied dose concentration was still intact in the conjugate form in the aqueous phase for 3 - 14 days, in the lower horizon soil. The decline of E2G in the aqueous phase in the upper horizon soil was approximated with a first-order rate constant (k), which ranged from -0.208 to -0.279/h. The k values ranged from -0.006 to -0.016/h for the lower soil horizon. The differences in k values between the two horizons could be attributed to differences in bacterial activity and/or differences in sorption capacities

  4. Inefficient UGT-conjugation of adrenal 11β-hydroxyandrostenedione metabolites highlights C11-oxy C19 steroids as the predominant androgens in prostate cancer.

    du Toit, Therina; Swart, Amanda C


    Although the adrenal C19 steroids, androstenedione and testosterone, contribute to prostate cancer (PCa) progression the full complement of adrenal androgens, including the C11-oxy C19 steroids, 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) and their androgenic metabolites, 11keto-testosterone (11KT) and 11keto-dihydrotestosterone (11KDHT) have, to date, not been considered. This study investigated the contribution of 11OHA4 and 11OHT to the pool of active androgens in the prostate. Steroid profiles were determined in LNCaP, C4-2B and VCaP cell models, in PCa tissue, and in plasma focussing on the inactivation, reactivation and glucuronidation of 11OHA4, 11OHT and their downstream products using ultra-performance convergence chromatography tandem mass spectrometry (UPC(2)-MS/MS). The C11-oxy C19 steroids were the predominant steroids with the production of 11KT and 11KDHT in prostate cell models identifying 11β-hydroxysteroid dehydrogenase type 2 activity. Active:inactive steroid ratios indicated efficient inactivation of dihydrotestosterone (DHT) and 11KDHT by 3α-hydroxysteroid dehydrogenases, while the reactivation of DHT by retinol-like dehydrogenases was greater than the reactivation of 11KDHT. In PCa tissue, inactive C11-oxy C19 steroids ranged from 27 to 30 ng/g, whereas inactive C19 steroids were below 1 ng/g. Steroid glucuronidation was impeded: in VCaP cells, the C11-oxy C19 steroids were unconjugated and the C19 steroids fully conjugated; in C4-2B cells, all steroids were unconjugated, except for DHT of which 50% was conjugated; in LNCaP cells only androsterone, 11KT and 11β-hydroxyandrosterone were unconjugated. In PCa patients' plasma 11KDHT was present only in the unconjugated form, with 11KT also predominantly unconjugated (90-95%). Even though plasma and tissue sample numbers were limited, this study serves to demonstrate the abundance of C11-oxy C19 steroids, with notable differences in their metabolism, dictated by

  5. Double phase conjugation in tungsten bronze crystals.

    Sharp, E J; Clark Iii, W W; Miller, M J; Wood, G L; Monson, B; Salamo, G J; Neurgaonkar, R R


    In this paper we report a new method for double phase conjugation particularly suited to the tungsten bronze crystal strontium barium niobate. It has also been observed to produce conjugate waves in BaTiO(3) and BSKNN. This new arrangement is called the bridge conjugator because the two beams enter opposing [100] crystal faces and fan together to form a bridge without reflection off a crystal face. Our measurements indicate that the bridge conjugator is competitive with previously reported double phase conjugate mirrors in reflectivity, response time, ease of alignment, and fidelity.

  6. Conjugative plasmids of Neisseria gonorrhoeae.

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids




    The in vitro glucuronidation of seven monohydroxy-2-aminotetralins and two naphthoxazines has been determined using human and rat liver microsomes. All these compounds stimulate the D2 dopamine receptor. The influence of the position of the phenolic hydroxyl group was studied with rat microsomes in

  8. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid : interaction with cyclosporine and tacrolimus

    El-Sheikh, Azza A K; Koenderink, Jan B; Wouterse, Alfons C; van den Broek, Petra H H; Verweij, Vivienne G M; Masereeuw, R.; Russel, Frans G M


    Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The

  9. Development of a UPLC–MS/MS method for determining ɣ-hydroxybutyric acid (GHB) and GHB glucuronide concentrations in hair and application to forensic cases

    Wang, Xin; Johansen, Sys Stybe; Linnet, Kristian


    We present a series of forensic cases measuring concentrations in hair of γ-hydroxybutyric acid (GHB) and its glucuronide. The compounds were extracted from hair by incubation for 1.5 h in a 25:25:50 (v/v/v) mixture of methanol/acetonitrile/2 mM ammonium formate (8 % acetonitrile, pH 5.3). The co...... to detection of exogenous exposure. To our knowledge, this is the first report to present GHB glucuronide in human hair.......We present a series of forensic cases measuring concentrations in hair of γ-hydroxybutyric acid (GHB) and its glucuronide. The compounds were extracted from hair by incubation for 1.5 h in a 25:25:50 (v/v/v) mixture of methanol/acetonitrile/2 mM ammonium formate (8 % acetonitrile, pH 5.......3). The compounds were determined by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). The limits of quantitation (LOQ) were 0.32 and 0.48 ng/mg hair for GHB and its glucuronide, respectively, and linearity up to 50 ng/mg. Extraction recoveries were 62–92 % for the analytes...

  10. Gas chromatographic-mass spectrometric analysis of steroids and steroid glucuronides in the seminal vesicle fluid of the African catfish, Clarias gariepinus

    Schoonen, W.G.E.J.; Lambert, J.G.D.


    Gas chromatographic-mass spectrometric analysis was carried out to identify steroids and steroid glucuronides in the seminal vesicle fluid of African catfish, Clarias gariepinus, collected in the Hula nature reserve (Israel) during the breeding season. Full mass spectra of 5β-pregnane-3α,17α-diol-20

  11. Effects of thyroid status and thyrostatic drugs on hepatic glucuronidation of lodothyronines and other substrates in rats - Induction of phenol UDP-glucuronyltransferase by methimazole

    T.J. Visser (Theo); E. Kaptein (Ellen); A.L. Gijzel (Anthonie); W.W. de Herder (Wouter); M.L. Cannon (Mark); F. Bonthuis (Fred); W.J. de Greef (W.)


    textabstractGlucuronidation of iodothyronines in rat liver is catalyzed by at least three UDP-glucuronyltransferases (UGTs): bilirubin UGT, phenol UGT, and androsterone UGT. Bilirubin and phenol UGT activities are regulated by thyroid hormone, but the effect of thyroid status on hepatic glucuronidat

  12. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides.

    Sesink, A.L.; Arts, I.C.; Boer, V.C. de; Breedveld, P.; Schellens, J.H.M.; Hollman, P.C.H.; Russel, F.G.M.


    The intestinal absorption of the flavonoid quercetin in rats is limited by the secretion of glucuronidated metabolites back into the gut lumen. The objective of this study was to determine the role of the intestinal efflux transporters breast cancer resistance protein (Bcrp1)/Abcg2 and multidrug res

  13. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides

    Sesink, A.L.A.; Arts, I.C.W.; Boer, de V.C.J.; Breedveld, P.; Schellens, J.H.M.; Hollman, P.C.H.; Russel, F.G.M.


    The intestinal absorption of the flavonoid quercetin in rats is limited by the secretion of glucuronidated metabolites back into the gut lumen. The objective of this study was to determine the role of the intestinal efflux transporters breast cancer resistance protein (Bcrp1)/Abcg2 and multidrug res

  14. Androgen glucuronides analysis by liquid chromatography tandem-mass spectrometry: could it raise new perspectives in the diagnostic field of hormone-dependent malignancies?

    Kalogera, Eleni; Pistos, Constantinos; Provatopoulou, Xeni; Athanaselis, Sotirios; Spiliopoulou, Chara; Gounaris, Antonia


    Breast and prostate constitute organs of intense steroidogenic activity. Clinical and epidemiologic data provide strong evidence on the influence of androgens and estrogens on the risk of typical hormone-dependent malignancies, like breast and prostate cancer. Recent studies have focused on the role of androgen metabolites in regulating androgen concentrations in hormone-sensitive tissues. Steroid glucuronidation has been suggested to have a prominent role in controlling the levels and the biological activity of unconjugated androgens. It is well-established that serum levels of androgen glucuronides reflect androgen metabolism in androgen-sensitive tissues. Quantitative analysis of androgen metabolites in blood specimens is the only minimally invasive approach permitting an accurate estimate of the total pool of androgens. During the past years, androgen glucuronides analysis most often involved radioimmunoassays (RIA) or direct immunoassays, both methods bearing serious limitations. However, recent impressive technical advances in mass spectrometry, and particularly in high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS), have overcome these drawbacks enabling the simultaneous, quantitative analysis of multiple steroids even at low concentrations. Blood androgen profiling by LC-MS/MS, a robust and reliable technique of high selectivity, sensitivity, specificity, precision and accuracy emerges as a promising new approach in the study of human pathology. The present review offers a contemporary insight in androgen glucuronides profiling through the application of LC-MS/MS, highlighting new perspectives in the study of steroids and their implication in hormone-dependent malignancies.

  15. Fiber bundle phase conjugate mirror

    Ward, Benjamin G.


    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  16. Conjugated Polymers for Energy Production

    Livi, Francesco

    arylation (DAr) and direct arylation polymerization (DArP) have been applied to the preparation of PPDTBT, making this polymer readily available in only 4 synthetic steps and thus easily transferable to a large scale-production setup. DArP avoids organometallic species and therefore is an appealing......This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... for scalable PSCs fully printed under ambient conditions [Adv. Energy Mater. 2015, 5, 1402186]. PPDTBT resulted to be the conjugated polymer with the best photovoltaic performance within the 104 synthesized macromolecules. Therefore, further studies have been done on such material. The impact of side chain...

  17. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation.

    Miners, John O; Bowalgaha, Kushari; Elliot, David J; Baranczewski, Pawel; Knights, Kathleen M


    Enzyme selective inhibitors represent the most valuable experimental tool for reaction phenotyping. However, only a limited number of UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors have been identified to date. This study characterized the UGT enzyme selectivity of niflumic acid (NFA). It was demonstrated that 2.5 μM NFA is a highly selective inhibitor of recombinant and human liver microsomal UGT1A9 activity. Higher NFA concentrations (50-100 μM) inhibited UGT1A1 and UGT2B15 but had little effect on the activities of UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B17. NFA inhibited 4-methylumbelliferone and propofol (PRO) glucuronidation by recombinant UGT1A9 and PRO glucuronidation by human liver microsomes (HLM) according to a mixed (competitive-noncompetitive) mechanism, with K(i) values ranging from 0.10 to 0.40 μM. Likewise, NFA was a mixed or noncompetitive inhibitor of recombinant and human liver microsomal UGT1A1 (K(i) range 14-18 μM), whereas competitive inhibition (K(i) 62 μM) was observed with UGT2B15. NFA was subsequently applied to the reaction phenotyping of human liver microsomal acetaminophen (APAP) glucuronidation. Consistent with previous reports, APAP was glucuronidated by recombinant UGT1A1, UGT1A6, UGT1A9, and UGT2B15. NFA concentrations in the range of 2.5 to 100 μM inhibited APAP glucuronidation by UGT1A1, UGT1A9, and UGT2B15 but not by UGT1A6. The mean V(max) for APAP glucuronidation by HLM was reduced by 20, 35, and 40%, respectively, in the presence of 2.5, 50, and 100 μM NFA. Mean K(m) values decreased in parallel with V(max), although the magnitude of the decrease was smaller. Taken together, the NFA inhibition data suggest that UGT1A6 is the major enzyme involved in APAP glucuronidation.

  18. Conjugated polyelectrolytes fundamentals and applications

    Liu, Bin


    This is the first monograph to specifically focus on fundamentals and applications of polyelectrolytes, a class of molecules that gained substantial interest due to their unique combination of properties. Combining both features of organic semiconductors and polyelectrolytes, they offer a broad field for fundamental research as well as applications to analytical chemistry, optical imaging, and opto-electronic devices. The initial chapters introduce readers to the synthesis, optical and electrical properties of various conjugated polyelectrolytes. This is followed by chapters on the applica

  19. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling

    Due Michael R


    Full Text Available Abstract Background Multiple adverse events are associated with the use of morphine for the treatment of chronic non-cancer pain, including opioid-induced hyperalgesia (OIH. Mechanisms of OIH are independent of opioid tolerance and may involve the morphine metabolite morphine-3-glucuronide (M3G. M3G exhibits limited affinity for opioid receptors and no analgesic effect. Previous reports suggest that M3G can act via the Toll-like receptor 4 (TLR4/myeloid differentiation protein-2 (MD-2 heterodimer in the central nervous system to elicit pain. Methods Immunoblot and immunocytochemistry methods were used to characterize the protein expression of TLR4 present in lumbar dorsal root ganglion (DRG. Using in vitro intracellular calcium and current clamp techniques, we determined whether TLR4 activation as elicited by the prototypical agonists of TLR4, lipopolysaccharide (LPS and M3G, contributed to changes in intracellular calcium and increased excitation. Rodents were also injected with M3G to determine the degree to which M3G-induced tactile hyperalgesia could be diminished using either a small molecule inhibitor of the MD-2/TLR4 complex in rats or TLR4 knockout mice. Whole cell voltage-clamp recordings were made from small- and medium-diameter DRG neurons (25 μm  Results We observed that TLR4 immunoreactivity was present in peptidergic and non-peptidergic sensory neurons in the DRG. Non-neuronal cells in the DRG lacked evidence of TLR4 expression. Approximately 15% of assayed small- and medium-diameter sensory neurons exhibited a change in intracellular calcium following LPS administration. Both nociceptive and non-nociceptive neurons were observed to respond, and approximately 40% of these cells were capsaicin-insensitive. Increased excitability observed in sensory neurons following LPS or M3G could be eliminated using Compound 15, a small molecule inhibitor of the TLR4/MD-2 complex. Likewise, systemic injection of M3G induced rapid tactile, but

  20. Use of glucuronidation fingerprinting to describe and predict mono- and dihydroxyflavone metabolism by recombinant UGT isoforms and human intestinal and liver microsomes.

    Tang, Lan; Ye, Ling; Singh, Rashim; Wu, Baojian; Lv, Chang; Zhao, Jie; Liu, Zhongqiu; Hu, Ming


    The present study aims to predict the regiospecific glucuronidation of three dihydroxyflavones and seven monohydroxyflavones in human liver and intestinal microsomes using recombinant UGT isoforms. Seven monohydroxyflavones (or HFs), 2'-, 3'-, 4'-, 3-, 5-, 6-, and 7-hydroxyflavone, and three dihydroxyflavones (or diHFs), 3,7-dihydroxyflavone (3,7-diHF), 3,5-dihydroxyflavone (3,5-diHF), and 3,4'-dihydroxyflavone (3,4'-diHF), were chosen, and rates were measured at 2.5, 10, and 35 microM. The results indicated that the position of glucuronidation of three diHFs could be determined by using the UV spectra of relevant HFs. The results also indicated that UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10 and UGT2B7 are the most important six UGT isoforms for metabolizing the chosen flavones. Regardless of isoforms used, 3-HF was always metabolized the fastest whereas 5-HF was usually metabolized the slowest, probably due to the formation of an intramolecular hydrogen bond between 4-carbonyl and 5-OH group. Relevant UGT isoform-specific metabolism rates generally correlated well with the rates of glucuronidation in human intestinal and liver microsomes at each of the three tested concentrations. In conclusion, the glucuronidation "fingerprint" of seven selected monohydroxyflavones was affected by UGT isoforms used, positions of the -OH group, and the substrate concentrations, and the rates of glucuronidation by important recombinant UGTs correlated well with those obtained using human liver and intestinal microsomes.

  1. Modelling conjugation with stochastic differential equations.

    Philipsen, K R; Christiansen, L E; Hasman, H; Madsen, H


    Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared to the model without plate conjugation. The modelling approach described in this article can be applied generally when modelling dynamical systems.

  2. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey.

    Yu, Hong; Barrass, Nigel; Gales, Sonya; Lenz, Eva; Parry, Tony; Powell, Helen; Thurman, Dale; Hutchison, Michael; Wilson, Ian D; Bi, Luke; Qiao, Junwen; Qin, Qiuping; Ren, Jin


    1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.

  3. The roasting process does not influence the extent of conjugation of coffee chlorogenic and phenolic acids.

    Sanchez-Bridge, Belén; Renouf, Mathieu; Sauser, Julien; Beaumont, Maurice; Actis-Goretta, Lucas


    Understanding the bioavailability and metabolism of coffee compounds will contribute to identify the unknown biological mechanism(s) linked to their beneficial effects. The influence of the roasting process on the metabolism of coffee chlorogenic acids in humans was evaluated. In a randomized, double-blind, crossover study, 12 healthy volunteers consumed four instant coffees namely, high roasted coffee (HRC), low roasted coffee (LRC), unroasted coffee (URC), and in vitro hydrolyzed unroasted coffee (HURC). The sum of areas under the curve (AUC) ranged from 8.65-17.6 to 30.9-126 µM/h (P coffee drinks. Despite different absorption rates, the extent of conjugation was comparable between HRC, LRC, and URC coffees but different for HURC. The most abundant circulating metabolites during the first 5 H were dihydroferulic acid (DHFA), caffeic acid-3'-O-sulfate (CA3S) and isoferulic-3'-O-glucuronide (iFA3G). DHFA and 5-4-dihydro-m-coumaric acid (mDHCoA) were the main metabolites in the period of 5-24 H. The phenolic compounds after consumption of HURC were most rapidly absorbed (Tmax 1 H) compared with the other coffees (Tmax between 9 and 11 H). Using coffees with different degrees of roasting we highlighted that in spite of different absorption rates the extent of conjugation of phenolic acids was comparable. In addition, by using a hydrolyzed unroasted coffee we demonstrated an increased absorption of phenolic acids in the small intestine. © 2016 BioFactors, 42(3):259-267, 2016.

  4. Cysteine S-conjugate β-lyases

    Arthur J. L. Cooper; Krasnikov, Boris F.; Pinto, John T.; Bruschi, Sam A.


    Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate (PLP)-containing enzymes that catalyze the conversion of cysteine S-conjugates [RSCH2CH(NH3+)CO2−] and selenium Se-conjugates [RSeCH2CH(NH3+)CO2−] that contain a leaving group in the β position to pyruvate, ammonium and a sulfur-containing fragment (RSH) or selenium-containing fragment (RSeH), respectively. At least ten PLP enzymes catalyze β-elimination reactions with such cysteine S-conjugates. All are enzymes involved in amino acid m...

  5. The Tcp conjugation system of Clostridium perfringens.

    Wisniewski, Jessica A; Rood, Julian I


    The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria.

  6. Modelling conjugation with stochastic differential equations

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik


    Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  7. Test of charge conjugation invariance.

    Nefkens, B M K; Prakhov, S; Gårdestig, A; Allgower, C E; Bekrenev, V; Briscoe, W J; Clajus, M; Comfort, J R; Craig, K; Grosnick, D; Isenhower, D; Knecht, N; Koetke, D; Koulbardis, A; Kozlenko, N; Kruglov, S; Lolos, G; Lopatin, I; Manley, D M; Manweiler, R; Marusić, A; McDonald, S; Olmsted, J; Papandreou, Z; Peaslee, D; Phaisangittisakul, N; Price, J W; Ramirez, A F; Sadler, M; Shafi, A; Spinka, H; Stanislaus, T D S; Starostin, A; Staudenmaier, H M; Supek, I; Tippens, W B


    We report on the first determination of upper limits on the branching ratio (BR) of eta decay to pi0pi0gamma and to pi0pi0pi0gamma. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(eta-->pi0pi0gamma)pi0pi0pi0gamma)<6 x 10(-5) at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions.

  8. Waveguide mutually pumped phase conjugators

    James, S. W.; Youden, K.E.; Jeffrey, P. M.; EASON, R. W.; Chandler, P.J.; Zhang, L.; Townsend, P.D.


    The operation of the Bridge Mutually Pumped Phase Conjugator is reported in a planar waveguide structure in photorefractive BaTiO3. The waveguide was fabricated by the technique of ion implantation. using 1.5 MeV H+ at a dose of 10^16 ions/cm^2. An order of magnitude decrease in response time is observed in the waveguide as compared to typical values obtained in bulk crystals, probably resulting from a combination of the optical confinement within the waveguide, and possibly modification of t...

  9. Short Conjugators in Solvable Groups

    Sale, Andrew W


    We give an upper bound on the size of short conjugators in certain solvable groups. Diestel-Leader graphs, which are a horocyclic product of trees, are discussed briefly and used to study the lamplighter groups. The other solvable groups we look at can be recognised in a similar vein, as groups which act on a horocyclic product of well known spaces. These include the Baumslag-Solitar groups BS(1,q) and semidirect products of Z^n with Z^k. Results can also be applied to the conjugacy of parabolic elements in Hilbert modular groups and to elements in 3-manifold groups.

  10. Photoluminescence of Conjugated Star Polymers

    Ferguson, J. B.; Prigodin, N. V.; Epstein, A. J.; Wang, F.


    Higher dimensionality "star" polymers provide new properties beyond those found in their linear analogs. They have been used to improving electronic properties for nonlinear optics through exciton transfer and molecular antenna structures for example (M. Kawa, J. M. J. Frechet, Chem. Mater. 10, 286 (1998).). We report on photoluminescence properties of star polymers with a hyperbranched core (both hyperbranched phenlyene and hyperbranched triphenylamine) and polyhexylthiophene arms. The arm is a conjugated oligomer of polythiophene that has been investigated extensively for metallic like conductivity when doped as well as utilized in field effect transistors in its undoped form (A. Tsumara, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).). The cores are respectively, a nonconjugated polymer in the case of hyperbranched phenlyene and a conjugated polymer in the case of hyperbranched triphenylamine. The photoluminesce spectrum (λ_max at 575 nm) is identical for both star polymers with the two electronically different hyperbranched cores and for linear polythiophene alone. We conclude the wave functions of the core and arms do not strongly interact to form states different from their individual states and excitons formed on the hyperbranched cores migrate to the lower bandgap polythiophene before recombining.

  11. Subgap Absorption in Conjugated Polymers

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.


    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  12. The Conjugate Acid-Base Chart.

    Treptow, Richard S.


    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)



    Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...


    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G


    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  15. Bio-Conjugates for Nanoscale Applications

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...


    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G


    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence


    Ernst Hairer


    For the numerical treatment of Hamiltonian differential equations, symplectic integra-tors are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded-hess of parasitic solution components is not addressed.

  18. Kinetic models of conjugated metabolic cycles

    Ershov, Yu. A.


    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  19. Bio-Conjugates for Nanoscale Applications

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  20. LEDs based on conjugated PPV block copolymers

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.


    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  1. A new family of conjugate gradient methods

    Shi, Zhen-Jun; Guo, Jinhua


    In this paper we develop a new class of conjugate gradient methods for unconstrained optimization problems. A new nonmonotone line search technique is proposed to guarantee the global convergence of these conjugate gradient methods under some mild conditions. In particular, Polak-Ribiére-Polyak and Liu-Storey conjugate gradient methods are special cases of the new class of conjugate gradient methods. By estimating the local Lipschitz constant of the derivative of objective functions, we can find an adequate step size and substantially decrease the function evaluations at each iteration. Numerical results show that these new conjugate gradient methods are effective in minimizing large-scale non-convex non-quadratic functions.

  2. Energetic Tuning in Spirocyclic Conjugated Polymers

    Hugo Bronstein


    Full Text Available Precise control of the energy levels in a conjugated polymer is the key to allowing their exploitation in optoelectronic devices. The introduction of spirocycles into conjugated polymers has traditionally been used to enhance their solid state microstructure. Here we present a highly novel method of energetic tuning through the use of electronically active spirocyclic systems. By modifying the size and oxidation state of a heteroatom in an orthogonal spirocycle we demonstrate energetic fine tuning in both the absorption and emission of a conjugated polymer. Furthermore, the synthesis of highly novel triplet-decker spirocyclic conjugated polymers is presented. This new method of energetic manipulation in a conjugated polymer paves the way for future application targeted synthesis of polymers with electronically active spirocycles.

  3. In vitro glucuronidation of propofol in microsomal fractions from human liver, intestine and kidney: tissue distribution and physiological role of UGT1A9.

