WorldWideScience

Sample records for glucuronic acid moiety

  1. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Directory of Open Access Journals (Sweden)

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  2. Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Akdamar, H.Acelya; Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Ozcan, Ayca Atilir; Ersoez, Arzu [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskisehir (Turkey)

    2009-05-05

    The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu{sup 2+})] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu{sup 2+}) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu{sup 2+}) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.

  3. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    Full Text Available In animals, the main precursor for glycosaminoglycan and furthermore proteoglycan biosynthesis, like hyaluronic acid, is UDP-glucuronic acid, which is synthesized via the nucleotide sugar oxidation pathway. Mutations in this pathway cause severe developmental defects (deficiency in the initiation of heart valve formation. In plants, UDP-glucuronic acid is synthesized via two independent pathways. Beside the nucleotide sugar oxidation pathway, a second minor route to UDP-glucuronic acid exist termed the myo-inositol oxygenation pathway. Within this myo-inositol is ring cleaved into glucuronic acid, which is subsequently converted to UDP-glucuronic acid by glucuronokinase and UDP-sugar pyrophosphorylase. Here we report on a similar, but bifunctional enzyme from zebrafish (Danio rerio which has glucuronokinase/putative pyrophosphorylase activity. The enzyme can convert glucuronic acid into UDP-glucuronic acid, required for completion of the alternative pathway to UDP-glucuronic acid via myo-inositol and thus establishes a so far unknown second route to UDP-glucuronic acid in animals. Glucuronokinase from zebrafish is a member of the GHMP-kinase superfamily having unique substrate specificity for glucuronic acid with a Km of 31 ± 8 µM and accepting ATP as the only phosphate donor (Km: 59 ± 9 µM. UDP-glucuronic acid pyrophosphorylase from zebrafish has homology to bacterial nucleotidyltransferases and requires UTP as nucleosid diphosphate donor. Genes for bifunctional glucuronokinase and putative UDP-glucuronic acid pyrophosphorylase are conserved among some groups of lower animals, including fishes, frogs, tunicates, and polychaeta, but are absent from mammals. The existence of a second pathway for UDP-glucuronic acid biosynthesis in zebrafish likely explains some previous contradictory finding in jekyll/ugdh zebrafish developmental mutants, which showed residual glycosaminoglycans and proteoglycans in knockout mutants of UDP

  4. Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan

    Science.gov (United States)

    Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...

  5. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Science.gov (United States)

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  6. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of glucuronic acid dehydrogenase from Chromohalobacter salexigens

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Lee, Shin Youp; Kim, Sangwoo; Cho, Sun Ja; Lee, Sun Bok; Kim, Kyung-Jin

    2011-01-01

    Recombinant glucuronic acid dehydrogenase from the halophilic bacterium Chromohalobacter salexigens has been crystallized and X-ray diffraction data collected to a maximum resolution of 2.1 Å. Glucuronic acid dehydrogenase (GluUADH), the product of the Csal-2474 gene from the halophilic bacterium Chromohalobacter salexigens DSM 3043, is an enzyme with potential use in the conversion of glucuronic acid in seaweed biomass to fuels and chemicals. GluUADH is an enzyme that catalyzes the oxidation of glucuronic acid (GluUA) and galacturonic acid (GalUA) and has a preference for NAD + rather than NADP + as a cofactor. Recombinant GluUADH was crystallized in the presence of 0.2 M calcium acetate, 0.1 M Tris–HCl pH 7.0 and 20% PEG 3000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The GluUADH crystal belonged to space group P6 3 , with unit-cell parameters a = b = 122.58, c = 150.49 Å, γ = 120°. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V M ) is 2.78 Å 3 Da −1 . The structure was solved by the single anomalous dispersion method and structure refinement is in progress

  7. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  8. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    Science.gov (United States)

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  10. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    International Nuclear Information System (INIS)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P.; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-01-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents

  11. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    Science.gov (United States)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bioactive and metal uptake studies of carboxymethyl chitosan-graft-D-glucuronic acid membranes for tissue engineering and environmental applications.

    Science.gov (United States)

    Jayakumar, R; Rajkumar, M; Freitas, H; Sudheesh Kumar, P T; Nair, S V; Furuike, T; Tamura, H

    2009-08-01

    Carboxymethyl chitosan-graft-D-glucuronic acid (CMCS-g-D-GA) was prepared by grafting D-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-D-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-D-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+ and Cu2+ ions onto CMCS-g-D-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-D-GA for Ni2+, Zn2+ and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications.

  13. Structures of bilirubin conjugates synthesized in vitro from bilirubin and uridine diphosphate glucuronic acid, uridine diphosphate glucose or uridine diphosphate xylose by preparations from rat liver

    NARCIS (Netherlands)

    Fevery, J.; Leroy, P.; van de Vijver, M.; Heirwegh, K. P.

    1972-01-01

    1. In incubation mixtures containing digitonin-activated or untreated preparations from rat liver, albumin-solubilized bilirubin as the acceptor substrate and (a) UDP-glucuronic acid, (b) UDP-glucose or (c) UDP-xylose as the sugar donor, formation of the following ester glycosides was demonstrated:

  14. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein

    OpenAIRE

    Urbanowicz, Breeanna R.; Peña, Maria J.; Ratnaparkhe, Supriya; Avci, Utku; Backe, Jason; Steet, Heather F.; Foston, Marcus; Li, Hongjia; O’Neill, Malcolm A.; Ragauskas, Arthur J.; Darvill, Alan G.; Wyman, Charles; Gilbert, Harry J.; York, William S.

    2012-01-01

    The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid ...

  15. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    Science.gov (United States)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  16. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    International Nuclear Information System (INIS)

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-01-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  17. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  18. aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid.

    Science.gov (United States)

    de Vries, R P; Poulsen, C H; Madrid, S; Visser, J

    1998-01-01

    An extracellular alpha-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70 degrees C. The alpha-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and beta-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this alpha-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and alpha-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

  19. aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid

    Science.gov (United States)

    de Vries, Ronald P.; Poulsen, Charlotte H.; Madrid, Susan; Visser, Jaap

    1998-01-01

    An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose. PMID:9440512

  20. Synthesis of two hyaluronic-acid-related oligosaccharide 4-methoxyphenyl glycosides having a beta-D-glucuronic acid residue at the reducing end

    NARCIS (Netherlands)

    Halkes, K.M.; Slaghek, T.M.; Hypponen, T.K.; Kamerling, J.P.; Vliegenthart, J.F.G.

    1999-01-01

    Synthesis of two hyaluronic-acid-related oligosaccharides, the 4-methoxyphenyl β-glycosides of β-D-GlcpA-(1→3)-β-D-GlcpNAc-(1→4)-D-GlcpA and β-D-GlcpA-(1→3)-β-D-GlcpNAc-(1→4)-β-D-GlcpA-(1→3)- β-D-GJcpNAc-(1→4)-D-GlcpA, is described. D-Glucopyranosyluronic acid residues were obtained by selective

  1. Synthesis of two hyaluronic-acid-related oligosaccharide 4-methoxyphenyl glycosides having a β-D-glucuronic acid residue at the reducing end

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Halkes, K.M.; Slaghek, T.M.; Hyppönen, T.K.; Kamerling, J.P.

    1999-01-01

    Synthesis of two hyaluronic-acid-related oligosaccharides, the 4-methoxyphenyl beta-glycosides of beta-D-GlcpA-(1->3)-beta-D-GlcpNAc-(1->4)-D-GlcpA and beta-D-GlcpA-(1->3)-beta-D-GlcpNAc-(1->4)-beta-D-GlcpA-(1->3)-beta-D-GlcpNAc-(1->4)-D-GlcpA, is described. D-Glucopyranosyluronic acid residues were

  2. Uranium(VI) adsorption properties of a chelating resin containing polyamine-substituted methylphosphonic acid moiety

    International Nuclear Information System (INIS)

    Matsuda, Masaaki; Akiyoshi, Yoshirou

    1991-01-01

    Uranium(VI) adsorption and desorption properties of a chelating resin containing polyamine-substituted methylphosphonic acid moiety of 2.29 mmol/g-resin (APA) were examined. Uranium(VI) adsorption properties of several ion exchange resins and extractant agents which were known as excellent adsorbents for uranium(VI), were examined together for a comparison with those of APA. Uranium(VI) adsorption capacity of APA at the concentration of 100 mg·dm -3 -uranium(VI) in 100 g·dm -3 -H 2 SO 4 aq. soln., 190 g·dm -3 -H 3 PO 4 aq. soln. and uranium enriched sea water, was 0.2, 0.05 and 0.05 mmol·g -1 respectively. The adsorption capacity of APA for uranium(VI) in these solutions was larger than that of another adsorbents, except the adsorption of uranium(VI) in enriched sea water on ion exchange resin containing phosphoric acid moiety (adsorption capacity ; 0.2 mmol·g -1 ). Uranium(VI) adsorption rate on APA was high and the relation between treatment time (t : min) and uranium(VI) concentration (y : mg·dm -3 ) in 100 g·dm -3 H 2 SO 4 aq. soln. after treatment, was shown as following equation, y=20 0.048t+1.90 (0≤t≤30). The adsorbed uranium(VI) on APA was able to be eluted with a mixed aq. soln. of hydrogen peroxide and sodium hydroxide and also was able to be eluted with an aq. alkaline soln. dissolved reduction agents such as sodium sulfite and hydrazine. From these results, it was thought that uranium(VI) adsorbed on APA was eluted due to the reduction to uranium(VI) by these eluents. (author)

  3. Control of cell function on a phospholipid polymer having phenylboronic acid moiety

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Aya; Ishihara, Kazuhiko [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Konno, Tomohiro [Center for NanoBio Integration, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ikake, Hiroki; Kurita, Kimio, E-mail: konno@bioeng.t.u-tokyo.ac.j [Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2010-10-01

    We synthesized a water-insoluble phospholipid polymer bearing a phenylboronic acid moiety (PMBV), which induces cell adhesion through a specific interaction with the glycoprotein, fibronectin. Surface plasmon resonance analysis revealed that fibronectin was adsorbed on the PMBV surface. When fibroblasts were cultured on the PMBV surface, the cells adhered and proliferated normally while showing a spherical morphology. In addition, the adherent cells were able to detach after the addition of sugar molecules, which bound to phenylboronic acid through an exchange reaction. The cell cycle of adherent cells was evaluated with the embedded HeLa-Fucci cells by using a fluorescent ubiquitination-based cell cycle indicator. The cell-cycle analysis by fluorescence microscopy indicated that the adherent HeLa-Fucci cells tended to converge to the G1 phase. The differentiation of mesenchymal stem cells to chondrocytes was accelerated on PMBV in the presence of bone morphogenetic protein-2. We concluded that PMBV is a useful surface in experiments for assessing cellular function and differentiation.