    Mukai, M; Tanaka, S; Yamamoto, K; Murata, M; Okada, K; Isobe, T; Shigeyama, M; Hichiya, H; Hanioka, N


    Propofol (2,6-diisopropylphenol) is intravenously administered for anesthetic induction and maintenance, and is rapidly metabolized into its glucuronide, mainly by UDP-glucuronosyltransferase 1A9 (UGT1A9). In this study, propofol glucuronidation by liver microsomes (HLM), intestinal microsomes (HIM) and kidney microsomes (HKM) of humans were examined. The expression of UGT1A9 protein in HLM, HIM and HKM was analyzed by immunoblotting. The staining band intensities for UGT1A9 of HIM and HKM were 12% and 119% those of HLM, respectively. The kinetics of propofol glucuronidation by HLM and HKM exhibited substrate inhibition, whereas the kinetics by HIM followed the Michaelis-Menten model. The K(m), V(max) and CL(int) values of HLM were 41.8 μM, 5.21 nmol/min/mg protein and 126 μl/min/mg protein, respectively. The K(m) value of HIM was significantly higher (6.7-fold) than that of HLM, and the V(max) and CL(int) values were significantly lower (56% and 8.3%, respectively) than those of HLM. The K(m) value of HKM was comparable to that of HLM, and the V(max) and CL(int) values were significantly higher (2.1- and 3.7-fold, respectively) than those of HLM, respectively. These findings suggest that UGT1A9 expressed in the kidney as well as in the liver plays an important role in propofol glucuronidation. The information gained in this study should contribute to an appropriate use of drugs metabolized by UGT1A9.

  4. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee.

    Marmet, Cynthia; Actis-Goretta, Lucas; Renouf, Mathieu; Giuffrida, Francesca


    Chlorogenic acids and derivatives like phenolic acids are potentially bioactive phenolics, which are commonly found in many foods. Once absorbed, chlorogenic and phenolic acids are highly metabolized by the intestine and the liver, producing glucuronidated and/or sulphated compounds. These metabolites were analyzed in human plasma using a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method. After protein precipitation, phenolic acids and their metabolites were extracted by using ethanol and chromatographic separation was achieved by reversed-phase using an Acquity UPLC BEH C18 column combined with a gradient elution system using 1% acetic acid aqueous solution and 1% acetic acid with 100% acetonitrile. The method was able to quantify 56 different compounds including 24 phenolic acids, 4 lactones, 15 sulfates and 13 glucuronides metabolites between 5 and 1000nM in plasma for most of them, except for m-dihydrocoumaric acid, 5-ferulloylquinic-glucuronide, 4-methoxycinnamic acid, 3-phenylpropionic acid, 3-(4-methoxyphenyl)propionic acid (25 to 1000nM) and p-dihydrocoumaric acid (50-1000nM). Values of repeatability and intermediate reproducibility were below 15% of deviation in general, and maximum 20% for the lowest concentrations. The validated method was successfully applied to quantify phenolic acids and their metabolites in plasma obtained after oral ingestion of soluble coffee. In conclusion, the developed and validated method is proved to be very sensitive, accurate and precise for the quantification of these possible dietary phenols.

  5. Photoconductive properties of conjugated polymers

    Halls, J J M


    The research described in my dissertation has involved the fabrication and characterisation of photovoltaic cells based on conjugated polymers, including the widely studied polymer poly(p-phenylenevinylene). These materials have semiconducting properties which arise from the delocalisation of electrons along the pi-electron systems of the polymer chains. Research into these materials is motivated both by their novel electronic properties, and also their potential for use in a wide range of applications including light-emitting diodes (LEDs), thin-film transistors, and photovoltaic cells (solar cells and light detectors). Light absorbed in a photovoltaic cell generates opposite charges which are collected at two different electrodes, giving rise to an electric current

  6. Test of Charge Conjugation Invariance

    Nefkens, B. M.; Prakhov, S.; Gårdestig, A.; Allgower, C. E.; Bekrenev, V.; Briscoe, W. J.; Clajus, M.; Comfort, J. R.; Craig, K.; Grosnick, D.; Isenhower, D.; Knecht, N.; Koetke, D.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lolos, G.; Lopatin, I.; Manley, D. M.; Manweiler, R.; Marušić, A.; McDonald, S.; Olmsted, J.; Papandreou, Z.; Peaslee, D.; Phaisangittisakul, N.; Price, J. W.; Ramirez, A. F.; Sadler, M.; Shafi, A.; Spinka, H.; Stanislaus, T. D.; Starostin, A.; Staudenmaier, H. M.; Supek, I.; Tippens, W. B.


    We report on the first determination of upper limits on the branching ratio (BR) of η decay to π0π0γ and to π0π0π0γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π0π0γ)<5×10-4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π0π0π0γ)<6×10-5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions.

  7. Peptide-LNA oligonucleotide conjugates

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte


    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  8. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini


    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  9. The kinetic basis for age-associated changes in quercetin and genistein glucuronidation by rat liver microsomes

    The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavono...

  10. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    Hadley, S.W.; Wilbur, D.S. (NeoRx Corporation, Seattle, WA (USA))


    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-(125I/131I)iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-(125I/131I)iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-(131I)iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was {approximately} a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate.

  11. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg


    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... diversity of recipient bacterial phyla for the plasmid was observed, especially in WWTP outlets. We also identified permissive bacteria potentially able to cross WWTPs and engage in conjugation before and after water treatment. Bacterial activity and lifestyle seem to influence conjugation extent...

  12. Conjugated amplifying polymers for optical sensing applications.

    Rochat, Sébastien; Swager, Timothy M


    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  13. Design and Application of Antimicrobial Peptide Conjugates

    Andre Reinhardt


    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  14. Hybrid electronics and electrochemistry with conjugated polymers.

    Inganäs, Olle


    In this critical review, we discuss the history and development of polymer devices wherein manipulation of the electronic conductivity by electrochemical redox processes in a conjugated polymer is used to form new functions. The devices employed are an electrochemical transistor, an electrolyte-gated field-effect transistor and light-emitting electrochemical cells, all of which combine doping/undoping of a conjugated polymer with modification of electronic transport (130 references).

  15. Rapid modification of retroviruses using lipid conjugates

    Mukherjee, Nimisha G.; Lyon, L. Andrew; LeDoux, Joseph M.


    Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.

  16. Energetic tuning in spirocyclic conjugated polymers

    Hugo Bronstein; Frank D. King


    Precise control of the energy levels in a conjugated polymer is the key to allowing their exploitation in optoelectronic devices. The introduction of spirocycles into conjugated polymers has traditionally been used to enhance their solid state microstructure. Here we present a highly novel method of energetic tuning through the use of electronically active spirocyclic systems. By modifying the size and oxidation state of a heteroatom in an orthogonal spirocycle we demonstrate energetic fine t...

  17. The Chemistry and Biology of Oligonucleotide Conjugates

    Juliano, R.L.; Ming, Xin; Nakagawa, Osamu


    CONSPECTUS Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing they can interact with messenger mRNA or pre-mRNA targets with high selectivity and thus offer the possibility of precise manipulation of gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, with many candidates already in clinical trials. However, a major impediment to the maturation of oligonucleotide-based therapeutics is the fact that these relatively large and usually highly charged molecules have great difficulty crossing cellular membranes and thus in penetrating to their sites of action in the cytosol or nucleus. In this Account we first summarize some basic aspects of the biology of antisense and siRNA oligonucleotides and then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Our emphasis will be on the pharmacological ramifications of oligonucleotide conjugates rather than the details of conjugation chemistry. One important approach has been conjugation with ligands designed to bind to particular receptors and thus provide specificity to the interaction of cells with oligonucleotides. Another approach has been to couple antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Both of these approaches have enjoyed some success. However, there remains much to be learned before oligonucleotide conjugates can find an important place in human therapeutics. PMID:22353142

  18. Metal-leachate-induced conjugate protein instability.

    Li, Ning; Osborne, Brandi; Singh, Satish K; Wang, Wei


    During the scale-up of an ultrafiltration/diafiltration (UF/DF) step for a protein-based conjugate vaccine, significant precipitation was observed at room temperature. It was found that a specific type of metal hosebarb fitting used in the UF/DF system, when placed in the conjugate solution, caused the precipitation. Inductively Coupled Plasma Mass Spectrometry analysis showed significant amounts of Ni(II), Zn(II), and Cu(II) present in the conjugate solution. A kinetic study showed that the concentration of these metal ions gradually increased with increasing incubation time with a corresponding decrease in conjugate concentration. Direct spiking of trace amounts of NiCl₂, ZnCl₂, and CuCl₂ into the conjugate solution also caused precipitation, and spiking studies showed that the metal ions caused precipitation of the conjugate but not of the carrier protein, antigen, or carrier protein + linker. The precipitation was found to be significantly dependent on buffer species but not solution pH and led to an irreversible loss of tertiary structure even after dissolution in and removal of guanidine hydrochloride. The precipitation is likely the result of formation of transition-metal complexes with histidine residues on the antigen peptide, which may involve both intraconjugate and interconjugate antigens. Such complexation may lead to formation of multimers that may exceed the solubility limit.

  19. Conjugated microporous polymers: design, synthesis and application.

    Xu, Yanhong; Jin, Shangbin; Xu, Hong; Nagai, Atsushi; Jiang, Donglin


    Conjugated microporous polymers (CMPs) are a class of organic porous polymers that combine π-conjugated skeletons with permanent nanopores, in sharp contrast to other porous materials that are not π-conjugated and with conventional conjugated polymers that are nonporous. As an emerging material platform, CMPs offer a high flexibility for the molecular design of conjugated skeletons and nanopores. Various chemical reactions, building blocks and synthetic methods have been developed and a broad variety of CMPs with different structures and specific properties have been synthesized, driving the rapid growth of the field. CMPs are unique in that they allow the complementary utilization of π-conjugated skeletons and nanopores for functional exploration; they have shown great potential for challenging energy and environmental issues, as exemplified by their excellent performance in gas adsorption, heterogeneous catalysis, light emitting, light harvesting and electrical energy storage. This review describes the molecular design principles of CMPs, advancements in synthetic and structural studies and the frontiers of functional exploration and potential applications.

  20. Multi-residue analysis of free and conjugated hormones and endocrine disruptors in rat testis by QuEChERS-based extraction and LC-MS/MS.

    Pouech, Charlène; Tournier, Mikaël; Quignot, Nadia; Kiss, Agneta; Wiest, Laure; Lafay, Florent; Flament-Waton, Marie-Magdeleine; Lemazurier, Emmanuel; Cren-Olivé, Cécile


    Endocrine disrupting compounds (EDCs) are suspected to be responsible for many disorders of the human reproductive system. To establish a causality relationship between exposure to endocrine disruptors and disease, experiments on animals must be performed with improved or new analytical tools. Therefore, a simple, rapid, and effective multi-residue method was developed for the determination of four steroid hormones (i.e., testosterone, androstenedione, estrone, and estradiol), glucuronide and sulfate conjugates of estrone and estradiol and four endocrine disruptors in rat testis (i.e., bisphenol A, atrazine, and active metabolites of methoxychlor and vinclozolin). The sample preparation procedure was based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach. An analytical method was then developed to quantify these compounds at ultra-trace levels by liquid chromatography coupled to tandem mass spectrometry. The QuEChERS extraction was optimized with regard to the acetonitrile/water ratio used in the extraction step, the choice of the cleanup method and the acetonitrile/hexane ratio used in the cleanup step. The optimized extraction method exhibited recoveries between 89% and 108% for all tested compounds except the conjugates (31% to 58%). The detection limits of all compounds were below 20 ng g(-1) of wet weight of testis. The method was subsequently applied to determine the levels of hormones and EDCs in seven rat testis samples.

  1. Determination of ethyl glucuronide in human hair samples: A multivariate analysis of the impact of extraction conditions on quantitative results.

    Mueller, Alexander; Jungen, Hilke; Iwersen-Bergmann, Stefanie; Raduenz, Lars; Lezius, Susanne; Andresen-Streichert, Hilke


    Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a direct alcohol biomarker for the prolonged detection of ethanol consumption. Hair testing for EtG offers retrospective, long-term detection of ethanol exposition for several months and has gained practical importance in forensic and clinical toxicology. Since quantitative results of EtG hair testings are included in interpretations, a rugged quantitation of EtG in hair matrix is important. As generally known, sample preparation is critical in hair testing, and the scope of this study was on extraction of EtG from hair matrix. The influence of extraction solvent, ultrasonication, incubation temperature, incubation time, solvent amount and hair particle size on quantitative results was investigated by a multifactorial experimental design using a validated analytical method and twelve different batches of authentic human hair material. Eight series of extraction experiments in a Plackett-Burman setup were carried out on each hair material with the studied factors at high or low levels. The effect of pulverization was further studied by two additional experimental series. Five independent samplings were performed for each run, resulting in a total number of 600 determinations. Considerable differences in quantitative EtG results were observed, concentrations above and below interpretative cut-offs were obtained from the same hair materials using different extraction conditions. Statistical analysis revealed extraction solvent and temperature as the most important experimental factors with significant influence on quantitative results. The impact of pulverization depended on other experimental factors and the different hair matrices themselves proved to be important predictors of extraction efficiency. A standardization of extraction procedures should be discussed, since it will probably reduce interlaboratory variabilities and improve the quality and acceptance of hair EtG analysis. Copyright © 2016

  2. Biomarkers of the alcohol hangover state: Ethyl glucuronide (EtG) and ethyl sulfate (EtS).

    Mackus, Marlou; van de Loo, Aurora J A E; Raasveld, S Jorinde; Hogewoning, Anna; Sastre Toraño, Javier; Flesch, Frits M; Korte-Bouws, Gerdien A H; van Neer, Renier H P; Wang, Xiaochun; Nguyen, Thomas T; Brookhuis, Karel A; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C


    The aim of this study was to investigate the usefulness of ethyl glucuronide (EtG) and ethyl sulfate (EtS) as biomarkers of the hangover state. Thirty-sixhealthy social drinkers participated in this study, being of naturalistic design. Eighteen participants experience regular hangovers (the hangover group), whereas the other 18 claim to not experience a hangover (the hangover-immune group). On a control day (alcohol-free) day and a post-alcohol day, urine EtG and EtS concentrations were determined and hangover severity assessed. Urinary EtG and EtS concentrations were significantly increased on post-alcohol day compared to the control day (p = .0001). Both EtG and EtS concentrations did not significantly correlate with the overall hangover score, nor with the estimated peak blood alcohol concentrations and number of alcoholic drinks. EtG correlated significantly only with the individual hangover symptom "headache" (p = .033; r = .403). No significant correlations were found with the EtG to EtS ratio. EtG and EtS concentrations significantly correlated with urine ethanol concentrations. Although urine EtG and EtS concentration did not significantly correlate to estimated peak blood alcohol concentrations or the number of alcoholic drinks consumed, a significant correlation was found with urine ethanol concentration. However, urine EtG and EtS concentrations did not significantly correlate with overall hangover severity. © 2017 The Authors. Human Psychopharmacology: Clinical & Experimental Published by John Wiley & Sons Ltd.

  3. Cholesterol-Lowering Effects and Mechanisms in View of Bile Acid Pathway of Resveratrol and Resveratrol Glucuronides.

    Shao, Dongyan; Wang, Yilin; Huang, Qingsheng; Shi, Junling; Yang, Hui; Pan, Zhongli; Jin, Mingliang; Zhao, Haobin; Xu, Xiaoguang


    Resveratrol (Res) was previously reported to be capable of lowering plasma TC and LDL-C. The mechanism behind Res is not clearly understood, although it is presumed to have an effect on bile acid metabolism in the liver: a significant way in eliminating cholesterol from the body. As one of the major metabolites of Res in the liver, resveratrol glucuronides (Gres) is suspected to also contribute to the overall cholestrol-lowering activity of Res, which needs to be studied. In this research, when HepG2 steatosis hepatic cells were treated with Res and Gres at different concentration levels, Res and Gres showed similar activity in lowering cellular TC content. The presence of Res and Gres caused a significant increase in hepatic CYP7A1 and BSEP, indicating the increase in the synthesis and efflux of bile acids, respectively. The reduction of HMG-CoAR tied to a decrease in de novo synthesis of cholesterol and the increase of ABCG5 suggested the increase of direct efflux of cholesterol. All above variations reduced the hepatic cholesterol level, which triggered the significant enhancement of LDLR, illustrating the improvement of clearance of LDL-C from the plasma and prevention of atherosclerosis. Overall, this study demonstrated both Res and Gres might have capabilities in lowering hepatic cholesterol through increasing in the synthesis and efflux of bile acids, and decreasing in synthesis and increasing in the efflux of cholesterol. Gres would have preferred potential than Res because of its lower cytotoxicity, which indicated that the action of the metabolites should also be considered in the future studies. © 2016 Institute of Food Technologists®.

  4. Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems.

    Ruotolo, Roberta; Calani, Luca; Brighenti, Furio; Crozier, Alan; Ottonello, Simone; Del Rio, Daniele


    Several plant-derived molecules, referred to as phytoestrogens, are thought to mimic the actions of endogenous estrogens. Among these, quercetin, one of the most widespread flavonoids in the plant kingdom, has been reported as estrogenic in some occasions. However, quercetin occurs in substantial amounts as glycosides such as quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-O-rutinoside (rutin) in dietary sources. It is now well established that quercetin undergoes substantial phase II metabolism after ingestion by humans, with plasma metabolites after a normal dietary intake rarely exceeding nmol/L concentrations. Therefore, attributing phytoestrogenic activity to flavonoids without taking into account the fact that it is their phase II metabolites that enter the circulatory system, will almost certainly lead to misleading conclusions. With the aim of clarifying the above issue, the goal of the present study was to determine if plant-associated quercetin glycosides and human phase II quercetin metabolites, actually found in human biological fluids after intake of quercetin containing foods, are capable of interacting with the estrogen receptors (ER). To this end, we used a yeast-based two-hybrid system and an estrogen response element-luciferase reporter assay in an ER-positive human cell line (MCF-7) to probe the ER interaction capacities of quercetin and its derivatives. Our results show that quercetin-3-O-glucuronide, one of the main human phase II metabolites produced after intake of dietary quercetin, displays ERα- and ERβ-dependent estrogenic activity, the functional consequences of which might be related to the protective activity of diets rich in quercetin glycosides.

  5. Influence of repeated permanent coloring and bleaching on ethyl glucuronide concentrations in hair from alcohol-dependent patients.

    Crunelle, Cleo L; Yegles, Michel; De Doncker, Mireille; Dom, Geert; Cappelle, Delphine; Maudens, Kristof E; van Nuijs, Alexander L N; Covaci, Adrian; Neels, Hugo


    Ethyl glucuronide (EtG), a minor metabolite of alcohol, is used as a sensitive marker in hair to detect the retrospective consumption of alcohol. The proximal 0-3 cm hair segment is often used for analysis, providing information on alcohol consumption over the past 3 months. Using more distal segments would allow the detection of alcohol consumption over longer time periods, thereby addressing the chronicity of the consumption. In view of this, permanent coloring and bleaching were shown in vitro to alter EtG concentrations in hair, but no in vivo studies are available to prove or disprove this. To investigate the influence of repeated bleaching and permanent coloring on EtG concentrations in vivo and to assess the stability of EtG concentrations in distal compared to proximal hair segments. Hair samples from alcohol-dependent patients with uncolored/unbleached (N=4), permanent coloration (N=5) and bleached hair (N=5) were analyzed in two to six 3 cm long segments for EtG concentrations, and alcohol consumption and hair cosmetic treatments were assessed. We observed that hair bleaching and permanent coloring reduces EtG concentrations by 82±11% and 65±24%, respectively, with correlations between the number of cosmetic treatments and the decrease in EtG concentrations. EtG remained stable in untreated hair samples up to 18 cm. EtG is a sensitive marker to assess chronic alcohol consumption up to 18 months in alcohol-dependent patients with no cosmetic hair treatments. However, in alcohol-dependent patients who color or bleach their hair, care should be taken when interpreting EtG measurements. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. The TLR4-active morphine metabolite morphine-3-glucuronide does not elicit macrophage classical activation in vitro

    Samira Khabbazi


    Full Text Available Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G. We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS, alone or in combination with interferon gamma (IFN-γ. The classical macrophage activation markers tested were iNOS, CD86, IL-6 or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10 and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  7. Comparison of the absorption, excretion, and metabolism of suxibuzone and phenylbutazone in humans.

    Yasuda, Y; Shindo, T; Mitani, N; Ishida, N; Oono, F; Kageyama, T


    The absorption, excretion, and metabolism of a single oral dose of suxibuzone, a new nonsteroidal anti-inflammatory agent, in healthy male volunteers were compared with those of phenylbutazone. After oral administration of either suxibuzone or phenylbutazone, phenylbutazone, oxyphenbutazone, and gamma-hydroxyphenylbutazone were found in the plasma; phenylbutazone was the main metabolite of suxibuzone and phenylbutazone. In the urine, p-gamma-dihydroxyphenylbutazone and several glucuronide conjugates also were found. Spectrometric and/or enzymatic analysis showed that these glucuronide conjugates were suxibuzone glucuronide, 4-hydroxymethylphenylbutazone glucuronide, 4-hydroxymethyloxyphenbutazone glucuronide, oxyphenbutazone glucuronide, and phenylbutazone glucuronides (two types: O-glucuronide and C-4-glucuroxide) after suxibuzone administration, and oxyphenbutazone glucuronide and phenylbutazone glucuronide after phenylbutazone administration. The conjugates specific to suxibuzone administration, suxibuzone glucuronide, 4-hydroxymethylphenylbutazone glucuronide, and 4-hydroxymethyloxyphenbutazone glucuronide, were excreted in the first 6 hr urine. These findings and the pharmacokinetics of these metabolites in the plasma and urine show that suxibuzone is a prodrug of phenylbutazone.

  8. Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-CALUX reporter gene assay.

    Legler, Juliette; Jonas, Arjen; Lahr, Joost; Vethaak, A Dick; Brouwer, Abraham; Murk, Albertinka J


    Although estrogens are excreted as biologically inactive conjugates, they can be reconverted to an active form, possibly by bacteria. A simple method was developed to deconjugate estrogen metabolites present in human urine and fish bile back to active estrogens by enzymatic hydrolysis with beta-glucuronidase or live Escherichia coli cells. Deconjugated extracts were tested for estrogenic activity in the in vitro stable estrogen receptor-mediated chemical-activated luciferase gene expression (ER-CALUX) assay. Estrogen glucuronides in urine obtained from human males and females were effectively converted to active forms after incubation with beta-glucuronidase or E. coli. The highest estrogenic activity was found in deconjugated metabolites from urine of a pregnant woman, in which levels up to 3,000 nmol estradiol equivalents per liter of urine were found after overnight incubation of urine with E. coli. Bile sampled from male bream and flounder from various freshwater and marine locations was also deconjugated and a good correlation was found between high biliary estrogenic activity and elevated levels of xenoestrogenic activity in surface water as well as in plasma vitellogenin. Therefore, the measurement of deconjugated bile could form a useful (indirect) biomarker for internal dose of xenoestrogens in male fish.

  9. A validated hybrid quadrupole linear ion-trap LC-MS method for the analysis of morphine and morphine glucuronides applied to opiate deaths.

    Taylor, Kerry; Elliott, Simon


    A hybrid quadrupole linear ion-trap mass spectrometer using an electrospray ionisation ion source coupled to a HPLC system has been used to develop a method which can accurately measure morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in plasma, whole blood and post-mortem blood following solid-phase extraction. The method can also qualitatively detect various other opioids and related compounds including: codeine, dihydrocodeine (and metabolites), noscapine, papaverine and 6-acetylmorphine (6-AM). The method has been favourably compared to an existing laboratory method using a now discontinued radio-immunoassay technique. The advantage of measuring the glucuronides directly rather than following deconjugation by beta-glucuronidase has also been shown. Detection and quantification of compounds was achieved using multiple reaction monitoring (MRM) incorporating the use of deuterated morphine and M3G as internal standards. Precision and accuracy was determined to be less than 10% at both high and low levels for all analytes and the calibration curve was deemed linear over an acceptable range. Recovery in blood was greater than 90% and ion suppression/enhancement was shown to be less than 15%. This method was applied to over 130 post-mortem cases involving the use of heroin, prescribed morphine and codeine. The range of concentrations of morphine, M3G and M6G was large (particularly in heroin and prescribed morphine cases), reflecting the many different factors involved with therapeutic use or fatal opiate poisonings, including tolerance associated with regular use, variable dose regimens and co-administration of other drugs. Detection of other constituents of the opium poppy such as noscapine and papaverine and metabolites of diacetylmorphine in the blood (6-AM) was useful in determining the source of the morphine (i.e. illicit heroin) and the rapidity of death after administration.

  10. Investigation of morphine and morphine glucuronide levels and cytochrome P450 isoenzyme 2D6 genotype in codeine-related deaths.

    Frost, Joachim; Helland, Arne; Nordrum, Ivar S; Slørdal, Lars


    Compared to morphine and morphine-6-glucuronide (M6G), codeine and its other major metabolites codeine-6-glucuronide and norcodeine have weak affinity to opioid μ-receptors. Analgesic effects of codeine are thus largely dependent on metabolic conversion to morphine by the polymorphic cytochrome P450 isoenzyme 2D6 (CYP2D6). How this relates to toxicity and post-mortem whole blood levels is not known. This paper presents a case series of codeine-related deaths where concentrations of morphine, M6G and morphine-3-glucuronide (M3G), as well as CYP2D6 genotype, are taken into account. Post-mortem toxicological specimens from a total of 1444 consecutive forensic autopsy cases in Central Norway were analyzed. Among these, 111 cases with detectable amounts of codeine in femoral blood were identified, of which 34 had femoral blood concentrations exceeding the TIAFT toxicity threshold of 0.3mg/L. Autopsy records of these 34 cases were retrieved and reviewed. In the 34 reviewed cases, there was a large variability in individual morphine to codeine concentration ratios (M/C ratios), and morphine levels could not be predicted from codeine concentrations, even when CYP2D6 genotype was known. 13 cases had codeine concentrations exceeding the TIAFT threshold for possibly lethal serum concentrations (1.6 mg/L). Among these, 8 individuals had morphine concentrations below the toxic threshold according to TIAFT (0.15 mg/L). In one case, morphine as well as M6G and M3G concentrations were below the limit of detection. A comprehensive investigation of codeine-related fatalities should, in addition to a detailed case history, include quantification of morphine and morphine metabolites. CYP2D6 genotyping may be of interest in cases with unexpectedly high or low M/C ratios.

  11. Metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the patas monkey: pharmacokinetics and characterization of glucuronide metabolites.

    Hecht, S S; Trushin, N; Reid-Quinn, C A; Burak, E S; Jones, A B; Southers, J L; Gombar, C T; Carmella, S G; Anderson, L M; Rice, J M


    The metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was examined in the patas monkey, in order to provide further information about NNK metabolic pathways in primates. Female patas monkeys were given i.v. injections of [5-3H]NNK, and metabolites in serum and urine were analyzed by HPLC. Metabolism by alpha-hydroxylation of NNK was rapid and extensive, and the products of this pathway, 4-hydroxy-4-(3-pyridyl)butyric acid and 4-oxo-4-(3-pyridyl) butyric acid, accounted for a relatively large proportion of serum and urinary metabolites at all time points. This is significant because the formation of these products is associated with modification of DNA by NNK. The other major metabolic pathway was carbonyl reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which detected both unconjugated and diastereomeric O-glucuronides. One of these glucuronides had been previously identified in rat urine, but the other diastereomer, which was the more prevalent of the two in serum and urine, had not been observed in studies of NNK metabolism in rodents. It was characterized by its spectral properties, by enzymatic hydrolysis to NNAL, and by derivatization of the released NNAL enantiomer with (R)-(+)-alpha-methylbenzylisocyanate. The two NNAL glucuronides accounted for 15-20% of the urinary metabolites in monkeys given 0.1 micrograms/kg NNK, which is similar to a smoker's dose, suggesting their use as dosimeters of NNK exposure in humans. Pharmacokinetic parameters were consistent with those observed in previous studies of nitrosamines, and varied predictably with body weight of five species. The results of this study have provided new insights relevant to assessing human metabolism of NNK.

  12. Development and validation of an HPLC-MS/MS method to quantify clopidogrel acyl glucuronide, clopidogrel acid metabolite, and clopidogrel in plasma samples avoiding analyte back-conversion.

    Silvestro, Luigi; Gheorghe, Mihaela; Iordachescu, Adriana; Ciuca, Valentin; Tudoroniu, Ariana; Rizea Savu, Simona; Tarcomnicu, Isabela


    A new sensitive and fast quantitative analytical method for the simultaneous determination of clopidogrel, its main metabolite clopidogrel carboxylic acid, and the newly described acyl glucuronide metabolite, in human plasma samples, is presented. The analytical procedures (plasma storage, handling, and extract storage in the autosampler) were optimized in order to avoid back-conversion; a known drawback in measurements of clopidogrel. Clopidogrel acyl glucuronide was confirmed as a major source of back-conversion to the parent drug in the presence of methanol, and thorough stability experiments were carried out to find the most appropriate conditions for an accurate analysis of clopidogrel and the two metabolites. The method was validated by assessing selectivity, sensitivity, linearity, accuracy, and precision for all three analytes, in accordance to Food and Drug Administration guidelines. Spiked quality controls in plasma as well as incurred samples were used to verify back-conversion in the selected conditions, with results meeting European Medicines Agency acceptance criteria (concentrations within 80-120% of the first reading). The method was then applied to a pharmacokinetic study, and for the first time, a pharmacokinetic curve of clopidogrel acyl glucuronide in human plasma is presented. The concentrations ranged up to 1,048.684 ng/mL, with a mean of 470.268 ng/mL, while clopidogrel had a mean C(max) of 1.348 ng/mL; these orders of magnitude show how much the back-conversion of this metabolite may influence clopidogrel quantification if it is not properly controlled.

  13. A study of the influence on diabetes of free and conjugated bisphenol A concentrations in urine: Development of a simple microextraction procedure using gas chromatography-mass spectrometry.

    Pastor-Belda, Marta; Bastida, David; Campillo, Natalia; Pérez-Cárceles, María D; Motas, Miguel; Viñas, Pilar


    The association between bisphenol A (BPA) exposure and adult health status is examined by measuring the urinary BPA concentration using a miniaturized technique based on dispersive liquid-liquid microextraction (DLLME) in combination with gas chromatography-mass spectrometry (GC-MS). Both the free bioactive and the glucuronide conjugated forms of BPA were measured, the glucuronide form usually being predominant. The main analogs of BPA, including bisphenol Z (BPZ), bisphenol F (BPF) and biphenol (BP) were also determined. Several parameters affecting enzymatic hydrolysis, derivatization by in-situ acetylation and the DLLME stages were carefully optimized by means of multivariate designs. DLLME parameters were 2mL urine, 1mL acetone and 100μL chloroform, and hydrolysis was performed using β-glucuronidase and sulfatase at pH 5. No matrix effect was observed and quantification was carried out by aqueous calibration with a surrogate standard. Detection limits were in the range 0.01-0.04ngmL(-1). The intraday and interday precisions were lower than 11% in terms of relative standard deviation. Satisfactory values for all compounds were obtained in recovery studies (92-117%) at two concentration levels. Other bisphenols (BPF, BPZ and BP) were not detected in the urine samples, while BPA was the only bisphenol detected in the free form (creatinine adjusted) at concentration levels ranging from the detection limit to 15.9ngg(-1), and total BPA was detected at concentrations ranging from 0.46 to 24.5ngg(-1) levels. A comparison of the BPA content for both groups of patients revealed that slightly higher mean values were obtained for both free BPA and total BPA for diabetic patients, than for non-diabetic patients. However, a statistical comparison of the contents of BPA revealed that there were no significant differences. The procedure was validated using a certified reference material. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP).

    González-Sarrías, Antonio; Miguel, Verónica; Merino, Gracia; Lucas, Ricardo; Morales, Juan C; Tomás-Barberán, Francisco; Alvarez, Ana I; Espín, Juan C


    The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP. Parental and Bcrp1-transduced MDCKII cells were used for active transport assays. Uro-A and, to a lesser extent, Uro-A sulfate showed a significant increase in apically directed translocation in Bcrp1-transduced cells. Bcrp1 did not show affinity for the rest of the tested compounds. Data were confirmed for murine, human, bovine, and ovine BCRP-transduced subclones as well as with the use of the selective BCRP inhibitor Ko143. The transport inhibition by Uro-A was analyzed by flow cytometry compared to Ko143 using the antineoplastic agent mitoxantrone as a model substrate. Results showed that Uro-A was able to inhibit mitoxantrone transport in a dose-dependent manner. This study reports for the first time that Uro-A and its sulfate conjugate are ABCG2/BCRP substrates. The results suggest that physiologically relevant concentrations of these gut microbiota-derived metabolites could modulate ABCG2/BCRP-mediated transport processes and mechanisms of cancer drug resistance. Further in vivo investigations are warranted.

  15. Geometric and Meshing Properties of Conjugate Curves for Gear Transmission

    Dong Liang


    Full Text Available Conjugate curves have been put forward previously by authors for gear transmission. Compared with traditional conjugate surfaces, the conjugate curves have more flexibility and diversity in aspects of gear design and generation. To further extend its application in power transmission, the geometric and meshing properties of conjugate curves are discussed in this paper. Firstly, general principle descriptions of conjugate curves for arbitrary axial position are introduced. Secondly, geometric analysis of conjugate curves is carried out based on differential geometry including tangent and normal in arbitrary contact direction, characteristic point, and curvature relationships. Then, meshing properties of conjugate curves are further revealed. According to a given plane or spatial curve, the uniqueness of conjugated curve under different contact angle conditions is discussed. Meshing commonality of conjugate curves is also demonstrated in terms of a class of spiral curves contacting in the given direction for various gear axes. Finally, a conclusive summary of this study is given.

  16. Effects of mitragynine and 7-hydroxymitragynine (the alkaloids of Mitragyna speciosa Korth on 4-methylumbelliferone glucuronidation in rat and human liver microsomes and recombinant human uridine 5′-diphospho-glucuronosyltransferase isoforms

    Munirah Haron


    Full Text Available Background: Glucuronidation catalyzed by uridine 5′- diphospho-glucuronosyltransferase (UGT is a major phase II drug metabolism reaction which facilitates drug elimination. Inhibition of UGT activity can cause drug-drug interaction. Therefore, it is important to determine the inhibitory potentials of drugs on glucuronidation. Objective: The objective was to evaluate the inhibitory potentials of mitragynine, 7-hydroxymitragynine, ketamine and buprenorphine, respectively on 4-methylumbelliferone (4-MU glucuronidation in rat liver microsomes, human liver microsomes and recombinant human UGT1A1 and UGT2B7 isoforms. Materials and Methods: The effects of the above four compounds on the formation of 4-MU glucuronide from 4-MU by rat liver microsomes, human liver microsomes, recombinant human UGT1A1 and UGT2B7 isoforms were determined using high-performance liquid chromatography with ultraviolet detection. Results: For rat liver microsomes, ketamine strongly inhibited 4-MU glucuronidation with an IC 50 value of 6.21 ± 1.51 mM followed by buprenorphine with an IC 50 value of 73.22 ± 1.63 mM. For human liver microsomes, buprenorphine strongly inhibited 4-MU glucuronidation with an IC 50 value of 6.32 ± 1.39 mM. For human UGT1A1 isoform, 7-hydroxymitragynine strongly inhibited 4-MU glucuronidation with an IC 50 value of 7.13 ± 1.16 mM. For human UGT2B7 isoform, buprenorphine strongly inhibited 4-MU glucuronidation followed by 7-hydroxymitragynine and ketamine with respective IC 50 values of 5.14 ± 1.30, 26.44 ± 1.31, and 27.28 ± 1.18 mM. Conclusions: These data indicate the possibility of drug-drug interaction if 7-hydroxymitragynine, ketamine, and buprenorphine are co-administered with drugs that are UGT2B7 substrates since these three compounds showed significant inhibition on UGT2B7 activity. In addition, if 7-hydroxymitragynine is to be taken with other drugs that are highly metabolized by UGT1A1, there is a possibility of drug

  17. Theoretical study of conjugated porphyrin polymers

    Pedersen, T.G.; Lynge, T.B.; Kristensen, P.K.


    The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required for these a......The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required...... for these applications. From a theoretical analysis of excitons in long metalloporphyrin chains, we demonstrate that the binding energy is much lower than in usual conjugated polymers. Our calculated absorption spectra are in good agreement with measurements. (c) 2004 Elsevier B.V. All rights reserved....

  18. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Jacqueline M. Miller


    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  19. Chlorambucil gemcitabine conjugate nanomedicine for cancer therapy.

    Fan, Mingliang; Liang, Xiaofei; Li, Zonghai; Wang, Hongyang; Yang, Danbo; Shi, Bizhi


    Self-assembly of anticancer small molecules into nanostructures may represent an attractive approach to improve the treatment of experimental solid tumors. As a proof of concept, we designed and synthesized the conjugate prodrug of hydrophilic gemcitabine by its covalent coupling to hydrophobic chlorambucil via a hydrolyzable ester linkage. The resulting amphiphilic conjugates self-assembled into nanoparticles in water and exhibited significant anticancer activity in vitro against a variety of human cancer cells. In vivo anticancer activity of these nanoparticles has been tested on subcutaneous grafted SMMC-7721 hepatocellular carcinoma model. Such chlorambucil gemcitabine conjugate nanomedicine should have potential applications in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. CO-releasing molecule (CORM) conjugate systems.

    Kautz, Anna Christin; Kunz, Peter C; Janiak, Christoph


    The development of CORMs (CO-releasing molecules) as a prodrug for CO administration in living organisms has attracted significant attention. CORMs offer the promising possibility of a safe and controllable release of CO in low amounts triggered by light, ligands, enzymes, etc. For the targeting of specific tissues or diseases and to prevent possible side effects from metals and other residues after CO release, these CORMs are attached to biocompatible systems, like peptides, polymers, nanoparticles, dendrimers, protein cages, non-wovens, tablets, and metal-organic frameworks. We discuss in this review the known CORM carrier conjugates, in short CORM conjugates, with covalently-bound or incorporated CORMs for medicinal and therapeutic applications. Most conjugates are nontoxic, show increasing half-lives of CO release, and make use of the EPR-effect, but still show problems because of a continuous background of CO release and the absence of an on/off-switch for the CO release.

  1. Conjugate gradient algorithms using multiple recursions

    Barth, T.; Manteuffel, T.


    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  2. Tight-binding treatment of conjugated polymers

    Lynge, Thomas Bastholm

    This PhD thesis concerns conjugated polymers which constitute a constantly growing research area. Today, among other things, conjugated polymers play a role in plastic based solar cells, photodetectors and light emitting diodes, and even today such plastic-based components constitute an alternative...... of tomorrow. This thesis specifically treats the three conjugated polymers trans-polyacetylene (tPA), poly(para-phenylene) (PPP) and poly(para-phe\\-nylene vinylene) (PPV). The present results, which are derived within the tight-binding model, are divided into two parts. In one part, analytic results...... are derived for the optical properties of the polymers expressed in terms of the optical susceptibility both in the presence and in the absence of a static electric field. In the other part, the cumputationally efficient Density Functional-based Tight-Binding (DFTB) model is applied to the description...

  3. Novel β-cyclodextrin–eosin conjugates

    Gábor Benkovics


    Full Text Available Eosin B (EoB and eosin Y (EoY, two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin–EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin–EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.

  4. Phase conjugation of high energy lasers.

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.


    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.


    N. Ageyev Vladimir


    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  6. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS

    Yang, Le-Le; Xiao, Na; Li, Xiao-Wei; Fan, Yong; Alolga, Raphael N.; Sun, Xiao-Yue; Wang, Shi-Lei; Li, Ping; Qi, Lian-Wen


    Quercetin is a natural flavonoid widely distributed in human diet and functional foods. Quercetin 3-O-β-glucuronide (Q3G) is present in wine and some medicinal plants. Quercetin and Q3G may be metabolized from each other in vivo. While quercetin has been the subject of many studies, the pharmacokinetic profiles of quercetin and Q3G (in animals) have not yet been compared. Herein, we prepared a column-based method for rapid isolation of Q3G from Nelumbo nucifera. Then, we developed an UHPLC-MS/MS method to compare the pharmacokinetics of quercetin and Q3G. Our results showed that the plasma concentration-time curves of quercetin and Q3G show two maxima (Tmax1 ≈ 0.75 h, Tmax2 ≈ 5 h). After oral administration of 100 mg/kg quercetin or 100 mg/kg Q3G in rats, predominantly Q3G was detected in plasma with AUC at 39529.2 ± 6108.2 mg·h·L‑1 or 24625.1 ± 1563.8 mg·h·L‑1, 18-fold higher than quercetin with AUC at 1583.9 ± 583.3 mg·h·L‑1 or 1394.6 ± 868.1 mg·h·L‑1, respectively. After intravenous injection of 10 mg/kg in rats, Q3G showed extensive tissue uptake in kidney (409.2 ± 118.4 ng/g), liver (166.1 ± 52.9 ng/g), heart (97.7 ± 22.6 ng/g), and brain (5.8 ± 1.2 ng/g). In conclusion, we have shown that Q3G is a major active component in plasma and tissue for oral administration of quercetin or Q3G.

  7. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS

    Yang, Le-Le; Xiao, Na; Li, Xiao-Wei; Fan, Yong; Alolga, Raphael N.; Sun, Xiao-Yue; Wang, Shi-Lei; Li, Ping; Qi, Lian-Wen


    Quercetin is a natural flavonoid widely distributed in human diet and functional foods. Quercetin 3-O-β-glucuronide (Q3G) is present in wine and some medicinal plants. Quercetin and Q3G may be metabolized from each other in vivo. While quercetin has been the subject of many studies, the pharmacokinetic profiles of quercetin and Q3G (in animals) have not yet been compared. Herein, we prepared a column-based method for rapid isolation of Q3G from Nelumbo nucifera. Then, we developed an UHPLC-MS/MS method to compare the pharmacokinetics of quercetin and Q3G. Our results showed that the plasma concentration-time curves of quercetin and Q3G show two maxima (Tmax1 ≈ 0.75 h, Tmax2 ≈ 5 h). After oral administration of 100 mg/kg quercetin or 100 mg/kg Q3G in rats, predominantly Q3G was detected in plasma with AUC at 39529.2 ± 6108.2 mg·h·L−1 or 24625.1 ± 1563.8 mg·h·L−1, 18-fold higher than quercetin with AUC at 1583.9 ± 583.3 mg·h·L−1 or 1394.6 ± 868.1 mg·h·L−1, respectively. After intravenous injection of 10 mg/kg in rats, Q3G showed extensive tissue uptake in kidney (409.2 ± 118.4 ng/g), liver (166.1 ± 52.9 ng/g), heart (97.7 ± 22.6 ng/g), and brain (5.8 ± 1.2 ng/g). In conclusion, we have shown that Q3G is a major active component in plasma and tissue for oral administration of quercetin or Q3G. PMID:27775094

  8. Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death.

    Thierauf, Annette; Kempf, Jürgen; Perdekamp, Markus Grosse; Auwärter, Volker; Gnann, Heike; Wohlfarth, Ariane; Weinmann, Wolfgang


    To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.

  9. Synthesis of cyanopyridine based conjugated polymer

    B. Hemavathi


    Full Text Available This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled ‘Cyanopyridine based conjugated polymer-synthesis and characterisation’ (Hemavathi et al., 2015 [3].

  10. Conjugate metamaterials and the perfect lens

    Xu, Yadong; Xu, Lin; Chen, Huanyang


    In this letter, we show how transformation optics makes it possible to design what we call conjugate metamaterials. We show that these materials can also serve as substrates for making a subwavelength-resolution lens. The so-called "perfect lens", which is a lens that could focus all components of light (including propagating and evanescent waves), can be regarded as a limiting case, in which the respective conjugate metamaterials approach the characteristics of left-handed metamaterials, which have a negative refractive index.

  11. Conjugated Polymers as Actuators: Modes of Actuation

    Skaarup, Steen

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  12. Conjugated polymers as actuators: modes of actuation

    Skaarup, Steen


    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  13. [Conjugate vaccines against bacterial infections: typhoid fever].

    Paniagua, J; García, J A; López, C R; González, C R; Isibasi, A; Kumate, J


    Capsular polysaccharides have been studied as possible vaccines against infectious diseases. However, they are capable to induce only short-run protection because of their T-independent properties and they would not be protective against infection in high-risk populations. The alternative to face this problem is to develop methods to join covalently the polysaccharide and proteins to both increase the immunogenicity of and to confer the property of T-dependence to this antigen. In order to obtain a conjugate vaccine against typhoid fever, in our laboratory we have tried to synthesize a conjugate immunogen between the Vi antigen and porins from Salmonella typhi.

  14. Dynamics of Photogenerated Polarons in Conjugated Polymers

    An, Z.; Wu, C. Q.; Sun, X.


    Within a tight-binding electron-phonon interacting model, we investigate the dynamics of photoexcitations to address the generation mechanism of charged polarons in conjugated polymers by using a nonadiabatic evolution method. Besides the neutral polaron exciton which is well known, we identify a novel product of lattice dynamic relaxation from the photoexcited states in a few hundreds of femtoseconds, which is a mixed state composed of both charged polarons and neutral excitons. Our results show that the charged polarons are generated directly with a yield of about 25%, which is independent of the excitation energies, in good agreement with results from experiments. Effects of the conjugation length are also discussed.

  15. Functionalized conjugated polyelectrolytes design and biomedical applications

    Wang, Shu


    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  16. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species

    Angela Ladurner


    Full Text Available Resveratrol (3,5,4'-trihydroxy-trans-stilbene is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.

  17. Determination of opiates in whole blood and vitreous humor: a study of the matrix effect and an experimental design to optimize conditions for the enzymatic hydrolysis of glucuronides.

    Sanches, Livia Rentas; Seulin, Saskia Carolina; Leyton, Vilma; Paranhos, Beatriz Aparecida Passos Bismara; Pasqualucci, Carlos Augusto; Muñoz, Daniel Romero; Osselton, Michael David; Yonamine, Mauricio


    Undoubtedly, whole blood and vitreous humor have been biological samples of great importance in forensic toxicology. The determination of opiates and their metabolites has been essential for better interpretation of toxicological findings. This report describes the application of experimental design and response surface methodology to optimize conditions for enzymatic hydrolysis of morphine-3-glucuronide and morphine-6-glucuronide. The analytes (free morphine, 6-acetylmorphine and codeine) were extracted from the samples using solid-phase extraction on mixed-mode cartridges, followed by derivatization to their trimethylsilyl derivatives. The extracts were analysed by gas chromatography-mass spectrometry with electron ionization and full scan mode. The method was validated for both specimens (whole blood and vitreous humor). A significant matrix effect was found by applying the F-test. Different recovery values were also found (82% on average for whole blood and 100% on average for vitreous humor). The calibration curves were linear for all analytes in the concentration range of 10-1,500 ng/mL. The limits of detection ranged from 2.0 to 5.0 ng/mL. The method was applied to a case in which a victim presented with a previous history of opiate use.

  18. Synthesis and application of resorufin β-D-glucuronide, a low-cost chromogenic substrate for detecting Escherichia coli in drinking water.

    Magro, Germinal; Bain, Robert E S; Woodall, Claire A; Matthews, Robert L; Gundry, Stephen W; Davis, Anthony P


    The development of low-cost tests for Escherichia coli is hampered by the expense and limited choice of enzyme substrates. Most chromogenic substrates are required in costly amounts, while fluorogenic substrates require an additional apparatus (e.g., an ultraviolet lamp) to be detected. Herein, we propose an alternative chromogenic substrate, resorufin β-d-glucuronide (REG), which is exceptionally sensitive and may be employed in very small amounts. We show that REG can be produced similarly to other simple glucuronides and should therefore be no more expensive. The compound is used by both healthy and injured E. coli, resulting in a pronounced color change from orange to a bright pink. Because the released dye (resorufin) has a high extinction coefficient, substantially lower amounts are needed than for commercially available substrates. The potential of this substrate is demonstrated by a presence/absence test requiring just 0.1 mg of REG/100 mL of water sample, one hundredth of the quantity needed for common chromogenic substrates, with an estimated bulk cost of ≤0.1 U.S. cents/test. REG shows promise as a chromogenic substrate for E. coli detection and should be considered in the development of new water tests, especially for low-income settings.

  19. Conjugate Gradient Methods with Armijo-type Line Searches

    Yu-Hong DAI


    Two Armijo-type line searches are proposed in this paper for nonlinear conjugate gradient methods.Under these line searches, global convergence results are established for several famous conjugate gradient method.