  4. The effects of conformational constraints and steric bulk in the amino acid moiety of philanthotoxins on AMPAR antagonism

    DEFF Research Database (Denmark)

    Jørgensen, Malene; Olsen, Christian A; Mellor, Ian R

    2005-01-01

    , establishing general protocols for philanthotoxin solution- and solid-phase synthesis (39-90% and 42-54% overall yields, respectively). The analogues were tested for their ability to antagonize kainate-induced currents of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazoyl)propanoic acid receptors (AMPAR) expressed...... in Xenopus oocytes from rat brain mRNA. This showed that steric bulk in the amino acid moiety is well tolerated and suggests that binding to AMPAR does not involve the alpha-NHCO group as a donor in hydrogen bonding.......Philanthotoxin-343 (PhTX-343), a synthetic analogue of wasp toxin PhTX-433, is a noncompetitive antagonist at ionotropic receptors (e.g., AChR or iGluR). To determine possible effects of variations of the amino acid side chain, a library consisting of seventeen PhTX-343 analogues was prepared. Thus...

  5. Functionalization of Chitosan with 3,4,5-Trihydroxy Benzoic Acid Moiety for The Uptake of Chromium Species

    Directory of Open Access Journals (Sweden)

    Akhmad Sabarudin

    2013-03-01

    Full Text Available Chitosan-based chelating resin, the cross-linked chitosan functionalized with 3,4,5-trihydroxy benzoic acid moiety (CCTS-THBA resin, was newly synthesized and its adsorption behavior toward appropriate elements was investigated. At pH 5-9, the CCTS-THBA resin showed quantitative adsorption (87-91% for Cr (VI, while only < 15% for Cr (III. The addition of cyclohexanediamine tetraacetic acid (CyDTA to the samples resulted in a considerably increase of the adsorption of both chromium species. In this condition, Cr (III is chelated with CyDTA to form anionic complexes at pH 3-5, which was then completely adsorbed on the resin by ion exchange mechanism. Similarly, the adsorption of Cr (VI reached almost 100% in pH range of 3-6. The adsorption capacity of CCTS-THBA resin for Cr (VI was 109 mg g-1.

  6. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    Directory of Open Access Journals (Sweden)

    Anh Van Nguyen

    2017-12-01

    Full Text Available Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD and mass spectrometric (MS detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, Centranthus ruber, Momordica charantia, Trichosanthes anguina, Punica granatum, Thladiantha dubia, Valeriana officinalis, and Vernicia montana. It was found that a sequence of elution of TGs of the same types is the same without any inversions for full range of mobile phase compositions: punicic (C18:39Z11E13Z < jacaric (C18:38Z10E12Z < catalpic (C18:39E11E13Z < α-eleostearic (C18:39Z11E13E < calendic (C18:38E10E12Z < β-eleostearic (C18:39E11E13E < all-E calendic (C18:38E10E12E acids. TGs and fatty acid compositions were calculated for all oil samples. Regularities of solute retentions as a function of isomeric conjugated octadecatrienoic acid moiety structure are discussed. Thus, it was proven that it is possible to differentiate TGs of complex composition with moieties of all natural CLnA by retention control accomplished by electronic spectra comparison, even though there are only three types of electronic-vibration spectra for seven isomeric CLnA.

  7. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety.

    Science.gov (United States)

    Yan, Jianwei; Wang, Gaihong; Dang, Xiangyu; Guo, Binbin; Chen, Wuhong; Wang, Ting; Zeng, Limin; Wang, Heyao; Hu, Youhong

    2017-09-01

    A series of diacylglycerol O-acyltransferase 1 (DGAT-1) inhibitors with a picolinoylpyrrolidine-2-carboxylic acid moiety were designed and synthesized. Of these compounds, compound 22 exhibited excellent DGAT-1-inhibitory activity (hDGAT-1 enzyme assay, 50% inhibitory concentration [IC 50 ]=3.5±0.9nM) and effectively reduced the intracellular triglyceride contents in 3T3-L1, HepG2 and Caco-2 cells. A preliminary study of the plasma and tissue distributions of compound 22 in mice revealed low plasma exposure and high concentrations in different segments of the intestine and liver, which may facilitate targeting DGAT-1. Furthermore, in an acute lipid challenge test, compound 22 showed a dose-dependent inhibitory effect on high-serum triglycerides in C57/KSJ mice induced by olive oil (1, 3, and 10mg/kg, i.g.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    International Nuclear Information System (INIS)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  10. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    Science.gov (United States)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K.

    2010-02-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.

  11. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    Science.gov (United States)

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of albumin on podocytes: The role of the fatty acid moiety and the potential role of CD36 scavenger receptor

    International Nuclear Information System (INIS)

    Pawluczyk, I.Z.A.; Pervez, A.; Ghaderi Najafabadi, M.; Saleem, M.A.; Topham, P.S.

    2014-01-01

    Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. Albumin uptake studies were carried out on cultured human podocytes exposed to FITC-labelled human serum albumin either carrying fatty acids (HSA +FA ) or depleted of them (HSA −FA ). Receptor-mediated endocytosis of FITC-HSA +FA over 60 min was 5 times greater than that of FITC-HSA −FA . 24 h exposure of podocytes to albumin up-regulated nephrin expression and induced the activation of caspase-3. These effects were more pronounced in response to HSA −FA. Individually, anti-CD36 antibodies had no effect upon endocytosis of FITC-HSA. However, a cocktail of 2 antibodies reduced uptake by nearly 50%. Albumin endocytosis was enhanced in the presence of the CD36 specific inhibitor sulfo-N-succinimidyl oleate (SSO) while knock-down of CD36 using CD36siRNA had no effect on uptake. These data suggest that receptor-mediated endocytosis of albumin by podocytes is regulated by the fatty acid moiety, although, some of the detrimental effects are induced independently of it. CD36 does not play a direct role in the uptake of albumin. - Highlights: • The fatty acid moiety is essential for receptor mediated endocytosis of albumin. • Fatty acid depleted albumin is more pathogenic to podocytes. • CD36 is not directly involved in albumin uptake by podocytes

  13. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside

  14. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    Science.gov (United States)

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  15. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo -MOFs: Application to methane purification and storage

    KAUST Repository

    Belmabkhout, Youssef

    2014-01-01

    Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1, correspondingly dubbed tbo-MOF-1), which were developed via the supermolecular building layer (SBL) pillaring strategy. Specifically, tbo-MOF-2 and its isoreticular, functionalized analogue, tbo-MOF-2-{CH2O[Ph(CO2H)2]}2 (or tbo-MOF-3), which is characterized by pendant isophthalic acid moieties freely pointing into the cavities, were evaluated on the basis of potential use in methane storage and C2+/CH4 separation. The parent, tbo-MOF-2, showed high gravimetric and volumetric CH4 uptake, close to the U.S. Department of Energy (DOE) target for methane storage at 35 bar and room temperature. Though the presence of the pendant isophthalic acid moiety in the analogous compound, tbo-MOF-3, led to a decrease in total CH4 uptake, due mainly to the reduced size of the cavities, interestingly, it increased the affinity of the SBL-based tbo-MOF platform for propane, propene, ethane, and ethylene at low pressures compared with CH4, due additionally to the enhanced interactions of the highly polarizable light hydrocarbons with the isophthalic acid moiety. Using Ideal Adsorption Solution Theory (IAST), the predicted mixture adsorption equilibria for the C3H8/CH4, C3H6/CH4, C2H6/CH4, C2H4/CH4, and C3H8/CO2 systems showed high adsorption selectivity for C2+ over methane for tbo-MOF-3 compared with tbo-MOF-2. The high working storage capacity of tbo-MOF-2 and the high affinity of tbo-MOF-3 for C2+ over CH4 and CO2 make tbo-MOF an ideal platform for studies in gas storage and separation.

  16. Iptycene synthesis: A new method for attaching a 2,3-anthracene moiety to the 9,10-positions of another anthracene moiety - Exceptional conditions for a Lewis acid catalyzed Diels-Alder reaction

    Science.gov (United States)

    Chen, Yong-Shing; Hart, Harold

    1989-01-01

    An efficient three-step method for appending a 2,3-anthracene moiety to the 9,10-positions of an existing anthracene moiety is described. The first step uses excess 1,4-anthraquinone (3 equiv) and aluminum chloride (6 equiv) to obtain the anthracene-quinone cycloadduct (omission of the AlCl3 resulted in no adduct). The resulting diketone was reduced to the corresponding diol (excess LiAlH4), which was dehydrated to the arene with phosphorus oxychloride and pyridine. Specific examples include the preparation of heptipycene 8 from pentiptycene 6 (66 percent overall yield) and a similar conversion of 8 to the noniptycene 13 (75 percent overall yield). The methodology led to a markedly improved synthesis of tritriptycene 9 and the first synthesis of undecaiptycene 14.

  17. The Nitrogen Moieties of Dietary Nonessential Amino Acids Are Distinctively Metabolized in the Gut and Distributed to the Circulation in Rats.