  20. Meningococcal conjugate vaccines: optimizing global impact

    Terranella A


    Full Text Available Andrew Terranella1,2, Amanda Cohn2, Thomas Clark2 1Epidemic Intelligence Service, Division of Applied Sciences, Scientific Education and Professional Development Program Office, 2Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract: Meningococcal conjugate vaccines have several advantages over polysaccharide vaccines, including the ability to induce greater antibody persistence, avidity, immunologic memory, and herd immunity. Since 1999, meningococcal conjugate vaccine programs have been established across the globe. Many of these vaccination programs have resulted in significant decline in meningococcal disease in several countries. Recent introduction of serogroup A conjugate vaccine in Africa offers the potential to eliminate meningococcal disease as a public health problem in Africa. However, the duration of immune response and the development of widespread herd immunity in the population remain important questions for meningococcal vaccine programs. Because of the unique epidemiology of meningococcal disease around the world, the optimal vaccination strategy for long-term disease prevention will vary by country. Keywords: conjugate vaccine, meningitis, meningococcal vaccine, meningococcal disease

  1. Conjugate Problems in Convective Heat Transfer: Review

    Abram Dorfman


    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  2. Women experiencing the intergenerationality of conjugal violence

    Gilvânia Patrícia do Nascimento Paixão


    Full Text Available Objective: to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence.Method: qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011.Results: the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence.Conclusion: investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon.

  3. Antibody-drug conjugates: Intellectual property considerations.

    Storz, Ulrich


    Antibody-drug conjugates are highly complex entities that combine an antibody, a linker and a toxin. This complexity makes them demanding both technically and from a regulatory point of view, and difficult to deal with in their patent aspects. This article discusses different issues of patent protection and freedom to operate with regard to this promising new class of drugs.

  4. Transparency in Bragg scattering and phase conjugation.

    Longhi, S


    Reflectionless transmission of light waves with unitary transmittance is shown to occur in a certain class of gain-grating structures and phase-conjugation mirrors in the unstable (above-threshold) regime. Such structures are synthesized by means of the Darboux method developed in the context of supersymmetric relativistic quantum mechanics. Transparency is associated to superluminal pulse transmission.

  5. Compositions for directed alignment of conjugated polymers

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong


    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  6. Some aspects of geomagnetically conjugate phenomena

    Rycroft, M.J.


    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  7. Conjugation-uniqueness of exact Borel subalgebras



    It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.

  8. Predicting the optical gap of conjugated systems

    Botelho, Andre Leitao

    The adapted Su-Schrieffer-Heeger model is developed in this work as a tool for in silico prediction of the optical gap of pi-conjugated systems for photovoltaic applications. Full transferability of the model ensures reliable predictive power - excellent agreement with 180 independent experimental data points covering virtually all existing conjugated system types with an accuracy exceeding the time-dependent density functional theory, one of the most accurate first-principles methods. Insights on the structure-property relation of conjugated systems obtained from the model lead to guiding rules for optical gap design: 1) fusing aromatic rings parallel to the conjugated path does not significantly lower the optical gap, 2) fusing rings perpendicularly lowers the optical gap of the monomer, but has a reduced benefit from polymerization, and 3) copolymers take advantage of the lower optical gap of perpendicular fused rings and benefit from further optical gap reduction through added parallel fused rings as electronic communicators. A copolymer of parallel and perpendicular benzodithiophenes, differing only in sulfur atom locations, is proposed as a candidate to achieve the optimal 1.2 eV donor optical gap for organic photovoltaics. For small-molecule organic photovoltaics, substituting the end pairs of carbon atoms on pentacene with sulfur atoms is predicted to lower the optical gap from 1.8 eV to 1.1 eV. Furthermore, the model offers an improvement of orders of magnitude in the computational efficiency over commonly used first-principles tools.

  9. Photorefractive phase-conjugation digital holographic microscopy

    Chang, Chi-Ching; Chan, Huang-Tian; Shiu, Min-Tzung; Chew, Yang-Kun


    In this work, we propose an innovative method for digital holographic microscopy named as photorefractive phaseconjugation digital holographic microscopy (PPCDHM) technique based on the phase conjugation dynamic holographic process in photorefractive BaTiO3 crystal and the retrieval of phase and amplitude of the object wave were performed by a reflection-type digital holographic method. Both amplitude and phase reconstruction benefit from the prior amplification by self-pumped conjugation (SPPC) as they have an increased SNR. The interest of the PPCDHM is great, because its hologram is created by interfered the amplified phase-conjugate wave field generated from a photorefractive phase conjugator (PPC) correcting the phase aberration of the imaging system and the reference wave onto the digital CCD camera. Therefore, a precise three-dimensional description of the object with high SNR can be obtained digitally with only one hologram acquisition. The method requires the acquisition of a single hologram from which the phase distribution can be obtained simultaneously with distribution of intensity at the surface of the object.

  10. Conjugate problems in convective heat transfer

    Dorfman, Abram S


    The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.

  11. Conjugal Succession and the American Kinship System.

    Furstenberg, Frank F., Jr.

    Although not the preferred type of family formation, conjugal succession is now an accepted, if not expected, alternative to continuous marriage in the United States. This new trend appears to be related to a shift in the meaning of matrimony. Previously, marriage was part of a cultural pattern of transitions and as such was closely timed to…

  12. Metal coordination of ferrocene-histidine conjugates.

    Ferranco, Annaleizle; Basak, Shibaji; Lough, Alan; Kraatz, Heinz-Bernhard


    This study presents a few bis(histidine) ligands working to build a small peptidic model system of zinc structural sites. Ferrocene-peptide conjugates Fc[CO-His(Trt)-His(Trt)-OMe]2 (3), Fc[CO-His(Trt)-Asp(OMe)-OMe]2 (4), and Fc[CO-His(Trt)-Glu(OMe)-OMe]2 (5) were synthesized and characterized spectroscopically. (1)H-NMR and IR spectroscopic studies reveal hydrogen bonding interactions and while more detailed circular dichroism studies show a 1,2'-P helical "Herrick conformation" for Fc-conjugates 4 and 5, we discovered M-helical chirality in Fc-peptide 3. The half-wave potentials (E1/2) of ferrocene-peptides follow the sequence 3 anodic potential shifts upon the addition of metal ions, which follow the order Cu(2+) > Zn(2+) > Ni(2+) > Cd(2+) > Mn(2+) > Mg(2+). NMR spectroscopic experiments show that the two nitrogen atoms present on each imidazole ring of His residues are the site of metal coordination. There is a strong indication that peptide conjugates 4 and 5 in the presence of Zn(2+) enforce a coordination number of four as the CD spectra of Fc-conjugates 4 and 5 exhibited a red shift which corresponds to the third and fourth coordination sites occupied by neutral carbonyl oxygen donor atoms, in addition, carbonyl amide appears downward shifted in wavenumber upon metal addition.

  13. Continuous flow synthesis of conjugated polymers.

    Seyler, Helga; Jones, David J; Holmes, Andrew B; Wong, Wallace W H


    A selection of conjugated polymers, widely studied in organic electronics, was synthesised using continuous flow methodology. As a result of superior heat transfer and reagent control, excellent polymer molecular mass distributions were achieved in significantly reduced reaction times compared to conventional batch reactions.

  14. Vibrational Spectroscopy of Microhydrated Conjugate Base Anions

    Asmis, K. R.; Neumark, D. M.


    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aeros

  15. Bacillus thuringiensis Conjugation in Simulated Microgravity

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques


    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  16. Stochastic differential equations used to model conjugation

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  17. Theory of periodic conjugate heat transfer

    Zudin, Yuri B


    This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.

  18. Electromagnetic wave propagations in conjugate metamaterials.

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang


    In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.

  19. Synthesis of Indomethacin Conjugates with D-Glucosamine

    Yi Chun ZHANG; Ying Xia LI; Hua Shi GUAN


    Two series of indomethacin conjugates with D-glucosamine were prepared with the objectives of reducing ulcerogenic potency, increasing the bioavailability of indomethacin and exerting the coordinative effects on osteoarthritis. The structures of the conjugates were identified by 1H NMR and 13C NMR. The ester conjugates inhibited edema as potent as indomethacin.

  20. Cross-Conjugated n-Dopable Aromatic Polyketone

    Voortman, Thomas P.; Bartesaghi, Davide; Koster, L. Jan Anton; Chiechi, Ryan C.


    This paper describes the synthesis and characterization of a high molecular weight cross-conjugated polyketone synthesized via scalable Friedel Crafts chemistry. Cross-conjugated polyketones are precursors to conjugated polyions; they become orders of magnitude more conductive after a two-electron r

  1. Conjugated Educational System: Notion, Structure, Educational Potential 

    Andrei A. Ostapenko; Dar'ya S. Tkach


    The article indicates the ways to decrease risk from teenagers and youth’s growing-up in today’s Russia by development of fundamental models of conjugated educational systems and their mass implementation in educational practice, introduces the notion of “conjugated educational system” for scientific use, describes types of conjugation and educational results of submitted models use.

  2. Cross-Conjugated n-Dopable Aromatic Polyketone

    Voortman, Thomas P.; Bartesaghi, Davide; Koster, L. Jan Anton; Chiechi, Ryan C.


    This paper describes the synthesis and characterization of a high molecular weight cross-conjugated polyketone synthesized via scalable Friedel Crafts chemistry. Cross-conjugated polyketones are precursors to conjugated polyions; they become orders of magnitude more conductive after a two-electron

  3. Resolution of Digitized Conjugate Tooth-Face Surface Based on the Theory of Digitized Conjugate Surfaces

    XIAO Lai-yuan; LIAO Dao-xun; YI Chuan-yun


    According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugater-l. 0 that is developed by ourselves to compute, respectivcly, the digitized conjugate curved surfaces of the straight-tooth surface and drum-tooth surface,which will establish the theoretical and technical foundation for digitized engaging analysis, simulation, and digitized manufacturing technology of the diversified gears.

  4. A humanized UGT1 mouse model expressing the UGT1A1*28 allele for assessing drug clearance by UGT1A1-dependent glucuronidation.

    Cai, Hongliang; Nguyen, Nghia; Peterkin, Vincent; Yang, Young-Sun; Hotz, Kathy; La Placa, Deirdre Beaton; Chen, Shujuan; Tukey, Robert H; Stevens, Jeffrey C


    Humanized mice that express the human UDP-glucuronosyltransferase (UGT) 1 locus have been developed in a Ugt1-null background as a model to improve predictions of human UGT1A-dependent drug clearance. Enzyme kinetic parameters (K(m) and V(max)) and pharmacokinetic properties of three probe drugs were compared using wild-type and humanized UGT1 mice that express the Gilbert's UGT1A1*28 allele [Tg(UGT1(A1*28)) Ugt1(-/-) mice]. The well characterized substrate for UGT1A1, 7-ethyl-10-hydroxy-camptothecin (SN-38), showed the greatest difference in parent drug exposure ( approximately 3-fold increase) and clearance ( approximately 3-fold decrease) in Tg(UGT1(A1*28)) Ugt1(-/-) mice after intravenous administration compared with wild-type and phenobarbital-treated animals. In contrast, the clearance of the UGT2B7 substrate (-)-17-allyl-4, 5alpha-epoxy-3, 14-dihydroxymorphinan-6-one (naloxone) was not altered in Tg(UGT1(A1*28)) Ugt1(-/-) mice. In addition, pharmacokinetic parameters with 1-(4-fluorophenyl)3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone (ezetimibe, Zetia; Merck & Co., Whitehouse Station, NJ), considered to be a major substrate for UGT1A1, showed small to no dependence on UGT1A1-directed glucuronidation. Enzyme kinetic parameters assessed for SN-38, ezetimibe, and naloxone using liver microsomes prepared from wild-type and Tg(UGT1(A1*28)) Ugt1(-/-) mice showed patterns consistent with the in vivo pharmacokinetic data. For SN-38 glucuronidation, V(max) decreased 5-fold in Tg(UGT1(A1*28)) Ugt1(-/-) mouse liver microsomes compared with microsomes prepared from wild-type mice, and decreased 10-fold compared with phenobarbital-treated Tg(UGT1(A1*28)) Ugt1(-/-) mice. These differences are consistent with SN-38 glucuronidation activities using HLMs isolated from individuals genotyped as UGT1A1*1 or UGT1A1*28. For ezetimibe and naloxone the differences in V(max) were minimal. Thus, Tg(UGT1(A1*28)) Ugt1(-/-) mice can serve as a

  5. Visualization of phase conjugate ultrasound waves passed through inhomogeneous layer.

    Yamamoto, K; Pernod, P; Preobrazhensky, V


    Compensation of phase distortions of ultrasound beams by means of parametric phase conjugation is visualized. Quasi-plane and focused primary beams were distorted by a polymer aberration layer introduced between the primary wave source and the wave phase conjugator. It is demonstrated acousto-optically that, while the acoustic field is strongly irregular in the area between aberration layer and conjugator, the phase conjugate wave visibly reproduces the primary beams in the area between the layer and the primary wave source. The phenomenon is observed in supercritical mode of parametric amplification when intensity of phase conjugate wave is high enough for manifestations of acoustic nonlinearities in water.


    DUAN Zhenyun; CHEN Houjun; LIU Jian


    Bertrand surface is presented by abstracting and subliming the common characteristic of the usual surfaces including rotational surfaces, developable surfaces, normal circular-arc surfaces,etc. Basic characteristic of Bertrand surface is that normals along generator are coplanar. Bertrand conjugate principle is studied and its basic characteristic is that the instantaneous contact line between a pair of Bertrand conjugate surfaces is generator. Bertrand conjugate can be divided into three kinds of typical conjugation forms in terms of the generators that are general plane curve, circular-arc and straight line. Basic conjugate condition is given respectively, and structure condition, which reflects transmission forms and directrix characteristic of this kind of conjugation, is researched. As typical engineering application of Bertrand conjugate surface principle, transmission technology of loxodromic-type normal circular-arc bevel gear is studied.

  7. Highly sensitive biosensors based on water-soluble conjugated polymers

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin


    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  8. Conjugation of fluorescent proteins with DNA oligonucleotides.

    Lapiene, Vidmantas; Kukolka, Florian; Kiko, Kathrin; Arndt, Andreas; Niemeyer, Christof M


    This work describes the synthesis of covalent ssDNA conjugates of six fluorescent proteins, ECFP, EGFP, E(2)GFP, mDsRed, Dronpa, and mCherry, which were cloned with an accessible C-terminal cystein residue to enable site-selective coupling using a heterobispecific cross-linker. The resulting conjugates revealed similar fluorescence emission intensity to the unconjugated proteins, and the functionality of the tethered oligonucleotide was proven by specific Watson-Crick base pairing to cDNA-modified gold nanoparticles. Fluorescence spectroscopy analysis indicated that the fluorescence of the FP is quenched by the gold particle, and the extent of quenching varied with the intrinsic spectroscopic properties of FP as well as with the configuration of surface attachment. Since this study demonstrates that biological fluorophores can be selectively incorporated into and optically coupled with nanoparticle-based devices, applications in DNA-based nanofabrication can be foreseen.

  9. Health benefits of conjugated linoleic acid (CLA).

    Koba, Kazunori; Yanagita, Teruyoshi


    Conjugated linoleic acid (CLA) is a group of positional and geometric (cis or trans) isomers of linoleic acid with a conjugated double bond. The most representative CLA isomers are 9c,11t-18:2 and 10t,12c-18:2. CLA has been shown to exert various potent physiological functions such as anticarcinogenic, antiobese, antidiabetic and antihypertensive properties. This means CLA can be effective to prevent lifestyle diseases or metabolic syndromes. Also, reports suggest that physiological effects of CLA are different between the isomers, for example the 10t,12c isomer is anticarcinogenic, antiobese and antidiabetic, whereas the 9c,11t isomer is mainly anticarcinogenic. We describe here the physiological properties of CLA including the possible mechanism and the possibility to benefit human health.

  10. Discrete modelling of bacterial conjugation dynamics

    Goni-Moreno, Angel


    In bacterial populations, cells are able to cooperate in order to yield complex collective functionalities. Interest in population-level cellular behaviour is increasing, due to both our expanding knowledge of the underlying biological principles, and the growing range of possible applications for engineered microbial consortia. Researchers in the field of synthetic biology - the application of engineering principles to living systems - have, for example, recently shown how useful decision-making circuits may be distributed across a bacterial population. The ability of cells to interact through small signalling molecules (a mechanism known as it quorum sensing) is the basis for the majority of existing engineered systems. However, horizontal gene transfer (or conjugation) offers the possibility of cells exchanging messages (using DNA) that are much more information-rich. The potential of engineering this conjugation mechanism to suit specific goals will guide future developments in this area. Motivated by a l...

  11. Solventless processing of conjugated polymers - a review

    Brandão, Lúcia; Viana, Júlio; Bucknall, David G.; Bernardo, Gabriel


    The molecular mobility of polymers in their solid or molten states allows their processing without the need for toxic, “non-friendly” solvents. In this work, the main features of solvent-free processing methods applied to conjugated polymers are reviewed taking into consideration that these materials are largely used in a broad range of (opto-)electronic applications, including organic field-effect transistors, polymer light-emitting diodes and polymer photovoltaic devices. This review addres...

  12. Solventless processing of conjugated polymers - a review

    Brandão, Lúcia; Viana, Júlio; Bucknall, David G.; Bernardo, Gabriel


    The molecular mobility of polymers in their solid or molten states allows their processing without the need for toxic, “non-friendly” solvents. In this work, the main features of solvent-free processing methods applied to conjugated polymers are reviewed taking into consideration that these materials are largely used in a broad range of (opto-)electronic applications, including organic field-effect transistors, polymer light-emitting diodes and polymer photovoltaic devices. This review addres...

  13. Conjugated Polymer Actuators: Prospects and Limitations

    Skaarup, Steen


    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  14. Conjugated Linoleic Acid: good or bad nutrient

    Gonçalves Daniela C


    Full Text Available Abstract Conjugated linoleic acid (CLA is a class of 28 positional and geometric isomers of linoleic acid octadecadienoic.Currently, it has been described many benefits related to the supplementation of CLA in animals and humans, as in the treatment of cancer, oxidative stress, in atherosclerosis, in bone formation and composition in obesity, in diabetes and the immune system. However, our results show that, CLA appears to be not a good supplement in patients with cachexia.

  15. Applications of Conjugated Polymers to DNA Sensing

    Jadranka; Travas-Sejdic; Christian; Soeller


    1 Results Detection of biomolecules relies on a highly specific recognition event between an analyte biomolecule and a probe that is often closely connected or integrated within a sensor transducer element to provide a suitable signal. More widespread application of gene detection on a routine basis demands the development of a new generation of gene sensors that are fast, reliable and cost-effective.Conjugated polymers (CPs) have been shown to be a versatile substrate for DNA sensor construction, where...

  16. Conjugated Polymer Actuators: Prospects and Limitations

    Skaarup, Steen


    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  17. Higher urine 1-hydroxy pyrene glucuronide (1-OHPG is associated with tobacco smoke exposure and drinking maté in healthy subjects from Rio Grande do Sul, Brazil

    Roth Mark J


    Full Text Available Abstract Background The highest rates of esophageal squamous cell carcinoma (ESCC in Brazil occur in Rio Grande do Sul, the most southern state, which has incidence rates of 20.4/100,000/year for men and 6.5/100,000/year for women. Exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs through tobacco smoke and other sources may increase the risk of ESCC. The aims of the current study were to investigate the degree and sources of PAH exposure of the inhabitants of this region of southern Brazil. Methods Two hundred healthy adults (half smokers, half non smokers, half male and half female were recruited, given a standardized questionnaire, and asked to provide a urine sample for measurement of 1-hydroxypyrene glucuronide (1-OHPG, a PAH metabolite. Urine 1-OHPG concentrations were measured using immunoaffinity chromatography and synchronous fluorescence spectroscopy and urine cotinine was measured using a dipstick test. We examined factors associated with 1-OHPG concentration using Wilcoxon tests and multiple linear regression. Results Urine 1-hydroxypyrene glucuronide (1-OHPG was successfully measured on 199 subjects. The median (interquartile range of urine 1-OHPG in the 199 participants was 2.09 pmol/mL (0.51, 5.84. Tobacco smoke exposure and maté drinking were statistically significantly associated with higher urine 1-OHPG concentrations in the multivariate linear regression model. Conclusion Tobacco smoke and maté both contribute to high levels of benzo[a]pyrene exposure in the people of southern Brazil. This high PAH exposure may contribute to the high rates of ESCC observed in this population. The increased urine 1-OHPG concentrations associated with maté suggest that contaminants, not just thermal injury, may help explain the increased risk of ESCC previously reported for maté consumption.

  18. Validated LC-MS/MS method for the determination of 3-hydroxflavone and its glucuronide in blood and bioequivalent buffers: application to pharmacokinetic, absorption, and metabolism studies.

    Xu, Beibei; Yang, Guanyi; Ge, Shufan; Yin, Taijun; Hu, Ming; Gao, Song


    The purpose of this study is to develop an UPLC-MS/MS method to quantify 3-hydroxyflavone (3-HF) and its metabolite, 3-hydroxyflavone-glucuronide (3-HFG) from biological samples. A Waters BEH C8 column was used with acetonitrile/0.1% formic acid in water as mobile phases. The mass analysis was performed in an API 5500 Qtrap mass spectrometer via multiple reaction monitoring (MRM) with positive scan mood. The one-step protein precipitation by acetonitrile was used to extract the analytes from blood. The results showed that the linear response range was 0.61-2500.00 nM for 3-HF and 0.31-2500.00 nM for 3-HFG. The intra-day variance is less than 16.5% and accuracy is in 77.7-90.6% for 3-HF and variance less than 15.9%, accuracy in 85.1-114.7% for 3-HFG. The inter-day variance is less than 20.2%, accuracy is in 110.6-114.2% for 3-HF and variance less than 15.6%, accuracy in 83.0-89.4% for 3-HFG. The analysis was done within 4.0 min. Only 10 μl of blood is needed due to the high sensitivity of this method. The validated method was successfully used to pharmacokinetic study in A/J mouse, transport study in the Caco-2 cell culture model, and glucuronidation study using mice liver and intestine microsomes. The applications revealed that this method can be used for 3-HF and 3-HFG analysis in blood as well as in bioequivalent buffers such HBSS and KPI. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Peptide conjugation: before or after nanoparticle formation?

    Valetti, Sabrina; Mura, Simona; Noiray, Magali; Arpicco, Silvia; Dosio, Franco; Vergnaud, Juliette; Desmaële, Didier; Stella, Barbara; Couvreur, Patrick


    We report herein a detailed study concerning the impact of different bioconjugation and nanoformulation strategies on the in vitro targeting ability of peptide-decorated squalenoyl gemcitabine (SQdFdC) nanoparticles (NPs). NPs have been functionalized with the CKAAKN peptide, previously identified as an efficient homing device within the pancreatic pathological microenvironment. Two approaches have been followed: (i) either the CKAAKN peptide was directly conjugated at the surface of preformed SQdFdC nanoparticles (conjugation after NP formation) or (ii) it was first reacted with a maleimide squalenoyl derivative before the resulting bioconjugate was co-nanoprecipitated with SQdFdC to form the peptide-decorated NPs (conjugation before NP formation). NPs were characterized with respect to mean diameter, zeta potential, and stability over time. Then, their specific interaction with the sFRP-4 protein was evaluated by surface plasmon resonance. Although both synthetic strategies allowed us to formulate NPs able to interact with the corresponding receptor, enhanced target binding and better specific avidity were observed with CKAAKN-NPs functionalized before NP formation. These NPs displayed the highest cell uptake and cytotoxicity in an in vitro model of human MIA Paca-2 pancreatic cancer cells.

  20. Cancer Chemopreventive Ability of Conjugated Linolenic Acids

    Kazuo Miyashita


    Full Text Available Conjugated fatty acids (CFA have received increased interest because of their beneficial effects on human health, including preventing cancer development. Conjugated linoleic acids (CLA are such CFA, and have been reviewed extensively for their multiple biological activities. In contrast to other types of CFAs including CLA that are found at low concentrations (less than 1% in natural products, conjugated linolenic acids (CLN are the only CFAs that occur in higher quantities in natural products. Some plant seeds contain a considerably high concentration of CLN (30 to 70 wt% lipid. Our research group has screened CLN from different plant seed oils to determine their cancer chemopreventive ability. This review describes the physiological functions of CLN isomers that occur in certain plant seeds. CLN are able to induce apoptosis through decrease of Bcl-2 protein in certain human cancer cell lines, increase expression of peroxisome proliferator-activated receptor (PPAR-γ, and up-regulate gene expression of p53. Findings in our preclinical animal studies have indicated that feeding with CLN resulted in inhibition of colorectal tumorigenesis through modulation of apoptosis and expression of PPARγ and p53. In this review, we summarize chemopreventive efficacy of CLN against cancer development, especially colorectal cancer.

  1. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M


    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  2. Nanostructured conjugated polymers for photovoltaic devices

    Xi, Dongjuan

    This dissertation focuses on making new systems of interdigitated bilayer structures for organic solar cells from two aspects: (i) fabricating vertically aligned semiconductor nanorod arrays by low-temperature solution process; (ii) applying the resulting nanorods arrays in solar cell devices with pre-formed or in-situ electropolymerized conjugated polymers. Two low-temperature solution methods are investigated to fabricate vertically aligned semiconductor nanorod arrays. The first method is using porous templates to prepare vertically aligned conjugated polymer nanorods arrays. In-situ anodized nanoporous alumina film is specifically designed to suspend on substrates to improve the wettability of organic solution to the alumina film, and to generate a big foot anchoring the polymer nanorods. With this specific design, vertically aligned polymer nanotube arrays with high density, 3x1010/cm2, is achieved and the nanotubes can stand vertically at the aspect ratio of 5. The second method is low-temperature direct growth of high quality semiconductor nanorod arrays without any templates by electrochemical deposition. Vertically aligned cadmium sulfide nanorod arrays are achieved by studying the growth mechanism of cadmium sulfide nanocrystal deposition and fine tuning the solution composition of the electrolyte. Chlorine doping, as a function of chlorine ion concentration in the electrolyte, modifies crystal lattice, and therefore the build-in stress, which dominates the morphology of the deposited nanocrystals as nanorods or thin films. Scanning electron microscopy, x-ray diffraction and transmission electron microscopy are applied to study the microstructures of the nanorods. Optical, electrical and field emission properties of the cadmium sulfide nanorod arrays are also studied in detail to pursue further applications of the nanorod arrays as nano-lasers and cold field emitters. Organic solar cells based on template-processed polythiophene nanotube arrays will be

  3. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch.

    Jadhav, Swati B; Singhal, Rekha S


    Two enzymes, α-amylase and glucoamylase have been individually and co-conjugated to pectin by covalent binding. Both the enzyme systems showed better thermal and pH stability over the free enzyme system with the complete retention of original activities. Mixture of individually conjugated enzymes showed lower inactivation rate constant with longer half life than the co-conjugated enzyme system. Individually conjugated enzymes showed an increase of 56.48 kJ/mole and 38.22 kJ/mole in activation energy for denaturation than the free enzymes and co-conjugated enzymes, respectively. Km as well as Vmax of individually and co-conjugated enzymes was found to be higher than the free enzymes. SDS-polyacrylamide gel electrophoresis confirmed the formation of conjugate and co-conjugate as evident by increased molecular weight. Both the enzyme systems were used for starch hydrolysis where individually conjugated enzymes showed highest release of glucose at 60 °C and pH 5.0 as compared to free and co-conjugated enzyme.

  4. Luminescence of a conjugated polymer containing europium (III) chelate

    Liang, Hao; Xie, Fang, E-mail:


    A europium (III) chelate has been incorporated in a conjugated polymer, poly-[2,2′-bipyridine-5,5′-diyl-(2,5-dihexyl-1,4-phenylene)]. From the absorbance and emission spectra measurement and using the Judd–Ofelt theory, an efficient energy transfer between the conjugated polymer and the europium (III) chelate has been confirmed. The luminescence lifetime of Eu{sup 3+} ion in the conjugated polymer is 0.352 ms and the emission cross section of this material is 3.11×10{sup −21} cm{sup 2}. -- Highlights: • A europium chelate has been incorporated in a conjugated polymer. • Energy transfer in the conjugated polymer containing europium chelate is efficient. • The conjugated polymer containing europium chelate is a promising optical material.

  5. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates.

    Piotrowska, Alicja; Bajguz, Andrzej


    Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed.

  6. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo


    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  7. Identification and structural characterization by LC-ESI-IONTRAP and LC-ESI-TOF of some metabolic conjugation products of homovanillic acid in urine of neuroblastoma patients.

    Scapolla, Carlo; Cangemi, Giuliana; Barco, Sebastiano; Barbagallo, Laura; Bugnone, Daniela; Maffia, Angelo; Melioli, Giovanni; Profumo, Aldo; Benatti, Umberto; Damonte, Gianluca


    The levels of urinary catecholamine metabolites, such as homovanillic acid (HVA) and vanillylmandelic acid, are routinely used as a clinical tool in the diagnosis and follow-up of neuroblastoma (NB) patients. Recently, in the Clinical Pathology Laboratory Unit of G. Gaslini Children Hospital, a commercial method that employs liquid chromatography coupled to electrochemical detection (LC-EC) has been introduced for the measurement of these metabolites in the routine laboratory practice. Using this LC-EC method, an unknown peak could be observed only in samples derived from NB patients. To investigate the nature of this peak, we used a combination of liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS) and liquid chromatography-ion trap tandem mass spectrometry (LC-IT-MS). The first approach was used to obtain the elemental composition of the ions present in this new signal. To get additional structural information useful for the elucidation of unknown compounds, the ion trap analyzer was exploited. We were able to identify not just one, but three unknown signals in urine samples from NB patients which corresponded to three conjugated products of HVA: HVA sulfate and two glucuronoconjugate isomers. The enzymatic hydrolysis with β-glucuronidase confirmed the proposed structures, while the selective alkaline hydrolysis allowed us to distinguish the difference between phenol- and acyl-glucuronide of HVA. The latter was the unknown peak observed in LC-EC separations of urine samples from NB patients.

  8. Design, synthesis, characterization and study of novel conjugated polymers

    Chen, Wu [Iowa State Univ., Ames, IA (United States)


    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  9. Evolution of conjugation and type IV secretion systems.

    Guglielmini, Julien; de la Cruz, Fernando; Rocha, Eduardo P C


    Genetic exchange by conjugation is responsible for the spread of resistance, virulence, and social traits among prokaryotes. Recent works unraveled the functioning of the underlying type IV secretion systems (T4SS) and its distribution and recruitment for other biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both based on a key AAA(+) ATPase, diverged before the last common ancestor of bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla, including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight monophyletic groups, determined by both taxonomy and structure of the cell envelope. Transfer to monoderms might have occurred only once, but followed diverse adaptive paths. Remarkably, some Firmicutes developed a new conjugation system based on an atypical relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates and patterns of presence/absence of specific T4SS proteins show that conjugation systems are often and independently exapted for other functions. This work brings a natural basis for the classification of all kinds of conjugative systems, thus tackling a problem that is growing as fast as genomic databases. Our analysis provides the first global picture of the evolution of conjugation and shows how a self-transferrable complex multiprotein system has adapted to different taxa and often been recruited by the host. As conjugation systems became specific to certain clades and cell envelopes, they may have biased the rate and direction of gene transfer by conjugation within prokaryotes.

  10. A Hybrid of DL and WYL Nonlinear Conjugate Gradient Methods

    Shengwei Yao


    Full Text Available The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL and WYL conjugate gradient methods. The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.

  11. Synthesis and characterization of HPMA copolymer-5-FU conjugates

    Fang Yuan; Fu Chen; Qing Yu Xiang; Xuan Qin; Zhi Rong Zhang; Yuan Huang


    N-(2-Hydroxypropyl)methacrylamide copolymer-5-fluorouracil (PHPMA-FU)conjugates were synthesized by a novel and simplified synthetic mute,and characterized by UV,FTIR and HPLC analyses.The conjugated content of 5-fluorouracil (5-FU)was 3.41 ± 0.07 wt%.The stabilities of PHPMA-FU conjugates under different conditions were studied.The results showed that HPMA copolymer was a potential carrier for tumor-targeting delivery of 5-FU.

  12. Multicellular computing using conjugation for wiring.

    Goñi-Moreno, Angel; Amos, Martyn; de la Cruz, Fernando


    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal "re-programming" and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a "computation" is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the "wiring" between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing

  13. Polymer decorated gold nanoparticles in nanomedicine conjugates.

    Capek, Ignác


    Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review

  14. 2-Deoxystreptamine Conjugates by Truncation–Derivatization of Neomycin

    Floris L. van Delft


    Full Text Available A small library of truncated neomycin-conjugates is prepared by consecutive removal of 2,6-diaminoglucose rings, oxidation-reductive amination of ribose, oxidation-conjugation of aminopyridine/aminoquinoline and finally dimerization. The dimeric conjugates were evaluated for antibacterial activity with a unique hemocyanin-based biosensor. Based on the outcome of these results, a second-generation set of monomeric conjugates was prepared and found to display significant antibacterial activity, in particular with respect to kanamycin-resistant E. coli.

  15. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine


    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  16. Methotrexate and epirubicin conjugates as potential antitumor drugs

    Szymon Wojciech Kmiecik


    Full Text Available Introduction: The use of hybrid molecules has become one of the most significant approaches in new cytotoxic drug design. This study describes synthesis and characterization of conjugates consisting of two well-known and characterized chemotherapeutic agents: methotrexate (MTX and epirubicin (EPR. The synthesized conjugates combine two significant anticancer strategies: combinatory therapy and targeted therapy. These two drugs were chosen because they have different mechanisms of action, which can increase the anticancer effect of the obtained conjugates. MTX, which is a folic acid analog, has high cytotoxic properties and can serve as a targeting moiety that can reach folate receptors (FRs overexpresing tumor cells. Combination of nonselective drugs such as EPR with MTX can increase the selectivity of the obtained conjugates, while maintaining the high cytotoxic properties.Materials and methods: Conjugates were purified by RP-HPLC and the structure was investigated by MS and MS/MS methods. The effect of the conjugates on proliferation of LoVo, LoVo/Dx, MCF-7 and MV-4-11 human cancer cell lines was determined by SRB or MTT assay.Results: The conjugation reaction results in the formation of monosubstituted (α, γ and disubstituted MTX derivatives. In vitro proliferation data demonstrate that the conjugates synthesized in our study show lower cytotoxic properties than both chemotherapeutics used alone.Discussion: Epirubicin cytotoxicity was not observed in obtained conjugates. Effective drugs release after internalization needs further investigation.

  17. Site-Selective Conjugation of Native Proteins with DNA

    Trads, Julie Brender; Tørring, Thomas; Gothelf, Kurt Vesterager


    . In recent years, a number of chemical methods that target conjugation to specific sites at native proteins have become available, and an overview of these methods is provided in this Account. Our laboratory has investigated DNA-templated protein conjugation (DTPC), which offers an alternative approach...... to site-selective conjugation of DNA to proteins. The method is inspired by the concept of DNA-templated synthesis where functional groups conjugated to DNA strands are preorganized by DNA hybridization to dramatically increase the reaction rate. In DPTC, we target metal binding sites in proteins...

  18. A class of globally convergent conjugate gradient methods

    DAI; Yuhong(戴彧虹); YUAN; Yaxiang(袁亚湘)


    Conjugate gradient methods are very important ones for solving nonlinear optimization problems,especially for large scale problems. However, unlike quasi-Newton methods, conjugate gradient methods wereusually analyzed individually. In this paper, we propose a class of conjugate gradient methods, which can beregarded as some kind of convex combination of the Fletcher-Reeves method and the method proposed byDai et al. To analyze this class of methods, we introduce some unified tools that concern a general methodwith the scalarβk having the form of φk/φk-1. Consequently, the class of conjugate gradient methods canuniformly be analyzed.

  19. Inorganic Nanoparticles Conjugated with Biofunctional Molecules



    1 Results We have attempted to conjugate inorganic nanoparticles with biofunctional molecules.Recently we were quite successful in demonstrating that a two-dimensional inorganic compound like layered double hydroxide (LDH),and natural and synthetic clays can be used as gene or drug delivery carriers1-4.To the best of our knowledge,such inorganic vectors are completely new and different from conventionally developed ones such as viruses and cationic liposomes,those which are limited in certain cases of ap...

  20. Excitons in conjugated polymers from first principles

    van der Horst, J.-W.; Bobbert, P. A.; Pasveer, W. F.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.


    By a combination of ab-initio computational techniques, based on density-functional theory, GW theory, and the Bethe-Salpeter equation, we study the opto-electronic properties of several conjugated polymers and in particular the properties of excitons. We study three different situations: (I) an isolated polymer chain, (II) a chain embedded in a dielectric medium, and (III) a polymer crystal. Surprisingly, the results obtained for situation (II) generally agree best with experiment. We discuss possible reasons for this rule and an interesting exception.

  1. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    Lima, Igo T.


    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  2. Evaluation of Haemophilus influenzae Type B Conjugate Vaccine (Meningococcal Protein Conjugate in Canadian Infants

    David W Scheifele


    Full Text Available Objective: To assess adverse effects and immune responses with a three-dose series of Haemophilus influenzae type b meningococcal protein conjugate (PedvaxHIB or Hib.OMP vaccine, including any immunological response alterations from concurrent administration with routine vaccines for infants.

  3. Pharmacokinetic comparisons of puerarin, daidzin and the glucuronide metabolite of puerarin after administration of total flavonoid from Gegen alone and total flavonoid from Gegen combined with total saponin from Sanqi in rats under different physiological states.

    Liu, Xiaoming; Zhao, Yunli; Gao, Enze; Zhao, Xing; Liu, Zheng; Yu, Zhiguo


    Gegen is one of the most commonly used traditional Chinese medicines for promoting blood circulation and removing blood stasis. Puerarin and daidzin are the main active constituents of Gegen. Puerarin is mainly metabolized in rats by glucuronidation and the major metabolite from rat urine has been identified as puerarin-7-O-glucuronide through semi-preparative HPLC isolation and then spectroscopic analysis. The study investigated the pharmacokinetic behavior of puerarin-7-O-glucuronide (without enzymatic hydrolysis), puerarin and daidzin when total flavonoid from Gegen was administered in normal and blood stasis animals or in blood stasis animals alone or in combination with Sanqi. The plasma samples were processed by protein precipitation with methanol, and chromatographed on a Thermo Syncronis C18 column (10cm×2.1mm, 1.7μm) by gradient elution at a flow rate of 0.25mL/min, and detected with a triple quadrupole tandem mass spectrometer by selected reaction monitoring via electrospray ionization source with positive ionization mode. An unpaired Student's t-test was used for the statistical comparison of the main pharmacokinetic parameters. There were statistically significant differences (Pdaidzin involving the AUC, CL and Vd not only between normal rats and blood stasis rats after administration of total flavonoid from Gegen, but also between administration of total flavonoid from Gegen alone and in combination with total saponin from Sanqi in blood stasis rats. The results obtained suggest that the pharmacokinetic behavior of puerarin-7-O-glucuronide, puerarin and daidzin are changed when total flavonoid from Gegen was administered in blood stasis animals or in combination with total saponin from Sanqi.

  4. A long-standing mystery solved: the formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement.

    Kazmi, Faraz; Barbara, Joanna E; Yerino, Phyllis; Parkinson, Andrew


    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating long-lasting antihistamine that is widely used for the treatment of allergic rhinitis and chronic idiopathic urticaria. For over 20 years, it has remained a mystery as to which enzymes are responsible for the formation of 3-hydroxydesloratadine, the major active human metabolite, largely due to the inability of any in vitro system tested thus far to generate this metabolite. In this study, we demonstrated that cryopreserved human hepatocytes (CHHs) form 3-hydroxydesloratadine and its corresponding O-glucuronide. CHHs catalyzed the formation of 3-hydroxydesloratadine with a Km of 1.6 μM and a Vmax of 1.3 pmol/min per million cells. Chemical inhibition of cytochrome P450 (P450) enzymes in CHHs demonstrated that gemfibrozil glucuronide (CYP2C8 inhibitor) and 1-aminobenzotriazole (general P450 inhibitor) inhibited 3-hydroxydesloratadine formation by 91% and 98%, respectively. Other inhibitors of CYP2C8 (gemfibrozil, montelukast, clopidogrel glucuronide, repaglinide, and cerivastatin) also caused extensive inhibition of 3-hydroxydesloratadine formation (73%-100%). Assessment of desloratadine, amodiaquine, and paclitaxel metabolism by a panel of individual CHHs demonstrated that CYP2C8 marker activity robustly correlated with 3-hydroxydesloratadine formation (r(2) of 0.70-0.90). Detailed mechanistic studies with sonicated or saponin-treated CHHs, human liver microsomes, and S9 fractions showed that both NADPH and UDP-glucuronic acid are required for 3-hydroxydesloratadine formation, and studies with recombinant UDP-glucuronosyltransferase (UGT) and P450 enzymes implicated the specific involvement of UGT2B10 in addition to CYP2C8. Overall, our results demonstrate for the first time that desloratadine glucuronidation by UGT2B10 followed by CYP2C8 oxidation and a deconjugation event are responsible for the formation of 3-hydroxydesloratadine. Copyright © 2015 by The American

  5. [Pneumococcal vaccines. New conjugate vaccines for adults].

    Campins Martí, Magda


    Pneumococcal infections are a significant cause of morbidity and mortality, and are one of the 10 leading causes of death worldwide. Children under 2 years have a higher incidence rate, followed by adults over 64 years. The main risk group are individuals with immunodeficiency, and those with anatomical or functional asplenia, but can also affect immunocompetent persons with certain chronic diseases. Significant progress has been made in the last 10 years in the prevention of these infections. Until a few years ago, only the 23-valent non-conjugate pneumococcal vaccine was available. Its results were controversial in terms of efficacy and effectiveness, and with serious limitations on the type of immune response induced. The current possibility of using the 13-valent conjugate vaccine in adults has led to greater expectations in improving the prevention of pneumococcal disease in these age groups. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. 78 FR 18999 - Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates...


    ...: Photosensitizing Antibody-Fluorophore Conjugates for Photoimmunotherapy AGENCY: National Institutes of Health...-01), and entitled ``Photosensitizing Antibody- Fluorophore Conjugates,'' to Aspyrian Therapeutics.... The field of use may be limited to ``use of photosensitizing antibody-fluorophore conjugate by...

  7. Preparation and characterization of microspheres of albumin-heparin conjugates

    Kwon, Glen S.; Bae, You Han; Kim, Sung Wan; Cremers, Harry; Feijen, Jan


    Albumin-heparin microspheres have been prepared as a new drug carrier. A soluble albumin-heparin conjugate was synthesized by forming amide bonds between human serum albumin and heparin. After purification the albumin-heparin conjugate was crosslinked in a water-in-oil emulsion to form albumin-hepar

  8. Comparative study of the three different fluorophore antibody conjugation strategies.

    Shrestha, Dilip; Bagosi, Adrienn; Szöllősi, János; Jenei, Attila


    The progression in bioconjugational chemistry has significantly contributed to the evolution and success of protein biology. Mainly, antibody chemistry has been a subject of intensive study owing to the expansion of research areas warranted by using various derivatives of conjugated antibodies. Three reactive moieties (amine, sulfhydryl and carbohydrate) in the antibodies are chiefly favored for the conjugational purpose. This feature is known for decades, nevertheless, amine based conjugation is still the most preferred strategy despite the appreciation the other two methods receive in conserving the antigen binding affinity (ABA). No single report has been published, according to our knowledge, where these three conjugation strategies were applied to the same fluorophore antibody systems. In this study, we evaluated conjugation yield, time demand and cost efficiency of these conjugation procedures. Our results showed that amine based conjugations was by far the best technique due to its simplicity, rapidity, ease of operation, higher conjugate yield, cheaper cost and potential for larger fluorophore/protein labeling ratio without having much effect in ABA. Furthermore, sulfhydryl labeling clearly excelled in terms of reduced non-specific binding and mild effect in ABA but was usually complicated by an asymmetric antibody reduction due to mercaptoethylamine while carbohydrate oxidation based strategy performed the worst during our experiment.

  9. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates.

    Cal, Pedro M S D; Frade, Raquel F M; Chudasama, Vijay; Cordeiro, Carlos; Caddick, Stephen; Gois, Pedro M P


    Herein we present the synthesis of fluorescent 2-acetylbenzeneboronic acids that undergo B-N promoted conjugation with lysozyme and N-(2-aminoethyl) folic acid (EDA-FA), generating conjugates that are selectively recognized and internalized by cancer cells that over-express folic acid receptors.

  10. Heat shock increases conjugation efficiency in Clostridium difficile.

    Kirk, Joseph A; Fagan, Robert P


    Clostridium difficile infection has increased in incidence and severity over the past decade, and poses a unique threat to human health. However, genetic manipulation of C. difficile remains in its infancy and the bacterium remains relatively poorly characterised. Low-efficiency conjugation is currently the only available method for transfer of plasmid DNA into C. difficile. This is practically limiting and has slowed progress in understanding this important pathogen. Conjugation efficiency varies widely between strains, with important clinically relevant strains such as R20291 being particularly refractory to plasmid transfer. Here we present an optimised conjugation method in which the recipient C. difficile is heat treated prior to conjugation. This significantly improves conjugation efficiency in all C. difficile strains tested including R20291. Conjugation efficiency was also affected by the choice of media on which conjugations were performed, with standard BHI media giving most transconjugant recovery. Using our optimised method greatly increased the ease with which the chromosome of R20291 could be precisely manipulated by homologous recombination. Our method improves on current conjugation protocols and will help speed genetic manipulation of strains otherwise difficult to work with. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.


    Shujun LIAN; Changyu WANG; Lixia CAO


    In this paper, a new region of βκ with respect to βPRPκ is given. With two Armijo-type line searches, the authors investigate the global convergence properties of the dependent PRP conjugate gradient methods, which extend the global convergence results of PRP conjugate gradient method proved by Grippo and Lucidi (1997) and Dai and Yuan (2002).

  12. Opto-electronic properties of charged conjugated molecules

    Fratiloiu, S.


    The aim of this thesis is to provide fundamental insight into the nature and opto-electronic properties of charge carriers on conjugated oligomers and polymers. Electronic structure, optical absorption properties and distribution of charge carriers along the chains of different conjugated materials

  13. Fabrication of Conjugated Polymer Nanowires by Edge Lithography

    Lipomi, Darren J.; Chiechi, Ryan C.; Dickey, Michael D.; Whitesides, George M.


    This paper describes the fabrication of conjugated polymer nanowires by a three stage process: (i) spin-coating a composite film comprising alternating layers of a conjugated polymer and a sacrificial material, (ii) embedding the film in an epoxy matrix and sectioning it with an ultramicrotome


    DAI Yuhong


    Conjugate gradient methods are very important methods for unconstrained optimization, especially for large scale problems. In this paper, we propose a new conjugate gradient method, in which the technique of nonmonotone line search is used. Under mild assumptions, we prove the global convergence of the method. Some numerical results are also presented.

  15. Prostaglandin phospholipid conjugates with unusual biophysical and cytotoxic properties

    Pedersen, Palle Jacob; Adolph, Sidsel K.; Andresen, Thomas Lars;


    The synthesis of two secretory phospholipase A(2) IIA sensitive 15-deoxy-Delta(12,14)-prostaglandin J(2) phospholipid conjugates is described and their biophysical and biological properties are reported. The conjugates spontaneously form particles in the liposome size region upon dispersion in an...

  16. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.


    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  17. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    Xu, Lai; Li, Youyong


    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  18. Design of Self-Assembling Protein-Polymer Conjugates.

    Carter, Nathan A; Geng, Xi; Grove, Tijana Z

    Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.

  19. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis.

    Chanphai, P; Froehlich, E; Mandeville, J S; Tajmir-Riahi, H A


    PAMAM dendrimers form strong protein conjugates that are used in drug delivery systems. We report the thermodynamic and binding analysis of polyamidoamine (PAMAM-G4) conjugation with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in PAMAM-protein interactions with more hydrophobic b-LG forming stronger polymer-protein conjugates. Thermodynamic parameters showed PAMAM-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der waals and H-bonding interactions prevail in HSA and BSA-polymer conjugates. The protein loading efficacy was 45-55%. PAMAM complexation induced major alterations of protein conformation. TEM images show major polymer morphological changes upon protein conjugation.