    Science.gov (United States)

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei

    2017-08-01

    Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived

  18. Crystal structures of a manganese(I and a rhenium(I complex of a bipyridine ligand with a non-coordinating benzoic acid moiety

    Directory of Open Access Journals (Sweden)

    Sheri Lense

    2018-05-01

    Full Text Available The structures of two facially coordinated Group VII metal complexes are reported, namely: fac-bromido[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylmanganese(I tetrahydrofuran monosolvate, [MnBr(C17H12N2O2(CO3]·C4H8O, I, and fac-[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylchloridorhenium(I tetrahydrofuran monosolvate, [ReCl(C17H12N2O2(CO3]·C4H8O, II. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ion, and a 2-(2,2′-bipyridin-6-ylbenzoic acid ligand, in a distorted octahedral geometry. In manganese complex I, the tetrahydrofuran (THF solvent molecule could not be refined due to disorder. The benzoic acid fragment is also disordered over two positions, such that the carboxylic acid group is either positioned near to the bromide ligand or to the axial carbonyl ligand. In the crystal of I, the complex molecules are linked by a pair of C—H...Br hydrogen bonds, forming inversion dimers that stack up the a-axis direction. In the rhenium complex II, there is hydrogen bonding between the benzoic acid moiety and a disordered co-crystallized THF molecule. In the crystal, the molecules are linked by C—H...Cl hydrogen bonds, forming layers parallel to (100 separated by layers of THF solvent molecules.

  19. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    OpenAIRE

    Anh Van Nguyen; Victor Deineka; Lumila Deineka; Anh Vu Thi Ngoc

    2017-01-01

    Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs) retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA) by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD) and mass spectrometric (MS) detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, ...

  20. Synthesis and Characterization of a Heteroleptic Ru(II Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2010-09-01

    Full Text Available In an effort to develop new ruthenium(II complexes, this work describes the design, synthesis and characterization of a ruthenium(II functionalized phenanthroline complex with extended π-conjugation. The ligand were L1 (4,7-bis(2,3-dimethylacrylic acid-1,10-phenanthroline, synthesized by a direct aromatic substitution reaction, and L2 (4,7-bis(trianthracenyl-2,3-dimethylacrylic acid-1,10-phenanthroline, which was synthesized by the dehalogenation of halogenated aromatic compounds using a zero-valent palladium cross-catalyzed reaction in the absence of magnesium-diene complexes and/or cyclooctadienyl nickel (0 catalysts to generate a new carbon-carbon bond (C-C bond polymerized hydrocarbon units. The ruthenium complex [RuL1L2(NCS2] showed improved photophysical properties (red-shifted metal-to-ligand charge-transfer transition absorptions and enhanced molar extinction coefficients, luminescence and interesting electrochemical properties. Cyclic and square wave voltammetry revealed five major redox processes. The number of electron(s transferred by the ruthenium complex was determined by chronocoulometry in each case. The results show that processes I, II and III are multi-electron transfer reactions while processes IV and V involved one-electron transfer reaction. The photophysical property of the complex makes it a promising candidate in the design of chemosensors and photosensitizers, while its redox-active nature makes the complex a potential mediator of electron transfer in photochemical processes.

  1. Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety

    International Nuclear Information System (INIS)

    Nataraja, S.E.; Venkatesha, T.V.; Manjunatha, K.; Poojary, Boja; Pavithra, M.K.; Tandon, H.C.

    2011-01-01

    Highlights: → Acid corrosion inhibition. → Work in small concentration. → Effective at higher temperature. → Effect of different functional groups, cyclisation and aromaticity. - Abstract: The corrosion inhibition effect of 2-[4-(methylthio) phenyl] acetohydrazide (HYD), 2-{[4-(methylthio) phenyl] acetyl} hydrazinecarbothioamide (TAD) and 5-[4-(methylthio) benzyl]-4H-1,2,4-triazole-3-thiol (TRD) on steel in 1.0 M HCl was investigated by mass loss and electrochemical methods. The effect of concentration, temperature and immersion time was studied. The results indicated that the compounds are efficient, mixed type and pursue Flory-Huggins adsorption isotherm. The inhibition efficiency at lower concentration of inhibitor decreased with temperature while at higher concentration, it is retained and the calculated free energy attributes this to comprehensive adsorption. The efficiency stands in the order TRD > TAD > HYD and is confirmed by the Quantum studies.

  2. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong

    2017-12-01

    A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.

  3. Investigating the chemical changes of chlorogenic acids during coffee brewing: conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides.

    Science.gov (United States)

    Matei, Marius Febi; Jaiswal, Rakesh; Kuhnert, Nikolai

    2012-12-12

    Coffee is one of the most popular and consumed beverages in the world and is associated with a series of benefits for human health. In this study we focus on the reactivity of chlorogenic acids, the most abundant secondary metabolites in coffee, during the coffee brewing process. We report on the hydroxylation of the chlorogenic acid cinnamoyl substituent by conjugate addition of water to form 3-hydroxydihydrocaffeic acid derivatives using a series of model compounds including monocaffeoyl and dicaffeoylquinic acids and quinic acid lactones. The regiochemistry of conjugate addition was established based on targeted tandem MS experiments. Following conjugate addition of water a reversible water elimination yielding cis-cinnamoyl derivatives accompanied by acyl migration products was observed in model systems. We also report the formation of all of these derivatives during the coffee brewing process.

  4. The synthesis of taurine-conjugated bile acids and bile acid sulfates labeled with {sup 14}C or {sup 3}H in the taurine moiety

    Energy Technology Data Exchange (ETDEWEB)

    Jie Zhang; Griffiths, W.J.; Sjoevall, Jan [Karolinska Inst., Medical Biochemistry and Biophysics Dept., Stockholm (Sweden)

    1997-02-01

    Studies of bile acid transport systems require radio-labeled taurine-conjugated bile acids with high specific activity. An established procedure was optimized to provide mild, fast, and effective conjugation of radio-labeled taurine with different types of bile acids, including those with labile 7{alpha}-hydroxy-3-oxo-{Delta}{sup 4} or 3{beta}, 7{alpha}-dihydroxy-{Delta}{sup 5} structures. Taurine labeled with {sup 14}C or {sup 3}H was reacted with excess bile acid anhydride formed from the tributylamine salt and ethylchloroformate (2/1 M/M) in aqueous dioxane for 15 min at room temperature. The yields were higher than 95% and less than 2% side products were formed. Bile acid sulfates were conjugated with {sup 14}C- or {sup 3}H-labeled taurine by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling reagent. The products were effectively purified by chromatography of the sodium salts on Sephadex LH-20. The yields of taurine-conjugated bile acid sulfates were 65-70%. (author).

  5. The synthesis of taurine-conjugated bile acids and bile acid sulfates labeled with 14C or 3H in the taurine moiety

    International Nuclear Information System (INIS)

    Jie Zhang; Griffiths, W.J.; Sjoevall, Jan

    1997-01-01

    Studies of bile acid transport systems require radio-labeled taurine-conjugated bile acids with high specific activity. An established procedure was optimized to provide mild, fast, and effective conjugation of radio-labeled taurine with different types of bile acids, including those with labile 7α-hydroxy-3-oxo-Δ 4 or 3β, 7α-dihydroxy-Δ 5 structures. Taurine labeled with 14 C or 3 H was reacted with excess bile acid anhydride formed from the tributylamine salt and ethylchloroformate (2/1 M/M) in aqueous dioxane for 15 min at room temperature. The yields were higher than 95% and less than 2% side products were formed. Bile acid sulfates were conjugated with 14 C- or 3 H-labeled taurine by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling reagent. The products were effectively purified by chromatography of the sodium salts on Sephadex LH-20. The yields of taurine-conjugated bile acid sulfates were 65-70%. (author)

  6. Poly(amic acid)s and their poly(amide imide) counterparts containing azobenzene moieties: Characterization, imidization kinetics and photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Konieczkowska, Jolanta [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice (Poland); Janeczek, Henryk [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Kozanecka-Szmigiel, Anna, E-mail: annak@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa (Poland); Schab-Balcerzak, Ewa, E-mail: eschab-balcerzak@cmpw-pan.edu.pl [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2016-09-01

    We report on a series of novel photochromic poly(amide imide)s and their poly(amic acid) precursors bearing azobenzene chromophores as the side groups. The chemical structures of the polymers were designed so that they exhibited an enhanced thermal stability combined with a large and stable birefringence photogenerated by light of the wavelengths belonging to a wide spectral range. The polymers possessed rigidly attached azochromophores in the content of either one or two per a repeating unit, which in the latter case differed in their structures. The imidization kinetics of the poly(amic acid)s was investigated by differential scanning calorimetry and the kinetic parameters were estimated using Ozawa and Kissinger methods. Measurements of the selected physical properties of the polymers, such as solubility, supramolecular structure, linear absorption, thermal stability, glass transition and photochromic response were performed and used for determination of the structure-property relations. The measurements of photochromic properties showed a very efficient generation of optical anisotropy upon blue and violet irradiation, for both the poly(amide imide)s containing two different chromophores in the repeating unit and for their precursors. For these poly(amide imide)s and for their precursors an exceptionally slow decrease in the photoinduced optical anisotropy in the dark was also observed. - Highlights: • Three azopoly(amide imide)s were obtained from azopoly(amic acid)s. • Chosen physicochemical properties and photochromic responses were measured. • Desired optical response was found for polymers with two azo-dyes in repeating unit. • Structure-property relations were shown.

  7. Influence of different amino substituents in position 1 and 4 on spectroscopic and acid base properties of 9,10-anthraquinone moiety.

    Science.gov (United States)

    Wcisło, Anna; Niedziałkowski, Paweł; Wnuk, Elżbieta; Zarzeczańska, Dorota; Ossowski, Tadeusz

    2013-05-01

    A series of novel 1-amino and 1,4-diamino-9,10-anthraquinones, substituted with different alkyl groups, were synthesized as the result of alkylation with amino substituents. All the obtained aminoanthraquinone derivatives were characterized by NMR, IR spectroscopy and mass spectrometry. The spectroscopic properties of these compounds were determined by using UV-Vis spectroscopy in acetonitrile, and in the mixture of acetonitrile and methanol at different pH ranges. The effects of various substituents present in the newly developed anthraquinone derivatives and their ability to form hydrogen bonds between the carbonyl oxygen atom of anthraquinone moiety and nitrogen atom of N-H group in 1-aminoanthraquinone (1-AAQ) and 1,4-diaminoanthraquinone (1,4-DAAQ) were studied. Additionally, the effects of hydrogen bond formation between O-H group in hydroxyethylamino substituent and the carbonyl oxygen atom of anthraquinone were investigated. The spectroscopic behavior of the studied derivatives strongly depended on the solvent-solute interactions and the nature of solvent. The values of pKa for the new anthraquinones were determined by the combined potentiometric and spectrophotometric titration methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Polyethene with pendant fullerene moieties

    NARCIS (Netherlands)

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  9. Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies

    International Nuclear Information System (INIS)

    Bentiss, F.; Lebrini, M.; Vezin, H.; Chai, F.; Traisnel, M.; Lagrene, M.

    2009-01-01

    We report here the use of macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety (n-MCTH) in the corrosion inhibition of C38 carbon steel in 0.5 M H 2 SO 4 acid medium. The aim of this work is devoted to study the inhibition characteristics of these compounds for acid corrosion of C38 steel using electrochemical impedance spectroscopy (EIS). Data obtained from EIS show a frequency distribution and therefore a modeling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution and the protection efficiency increased with increasing inhibitors concentration. The difference in their inhibitive action can be explained on the basis of the number of oxygen atoms present in the polyether ring which contribute to the chemisorption strength through the donor acceptor bond between the non bonding electron pair and the vacant orbital of metal surface. Adsorption of n-MCTH was found to follow the Langmuir's adsorption isotherm. The thermodynamic functions of adsorption process were calculated and the interpretation of the results is given. These results are complemented with quantum chemical study in order to provide an explanation of the differences between the probed inhibitors. Correlation between the inhibition efficiency and the structure of these compounds are presented.

  10. [Synthetic transformations of higher terpenoids. XXX. Synthesis and cytotoxic activity of betulonic acid amides with a piperidine or pyrrolidine nitroxide moiety].

    Science.gov (United States)

    Antimonova, A N; Petrenko, N I; Shults, E E; Polienko, Iu F; Shakirov, M M; Irtegova, I G; Pokrovskiĭ, M A; Sherman, K M; Grigor'ev, I A; Pokrovskiĭ, A G; Tolstikov, G A

    2013-01-01

    The reaction of betulonic acid chloride with 4-amino-2,2,6,6-tetramethylpeperidine-1-oxyl, 3-amino-2,2,5,5-tetramethylpyrrolidine-1-oxyl and 3-aminomethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl gave corresponding triterpenoid amides. It was found that new derivatives exhibit cytotoxic activity against tumor cells CEM-13, U-937, MT-4. CCID50 value for most activity compound--N-[3-oxolup-20(29)-en-30-yl]-(2,2,6,6-tetramethylpiperidine-4-yl)-1-oxyl--was 5.7-33.1 microM.

  11. Azomesogens with a heterocyclic moiety

    Indian Academy of Sciences (India)

    Unknown

    Azomesogens with a heterocyclic moiety. †. JAYRANG S DAVE and MEERA MENON*. Department of Applied Chemistry, Faculty of Technology and Engineering, MS University of Baroda,. Baroda 390 001, India. Abstract. Azobenzene derivatives were among the first ten liquid crystalline compounds. But there have been.

  12. Interaction of nitroaromatic radiosensitizers with irradiated polyadenylic acid as measured by an indirect immunochemical assay with specificity for the 8,5'-cycloadenosine moiety

    Energy Technology Data Exchange (ETDEWEB)

    Fuciarelli, A F; Mele, F G; Raleigh, J A

    1987-04-01

    The relative reactivity of a series of nitroaromatic radiosensitizers toward the C(5') radical intermediate leading to 8,5'-cycloadenosine formation in deoxygenated solutions of irradiated polyadenylic acid (poly A) was assessed using standard competition kinetic analysis. Formation of 8,5'-cycloadenosine was assayed by an indirect, competitive, enzyme-linked immunosorbent assay (ELISA) described in an earlier report. In the absence of oxygen, the nitroaromatics inhibit 8,5'-cyclonucleoside formation in a way which generally increases with radiosensitizer electron affinity. Although hydroxyl radical scavenging by the nitroaromatics may account for a relatively small decrease in 8,5'cyclonucleoside formation, the data suggest that oxidation of the C(5') radical intermediate is the more plausible explanation for the decreased yield of the 8,5'-cyclonucleoside with increasing nitroaromatic electron affinity.

  13. Discovery of a novel acyl-CoA: cholesterol acyltransferase inhibitor: the synthesis, biological evaluation, and reduced adrenal toxicity of (4-phenylcoumarin)acetanilide derivatives with a carboxylic acid moiety.

    Science.gov (United States)

    Ogino, Masaki; Nakada, Yoshihisa; Negoro, Nobuyuki; Itokawa, Shigekazu; Nishimura, Satoshi; Sanada, Tsukasa; Satomi, Tomoko; Kita, Shunbun; Kubo, Kazuki; Marui, Shogo

    2011-01-01

    As a part of our research for novel potent and orally available acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors that can be used as anti-atherosclerotic agents, we recently reported the discovery of the (4-phenylcoumarine)acetanilide derivative 1. However, compound 1 showed adrenal toxicity in animal models. In order to search for safer ACAT inhibitors that do not have adrenal toxicity, we examined the inhibitory activity of ACAT in human macrophage and adrenal cells. The introduction of a carboxylic acid moiety on the pendant phenyl ring and the adjustment of the lipophilicity led to the discovery of (2E)-3-[7-chloro-3-[2-[[4-fluoro-2-(trifluoromethyl)phenyl]amino]-2-oxoethyl]-6-methyl-2-oxo-2H-chromen-4-yl]phenyl]acrylic acid (21e), which showed potent ACAT inhibitory activity in macrophages and a selectivity of around 30-fold over adrenal cells. In addition, compound 21e showed high adrenal safety in guinea pigs.

  14. Quaternized triethanolamine-sebacoyl moieties in highly branched polymer architecture as a host for the entrapment of acid dyes in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Meriem Bendjelloul

    2017-03-01

    Full Text Available This paper reports the synthesis of a hyperbranched polymer by a cost-effective one-step copolymerization of A3 and B2 monomers, namely, triethanolamine and sebacoyl chloride, respectively, followed by methylation of tertiary amine groups. The structure of the hyperbranched polymer QTEAS as an efficient material for the removal of acid dyes was demonstrated by Fourier transform infrared spectroscopy (FTIR, cross polarization magic angle spinning (CPMAS 13C NMR, thermogravimetric analysis (TGA, powder X-ray diffraction (DRX and scanning electron microscopy (SEM. The removal of indigo carmine (IC and Evans blue (EB was expected to be driven by the electrostatic attraction between positively charged quaternary ammonium groups within the hyperbranched polymer and the negatively charged dyes. The removal process was found to be closely connected to the total number of sulfonate groups on the surface of the dyes. Nonetheless, the ionic strength does not affect the dyes' removal efficiency by the hyperbranched polymer. The sorption capacities at saturation of the monolayer qmax were determined to be 213.22 mg g−1 and 214.13 mg g−1, for IC and EB, respectively, thus showing the greater affinity of QTEAS sorbent for both dyes. Despite its extended molecular structure, EB is removed with the same effectiveness as IC. Finally, the great efficiency of the highly branched polymer for dye removal from colored wastewater was clearly demonstrated.

  15. How do 10-camphorsulfonic acid, silver or aluminum nanoparticles influence optical, electrochemical, electrochromic and photovoltaic properties of air and thermally stable triphenylamine-based polyazomethine with carbazole moieties?

    International Nuclear Information System (INIS)

    Iwan, Agnieszka; Boharewicz, Bartosz; Tazbir, Igor; Filapek, Michal; Korona, Krzysztof P.; Wróbel, Piotr; Stefaniuk, Tomasz; Ciesielski, Arkadiusz; Wojtkiewicz, Jacek; Wronkowska, Aleksandra A.; Wronkowski, Andrzej; Zboromirska-Wnukiewicz, Beata; Grankowska-Ciechanowicz, Sylwia; Kaminska, Maria; Szoplik, Tomasz

    2015-01-01

    Organic (10-camphorsulfonic acid, CSA), organic-inorganic (Ag-poly(vinylpyrrolidone), Ag-PVP with 10 and 20 nm size of Ag) or inorganic (Al, 18 nm) compounds were applied as new components of active layer in bulk heterojunction polymer solar cells based on a new polyazomethine (PAZ-Car-TPA) resulting in significant change of optical and electrical properties. Moreover, colloidal Ag (100 nm) and Ag-PVP in aqueous solution (10 nm) were tested as an addition to the hole transporting layer based on PEDOT:PSS in polyazomethine solar cells. CSA added to PAZ-Car-TPA decrease its energy gap from 1.91 to 1.20 eV and causes a significant bathochromic shift of the maximum of absorption band along with the change of the polymer color from yellow to red (electrochromic behavior). Photoluminescence maximum of PAZ-Car-TPA protonated with CSA showed 120 nm redshift from 500 to 620 nm in comparison to undoped PAZ-Car-TPA. HOMO-LUMO of PAZ-Car-TPA and its mixture with CSA were analyzed by cyclic voltammetry and quantum mechanical calculations using Density Functional Theory method. Refraction index and extinction coefficient of PAZ-Car-TPA and its mixtures with PC 71 BM as well as Ag or Al nanoparticles were investigated taking into consideration various thickness of polymer layer. The power conversion efficiency of the ITO/PEDOT:PSS/PAZ-Car-TPA:PCBM:CSA/Al device was five time higher than that of the device based on PAZ-Car-TPA:PCBM. Such an enhancement was found to be primarily due to the increase of the short-circuit current, suggesting that the charge collection increases upon the incorporation of CSA in the active layer. Moreover, presence of Ag-PVP (20 nm) or Al (18 nm) in device increased short circuit current of the constructed polymer solar cells. Additionally, devices were tested by external quantum efficiency measurements and electrochemical impedance spectroscopy in dark and under illumination. The polymer solar cell with PAZ-Car-TPA as donor in active layer showed good

  16. Synthesis of the Sugar Moieties

    Science.gov (United States)

    Grynkiewicz, Grzegorz; Szeja, Wieslaw

    Biological activity of the anthracycline antibiotics, which have found wide application in clinical oncology, is strongly related to their glycosidic structure. Modification or switch of the saccharide moiety became an important line of new drug discovery and study of their mechanism of action. Natural glycons (sugar moieties) of the anthracycline antibiotics belong to the 2,6-dideoxypyranose family and their principal representative, daunosamine, is 3-amino-2,3,6-trideoxy- l-lyxo-pyranose. Some newer chemical syntheses of this sugar, from a chiral pool as well as from achiral starting materials, are presented and their capability for scale-up and process development are commented upon. Rational sugar structural modifications, which are either useful for synthetic purposes or offer advantages in experimental therapy of cancer, are discussed from the chemical point of view.