  20. Enzyme Kinetics of Norisoboldine Glucuronidation in Rat Liver Microsomes%去甲异波尔定在大鼠肝微粒体中葡萄糖醛酸化代谢动力学研究

    陈建忠; 侴桂新; 王长虹; 王峥涛


    Objective: To investigate the enzyme kinetics of norisoboldine glucuronidation in rat liver microsomes. Method: An UPLC-MS method was developed for determination of norisoboldine-9-O-α-glucuronide, a major metabolite of norisoboldine, in liver microsomes incubation system with sinomenine as internal standard. An optimum incubation system was found and the enzyme kinetics parameters of norisoboldine-9-O-α-glucuronide were analyzed and calculated with Linewearve-Burk graphic method. Result: The Km Vmax and CLin1 ( Vmax/Ka) of norisoboldine-9-O-α-glucuronide were 40. 7 μmol·L-1 , 909. 1 pmol·(min·mg pro)-1 and 22.3 μL·min-1·mg -1, respectively. Conclusion: This method is simple, specific and reliable, which is suitable for the in vitro research of norisoboldine glucuronidation.%目的:研究去甲异波尔定在大鼠肝微粒体中的葡萄糖醛酸化酶促反应动力学.方法:优化去甲异波尔定与大鼠肝微粒体的反应体系,采用超高效液相色谱-质谱联用技术定量检测孵育体系中去甲波尔定代谢产物去甲异波尔定-9-O-α-葡萄糖醛酸苷的浓度,并应用Linewearve-Burk作图分析数据,计算酶促动力学常数.结果:去甲异波尔定-9-O-α-葡萄糖醛酸苷的酶促反应动力学参数Km40.7μmol·L-1,Vmax=909.1 pmol·(min· mg pro)-1,肝清除率CLint(Vmax/Km)=22.3 μL· min-1·mg-1.结论:该方法简单、快速、可靠,适应于去甲异波尔定的葡萄糖醛酸化代谢研究;葡萄糖醛酸化是去甲异波尔定代谢的重要途径之一,提示葡萄糖醛酸转移酶的基因多态性及相关性的药物相互作用引起的去甲异波尔定活性和毒性作用的变化值得进一步关注.

  1. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.

    Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven


    Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed.

  2. Evaluation of KIMS immunoassays on a cobas c 501 analyzer for drugs of abuse and ethyl glucuronide testing in urine for forensic abstinence control.

    Neukamm, Merja A; Bahrami, Arsham; Auwärter, Volker; Mehne, Felix M P; Höss, Eva


    For the medico-psychological assessment (MPA) during driving licence re-granting in Germany, abstinence control including urine samples is required. In these programmes, even small amounts of markers for drug or alcohol abuse have to be detected. Thus, the concentrations of the target compounds are very low, and, in consequence, the sensitivity of the applied screening method has to be much higher than for clinical use. Modified drugs of abuse and ethyl glucuronide immunoassays on a Roche cobas c 501 analyzer were evaluated for precision, accuracy, onboard calibration stability, cross reactivity, sensitivity, and specificity using authentic urine samples. Precision (intra-day and inter-day relative standard deviation (RSD) and accuracy (bias) at three concentrations were 12% or lower for all parameters. The calibrations remained stable (deviations amphetamines (21 days). Satisfactory cross reactivity was determined for the relevant analytes and also for several new psychoactive substances (NPS). The sensitivity was 100% for all parameters except methadone metabolite EDDP (92%) and fully met the sensitivity criteria for MPA urine testing. The presented kinetic interaction of microparticles in a solution (KIMS) immunoassays on a cobas c 501 thus provide a new method to reliably detect drug or alcohol consumption in abstinence control programmes requiring high sensitivity. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene


    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.

    Boesch-Saadatmandi, Christine; Loboda, Agnieszka; Wagner, Anika E; Stachurska, Anna; Jozkowicz, Alicja; Dulak, Jozef; Döring, Frank; Wolffram, Siegfried; Rimbach, Gerald


    In the present study the effect of quercetin and its major metabolites quercetin-3-glucuronide (Q3G) and isorhamnetin on inflammatory gene expression was determined in murine RAW264.7 macrophages stimulated with lipopolysaccharide. Quercetin and isorhamnetin but not Q3G significantly decreased mRNA and protein levels of tumor necrosis factor alpha. Furthermore a significant decrease in mRNA levels of interleukin 1β, interleukin 6, macrophage inflammatory protein 1α and inducible nitric oxide synthase was evident in response to the quercetin treatment. However Q3G did not affect inflammatory gene expression. Anti-inflammatory properties of quercetin and isorhamnetin were accompanied by an increase in heme oxygenase 1 protein levels, a downstream target of the transcription factor Nrf2, known to antagonize chronic inflammation. Furthermore, proinflammatory microRNA-155 was down-regulated by quercetin and isorhamnetin but not by Q3G. Finally, anti-inflammatory properties of quercetin were confirmed in vivo in mice fed quercetin-enriched diets (0.1 mg quercetin/g diet) over 6 weeks.

  5. Isorhamnetin-3-O-Glucuronide Suppresses JNK and p38 Activation and Increases Heme-Oxygenase-1 in Lipopolysaccharide-Challenged RAW264.7 Cells.

    Park, Jin-Young; Kim, Song-In; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo; Chun, Wanjoo


    Preclinical Research Isorhanmetin (ISH) exhibits a wide range of biological properties including anticancer, anti-oxidant and anti-inflammatory activities. However, the pharmacological properties of isorhamnetin-3-O-glucuronide (IG), a glycoside derivative of ISH, have not been extensively examined. The objective of this study was to examine the anti-inflammatory properties of IG and its underlying mechanism in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells in comparison with its aglycone, ISH. IG suppressed LPS-induced extracellular secretion of the proinflammatory mediators, nitric oxide (NO) and PGE2 , and proinflammatory protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2. IG also increased expression of heme oxygenase-1 (HO-1). IG attenuated LPS-induced activation of c-Jun N-terminal kinase (JNK) and p38 in a concentration-dependent manner with negligible suppression of extracellular signal-regulated kinases (ERK) phosphorylation. In conclusion, this study demonstrates that IG exerts anti-inflammatory activity by increasing HO-1 expression and by suppressing JNK and p38 signaling pathways in LPS-challenged RAW264.7 macrophage cells. Drug Dev Res 77 : 143-151, 2016. © 2016 Wiley Periodicals, Inc.

  6. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.


    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and th

  7. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María


    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  8. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C


    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were......-green emission and the zinc-porphyrin linked homopolymers emit near-infrared/infrared light. This was demonstrated to be due to electroluminescence pumping of the zinc-porphyrin moieties that were covalently linked to homopolymer material. When only one zinc-porphyrin dye was incorporated into the backbone...

  9. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen


    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  10. Charge Injection and Transport in Conjugated Polymers.

    Malliaras, George


    We will overview the state-of-the-art in our understanding of charge injection and transport in conjugated polymers. We start by discussing the identifying characteristics of this class of materials, especially in relation with their structure and morphology. We follow by reviewing the advantages and limitations of experimental techniques that are used to probe charge transport. We then embark on a discussion of the fundamentals of charge transport in organics. We follow a didactic approach, where we start from transport in crystalline semiconductors and gradually introduce corrections for space charge effects, for the influence of disorder on mobility, for high charge densities, and for electric field-dependent charge densities. We compare with experimental data from polyfluorenes. We then shift our attention to charge injection. We review some of the recent theories and compared their predictions to experimental data, again from polyfluorenes. We close by proposing directions for future work.

  11. Monotone operators and "bigger conjugate" functions

    Bauschke, Heinz H; Wang, Xianfu; Yao, Liangjin


    We study a question posed by Stephen Simons in his 2008 monograph involving "bigger conjugate" (BC) functions and the partial infimal convolution. As Simons demonstrated in his monograph, these function have been crucial to the understanding and advancement of the state-of-the-art of harder problems in monotone operator theory, especially the sum problem. In this paper, we provide some tools for further analysis of BC--functions which allow us to answer Simons' problem in the negative. We are also able to refute a similar but much harder conjecture which would have generalized a classical result of Br\\'ezis, Crandall and Pazy. Our work also reinforces the importance of understanding unbounded skew linear relations to construct monotone operators with unexpected properties.

  12. Conjugated Linoleic Acid and Importance to Health

    Canan Asal Ulus


    Full Text Available The development in science  technology and the researches made in the health field showed that nutrition increases the effectiveness of medical treatment as well as maintaining the human health and singularly effective in the treatment of certain diseases. In recent years, the importance of nutritional elements called ‘Functional foods’ has increased. Functional foods provide physiological benefits and can reduce the risk of chronic diseases beyond their nutritional benefits. One of these functional compounds is conjugated linoleic acid (CLA isomers which have significant effects on human health and previously have been demonstrated in the researches carried out on people and animals. CLA’s attracted more attention after detection of its body fat accumulation reducing, antidiabetic, immune system enhancing, arteriosclerosis reducing, bone mineralization increasing effects.

  13. Identification of excited states in conjugated polymers

    Hartwell, L J


    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  14. Spiropyran main-chain conjugated polymers.

    Sommer, Michael; Komber, Hartmut


    The first main-chain conjugated copolymers based on alternating spiropyran (SP) and 9,9-dioctylfluorene (F8) units synthesized via Suzuki polycondensation (SPC) are presented. The reaction conditions of SPC are optimized to obtain materials of type P(para-SP-F8) with appreciably high molecular weights up to M(w) ≈ 100 kg mol(-1). (13)C NMR is used to identify the random orientation of the non-symmetric SP unit in P(p-SP-F8). Ultrasound-induced isomerization of P(p-SP-F8) to the corresponding merocyanine form P(p-MC-F8) yields a deep-red solution. This isomerization reaction is followed by (1)H NMR in solution using sonication, whereby the color increasingly changes to deep red. The possibility to incorporate multiple SP units into main-chain polymers significantly broadens existing SP-based polymeric architectures.

  15. Nonlinear optical response in doped conjugated polymers

    Harigaya, K


    Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.

  16. Conjugated Linoleic Acid (CLA-An Overview

    D J Crumb


    Full Text Available Summary: Conjugated linoleic acid (CLA is a group of octadecadienoic acids that are naturally present in the highest concentrations in foods originating in ruminant animals, and dairy products such as milk. Especially large numbers of CLA polymers have been detected in beef, lamb and milk fat. Results from many in vitro and animal studies, though conflicting, have suggested that CLA supplementation may have beneficial effect on obesity, weight management, cancer, diabetes and atherosclerosis. This article provides a brief overview on the functionality, safety and toxicity of CLA as described in literature. .   Industrial Relevance: CLA is a functional food and dietary supplement ingredient with potential benefits against a number of metabolic chronic diseases. However, the mechanism of action and its toxicological effects are not very well understood. These factors may play an important role in the effectiveness as CLA as a viable functional dietary bioactive compound.

  17. Quercetin Glucuronides but Not Glucosides Are Present in Human Plasma after Consumption of Quercetin-3-Glucoside or Quercetin-4'-Glucoside 1)

    Sesink, A.L.A.; O'Leary, K.A.; Hollman, P.C.H.


    The nature of quercetin conjugates present in blood after consumption of quercetin glucosides is still unclear. In this study, we analyzed plasma of volunteers that had consumed 325 ?mol of either quercetin-3-glucoside or quercetin-4'-glucoside as an oral solution. Quercetin metabolites were extract

  18. Coexistence of Self-pumped Phase Conjugation and Mutual-pumped Phase Conjugation in Ce∶BaTiO3

    SHE Weilong; Lee Wing-Kee


    Self-pumped phase conjugation(SPPC) and mutual-pumped phase conjugation (MPPC) have been found to coexist in Ce∶BaTiO3 by using two coherent beams of 514.5nm wavelength from an argon ion laser. Both phase conjugations are of the stimulated backscattering and four-wave mixing type. For 7/6 incident power ratio and 26 mW total incident power,he shortest phase conjugate mirror formation time is 10s . Phase conjugate reflectivity of one the beams can reach 70%,hich is ~20% higher than the SPPC reflectivity using only one beam. When the total incident power is increased to 40 mW and the incident power ratio remains constant,a maximum phase conjugatate reflectivity of as much as 88% is obtained.

  19. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging

    Atif Zaheer


    Full Text Available The detection of human malignancies by near-infrared (NIR fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic, we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.

  20. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C


    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  1. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Titanova, Elena O.; Burygin, Gennady L.


    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  2. Conjugation vs hyperconjugation in molecular structure of acrolein

    Shishkina, Svitlana V.; Slabko, Anzhelika I.; Shishkin, Oleg V.


    Analysis of geometric parameters of butadiene and acrolein reveals the contradiction between the Csp2-Csp2 bond length in acrolein and classical concept of conjugation degree in the polarized molecules. In this Letter the reasons of this contradiction have been investigated. It is concluded that the Csp2-Csp2 bond length in acrolein is determined by influence of the bonding for it π-π conjugation and antibonding n → σ∗ hyperconjugation between the oxygen lone pair and the antibonding orbital of the single bond. It was shown also this bond length depends on the difference in energy of conjugative and hyperconjugative interactions.


    Schanze, Kirk S [University of Florida


    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  4. Vibrational spectroscopy of microhydrated conjugate base anions.

    Asmis, Knut R; Neumark, Daniel M


    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water

  5. Conjugated organometallic materials containing tungsten centers

    Jones, Marya

    Our group is interested in the optical and electronic properties of organometallic analogues of conjugated organic compounds. Specifically, in this thesis we will discuss the properties of complexes in which W≡C moieties replace C≡C fragments within the framework of oligo(phenyleneethynylenes) and a C4-polyyne. A family of derivatives of the type Ph(C≡CC6H4 )m(L)4W≡C(C6H 4C≡C)nPh (m = 0, 1; n = 0, 1, 2) have been prepared and characterized by X-ray crystallography, electronic-absorption spectroscopy, and electrochemistry. This substitution has allowed us to directly compare the electronic and optical properties of these organometallic complexes with those of their organic analogues. We found that while these systems exhibit redox and spectroscopic properties similar to those of their organic counterparts they also exhibit new characteristics that are due to the incorporation of the metal center. The design of these compounds has also allowed us to address how the position of the metal within the backbone affects the electronic and optical properties of these compounds. We found that the position of the metal is important in controlling the electronic structure of the material, thus suggesting that the properties of these compounds can be further tuned by changing the position of the metal within the conjugated carbon chain. In addition, we have appended sulfur and isocyanide functionalities to oligo(phenyleneethynylene) analogues. A family of compounds of the type Cl(dppe) 2W(≡CC6H4-4-(C≡CC6H 4)m-4'-R) (m = l, 2; R = N≡C, SCH2CH 2Si(CH3)3) have been prepared and characterized by electronic-absorption spectroscopy and electrochemistry. Differences between the sulfur and isocyanide functionalities are examined, along with the effects of extending conjugation along the arylidyne chain. Evidence that the sulfur-containing arylidyne complexes form self-assembled monolayers on Au and Pt electrodes is presented. In addition, the electron-transfer rates for

  6. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac.

    den Braver, Michiel W; Vermeulen, Nico P E; Commandeur, Jan N M


    Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although (1)H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with (1)H NMR, but with a more than 100-fold lower detection limit for absolute quantification. Copyright © 2017. Published by Elsevier B.V.

  7. Inhibitory Effects of Conjugated Epicatechin Metabolites on Peroxynitrite-mediated Nitrotyrosine Formation.

    Natsume, Midori; Osakabe, Naomi; Yasuda, Akiko; Osawa, Toshihiko; Terao, Junji


    Previously, we identified four metabolites of (-)-epicatechin in blood and urine: (-)-epicatechin-3'-O-glucuronide (E3'G), 4'-O-methyl-(-)-epicatechin-3'-O-glucuronide (4'ME3'G), (-)-epicatechin-7-O-glucuronide (E7G), and 3'-O-methyl-(-)-epicatechin-7-O-glucuronide (3'ME7G) (Natsume et al. Free Radical Biol. Med. 34, 840-849, 2003). The aim of the current study was to compare the antioxidative activities of these metabolites with that of their parent compound. After oral administration of (-)-epicatechin, E3'G and 4'ME3'G were isolated from human urine, and E7G and 3'ME7G isolated from rat urine. We found that these compounds inhibited peroxynitrite-mediated tyrosine nitration, in the following order of potency: E3'G > (-)-epicatechin > E7G = 3'ME7G. = 4'ME3'G. These results demonstrate that the metabolites of (-)-epicatechin retain antioxidative activity on peroxynitrite-induced oxidative damages to some extent.

  8. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet

    Satheeshababu, B. K.; Mohamed, I.


    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charrin...

  9. An improved chemo-enzymatic synthesis of 1-beta-O-acyl glucuronides: highly chemoselective enzymatic removal of protecting groups from corresponding methyl acetyl derivatives.

    Baba, Akiko; Yoshioka, Tadao


    An improved and widely applicable chemo-enzymatic method for the synthesis of a series of 1-beta-O-acyl glucuronides 5a-f has been developed from the corresponding methyl acetyl derivatives 3a-f, which were stereospecifically synthesized from cesium salts of carboxylic acids 1a-f and methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-alpha-D-glucopyranuronate (2). Chemoselectivity of lipase AS Amano (LAS) in the hydrolytic removal of O-acetyl groups of 3a-f to provide methyl esters 4a-f was influenced by the nature of their 1-beta-O-acyl groups; high selectivity was evident only for 3b and 3f. Carboxylesterase from Streptomyces rochei (CSR), newly screened as an alternative to LAS, showed much greater chemoselectivity toward the O-acetyl groups than LAS; 3a, 3d, and 3e were chemoselectively hydrolyzed only by CSR. The combination of CSR with LAS yielded better results in the hydrolysis of 3c and 3f than did single usage of CSR. Final deprotection of the methyl ester groups of 4a-f to provide 5a-f was chemoselectively achieved by using lipase from Candida antarctica type B (CAL-B) as well as esterase from porcine liver (PLE), although CAL-B possessed higher chemoselectivity and catalytic efficiency than did PLE. CSR also exhibited high chemoselectivity in the synthesis of (S)-naproxen 1-beta-O-acyl glucopyranoside (7) from its 2,3,4,6-tetra-O-acetyl derivative 6.

  10. Metabolite Kinetics: The Segregated Flow Model for Intestinal and Whole Body Physiologically Based Pharmacokinetic Modeling to Describe Intestinal and Hepatic Glucuronidation of Morphine in Rats In Vivo.

    Yang, Qi Joy; Fan, Jianghong; Chen, Shu; Liu, Lutan; Sun, Huadong; Pang, K Sandy


    We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3β-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter- and enzyme-rich enterocyte region, whereas the TM describes 100% flow perfusing the intestine as a whole. For the SFM, drugs entering from the circulation are expected to be metabolized to lesser extents by the intestine due to the segregated flow, reflecting the phenomenon of shunting and route-dependent intestinal metabolism. The poor permeability of MG crossing the liver or intestinal basolateral membranes mandates that most of MG that is excreted into bile is hepatically formed, whereas MG that is excreted into urine originates from both intestine and liver metabolism, since MG is effluxed back to blood. The ratio of MG amounts in urine/bile [Formula: see text] for intraduodenal/intravenous dosing is expected to exceed unity for the SFM but approximates unity for the TM. Compartmental analysis of morphine and MG data, without consideration of the permeability of MG and where MG is formed, suggests the ratio to be 1 and failed to describe the kinetics of MG. The observed intraduodenal/intravenous ratio of [Formula: see text] (2.55 at 4 hours) was better predicted by the SFM-PBPK (2.59 at 4 hours) and not the TM-PBPK (1.0), supporting the view that the SFM is superior for the description of intestinal-liver metabolism of morphine to MG. The SFM-PBPK model predicts an appreciable contribution of the intestine to first pass M metabolism.

  11. A High-Performance Liquid Chromatographic–Tandem Mass Spectrometric Method for the Determination of Ethyl Glucuronide and Ethyl Sulfate in Urine Validated According to Forensic Guidelines

    Albermann, M.E.; Musshoff, F.; Madea, B.


    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are powerful markers for alcohol intake and abuse. Several analytical procedures for the quantification of EtG and EtG in serum and urine have been developed so far. Many of the published methods show limits of detections (LODs) or limits of quantifications (LOQs) for EtG in urine within the range of 0.1 mg/L or higher. Since this is the actual cutoff value for proving abstinence in Germany, problems may occur if urine samples are highly diluted. In this paper, the validation of a highly sensitive, fast and simple LC–MS–MS for the determination of EtG and EtS in urine is described. The calibration curves for EtG and EtS is linear over the whole range (0.025–2.0 mg/L). Very low detection limits can be achieved (LOD: EtG 0.005 mg/L, EtS 0.005 mg/L; and LOQ: EtG 0.019 mg/L, EtS 0.015 mg/L). All data for selectivity, precision and accuracy, recovery, as well as for the processed sample and the freeze/thaw stability, comply with the guidelines of the German Society of Toxicological and Forensic Chemistry. Strong matrix-related effects can be compensated for by using an internal standard. Finally, the applicability of the procedure is proven by analysis of 87 human urine samples and by successful participation in interlaboratory comparison tests. PMID:22291056

  12. Uridine diphosphate glucuronide transferase 1A1FNx0128 gene polymorphism and the toxicity of irinotecan in recurrent and refractory small cell lung cancer

    Fan Yun


    Full Text Available Objective: The aim was to investigate the association between uridine diphosphate glucuronide transferase 1A1 (UGT1A1 gene promoter region polymorphism and irinotecan-related adverse effects and efficacy on recurrent and refractory small cell lung cancer (SCLC. Materials and Methods: A total of 31 patients with recurrent and refractory SCLC were enrolled in this study from June 2012 to August 2013 and received at least two cycles of single-agent irinotecan chemotherapy. The efficacy and adverse effects of irinotecan were evaluated. DNA was extracted from peripheral blood and direct sequencing method was employed to test UGT1A1FNx0128 polymorphism, thus analyzing the correlation between UGT1A1FNx0128 polymorphism and irinotecan-related side-effects and efficacy. Results: A total of 25 cases (80.6% were UGT1A1FNx0128 wild-type (TA 6 /(TA 6 ; 6 cases (19.4% were heterozygous mutant (TA 6 /(TA 7 , no homozygous mutant genotype (TA 7 /(TA 7 was found. The incidences of grade 3/4 neutropenia, diarrhea and thrombocytopenia were 35.5%, 25.8% and 22.6% in all the patients, respectively. The incidence of 3/4 adverse effects in patients with genotype (TA 6 /(TA 6 and heterozygous (TA 6 /(TA 7 had no statistical difference (P > 0.05 for all. The overall response rate (ORR was 32.3%. Median progression free survival (PFS and overall survival (OS were 4 months and 7.5 months in all patients, respectively. There was no statistical difference in ORR, PFS and OS between genotype (TA 6 /(TA 6 patients and heterozygous (TA 6 /(TA 7 patients. Conclusion: Irinotecan showed efficacy in patients with recurrent and refractory SCLC; UGT1A1 FNx01 28 polymorphism failed to predict the incidence of serious adverse effects and efficacy of irinotecan.

  13. Membrane filter method based on FC-5-bromo-4-chloro-3-indolyl-beta-D-glucuronide medium facilitates enumeration of Escherichia coli in foods and poultry carcass rinses.

    Sharpe, A N; Parrington, L J


    Three enumeration methods for Escherichia coli in foods, the Health Protection Branch most-probable-number (MPN) method MFHPB-19, a hydrophobic grid membrane filter method MFHPB-26 (HGMF-indole), and a hydrophobic grid membrane filter method utilizing 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide in a (modified) mFC agar (HGMF-FC-BCIG) were compared in 80 food samples that included naturally and artificially contaminated raw vegetables, mung bean and alfalfa sprouts, raw meats, and chicken carcass rinses. The number of samples confirmed as positive for E. coli were 44, 36, and 42 for the MPN, HGMF-indole, and HGMF-BCIG methods, respectively. By the MPN method, E. coli was detected in 3 samples at levels below the limits of detection of the HGMFs; but the MPN method was very time-consuming. With the HGMF-indole procedure E. coli was missed in 4 artificially contaminated samples. With the HGMF-FC-BCIG method E. coli was enumerated in 1 sample of bean sprouts missed by both the MPN and HGMF-indole procedures. High levels of indole-positive Klebsiella spp. in bean sprouts interfered with the HGMF-indole method, but the blue colonies of E. coli were easily observed in the HGMF-FC-BCIG method. Specificity of the HGMF-FC-BCIG method is high enough that routine confirmation should be unnecessary; however, confirmation of presumptive E. coli is easier since no lethal indole-staining step is involved. It appears to be a very simple method for quantifying E. coli in foods or carcass rinses.

  14. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets.

    Barosso, Ismael R; Zucchetti, Andrés E; Miszczuk, Gisel S; Boaglio, Andrea C; Taborda, Diego R; Roma, Marcelo G; Crocenzi, Fernando A; Sánchez Pozzi, Enrique J


    Estradiol-17β-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.

  15. Enhanced production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by fed-batch fermentation using pH and dissolved oxygen as feedback parameters☆

    Bo Lü; Xiaogang Yang; Xudong Feng; Chun Li


    Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicil ium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32 °C, agitation speed 100 r·min−1), 3.55 g·L−1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 ml 90 g·L−1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production:the achieved GL conversion was 95.34%with GAMG yield of 95.15%, and GAMG concentration was 16.62 g·L−1 which was 5 times higher than that of batch. Then, a two-step separation strat-egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D101 resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.

  16. Matrix summability of the conjugate deries of derived Fourier series

    Shyam Lal


    Full Text Available In this paper, a new theorem on matrix summability of the conjugate series of a derived Fourier series is proved, which improves and generalizes all the previous known results in this line of work.

  17. Phase conjugation of gap solitons: A numerical study

    V S C Manga Rao; S Dutta Gupta


    We study the effect of a nearby phase-conjugate mirror (PCM) on the gap soliton of a Kerr non-linear periodic structure. We show that phase conjugation of the gap soliton (in the sense of replication of the amplitude profile in the reverse direction) is possible under the condition of PCM reflectivity approaching unity. This is in contrast with the results for linear structures, where the wave profiles can be conjugated for arbitrary values of the PCM reflectivity. The sensitivity of the conjugation of the gap solitons to PCM reflectivity is ascribed to the fine balance of non-linearity with dispersion, necessary for their existence.

  18. Conjugate heat transfer with the entropic lattice Boltzmann method.

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V


    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  19. BSA-boronic acid conjugate as lectin mimetics.

    Narla, Satya Nandana; Pinnamaneni, Poornima; Nie, Huan; Li, Yu; Sun, Xue-Long


    We report bovine serum albumin (BSA)-boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA-BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS-PAGE gel. The BSA-BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA-BA conjugates was conducted by immobilizing BSA-BA onto SPR gold chip. Overall, we demonstrated a BSA-BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.

  20. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun


    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  1. Synthesis and characterization of polyamidoamine conjugates of neridronic acid

    Aderibigbe, BA


    Full Text Available of water and it was performed at room temperature thereby making the reaction environmentally friendly and economically viable. These conjugates are potential prodrugs and they were characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier...

  2. Plasmid Conjugation in E. coli and Drug Resistance

    Prof. Ogunji

    respiratory infections etc) or prescribing the 'newest' antibiotics in the market when older “brands” may ..... influence an increase in mortality rate; high economic burden and longer hospital ... Conjugating plasmids into bacteria; Tri Parental.

  3. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents

    Ramalingam Peraman


    Full Text Available Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, 1HNMR, 13C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H37Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  4. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents.

    Peraman, Ramalingam; Kuppusamy, Rajendran; Killi, Sunil Kumar; Reddy, Y Padmanabha


    Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, (1)HNMR, (13)C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H 37 Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC) of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  5. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang


    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  6. Preparation of Conjugated Linoleic Acid and Identification of Its Isomers

    郭诤; 张根旺; 孙彦


    Conjugated linoleic acid(CLA)is a kind of fatty acid with physiological activities and potential appli-cation prospect ,A synthesis method of conjugated linoleic acid and a purification technology were studied .CLA was prepared and purified by urea-complexation and conjugation using safflower oil as raw material,The purity of CLA and total recovery of the product was more than 95% and 48%,respectively,The main isomers produced in alkali-catalyzed conjugation were identified by gas chromatography (GC)linked to mass spectrometry(MS) and Fourier transform infrared spectroscopy(FTIR),The total amount of the two main isomers (9cis,11trans-and 10trans,12cis-CLA) determined by GC was more than 90% of the product.

  7. Band-structure engineering in conjugated 2D polymers.

    Gutzler, Rico


    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  8. "Angle" Operator Conjugate to Photon's Intrinsic Angular Momentum



    We find the correct "angle" operator conjugate to the intrinsic angular momentum of the photon by introducing a suitable representation which involves both left-handed and right-handed polarization photon operators.

  9. Partial Hermitian Conjugate Separability Criteria for Pure Quantum States

    ZHAO Xin; WU Hua; LI Yan-Song; LONG Gui-Lu


    We propose a criterion for the separability of quantum pure states using the concept of a partial Hermitian conjugate.It is equivalent to the usual positive partial transposition criteria,with a simple physical interpretation.

  10. Polylactide conjugates of camptothecin with different drug release abilities.

    Oledzka, Ewa; Horeglad, Paweł; Gruszczyńska, Zuzanna; Plichta, Andrzej; Nałęcz-Jawecki, Grzegorz; Sobczak, Marcin


    Camptothecin-polylactide conjugates (CMPT-PLA) were synthesized by covalent incorporation of CMPT into PLA of different microstructure, i.e., atactic PLA and atactic-block-isotactically enriched PLA (Pm = 0.79) via urethane bonds. The kinetic release of CPMT from CMPT-PLA conjugates, tested in vitro under different conditions, is possible in both cases and notably, strongly dependent on PLA microstructure. It shows that release properties of drug-PLA conjugates can be tailored by controlled design of the PLA microstructure, and allow in the case of CMPT-PLA conjugates for the development of highly controlled biodegradable CMPT systems-important delivery systems for anti-cancer agents.

  11. Polylactide Conjugates of Camptothecin with Different Drug Release Abilities

    Ewa Oledzka


    Full Text Available Camptothecin-polylactide conjugates (CMPT-PLA were synthesized by covalent incorporation of CMPT into PLA of different microstructure, i.e., atactic PLA and atactic-block-isotactically enriched PLA (Pm = 0.79 via urethane bonds. The kinetic release of CPMT from CMPT-PLA conjugates, tested in vitro under different conditions, is possible in both cases and notably, strongly dependent on PLA microstructure. It shows that release properties of drug-PLA conjugates can be tailored by controlled design of the PLA microstructure, and allow in the case of CMPT-PLA conjugates for the development of highly controlled biodegradable CMPT systems—important delivery systems for anti-cancer agents.

  12. A Restarted Conjugate Gradient Method for Ill-posed Problems

    Yan-fei Wang


    This paper presents a restarted conjugate gradient iterative algorithm for solving ill-posed problems.The damped Morozov's discrepancy principle is used as a stopping rule. Numerical experiments are given to illustrate the efficiency of the method.

  13. Charge Transport in Conjugated Block Copolymers

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  14. DNA Interaction Studies of Selected Polyamine Conjugates

    Marta Szumilak


    Full Text Available The interaction of polyamine conjugates with DNA double helix has been studied. Binding properties were examined by ethidium bromide (EtBr displacement and DNA unwinding/topoisomerase I/II (Topo I/II activity assays, as well as dsDNA thermal stability studies and circular dichroism spectroscopy. Genotoxicity of the compounds was estimated by a comet assay. It has been shown that only compound 2a can interact with dsDNA via an intercalative binding mode as it displaced EtBr from the dsDNA-dye complex, with Kapp = 4.26 × 106 M−1; caused an increase in melting temperature; changed the circular dichroism spectrum of dsDNA; converted relaxed plasmid DNA into a supercoiled molecule in the presence of Topo I and reduced the amount of short oligonucleotide fragments in the comet tail. Furthermore, preliminary theoretical study has shown that interaction of the discussed compounds with dsDNA depends on molecule linker length and charge distribution over terminal aromatic chromophores.

  15. Microfluidic Fabrication of Conjugated Polymer Sensor Fibers

    Yoo, Imsung; Song, Simon [Hanyang University, Seoul (Korea, Republic of)


    We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

  16. Stellar photometry with Multi Conjugate Adaptive Optics

    Fiorentino, Giuliana; McConnachie, Alan; Stetson, Peter B; Bono, Giuseppe; Turri, Paolo; Andersen, David; Veran, Jean-Pierre; Diolaiti, Emiliano; Schreiber, Laura; Ciliegi, Paolo; Bellazzini, Michele; Tolstoy, Eline; Monelli, Matteo; Iannicola, Giacinto; Ferraro, Ivan; Testa, Vincenzo


    We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar population studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the ?eld of view. Finally, we outl...

  17. DNA Interaction Studies of Selected Polyamine Conjugates

    Szumilak, Marta; Merecz, Anna; Strek, Malgorzata; Stanczak, Andrzej; Inglot, Tadeusz W.; Karwowski, Boleslaw T.


    The interaction of polyamine conjugates with DNA double helix has been studied. Binding properties were examined by ethidium bromide (EtBr) displacement and DNA unwinding/topoisomerase I/II (Topo I/II) activity assays, as well as dsDNA thermal stability studies and circular dichroism spectroscopy. Genotoxicity of the compounds was estimated by a comet assay. It has been shown that only compound 2a can interact with dsDNA via an intercalative binding mode as it displaced EtBr from the dsDNA-dye complex, with Kapp = 4.26 × 106 M−1; caused an increase in melting temperature; changed the circular dichroism spectrum of dsDNA; converted relaxed plasmid DNA into a supercoiled molecule in the presence of Topo I and reduced the amount of short oligonucleotide fragments in the comet tail. Furthermore, preliminary theoretical study has shown that interaction of the discussed compounds with dsDNA depends on molecule linker length and charge distribution over terminal aromatic chromophores. PMID:27657041

  18. Aptamer conjugated magnetic nanoparticles as nanosurgeons

    Nair, Baiju G.; Nagaoka, Yutaka; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.


    Magnetic nanoparticles have shown promise in the fields of targeted drug delivery, hyperthermia and magnetic resonance imaging (MRI) in cancer therapy. The ability of magnetic nanoparticles to undergo surface modification and the effect of external magnetic field in the dynamics of their movement make them an excellent nanoplatform for cancer destruction. Surgical removal of cancerous or unwanted cells selectively from the interior of an organ or tissue without any collateral damage is a serious problem due to the highly infiltrative nature of cancer. To address this problem in surgery, we have developed a nanosurgeon for the selective removal of target cells using aptamer conjugated magnetic nanoparticles controlled by an externally applied three-dimensional rotational magnetic field. With the help of the nanosurgeon, we were able to perform surgical actions on target cells in in vitro studies. LDH and intracellular calcium release assay confirmed the death of cancer cells due to the action of the nanosurgeon which in turn nullifies the possibility of proliferation by the removed cells. The nanosurgeon will be a useful tool in the medical field for selective surgery and cell manipulation studies. Additionally, this system could be upgraded for the selective removal of complex cancers from diverse tissues by incorporating various target specific ligands on magnetic nanoparticles.

  19. Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors.

    Kamal, Ahmed; Shaik, Anver Basha; Polepalli, Sowjanya; Kumar, G Bharath; Reddy, Vangala Santhosh; Mahesh, Rasala; Garimella, Srujana; Jain, Nishant


    In an attempt to develop potent and selective anticancer agents, a series of twenty arylpyrazole linked benzimidazole conjugates (10a-t) were designed and synthesized as microtubule destabilizing agents. The joining of arylpyrazole to the benzimidazole moiety resulted in a four ring (A, B, C and D) molecular scaffold that comprises of polar heterocyclic rings in the middle associated with rotatable single bonds and substituted aryl rings placed in the opposite directions. These conjugates were evaluated for their ability to inhibit the growth of sixty cancer cell line panel of the NCI. Among these some conjugates like 10a, 10b, 10d, 10e, 10p and 10r exhibited significant growth inhibitory activity against most of the cell lines ranging from 0.3 to 13μM. Interestingly, the conjugate 10b with methoxy group on D-ring expressed appreciable cytotoxic potential. A549 cells treated with some of the potent conjugates like 10a, 10b and 10d arrested cells at G2/M phase apart from activating cyclin-B1 protein levels and disrupting microtubule network. Moreover, these conjugates effectively inhibited tubulin polymerization with IC50 values of 1.3-3.8μM. Whereas, the caspase assay revealed that they activate the casepase-3 leading to apoptosis. Particularly 10b having methoxy substituent induced activity almost 3 folds higher than CA-4. Furthermore, a competitive colchicine binding assay and molecular modeling analysis suggests that these conjugates bind to the tubulin successfully at the colchicine binding site. These investigations reveal that such conjugates having pyrazole and benzimidazole moieties have the potential in the development of newer chemotherapeutic agents.

  20. Cross-conjugation and quantum interference: a general correlation?

    Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels


    We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...... interference occurs can be tuned by the choice of side group. The latter provides an outlook for future devices in this fascinating field connecting chemistry and physics....


    Yu-hong Dai; Ya-xiang Yuan


    The conjugate gradient method for unconstrained optimization problems varies with a scalar. In this note, a general condition concerning the scalar is given, which ensures the global convergence of the method in the case of strong Wolfe line searches. It is also discussed how to use the result to obtain the convergence of the famous Fletcher-Reeves, and Polak-Ribiere-Polyak conjugate gradient methods. That the condition cannot be relaxed in some sense is mentioned.

  2. Solid State NMR and Fluorescence Studies of Conjugated Polymer Nanocomposties

    Chao Jun JING; Liu Sheng CHEN; Yi SHI; Xi Gao JIN


    13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements have been investigated. The T1 values of the conjugated carbons decrease dramatically according to the reduction of polymer concentration in the nano composites, while the fluorescence life times (τ) show a linear prolonging tendency. The results are explained from the point of view of molecular dynamics.

  3. Various methods of gold nanoparticles (GNPs conjugation to antibodies

    Mir Hadi Jazayeri


    These applications require an increasingly complex level of surface decoration in order to achieve efficacy, and limit off-target toxicity. This review will discuss the chemical and physical approaches commonly utilized in relation to surface decoration and the powerful system used to indicate success of the conjugation. Finally, we review the range of recent studies about covalent and noncovalent modes for conjugation of antibodies to the particle surface that aim to advance gold nanoparticle treatments and diagnostics toward the clinic.

  4. Conjugate Representations and Characterizing Escort Expectations in Information Geometry

    Tatsuaki Wada


    Full Text Available Based on the maximum entropy (MaxEnt principle for a generalized entropy functional and the conjugate representations introduced by Zhang, we have reformulated the method of information geometry. For a set of conjugate representations, the associated escort expectation is naturally introduced and characterized by the generalized score function which has zero-escort expectation. Furthermore, we show that the escort expectation induces a conformal divergence.

  5. Conjugate priors for generalized MaxEnt families

    van Rooyen, Brendan; Reid, Mark D.


    Bayes theorem can be seen as the result of an optimization problem. By slightly altering this optimization problem many generalized Bayes rules can be constructed. In this work we show that a notion of a conjugate prior for non exponential family distributions can be recovered if one uses one of these generalized rules. We prove some theorems concerning this new updating rule before giving a simple example of such a generalized conjugate prior.

  6. Synthesis of Conjugated Polymers for Light Emitting and Photovoltalc Applications


    1 Results The initial report of polymeric light-emitting diodes (PLEDs) based on poly(p-phenylenevinylene) gave birth to an intense research effort in conjugated polymers, primarily focused on the development of optoelectronic and electrochemical devices. Significant developments in modern synthetic chemistry, especially the chemistry of carbon-carbon bond formation have allowed the synthesis of various well-defined conjugated polymers and oligomers with optimized physical properties.Meanwhile, these re...

  7. Chimeric Antisense Oligonucleotide Conjugated to α-Tocopherol

    Tomoko Nishina


    Full Text Available We developed an efficient system for delivering short interfering RNA (siRNA to the liver by using α-tocopherol conjugation. The α-tocopherol–conjugated siRNA was effective and safe for RNA interference–mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid-DNA gapmer antisense oligonucleotide (ASO was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5′-end of the ASO sequence by using 5′-α-tocopherol–conjugated 4- to 7-mers of unlocked nucleic acid (UNA as a “second wing.” Intravenous injection of mice with this α-tocopherol–conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol–conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS molecules are bound to ASO with UNA sequences.

  8. O:2-CRM(197) conjugates against Salmonella Paratyphi A.

    Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B


    Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  9. Degree of approximation of conjugate of Lip $ \\alpha$ class function by $ {K^\\lambda}$-summability means of conjugate series of a Fourier series

    Shyam Lal


    Full Text Available In this paper the degree of approximation of conjugate of a function belonging to Lip $ \\alpha$ class by $ K^\\lambda$-summability means of conjugate series of its Fourier series has been determined.

  10. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    FENG ZeWang; ZHAO XinQi; BI Hua


    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  11. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid


    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  12. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet.

    Satheeshababu, B K; Mohamed, I


    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h.

  13. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    Alan Perkins


    Full Text Available The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C595 (IgG3 which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radioimmunoconjugates of the C595 antibody have been produced with high radiolabelling efficiency and immunoreactivity using Tc-99m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun.A administração de anticorpos conjugados para o tratamento do câncer está agora provando ser de valor clínico. Nós estamos atualmente realizando um programa de estudos clínicos usando o anticorpo monoclonal C595 (IgG3 que reage com a glicoproteína MUC1 que está aberrantemente expressa numa alta proporção de tumores de bexiga. Tem sido produzidos radioimunoconjugados do anticorpo C595, com alta eficiência de radiomarcação e a imunoreatividade, usando-se o Tc-99m e In-111, para o diagnóstico por imagem e estagiamento de doenças. Tem sido produzidos, também, radionuclídeos citotóxicos (Cu-67 e Re-188 para o tratamento de cânceres superficiais de bexiga. A fase terapêutica I/II já se iniciou, envolvendo a administração intravesical do anticorpo diretamente na bexiga.

  14. Phenylnaphthalenes: sublimation equilibrium, conjugation, and aromatic interactions.

    Lima, Carlos F R A C; Rocha, Marisa A A; Schröder, Bernd; Gomes, Lígia R; Low, John N; Santos, Luís M N B F


    In this work, the interplay between structure and energetics in some representative phenylnaphthalenes is discussed from an experimental and theoretical perspective. For the compounds studied, the standard molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were determined by the measurement of the vapor pressures as a function of T, using a Knudsen/quartz crystal effusion apparatus. The standard molar enthalpies of formation in the crystalline state were determined by static bomb combustion calorimetry. From these results, the standard molar enthalpies of formation in the gaseous phase were derived and, altogether with computational chemistry at the B3LYP/6-311++G(d,p) and MP2/cc-pVDZ levels of theory, used to deduce the relative molecular stabilities in various phenylnaphthalenes. X-ray crystallographic structures were obtained for some selected compounds in order to provide structural insights, and relate them to energetics. The thermodynamic quantities for sublimation suggest that molecular symmetry and torsional freedom are major factors affecting entropic differentiation in these molecules, and that cohesive forces are significantly influenced by molecular surface area. The global results obtained support the lack of significant conjugation between aromatic moieties in the α position of naphthalene but indicate the existence of significant electron delocalization when the aromatic groups are in the β position. Evidence for the existence of a quasi T-shaped intramolecular aromatic interaction between the two outer phenyl rings in 1,8-di([1,1'-biphenyl]-4-yl)naphthalene was found, and the enthalpy of this interaction quantified on pure experimental grounds as -(11.9 ± 4.8) kJ·mol(-1), in excellent agreement with the literature CCSD(T) theoretical results for the benzene dimer.

  15. Dosing Schedules for Pneumococcal Conjugate Vaccine


    Since second generation pneumococcal conjugate vaccines (PCVs) targeting 10 and 13 serotypes became available in 2010, the number of national policy makers considering these vaccines has steadily increased. An important consideration for a national immunization program is the timing and number of doses—the schedule—that will best prevent disease in the population. Data on disease epidemiology and the efficacy or effectiveness of PCV schedules are typically considered when choosing a schedule. Practical concerns, such as the existing vaccine schedule, and vaccine program performance are also important. In low-income countries, pneumococcal disease and deaths typically peak well before the end of the first year of life, making a schedule that provides PCV doses early in life (eg, a 6-, 10- and 14-week schedule) potentially the best option. In other settings, a schedule including a booster dose may address disease that peaks in the second year of life or may be seen to enhance a schedule already in place. A large and growing body of evidence from immunogenicity studies, as well as clinical trials and observational studies of carriage, pneumonia and invasive disease, has been systematically reviewed; these data indicate that schedules of 3 or 4 doses all work well, and that the differences between these regimens are subtle, especially in a mature program in which coverage is high and indirect (herd) effects help enhance protection provided directly by a vaccine schedule. The recent World Health Organization policy statement on PCVs endorsed a schedule of 3 primary doses without a booster or, as a new alternative, 2 primary doses with a booster dose. While 1 schedule may be preferred in a particular setting based on local epidemiology or practical considerations, achieving high coverage with 3 doses is likely more important than the specific timing of doses. PMID:24336059

  16. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Mohan Raja


    Full Text Available A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  17. Recent advances in conjugated polymers for light emitting devices.

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan


    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  18. Ultrasound-assisted hydrolysis of conjugated parabens in human urine and their determination by UPLC-MS/MS and UPLC-HRMS.

    Schlittenbauer, Linda; Seiwert, Bettina; Reemtsma, Thorsten


    Parabens are preservatives widely used in personal care products, pharmaceutical formulations as well as in food, and they are considered endocrine disruptors. For application in biomonitoring studies we developed a method for the determination of eight parabens from human urine. Sample preparation was enhanced and simplified by the combination of ultrasound-assisted enzymatic hydrolysis of conjugates (glucuronide and sulfate) followed by an extraction-free cleanup step. Quantification, using deuterated parabens as internal standards, was performed by ultrahigh-performance liquid chromatography coupled to either triple-quadrupole (UPLC-QqQ) or time-of-flight (UPLC-QqTOF) mass spectrometry. Full chromatographic separation of three butyl paraben isomers was achieved. Limits of quantification for both mass analyzers ranged from 0.1 to 0.5 μg/L for methyl, ethyl, n-/isopropyl, n-/isobutyl, and benzyl paraben in 200 μL of urine sample. The method was tested for applicability and showed high precision (intra- and interday 0.9-14.5%) as well as high accuracy (relative recovery 95-132%). A total of 39 urine samples were analyzed by both mass analyzers. The results agreed well, with a trend to higher deviation at low concentrations (less than 10 μg/L). Methyl, ethyl, and n-propyl paraben were detected most frequently (in more than 87% of the samples) with median concentrations ranging from 0.8 to 16.6 μg/L. Female urine showed higher median concentrations for all parabens, which may indicate higher exposure due to lifestyle. This method permits accurate and high-throughput analysis of parabens for epidemiological studies. Further, the UPLC-QqTOF approach provides additional information on human exposure to other compounds by post-acquisition analysis.

  19. Optical study of pi-conjugated polymers and pi-conjugated polymers/fullerene blends

    Drori, Tomer

    In this research, we studied the optical properties of a variety of pi-conjugated polymers and pi-conjugated polymers/fullerene blends, using various continuous wave optical spectroscopies. We found an illumination-induced metastable polaron-supporting phase in films of a soluble derivative of poly-p-phenylene vinylene (MEH-PPV). Pristine, MEH-PPV polymer films in the dark do not show long-lived photogenerated polarons. Prolonged UV illumination, however, is found to induce a reversible, metastable phase characterized by its ability to support abundant long-lived photogenerated polarons. We also discovered a photobleaching band in our photomodulation measurement around 0.9eV that scales with and thus is related to the observed polaron band. In the dark, the illumination-induced metastable phase reverts back to the phase of the original MEH-PPV within about 30 min at room temperature. We also applied our experimental techniques in polymer/fullerene blends for studying the photophysics of bulk heterostructures with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. Using frequency dependence photomodulation, we distinguished between the two mechanisms of photoinduced charge transfer using above-gap and below-gap excitations, and found a distinguishable long polaron lifetime when photogenerated with below-gap excitation. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. Using the electroabsorption technique, we were able to detect the optical transition of the charge transfer complex state that lies below the gap of the polymer and the fullerene. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices. Another system studied was

  20. New heparin–indomethacin conjugate with an ester linkage: Synthesis, self aggregation and drug delivery behavior

    Li, Nan-Nan; Zheng, Bing-Na [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Lin, Jian-Tao [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Medical College, Dongguan 523808 (China); Zhang, Li-Ming, E-mail: [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)


    New heparin–indomethacin conjugate with an ester linkage was prepared by the carbodiimide-mediated condensation reaction, and then characterized by FTIR and {sup 1}HNMR analyses. Due to its amphiphilic character, such a conjugate could self-aggregate into spherical nanoparticles in aqueous system, as confirmed by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. By the in vitro drug release tests, the resultant conjugate nanoparticles were found to have a sustained and esterase-sensitive release behavior for conjugated indomethacin. In addition, the uptake of these conjugate nanoparticles into human nasopharyngeal carcinoma CNE1 cells was confirmed by fluorescence microscopy. - Highlights: • New heparin–indomethacin conjugate with an ester linkage was prepared. • Such a conjugate could self-aggregate into spherical nanoparticles in aqueous system. • The resultant conjugate nanoparticles exhibited an esterase-sensitive drug release behavior. • The resultant conjugate nanoparticles showed the cellular uptake ability in CNE1 cells.