  17. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  18. Glucuronic Acid Derivatives in Enzymatic Biomass Degradation: Synthesis and Evaluation of Enzymatic Activity

    DEFF Research Database (Denmark)

    d'Errico, Clotilde

    An essential tool for biotechnology companies in enzyme development for biomass delignification is the access to well-defined model substrates. A deeper understanding of the enzymes substrate specificity can be used to address and optimize enzyme mixtures towards natural, complex substrates. Hence...

  19. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    International Nuclear Information System (INIS)

    Tin Myint Htwe

    2011-12-01

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  20. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

    Directory of Open Access Journals (Sweden)

    Qingzhang Du

    Full Text Available In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7 encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7, consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs were identified, with a high frequency of SNPs (1/18 bp and nucleotide diversity (πT = 0.01033, θw = 0.01280. Linkage disequilibrium (LD analysis showed that LD did not extend over the entire gene (r (2<0.1, P<0.001, within 700 bp. SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10 and 12 haplotypes (P<0.05 were significantly associated with growth and wood property traits in the association population (426 individuals, with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10 were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.

  1. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  2. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.

  3. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  4. Side chain polysiloxanes with phthalocyanine moieties

    Directory of Open Access Journals (Sweden)

    T. Ganicz

    2012-05-01

    Full Text Available Side chain polysiloxane with 5-(pentyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine moieties is synthesized by hydrosilylation reaction. The phase behavior and thermooptical properties of the polysiloxane and starting 2-(pent-4-enyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine is examined by POM (Polarizing optical microscopy, TOA (thermooptical analysis, DSC (differential scanning calorimetry, AFM (atomic force microscopy and SAXS (small angle X-ray scattering studies. The effect of the attachment of phthalocyanine to polysiloxane chains over phase transitions and phase morphology is discussed in details.

  5. White emission from liquid-crystalline copolymers containing oxadiazole moieties in the side chain

    Science.gov (United States)

    Kawamoto, Masuki; Tsukamoto, Takuji; Kinoshita, Motoi; Ikeda, Tomiki

    2006-09-01

    A liquid-crystalline polymer in the side chain was synthesized through copolymerization of a bipolar carrier-transporting monomer with a liquid-crystalline monomer containing oxadiazole moieties substituted with trifluoromethyl groups. A single-layer light-emitting diode of indium tin oxide (ITO)/copolymer/MgAg emitted white light with a maximum luminous efficiency of 0.1cd/A. The origin of the white emission in the copolymer is the electroplex between bipolar carrier-transporting moieties and strong electron-withdrawing moieties. Furthermore, a simple multilayer device with configuration of ITO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)/copolymer/MgAg device showed white emission with CIE 1931 chromaticity coordinates (x,y): (0.30, 0.33).

  6. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  7. Turnover and metabolism of phosphatidylglycerol acyl moieties in E. coli

    International Nuclear Information System (INIS)

    Cooper, C.L.; Rock, C.O.

    1987-01-01

    Fatty acids synthesized in mutants (plsB) blocked in de novo phospholipid biosynthesis were preferentially transferred to phosphatidylglycerol (PtdGro). The ratio of phospholipid species labeled with 32 P and [ 3 H]acetate in the absence of glycerol-3-P acyltransferase activity indicated that [ 3 H]acetate incorporation into PtdGro was due to fatty acid turnover. The magnitude of the turnover process was difficult to estimate due to a significant contraction of the acetyl-CoA pool following the inhibition of phospholipid synthesis. A possible connection between PtdGro turnover and protein acylation was investigated in an E. coli strain containing a lipoprotein expression vector. Cells were prelabeled with [ 3 H]acetate and lipoprotein expression was induced concomitant with the addition of exogenous [ 14 C]-palmitate. [ 14 C] Palmitate was assimilated into the l-position of phosphatidylethanolamine and transferred to the amino terminus of the lipoprotein. In contrast, the ester-linked lipoprotein fatty acids and PtdGro were not enriched in carbon-14 implying a metabolic relationship between these two pools. The data suggest that turnover of PtdGro acyl moieties is related to protein acylation, but a direct link between the two processes remains to be established

  8. Preservation of peptide moieties in three Spanish sulfur-rich Tertiary kerogens

    Energy Technology Data Exchange (ETDEWEB)

    Rio, J.C. del [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de Recursos Naturales y Agrobiologia; Olivella, M.A.; Heras, F.X.D. de las [Escola Universitaria Politecnica de Manresa, Catalonia (Spain); Knicker, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Bodenkunde

    2004-09-01

    Thermochemolysis with tetramethylammonium hydroxide (TMAH) and solid-state {sup 15}N NMR were utilized for the characterization of refractory organic nitrogen in Tertiary Spanish kerogens. The samples included sulfur-rich oil shales from the Ribesalbes (Serravallian), Libros (Tortonian) and Cerdanya (Tortonian) basins. Analysis using solid state {sup 15}N NMR showed that part of the refractory nitrogen in the kerogens corresponds to amide groups. Moreover, the release of amino acid derivatives after pyrolysis in the presence of TMAH indicated that this amide-N arose from peptide moieties. The amino acids released from the kerogens were dominated by high amounts of glycine and alanine. Minor amounts of aspartic acid, serine, {alpha}-aminobutyric acid and other unidentified amino acids were also detected. Because proteinaceous structures, including small peptides, are generally considered as being highly sensitive to diagenetic degradation, encapsulation of labile peptide material into aliphatic structures in S-rich kerogens (probably via lipid sulfurization) has been proposed to explain the survival of these moieties. Substantial amounts of fatty acids (as methyl esters) were also released from all the kerogens after pyrolysis/TMAH, indicating their highly aliphatic character. The production of both fatty acids and amino acids from the kerogens supports the encapsulation process. (author)

  9. Synthesis of polynorbornene with pendant moiety bearing azide and terminal alkyne groups

    Institute of Scientific and Technical Information of China (English)

    Ze Zhang; Zhi Wei Peng; Kun Zeng Fan

    2011-01-01

    A powerful approach to the synthesis of an unprecedented polynorbornene with pendant moiety bearing azide and terminal alkyne groups is developed. Two key intermediates, namely, 3-azido-5-(2-(trimethylsilyl)ethynyl) benzyl alcohol and 4-(4-aza-tricyclo [5.2.1.02.6]dec-8-en-4-yl) benzoic acid, were optimally synthesized for convergent synthesis of the corresponding monomer.

  10. Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Monique Rothe

    Full Text Available Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes.

  11. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds

    International Nuclear Information System (INIS)

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D.

    1990-01-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1- 14 C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2- 14 C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1- 14 C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2- 14 C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols

  12. Tetranuclear copper(II) complexes bridged by alpha-D-glucose-1-phosphate and incorporation of sugar acids through the Cu4 core structural changes.

    Science.gov (United States)

    Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro

    2006-08-21

    -D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.

  13. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  14. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.

    Directory of Open Access Journals (Sweden)

    Alberto Vázquez-Salazar

    Full Text Available The imidazole group is an ubiquitous chemical motif present in several key types of biomolecules. It is a structural moiety of purines, and plays a central role in biological catalysis as part of the side-chain of histidine, the amino acid most frequently found in the catalytic site of enzymes. Histidine biosynthesis starts with both ATP and the pentose phosphoribosyl pyrophosphate (PRPP, which is also the precursor for the de novo synthesis of purines. These two anabolic pathways are also connected by the imidazole intermediate 5-aminoimidazole-4-carboxamide ribotide (AICAR, which is synthesized in both routes but used only in purine biosynthesis. Rather surprisingly, the imidazole moieties of histidine and purines are synthesized by different, non-homologous enzymes. As discussed here, this phenomenon can be understood as a case of functional molecular convergence.In this work, we analyze these polyphyletic processes and argue that the independent origin of the corresponding enzymes is best explained by the differences in the function of each of the molecules to which the imidazole moiety is attached. Since the imidazole present in histidine is a catalytic moiety, its chemical arrangement allows it to act as an acid or a base. On the contrary, the de novo biosynthesis of purines starts with an activated ribose and all the successive intermediates are ribotides, with the key β-glycosidic bondage joining the ribose and the imidazole moiety. This prevents purine ribonucleotides to exhibit any imidazole-dependent catalytic activity, and may have been the critical trait for the evolution of two separate imidazole-synthesizing-enzymes. We also suggest that, in evolutionary terms, the biosynthesis of purines predated that of histidine.As reviewed here, other biosynthetic routes for imidazole molecules are also found in extant metabolism, including the autocatalytic cyclization that occurs during the formation of creatinine from creatine phosphate

  15. An efficient synthesis and spectroscopic characterization of Schiff bases containing 9,10-anthracenedione moiety

    Directory of Open Access Journals (Sweden)

    Fareed Ghulam

    2013-01-01

    Full Text Available A new method has been developed for the synthesis of novel Schiff bases containg anthraquinone moiety using dodeca-Tungstosilicic acid/P2O5 under solvent free conditions at room temperature. The reaction was completed in 1-3 minutes with excellent yields. This method was found to be more efficient, easy and hazardous free for the synthesis of azomethines. The development of these type of methadologies in synthetic chemistry may contribute to green chemistry. The structures of synthesized novel Schiff bases was elucidated using 1H-NMR, 13C-NMR, LCMS, FTIR and CHN analysis.