  1. Ultra-high-performance liquid chromatography tandem mass spectrometry determination of GHB, GHB-glucuronide in plasma and cerebrospinal fluid of narcoleptic patients under sodium oxybate treatment.

    Tittarelli, Roberta; Pichini, Simona; Pedersen, Daniel S; Pacifici, Roberta; Moresco, Monica; Pizza, Fabio; Busardò, Francesco Paolo; Plazzi, Giuseppe


    Sodium oxybate (Xyrem(®)), the sodium salt of γ- hydroxybutyric acid (GHB), is a first-line treatment of the symptoms induced by type 1 narcolepsy (NT1) and it is highly effective in improving sleep architecture, decreasing excessive daytime sleepiness and the frequency of cataplexy attacks. Using an ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) validated method, GHB was determined together with its glucuronide (GHB-gluc), in plasma and cerebrospinal fluid (CSF) samples of NT1 patients under sodium oxybate treatment. To characterize the plasma pharmacokinetics of GHB, three subjects with NT1 were administered at time 0 and 4h with 1.25, 1.5 and 3.55g Xyrem(®), respectively and had their blood samples collected at 7 time points throughout an 8-h session. CSF specimens, collected for orexin A measurement from the same three subjects 6h after their second administration, were also tested. The results obtained suggested that GHB plasma values increased disproportionally with the rising doses, (Cmax0-4: 12.53, 32.95 and 69.62μg/mL; Cmax4-8: 44.93, 75.03 and 111.93μg/mL for total Xyrem(®) dose of 2.5, 3 and 7g respectively) indicating non-linear dose-response. GHB-Gluc was present only in traces in all plasma samples from treated patients, not changing with increasing Xyrem(®) doses. GHB values of 5.62, 6.10 and 17.74μg/mL for 2, 3 and 7g Xyrem(®) were found in CSF with a significant difference from control values. GHB-Gluc was found in negligible concentrations with no differences to those of control individuals. In conclusion this simple and fast UHPLC-MS/MS method proved useful for pharmacokinetic studies and therapeutic drug monitoring of GHB in narcoleptic patients treated with sodium oxybate.

  2. Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases.

    Suesse, S; Pragst, F; Mieczkowski, T; Selavka, C M; Elian, A; Sachs, H; Hastedt, M; Rothe, M; Campbell, J


    This article presents results from 1872 hair samples, which were analyzed for fatty acid ethyl esters (FAEEs) and ethyl glucuronide (EtG). The results were evaluated in the context of self-reported drinking behavior, the use of hair cosmetics, the gender of the sample donors and hair sample length. For comparison, CDT and GGT in serum were available in 477 and 454 cases, respectively. A number of alcohol abstainers or low moderate drinkers and excessive drinkers were selected for assessment of cut-offs for FAEEs in the proximal 6cm hair segments and for EtG in the proximal 3cm hair segments. Cut-off values were assessed by ROC analysis. It was found that the cut-offs of 1.0ng/mg FAEE and 30pg/mg EtG presently used for excessive drinking lead to a low portion of false positives (4% and 3% respectively) but to a higher portion of false negatives (23% and 25% respectively). Comparison of the mean and medium concentrations in samples without any reported hair cosmetics (N=1079) and in samples with reported use of hair spray (N=79) showed an increase by the factor of about two for FAEE but no significant difference for EtG. Mean values of EtG were decreased by 80% in bleached samples (N=164) and by 63% in dyed samples (N=96). There was no significant effect of bleaching and dyeing on FAEE. Hair gel and hair wax, oil or grease showed no significant effect on both FAEE and EtG. With respect to gender and investigated hair length ambiguous results were obtained because of major differences in the compared subpopulations of male with higher alcohol consumption and mainly shorter hair, and less drinking female with longer hair. For excessive drinkers FAEEs in the 0-6cm hair segment and EtG in the 0-3cm segment decreased with increasing time of reported abstinence before sample collection. These drinkers attain the level of teetotalers only after more than 10 months of abstinence. In comparison to scalp hair, FAEEs recovered from armpit hair and leg hair were lower and from

  3. Conjugated linoleic acid isomers and cancer.

    Kelley, Nirvair S; Hubbard, Neil E; Erickson, Kent L


    We reviewed the literature regarding the effects of conjugated linoleic acid (CLA) preparations enriched in specific isomers, cis9, trans11-CLA (c9, t11-CLA) or trans10, cis12-CLA (t10, c12-CLA), on tumorigenesis in vivo and growth of tumor cell lines in vitro. We also examined the potential mechanisms by which CLA isomers may alter the incidence of cancer. We found no published reports that examined the effects of purified CLA isomers on human cancer in vivo. Incidence of rat mammary tumors induced by methylnitrosourea was decreased by c9, t11-CLA in all studies and by t10, c12-CLA in just a few that included it. Those 2 isomers decreased the incidence of forestomach tumors induced by benzo (a) pyrene in mice. Both isomers reduced breast and forestomach tumorigenesis. The c9, t11-CLA isomer did not affect the development of spontaneous tumors of the intestine or mammary gland, whereas t10, c12-CLA increased development of genetically induced mammary and intestinal tumors. In vitro, t10, c12-CLA inhibited the growth of mammary, colon, colorectal, gastric, prostate, and hepatoma cell lines. These 2 CLA isomers may regulate tumor growth through different mechanisms, because they have markedly different effects on lipid metabolism and regulation of oncogenes. In addition, c9, t11-CLA inhibited the cyclooxygenase-2 pathway and t10, c12-CLA inhibited the lipooxygenase pathway. The t10, c12-CLA isomer induced the expression of apoptotic genes, whereas c9, t11-CLA did not increase apoptosis in most of the studies that assessed it. Several minor isomers including t9, t11-CLA; c11, t13-CLA; c9, c11-CLA; and t7, c11-CLA were more effective than c9, t11-CLA or t10, c12-CLA in inhibiting cell growth in vitro. Additional studies with purified isomers are needed to establish the health benefit and risk ratios of each isomer in humans.

  4. The Preparation and Characterization of Conjugated Linolenic Acid

    Cao Ying; Yang Lin; Chen Zhen-Yu


    Conjugated Linolenic Acid (CLN) has recently been shown to have a more strong cytotoxic effect on various human tumor cell lines than CLA. In CLN, all the three double bonds are conjugated, whereas they are methylene-interrupted in LN. Some seed oil, such as tung oil and pomegranate seed oil, principally consist of CLN, accounting for 76.5% and 75.5%, respectively.CLN can be characterized using the combination of gas chromatography (GC), highperformance liquid chromatography (HPLC) and UV /VIS spectrophotomea-ic analysis. GC can separate the CLN from other fatty acids and HPLC can separate the individual CLN isomers.The conjugated triene formation has a maximum absorbency at 268 nm and the conjugated diene formation has an absorbency at 235 nm in UV spectrum.CLN was prepared from linseed oil by isomerization reaction in our present study. By treating at was isomerized and the product was purified by recrystallizing in the methanol. The GC and UV /VIS spectrophotometric analysis were used to characterize the obtained products. It was found that the a-LN in the linseed oil was converted to the corresponding conjugated diene acids and CLN. The GC analysis also showed that there formed about 20% CLN when reacting for 10h with 40% KOH/ethylene glycol.

  5. Tocilizumab - Alendronate Conjugate for Treatment of Rheumatoid Arthritis.

    Lee, Hwiwon; Bhang, Suk Ho; Lee, Jeong Ho; Kim, Hyemin; Hahn, Sei Kwang


    An autoimmune disease of rheumatoid arthritis (RA) causes severe inflammation on the synovial membrane, which results in the destruction of articular cartilage and bone. Here, Tocilizumab (TCZ) - Alendronate (ALD) conjugate is synthesized for the early intervention of RA. A humanized monoclonal antibody of TCZ shows an immunosuppressive effect, targeting interleukin-6 (IL-6) receptor in the RA pathogenesis. ALD is an anti-inflammatory bisphosphonate drug which can bind to the exposed bone surface. ALD is conjugated selectively to N-glycan on Fc region of TCZ using a chemical linker of 3-(2-pyridyldithio) propionyl hydrazide (PDPH) - poly(ethylene glycol) - N-hydroxysuccinimide (PDPH-PEG-NHS). The successful synthesis of TCZ-ALD conjugate is corroborated by 1H NMR, the purpald assay, mass spectrometry (MS), and high performance liquid chromatography (HPLC). In vitro binding affinity and cell viability tests confirmed the biological activity of TCZ-ALD conjugate. Furthermore, in vivo efficacy of TCZ-ALD conjugate is confirmed by micro computed tomography (CT), histological, and western blot analyses for the treatment of RA.

  6. Relaxation Oscillation with Picosecond Spikes in a Conjugated Polymer Laser

    Wafa Musa Mujamammi


    Full Text Available Optically pumped conjugated polymer lasers are good competitors for dye lasers, often complementing and occasionally replacing them. This new type of laser material has broad bandwidths and high optical gains comparable to conventional laser dyes. Since the Stokes’ shift is unusually large, the conjugated polymer has a potential for high power laser action, facilitated by high concentration. This paper reports the results of a new conjugated polymer, the poly[(9,9-dioctyl-2,7-divinylenefluorenylene-alt-co-{2-methoxy-5-(2-ethylhexyloxy-1,4-phenylene}](PFO-co-MEH-PPV material, working in the green region. Also discussed are the spectral and temporal features of the amplified spontaneous emissions (ASE from the conjugated polymer PFO-co-MEH-PPV in a few solvents. When pumped by the third harmonic of the Nd:YAG laser of 10 ns pulse width, the time-resolved spectra of the ASE show relaxation oscillations and spikes of 600 ps pulses. To the best of our knowledge, this is the first report on relaxation oscillations in conjugated-polymer lasers.

  7. Social behavior and decision making in bacterial conjugation.

    Koraimann, Günther; Wagner, Maria A


    Bacteria frequently acquire novel genes by horizontal gene transfer (HGT). HGT through the process of bacterial conjugation is highly efficient and depends on the presence of conjugative plasmids (CPs) or integrated conjugative elements (ICEs) that provide the necessary genes for DNA transmission. This review focuses on recent advancements in our understanding of ssDNA transfer systems and regulatory networks ensuring timely and spatially controlled DNA transfer (tra) gene expression. As will become obvious by comparing different systems, by default, tra genes are shut off in cells in which conjugative elements are present. Only when conditions are optimal, donor cells-through epigenetic alleviation of negatively acting roadblocks and direct stimulation of DNA transfer genes-become transfer competent. These transfer competent cells have developmentally transformed into specialized cells capable of secreting ssDNA via a T4S (type IV secretion) complex directly into recipient cells. Intriguingly, even under optimal conditions, only a fraction of the population undergoes this transition, a finding that indicates specialization and cooperative, social behavior. Thereby, at the population level, the metabolic burden and other negative consequences of tra gene expression are greatly reduced without compromising the ability to horizontally transfer genes to novel bacterial hosts. This undoubtedly intelligent strategy may explain why conjugative elements-CPs and ICEs-have been successfully kept in and evolved with bacteria to constitute a major driving force of bacterial evolution.

  8. Enzymatically catalyzed HES conjugation using microbial transglutaminase: Proof of feasibility.

    Besheer, Ahmed; Hertel, Thomas C; Kressler, Jörg; Mäder, Karsten; Pietzsch, Markus


    Polymer-drug and polymer-protein conjugates are promising candidates for the delivery of therapeutic agents. PEGylation, using poly(ethylene glycol) for the conjugation, is now the gold standard in this field, and some PEGylated proteins have successfully reached the market. Hydroxyethyl starch (HES) is a water-soluble, biodegradable derivative of starch that is currently being investigated as a substitute for PEG. So far, only chemical methods have been suggested for HES conjugation; however, these may have detrimental effects on proteins. Here, we report an enzymatic method for HES conjugation using a recombinant microbial transglutaminase (rMTG). The latter catalyzes the acyl transfer between the gamma-carboxamide group of a glutaminyl residue (acyl donors) and a variety of primary amines (acyl acceptors), including the amino group of lysine. HES was modified with N-carbobenzyloxy glutaminyl glycine (Z-QG) and hexamethylene diamine (HMDA) to act as acyl donor and acyl acceptor, respectively. Using (1)H NMR, the degree of modification with Z-QG and HMDA was found to be 4.6 and 3.9 mol%, respectively. Using SDS-PAGE, it was possible to show that the modified HES successfully coupled to test compounds, proving that it is accepted as a substrate by rMTG. Finally, the process described in this study is a simple, mild approach to produce fully biodegradable polymer-drug and polymer-protein conjugates. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Controlling molecular ordering in solution-state conjugated polymers.

    Zhu, J; Han, Y; Kumar, R; He, Y; Hong, K; Bonnesen, P V; Sumpter, B G; Smith, S C; Smith, G S; Ivanov, I N; Do, C


    Rationally encoding molecular interactions that can control the assembly structure and functional expression in a solution of conjugated polymers hold great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with the desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution, we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.

  10. Polymer-cysteamine conjugates: new mucoadhesive excipients for drug delivery?

    Kast, Constantia E; Bernkop-Schnürch, Andreas


    In the present study, the features of two new thiolated polymers--the so-called thiomers--were investigated. Mediated by a carbodiimide cysteamine was covalently attached to sodium carboxymethylcellulose (Na-CMC) and neutralised polycarbophil (Na-PCP). Depending on the weight-ratio polymer to cysteamine during the coupling reaction, the resulting CMC-cysteamine conjugate and PCP-cysteamine conjugate showed in maximum 43 +/- 15 and 138 +/- 22 micromole thiol groups per g polymer (mean +/- S.D.; n=3), respectively, which were used for further characterisation. Tensile studies carried out with the CMC-cysteamine conjugate on freshly excised porcine intestinal mucosa displayed no significantly (Paqueous solutions the disintegration time of tablets based on the CMC- and PCP-cysteamine conjugates was prolonged 1.5 and 3.2-fold, respectively, in comparison to tablets containing the corresponding unmodified polymers. According to these results, especially the PCP-cysteamine conjugate represents a promising new pharmaceutical excipient for various drug delivery systems.

  11. CYP2C8-mediated interaction between repaglinide and steviol acyl glucuronide: In vitro investigations using rat and human matrices and in vivo pharmacokinetic evaluation in rats.

    Xu, Yunting; Zhou, Dandan; Wang, Yedong; Li, Jiajun; Wang, Meiyu; Lu, Jia; Zhang, Hongjian


    CYP2C8 is involved in the metabolic clearance of several important drugs and recent reports have shown that acyl glucuronides of gemfibrozil and clopidogrel are potent time-dependent inhibitors of CYP2C8 activity. In the present study, the inhibitory effect of steviol acyl glucuronide (SVAG), a circulating metabolite formed after the ingestion of rebaudioside A, was investigated using in vitro and in vivo systems. Results indicated that SVAG was a reversible but not a time-dependent inhibitor of CYP2C8-mediated paclitaxel 6α-hydroxylation. SVAG was also capable of inhibiting CYP2C8-mediated repaglinide 3'-hydroxylation in human liver microsomes and recombinant human CYP2C8, with Ki values of 15.8 μM and 11.6 μM, respectively. In contrast, SVAG did not exhibit inhibitory effect on CYP2C8 activity in rat liver microsomes. In addition, co-administration of rebaudioside A with repaglinide in rats did not lead to AUC and Cmax changes of repaglinide. Although mathematic prediction using a simplified mechanistic model revealed a moderate interaction potential between repaglinide and SVAG, cautions should be given to patients with hypoglycemia if repaglinide and rebaudioside A are used in combination for the blood sugar control.

  12. In vitro inhibitory effects of non-steroidal anti-inflammatory drugs on 4-methylumbelliferone glucuronidation in recombinant human UDP-glucuronosyltransferase 1A9--potent inhibition by niflumic acid.

    Mano, Yuji; Usui, Takashi; Kamimura, Hidetaka


    The inhibitory potencies of non-steroidal anti-inflammatory drugs (NSAIDs) on UDP-glucuronosyltransferase (UGT) 1A9 activity were investigated in recombinant human UGT1A9 using 4-methylumbelliferone (4-MU) as a substrate for glucuronidation. 4-MU glucuronidation (4-MUG) showed Michaelis-Menten kinetics with a Km value of 6.7 microM. The inhibitory effects of the following seven NSAIDs were investigated: acetaminophen, diclofenac, diflunisal, indomethacin, ketoprofen, naproxen and niflumic acid. Niflumic acid had the most potent inhibitory effect on 4-MUG with an IC50 value of 0.0341 microM. The IC50 values of diflunisal, diclofenac and indomethacin were 1.31, 24.2, and 34.1 microM, respectively, while acetaminophen, ketoprofen and naproxen showed less potent inhibition. Niflumic acid, diflunisal, diclofenac and indomethacin inhibited 4-MUG competitively with Ki values of 0.0275, 0.710, 53.3 and 69.9 microM, respectively, being similar to each IC50 value. In conclusion, of the seven NSAIDs investigated, niflumic acid was the most potent inhibitor of recombinant UGT1A9 via 4-MUG in a competitive manner.

  13. Evaluation of UGT protein interactions in human hepatocytes: effect of siRNA down regulation of UGT1A9 and UGT2B7 on propofol glucuronidation in human hepatocytes.

    Konopnicki, Camille M; Dickmann, Leslie J; Tracy, Jeffrey M; Tukey, Robert H; Wienkers, Larry C; Foti, Robert S


    Previous experiments performed in recombinant systems have suggested that protein-protein interactions occur between the UGTs and may play a significant role in modulating enzyme activity. However, evidence of UGT protein-protein interactions either in vivo or in more physiologically relevant in vitro systems has yet to be demonstrated. In this study, we examined oligomerization and its ability to affect glucuronidation in plated human hepatocytes. siRNA down regulation experiments and activity studies were used to examine changes in metabolite formation of one UGT isoform due to down regulation of a second UGT isoform. Selective siRNA directed towards UGT1A9 or UGT2B7 resulted in significant and selective decreases in their respective mRNA levels. As expected, the metabolism of the UGT1A9 substrate propofol decreased with UGT1A9 down regulation. Interestingly, UGT1A9 activity, but not UGT1A9 mRNA expression, was also diminished when UGT2B7 expression was selectively inhibited, implying potential interactions between the two isoforms. Minor changes to UGT1A4, UGT2B4 and UGT2B7 activity were also observed when UGT1A9 expression was selectively down regulated. To our knowledge, this represents the first piece of evidence that UGT protein-protein interactions occur in human hepatocytes and suggests that expression levels of UGT2B7 may directly impact the glucuronidation activity of selective UGT1A9 substrates.

  14. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization

  15. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    Voortman, Thomas P; Chiechi, Ryan C


    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  16. Chemically optimized antimyosin Fab conjugates with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization.

    Trubetskoy, V S; Narula, J; Khaw, B A; Torchilin, V P


    Murine antimyosin Fab fragment was conjugated with 111In-labeled N-terminal-modified DTPA-polylysine using three bifunctional reagents: N-hydroxysuccinimide esters of 3-(2-pyridyldithio)propionic acid (SPDP conjugate), 4-(maleimidomethyl)cyclohexanecarboxylic acid (SMCC conjugate) and bromoacetic acid (BrAc conjugate) for potential localization of experimental myocardial infarction. Using various antibody preparations and a rabbit acute myocardial infarction model the following parameters were observed: (1) an in vitro antigen binding activity of SPDP conjugate = SMCC conjugate > BrAc conjugate, (2) a blood clearance rate of SPDP conjugate > BrAc conjugate > SMCC conjugate, (3) a liver and splenic accumulation of SPDP conjugate > BrAc conjugate > SMCC conjugate, and (4) the infarcted tissue activity showed an accumulation of SMCC conjugate > SPDP conjugate > BrAc conjugate. This study exemplifies the importance of rational chemical design of antimyosin Fab-chelating polymer conjugate for improved target tissue localization in vivo.

  17. Synthesis and Spectral Studies of CdTe–Dendrimer Conjugates

    Ghosh Srabanti


    Full Text Available Abstract In order to couple high cellular uptake and target specificity of dendrimer molecule with excellent optical properties of semiconductor nanoparticles, the interaction of cysteine-capped CdTe quantum dots with dendrimer was investigated through spectroscopic techniques. NH2-terminated dendrimer molecule quenched the photoluminescence of CdTe quantum dots. The binding constants and binding capacity were calculated, and the nature of binding was found to be noncovalent. Significant decrease in luminescence intensity of CdTe quantum dots owing to noncovalent binding with dendrimer limits further utilization of these nanoassemblies. Hence, an attempt is made, for the first time, to synthesize stable, highly luminescent, covalently linked CdTe–Dendrimer conjugate in aqueous medium using glutaric dialdehyde (G linker. Conjugate has been characterized through Fourier transform infrared spectroscopy and transmission electron microscopy. In this strategy, photoluminescence quantum efficiency of CdTe quantum dots with narrow emission bandwidths remained unaffected after formation of the conjugate.

  18. Synthesis and Spectral Studies of CdTe-Dendrimer Conjugates

    Ghosh, Srabanti; Saha, Abhijit


    In order to couple high cellular uptake and target specificity of dendrimer molecule with excellent optical properties of semiconductor nanoparticles, the interaction of cysteine-capped CdTe quantum dots with dendrimer was investigated through spectroscopic techniques. NH2-terminated dendrimer molecule quenched the photoluminescence of CdTe quantum dots. The binding constants and binding capacity were calculated, and the nature of binding was found to be noncovalent. Significant decrease in luminescence intensity of CdTe quantum dots owing to noncovalent binding with dendrimer limits further utilization of these nanoassemblies. Hence, an attempt is made, for the first time, to synthesize stable, highly luminescent, covalently linked CdTe-Dendrimer conjugate in aqueous medium using glutaric dialdehyde (G) linker. Conjugate has been characterized through Fourier transform infrared spectroscopy and transmission electron microscopy. In this strategy, photoluminescence quantum efficiency of CdTe quantum dots with narrow emission bandwidths remained unaffected after formation of the conjugate.

  19. Recent advances in the construction of antibody-drug conjugates

    Chudasama, Vijay; Maruani, Antoine; Caddick, Stephen


    Antibody-drug conjugates (ADCs) comprise antibodies covalently attached to highly potent drugs using a variety of conjugation technologies. As therapeutics, they combine the exquisite specificity of antibodies, enabling discrimination between healthy and diseased tissue, with the cell-killing ability of cytotoxic drugs. This powerful and exciting class of targeted therapy has shown considerable promise in the treatment of various cancers with two US Food and Drug Administration approved ADCs currently on the market (Adcetris and Kadcyla) and approximately 40 currently undergoing clinical evaluation. However, most of these ADCs exist as heterogeneous mixtures, which can result in a narrow therapeutic window and have major pharmacokinetic implications. In order for ADCs to deliver their full potential, sophisticated site-specific conjugation technologies to connect the drug to the antibody are vital. This Perspective discusses the strategies currently used for the site-specific construction of ADCs and appraises their merits and disadvantages.

  20. Repercussions of imprisonment for conjugal violence: discourses of men

    Anderson Reis de Sousa

    Full Text Available ABSTRACT Objective: to know the consequences that men experience related to incarceration by conjugal violence. Methods: qualitative study on 20 men in jail and indicted in criminal processes related to conjugal violence in a Court specialized in Family and Domestic Violence against women. The interviews were classified based on Collective Subject Discourse method, using NVIVO(r software. Results: the collective discourse shows that the experience of preventive imprisonment starts a process of family dismantling, social stigma, financial hardship and psycho-emotional symptoms such as phobia, depression, hypertension, and headaches. Conclusion: due to the physical, mental and social consequences of the conjugal violence-related imprisonment experience, it is urgent to look carefully into the somatization process as well as to the prevention strategies regarding this process.