  16. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  17. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    Science.gov (United States)

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

    Science.gov (United States)

    Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2014-10-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.

  19. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dmochowska, Barbara [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Piosik, Jacek; Woziwodzka, Anna [Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk (Poland); Sikora, Karol; Wisniewski, Andrzej [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk (Poland)

    2011-10-15

    Highlights: {yields} A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. {yields} The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. {yields} The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. {yields} We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  20. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    International Nuclear Information System (INIS)

    Dmochowska, Barbara; Piosik, Jacek; Woziwodzka, Anna; Sikora, Karol; Wisniewski, Andrzej; Wegrzyn, Grzegorz

    2011-01-01

    Highlights: → A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. → The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. → The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. → We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  1. Preparation and characterization of new polyamide/montmorillonite nanocomposites containing azo moiety in the main chain

    Directory of Open Access Journals (Sweden)

    Khalil Faghihi

    2016-11-01

    Full Text Available Two new samples of polyamide/montmorillonite reinforced nanocomposites containing 4,4′-azobenzoic acid moiety in the main chain were synthesized by a convenient solution intercalation technique. Polyamide (PA 4 as a source of polymer matrix was synthesized by the direct polycondensation reaction of 4,4′-azobenzoic acid 2 with 4,4′-diamino diphenyl ether 3 in the presence of triphenyl phosphite (TPP, CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP. Morphology and structure of the resulting PA-nanocomposite films 4a and 4b with 10 and 20% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV–vis spectroscopy, thermogravimetric analysis (TGA and water uptake measurements.

  2. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  3. Method for determining the composition of the sugar moiety of a sugar containing compound

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to methods of labeling sugar moieties of sugar containing compounds including glycopeptides. The compounds presented in the present invention facilitate reliable detection of sugar moieties of sugar containing compounds by a combination of spectroscopy methods...

  4. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  5. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  6. Examination of adipose depot-specific PPAR moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, M.V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Vierck, J.L. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Hausman, G.J. [USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604 (United States); Guan, L.L. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Canada); Fernyhough, M.E. [The Hartz Mountain Corporation, Secaucus, NJ 07094 (United States); Poulos, S.P. [The Coca-Cola Company, Research and Technology, Atlanta, GA 30313 (United States); Mir, P.S. [Agriculture and Agri-Food Canada Research Centre, Lethbridge, CA T1J 4B1 (United States); Jiang, Z. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  7. Examination of adipose depot-specific PPAR moieties

    International Nuclear Information System (INIS)

    Dodson, M.V.; Vierck, J.L.; Hausman, G.J.; Guan, L.L.; Fernyhough, M.E.; Poulos, S.P.; Mir, P.S.; Jiang, Z.

    2010-01-01

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  8. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Won; Park, Myung Sook [College of Pharmacy, Duksung Women' s University, Seoul (Korea, Republic of)

    2016-11-15

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC{sub 50} values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells.

  9. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    International Nuclear Information System (INIS)

    Kim, Chae Won; Park, Myung Sook

    2016-01-01

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC_5_0 values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells

  10. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  11. Synthesis of Some New 1,3,4-Thiadiazole, Thiazole and Pyridine Derivatives Containing 1,2,3-Triazole Moiety

    Directory of Open Access Journals (Sweden)

    Nadia A. Abdelriheem

    2017-02-01

    Full Text Available In this study, 1-(5-Methyl-1-(p-tolyl-1H-1,2,3-triazol-4-ylethan-1-one, was reacted with Thiosemicarbazide, alkyl carbodithioate and benzaldehyde to give thiosemicarbazone, alkylidenehydrazinecarbodithioate and 3-phenylprop-2-en-1-one-1,2,3-triazole derivatives. The 1,3,4-thiadiazole derivatives containing the 1,2,3-triazole moiety were obtained via reaction of alkylidenecarbodithioate with hydrazonoyl halides. Also, hydrazonoyl halides were reacted with thiosemicarbazone and pyrazolylthioamide to give 1,3-thiazoles derivatives. Subsequently, 3-phenyl2-en-1-one was used to synthesize substituted pyridines and substituted nicotinic acid ester. The latter was converted to its azide compound which was reacted with aromatic amines and phenol to give substituted urea and phenylcarbamate containing 1,2,3-triazole moiety. The newly synthesized compounds were established by elemental analysis, spectral data and alternative synthesis whenever possible.

  12. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies.

    Science.gov (United States)

    Ye, LiBin; Zhang, JingSong; Ye, XiJun; Tang, QingJiu; Liu, YanFang; Gong, ChunYu; Du, XiuJui; Pan, YingJie

    2008-03-17

    A water-soluble glycopeptide (GLPCW-II) was isolated from the fruiting bodies of Ganoderma lucidum by DEAE-Sepharose Fast-Flow and Sephacryl S-300 High Resolution Chromatography. The glycopeptide had a molecular weight of 1.2x10(4)Da (determined by HPLC), and consisted of approximately 90% carbohydrate and approximately 8% protein as determined using the phenol-sulfuric acid method and the BCA protein assay reagent kit, respectively. The polysaccharide moiety was composed mainly of D-Glc, L-Fuc, and D-Gal in the ratio of 1.00:1.09:4.09. To facilitate structure-activity studies, the structure of the GLPCW-II polysaccharide moiety was elucidated using 1H and 13C NMR spectroscopy including COSY, TOCSY, HMBC, HSQC, and ROESY, combined with GC-MS of methylated derivatives, and shown to consist of repeating units with the following structure: [Formula: see text].

  13. Bioisosteric modifications of 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet O; Peters, Dan

    2004-01-01

    2-Arylureidobenzoic acids (AUBAs) have recently been presented as the first series of selective noncompetitive GluR5 antagonists. In this paper we have modified the acidic moiety of the AUBAs by introducing different acidic and neutral groups, and similarly, we have replaced the urea linker...... of the AUBAs with other structurally related linkers. Replacing the acid with neutral substituents led to inactive compounds in all instances, showing that an acidic moiety is necessary for activity. Replacing the carboxylic moiety in 2a with a sulfonic acid (5c) or a tetrazole ring (5d) improved the potency...

  14. Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species

    DEFF Research Database (Denmark)

    Koutaniemi, Sanna; Guillon, Fabienne; Tranquet, Olivier

    2012-01-01

    Immunolabeling can be used to locate plant cell wall carbohydrates or other components to specific cell types or to specific regions of the wall. Some antibodies against xylans exist; however, many partly react with the xylan backbone and thus provide limited information on the type of substituen...

  15. Tilia tomentosa pectins exhibit dual mode of action on phagocytes as beta-glucuronic acid monomers are abundant in their rhamnogalacturonans I

    Czech Academy of Sciences Publication Activity Database

    Georgiev, Y.N.; Paulsen, B.S.; Kiyohara, H.; Číž, Milan; Ognyanov, M.H.; Vašíček, Ondřej; Rise, F.; Denev, P.; Lojek, Antonín; Batsalova, T.G.; Dzhambazov, B.M.; Yamada, H.; Lund, R.; Barsett, H.; Krastanov, A.I.; Yanakieva, I.Z.; Kratchanova, M.

    2017-01-01

    Roč. 175, NOV2017 (2017), s. 178-191 ISSN 0144-8617 Grant - others:GA MŠk(CZ) LQ1605 Institutional support: RVO:68081707 Keywords : biophytum-petersianum klotzsch * nitric-oxide production Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.811, year: 2016

  16. Synthesis of α- and β-D-glucopyranuronate 1-phosphate and α-D-glucopyranuronate 1-fluoride: intermediates in the synthesis of D-glucuronic acid from starch

    NARCIS (Netherlands)

    Heeres, André; Van Doren, Henk A.; Gotlieb, Kees F.; Bleeker, Ido P.

    1997-01-01

    The title uronates were prepared by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) catalysed sodium hypochlorite oxidation of α- and β-D-glucopyranosylphosphate (α-/β-Glc-1-P) and α-D-glucopyranosyl fluoride (α-Glc-1-F). Quantitative recovery of the TEMPO catalyst was achieved by azeotropic

  17. New pentose dimers with bicyclic moieties from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, H.; Sørensen, Henrik Rokkjær; Tanner, David Ackland

    2017-01-01

    In lignocellulosic biorefinery processes involving enzyme catalysed reactions it is a challenge that enzyme inhibiting compounds are generated and liberated during pretreatment of the biomass. In this study the contribution to cellulase inhibition from xylooligosaccharides and newly discovered...... oligophenolic compounds from pilot scale pretreated wheat straw was assessed at two different pretreatment severities. An increase in severity of the pretreatment led to more oligophenol compounds and in turn the total overall cellulase inhibition increased. When the xylooligosaccharides were enzymatically...... degraded prior to cellulose hydrolysis, a relief in cellulase inhibition was observed, but some inhibition remained, suggesting that other components also played a role in inhibition. We propose that these components include dipentoses with bicyclic moieties and feruloylated tripentoses, because LC...

  18. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  19. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  20. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    Directory of Open Access Journals (Sweden)

    Akihiko Shimada

    2012-05-01

    Full Text Available The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  1. Triphenylphosphonium Moiety Modulates Proteolytic Stability and Potentiates Neuroprotective Activity of Antioxidant Tetrapeptides in Vitro

    Directory of Open Access Journals (Sweden)

    Rezeda A. Akhmadishina

    2018-02-01

    Full Text Available Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK and D-arginine (YrFK were synthesized and coupled with carboxyethyl-TPP (TPP-3 and carboxypentyl-TPP (TPP-6 units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.

  2. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  3. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition

    KAUST Repository

    Chan, Kiat Hwa

    2017-10-04

    Self-assembly of small biomolecules is a prevalent phenomenon that is increasingly being recognised to hold the key to building complex structures from simple monomeric units. Small peptides, in particular ultrashort peptides containing up to seven amino acids, for which our laboratory has found many biomedical applications, exhibit immense potential in this regard. For next-generation applications, more intricate control is required over the self-assembly processes. We seek to find out how subtle moiety variation of peptides can affect self-assembly and nanostructure formation. To this end, we have selected a library of 54 tripeptides, derived from systematic moiety variations from seven tripeptides. Our study reveals that subtle structural changes in the tripeptides can exert profound effects on self-assembly, nanostructure formation, hydrogelation, and even phase transition of peptide nanostructures. By comparing the X-ray crystal structures of two tripeptides, acetylated leucine-leucine-glutamic acid (Ac-LLE) and acetylated tyrosine-leucine-aspartic acid (Ac-YLD), we obtained valuable insights into the structural factors that can influence the formation of supramolecular peptide structures. We believe that our results have major implications on the understanding of the factors that affect peptide self-assembly. In addition, our findings can potentially assist current computational efforts to predict and design self-assembling peptide systems for diverse biomedical applications.

  4. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2016-10-01

    Full Text Available Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer (D1 manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one (D2 displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1, in a three-layer organic light emitting diode (OLED by solution processing gave a pure blue emission with Commission Internationale de l’Éclairage 1931 CIE xy = (0.16, 0.12, a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m2. This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  5. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.

    Science.gov (United States)

    Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus

    2016-10-20

    Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  6. Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety

    International Nuclear Information System (INIS)

    Hu, Kun; Sonti, Shilpa; Glaser, Sherrye T.; Duclos, Richard I.; Gatley, Samuel J.

    2017-01-01

    Introduction: Anandamide (N-arachidonoylethanolamine) is a retrograde neuromodulator that activates cannabinoid receptors. The concentration of anandamide in the brain is controlled by fatty acid amide hydrolase (FAAH), which has been the focus of recent drug discovery efforts. Previous studies in C57BL/6 mice using [ 3 H-arachidonoyl]anandamide demonstrated deposition of tritium in thalamus and cortical areas that was blocked by treatment with an FAAH inhibitor and that was not seen in FAAH-knockout mice. This suggested that long chain fatty acid amides radiolabeled in the fatty acid moiety might be useful as ex vivo and in vivo radiotracers for FAAH, since labeled fatty acid released by hydrolysis would be rapidly incorporated into phospholipids with long metabolic turnover periods. Methods: Radiotracers were administered intravenously to conscious Swiss–Webster mice, and radioactivity concentrations in brain areas was quantified and radiolabeled metabolites determined by radiochromatography. Results: [ 14 C]Arachidonic acid, [ 14 C-arachidonoyl]anandamide and [ 14 C-ethanolamine]anandamide, and also [ 14 C]myristic acid, [ 14 C-myristoyl]myristoylethanolamine and [ 14 C-ethanolamine]myristoyl-ethanolamine all had very similar distribution patterns, with whole brain radioactivity concentrations of 2–4% injected dose per gram. Pretreatment with the potent selective FAAH inhibitor URB597 did not significantly alter distribution patterns although radiochromatography demonstrated that the rate of incorporation of label from [ 14 C]anandamide into phospholipids was decreased. Pretreatment with the muscarinic agonist arecoline which increases cerebral perfusion increased brain uptake of radiolabel from [ 14 C]arachidonic acid and [ 14 C-ethanolamine]anandamide, and (in dual isotope studies) from the unrelated tracer [ 125 I]RTI-55. Conclusions: Together with our previously published study with [ 18 F-palmitoyl]16-fluoro-palmitoylethanolamine, the data show that the

  7. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    International Nuclear Information System (INIS)

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  8. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available 8. This was successfully prepared by the coupling 4 of valeric acid chloride to Meldrum' s acid to yield the C-acyl derivative 6. Compound 6 was treated with SO2Ci 2 yielding the chloro acyl derivative of Meldrum...) O D (8) (v) + O2 N/~/CHO Reagents: (i) SOCI2, 70%, (ii) Meldrum's acid, pyridine, 80%, (iii) SO2C12, 65%, (iv) D20, Ac20, 20%, (v) K-t-butoxide, 20%, (vi) Baker's yeast, 12%. Scheme 3 The deuterium labelled...

  9. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    Science.gov (United States)

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  10. Small endogenous molecules as moiety to improve targeting of CNS drugs.

    Science.gov (United States)

    Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo

    2017-01-01

    A major challenge in the development of novel neuro-therapeutic agents is to effectively overcome the blood-brain barrier (BBB), which acts as a 'working dynamic barrier'. The core problem in the treatment of neurodegenerative diseases is failed delivery of potential medicines due to their inadequate permeation rate. Areas covered: The present review gives a summary of endogenous moieties used in synthesizing prodrugs, derivatives and bioisosteric drugs appositely designed to structurally resemble physiological molecular entities able to be passively absorbed or carried by specific carrier proteins expressed at BBB level. In particular, this overview focuses on aminoacidic, glycosyl, purinergic, ureic and acidic fragments derivatives, most of which can take advantage from BBB carrier-mediated transporters, where passive diffusion is not permitted. Expert opinion: In the authors' perspective, further progress in this field could expedite successful translation of new chemical entities into clinical trials. Careful rationalization of the linkage between endogenous molecular structures and putative transporters binding sites could allow to useful work-flows and libraries for synthesizing new BBB-crossing therapeutic substances and/or multifunctional drugs for treatments of central disorders.

  11. One-Pot Multicomponent Synthesis of Thiourea Derivatives in Cyclotriphosphazenes Moieties

    Directory of Open Access Journals (Sweden)

    Zainab Ngaini

    2017-01-01

    Full Text Available In this study, hexasubstituted thiourea was carried out via reaction of isothiocyanato cyclophosphazene intermediates with a series of aromatics amines and amino acids in a one-pot reaction system. The reaction was not as straightforward as typical thiourea synthesis. Six unexpected thiourea derivatives 3a–f were formed in the presence of cyclotriphosphazene moieties in good yields (53–82%. The structures of 3a–f were characterized by elemental analysis and FTIR, 1H, 13C, and 31P NMR spectroscopies. The occurrence of reverse thioureas formation in a one-pot reaction system is discussed. The possible binding interaction of the synthesised thiourea 3a-b in comparison to the predicted phenyl thiourea 5a-b and the targeted 4a with enzyme enoyl ACP reductase (FabI is also discussed. Molecular docking of the targeted hexasubstituted thiourea 4a is able to give higher binding affinity of −7.5 kcal/mol compared to 5a-b (−5.9 kcal/mol and −6.3 kcal/mol and thiourea 3a-b (−4.5 kcal/mol and −4.7 Kcal/mol.

  12. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Doeswijk, T.G.; Voragen, A.G.J.; Gruppen, H.

    2009-01-01

    Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly

  13. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  14. Selfassembly of gold nanoparticles onto the surface of multiwall carbon nanotubes functionalized with mercaptobenzene moieties

    International Nuclear Information System (INIS)

    Shi Jin; Wang Zhe; Li Hulin

    2006-01-01

    We have developed a new and effective method to robustly self-assemble gold nanoparticles onto the surface of multiwall carbon nanotubes (MWNTs) functionalized with mercaptobenzene moieties. Fourier transform infrared and electron diffraction spectroscopy were used to verify whether or not the mercaptobenzene moieties have been attached to the π-conjugated body of MWNTs. Transmission electron microscope images give direct evidences for the success of selfassembly of gold nanoparticles onto the functionalized MWNTs

  15. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  16. A series of copper complexes with carbazole and oxadiazole moieties: Synthesis, characterization and luminescence performance

    Energy Technology Data Exchange (ETDEWEB)

    Bai Weiyang, E-mail: baiwy02@163.com [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Sun Li [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2012-10-15

    In this paper, various moieties of ethyl, carbazole and oxadiazole are attached to 2-thiazol-4-yl-1H-benzoimidazole to form a series of diamine ligands. Their corresponding Cu(I) complexes are also synthesized using bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand. Crystal structures, thermal property, electronic nature and luminescence property of these Cu(I) complexes are discussed in detail. These Cu(I) complexes are found to be efficient green-emitting ones in solutions and the emissive parameters are improved largely by the incorporation of substituent moieties. Detailed analysis suggests that the effective suppression of solvent-induced exciplex quenching is responsible for this phenomenon. On the other hand, the introduction of substituent moieties exerts no obvious influence on molecular structure, thermal stability and emitting-energy of the Cu(I) complexes, owing to their absence from inner coordination sphere. - Highlights: Black-Right-Pointing-Pointer Diamine ligands with various moieties and Cu(I) complexes are synthesized. Black-Right-Pointing-Pointer Crystal structures and photophysical property are discussed in detail. Black-Right-Pointing-Pointer The incorporation of substituent moieties improves luminescence performance. Black-Right-Pointing-Pointer Solvent-induced exciplex quenching is suppressed by substituent moieties.

  17. Human L-ficolin recognizes phosphocholine moieties of pneumococcal teichoic acid

    DEFF Research Database (Denmark)

    Vassal-Stermann, Emilie; Lacroix, Monique; Gout, Evelyne

    2014-01-01

    Human L-ficolin is a soluble protein of the innate immune system able to sense pathogens through its fibrinogen (FBG) recognition domains and to trigger activation of the lectin complement pathway through associated serine proteases. L-Ficolin has been previously shown to recognize pneumococcal c...

  18. Characterisation of the Native Lipid Moiety of Echinococcus granulosus Antigen B

    Science.gov (United States)

    Obal, Gonzalo; Ramos, Ana Lía; Silva, Valeria; Lima, Analía; Batthyany, Carlos; Bessio, María Inés; Ferreira, Fernando; Salinas, Gustavo; Ferreira, Ana María

    2012-01-01

    Antigen B (EgAgB) is the most abundant and immunogenic antigen produced by the larval stage (metacestode) of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs) present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5). In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40–50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters) and polar (mainly phosphatidylcholine) lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9) are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding both lipid

  19. Characterisation of the native lipid moiety of Echinococcus granulosus antigen B.

    Directory of Open Access Journals (Sweden)

    Gonzalo Obal

    Full Text Available Antigen B (EgAgB is the most abundant and immunogenic antigen produced by the larval stage (metacestode of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5. In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40-50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters and polar (mainly phosphatidylcholine lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9 are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding

  20. Subtilisin-catalyzed esterification of di- and oligosaccharides containing a d-fructose moiety

    International Nuclear Information System (INIS)

    Riva, S.; Nonini, M.; Ottolina, G.; Danieli, B.

    1998-01-01

    Several di- and oligosaccharides containing a d-fructose moiety have been acylated by protease subtilisin in anhydrous dimethylformamide in the presence of the activated ester trifluoroethyl butanoate. Under the reaction conditions used, all the substrates were converted into the corresponding monobutanoates in ca. 50% isolated yields. Structural determination of the products by 13 C NMR indicated a strong preference of subtilisin towards the regioselective esterification of the primary hydroxyls of the fructose moiety and, specifically, of the C-1 OH, as already observed with sucrose. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  2. Synthesis and characterisation of sulphonated poly(arylene sulphone) terpolymers with triphenylphosphine oxide moieties for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Titvinidze, G.; Kaltbeitzel, A.; Manhart, A.; Meyer, W.H. [Max Planck Institute for Polymer Research, Mainz (Germany)

    2010-06-15

    For application in fuel cells, a series of sulphonated poly(phenylene sulphone) terpolymers with triphenylphosphine oxide moieties as constitutional units in the polymer backbone have been prepared. The synthesis of the terpolymers represents a two-step process including: (i) an aromatic nucleophilic substitution polycondensation of three difluoro monomers with varying ratios, i.e. 3,3'-disulphonate-4,4'-difluorodiphenylsulphone, 4,4'-difluorodiphenylsulphone and bis(4-fluorophenyl)phenyl phosphine oxide (BFPPO), with 4,4'-thiobisbenzenethiol yielding sulphonated poly(phenylene sulphide) terpolymers (sPPSPO) and (ii) their following oxidation with hydrogen peroxide in acidic solution to yield sulphonated poly(phenylene sulphone) terpolymers (sPPSO2PO). The structures and molecular compositions were confirmed by {sup 1}H and {sup 13}C NMR spectroscopy. The ion exchange capacity (IEC) was adjusted at will choosing the appropriate ratio of sulphonated and unsulphonated monomers. Terpolymers with 1.72 {<=} IEC {<=} 2.32 have been obtained. Sulphonated poly(arylene) ionomers containing only sulphone (-SO{sub 2}-) linkages and phosphine oxide (-PO-) units rather than ether or sulphide in the backbone reveal a high thermal and oxidative stability. Membranes were cast either from dimethylformamide (DMF) or from dimethyl sulphoxide (DMSO) solutions. For all terpolymers some general characteristic trends were observed, such as an increase of the proton conductivity with increasing IEC, water uptake and temperature. The series of sPPSO2PO membranes offered high conductivities at high humidification, however, their performance strongly depends on the relative humidity. The mechanical properties of sulphonated poly(phenylene sulphone)s have been considerably improved by means of terpolymerisation with phenylene oxide moieties. Even under high humidification the terpolymers form clear, flexible membranes the stress at break of some membranes exceeds that of

  3. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    Science.gov (United States)

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  4. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  5. Synthesis of New Thiazole Derivatives Bearing A Sulfonamide Moiety Of Expected Anticancer And Radiosensitizing Activities

    International Nuclear Information System (INIS)

    Mohamed, S.Sh.I.

    2012-01-01

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new pyrano thiazole and thiazolopyranopyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  6. Primary structure of the oligosaccharide moiety of hemocyanin from the scorpion Androctonus australis

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Debeire, P.; Montreuil, J.; Goyffon, M.; Kuik, J.A. van; Halbeek, H. van

    1986-01-01

    Hemocyanin, the copper-containing glycoprotein that serves as an oxygen carrier in the hemolymph of some arthropods and molluscs, was obtained from the blood of the scorpion Androctonus australis. Sugar analysis of the glycoprotein revealed that its carbohydrate moiety is of the N-glycosylic type.

  7. A survey of cyclic replacements for the central diamide moiety of inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Dhar, T G Murali; Liu, Chunjian; Pitts, William J; Guo, Junquing; Watterson, Scott H; Gu, Henry; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Barrish, Joel C; Hollenbaugh, Diane; Iwanowicz, Edwin J

    2002-11-04

    A series of heterocyclic replacements for the central diamide moiety of 1, a potent small molecule inhibitor of inosine monophosphate dehydrogenase (IMPDH) were explored The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for these new series of inhibitors is given.

  8. A molecular hybrid polyoxometalate-organometallic moieties and its relevance to supercapacitors in physiological electrolytes

    Science.gov (United States)

    Chinnathambi, Selvaraj; Ammam, Malika

    2015-06-01

    Supercapacitors operating in physiological electrolytes are of great relevance for both their environmentally friendly aspect as well as the possibility to be employed for powering implantable microelectronic devices using directly biological fluids as electrolytes. Polyoxometalate (POMs) have been proven to be useful for supercapacitors in acidic media. However, in neutral pH, POMs are usually not stable. One relevant alternative is to stabilize POMs by pairing them with organic moieties to form hybrids. In this study, we combined K6P2Mo18O62·12H2O (P2Mo18) with Ru(bpy)3Cl2.6H2O (Ru(bpy)). The synthesis was carried out with and without the mild reducing agent KI. The hybrids were characterized by CHN analysis, TEM, FT-IR, XRD, TGA and cyclic voltammetry. CHN elemental analysis revealed that one mole [P2Mo18O62]6- is paired with 3 mol [Ru(bpy)3]2+ to form [Ru(bpy)3]3PMo18O62·nH2O. With KI present, [P2Mo18O62]6- is linked to 3.33 mol to yield [Ru(bpy)3]3.33PMo18O62·mH2O. Excess of Ru(bpy) in [Ru(bpy)3]3.33PMo18O62·mH2O was further confirmed by TEM, FT-IR, XRD, TGA and cyclic voltammetry. In turn, hybrid composition is found to strongly influence the supercapacitor behavior. The hybrid rich in Ru(bpy) is found to perform better for supercapacitors in physiological electrolytes. 125 F g-1 and 68 F g-1 are the capacitance values obtained with [Ru(bpy)3]3.33PMo18O62·mH2O and [Ru(bpy)3]3PMo18O62·nH2O, respectively. In terms of specific energy densities, 3.5 Wh kg-1 and 2 Wh kg-1 were obtained for both hybrid simultaneously. The difference in supercapacitor performance between both hybrids is also noticed in impedance spectroscopy which showed that [Ru(bpy)3]3.33PMo18O62·mH2O has lower electron transfer resistance if compared to [Ru(bpy)3]3PMo18O62·nH2O. Finally, if compared of parent K6P2Mo18O62·12H2O, the stability of both hybrids is found to be highly improved.

  9. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  10. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

    Science.gov (United States)

    Garciarena, Carolina D.; Malik, Akif; Swietach, Pawel; Moreno, Alonso P.; Vaughan-Jones, Richard D.

    2018-01-01

    Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. PMID:29183963

  11. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  12. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  13. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.

    Science.gov (United States)

    Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-17

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.

  14. Stabilization of liquid crystal dispersion by nonionic surfactant/acrylamide copolymer containing hydrophobic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea)

    1999-07-01

    The effect of nonionic surfactant (H(OCH){sub 2}-OC{sub 6}H{sub 4}-C{sub 9}H{sub 19}, NP-8) and acrylamide copolymer containing nonylphenyl groups as hydrophobic moieties on the stabilization of liquid crystal (LC)-in-water dispersion has been studied. According to cloud point and adsorption measurements, the hydrophobically strong interaction between NP-8 and the nonylphenol moieties is formed. And the addition of surfactant increases the stability of LC dispersion and improve the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. It is due to the presence of surfactant which allows the formation of nonpolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 21 refs., 8 figs.

  15. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

    Directory of Open Access Journals (Sweden)

    Maoguo Tong

    2011-11-01

    Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

  16. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  17. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  18. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    Science.gov (United States)

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei

    2009-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  20. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei; MOHAMED, Salwa Fahem; ABDALLA, Mohamed Mostafa

    2014-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  1. Synthesis and Characterization of Poly (ether imide)s Containing Phthalazinone and Isopropyl Moieties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel poly(ether imide)s containing phthalazinone and isopropyl moieties derived from 2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl]-phthalazin-l-one and bisphenol-A diphthalic anhydride was synthesized by one-step solution condensation polymerization in m-cresol. The polymer was characterized by FTIR, NMR, molecular weights, glass transition temperature,thermal degradation temperature and WAXD.

  2. Synthesis of Morpholine Containing Sulfonamides: Introduction of Morpholine Moiety on Amine Functional Group

    Directory of Open Access Journals (Sweden)

    D. Singh

    2004-01-01

    Full Text Available Sulfonamides have been the center of drug structures as this group is quite stable & well tolerated in human beings. The synthesis of these structures was started in search of new pharmacological active reagents. These compounds are being tested for the desired activity (ICAM-1/LFA-1 Interaction inhibitors as anti-adhesion therapeutic agents, the biological activity & structure activity relationship will be published elsewhere. Synthesis of morpholine moiety from amino group is done by using reagent 2-chloroethanol.

  3. Scopranones with Two Atypical Scooplike Moieties Produced by Streptomyces sp. BYK-11038.

    Science.gov (United States)

    Uchida, Ryuji; Lee, Daiki; Suwa, Ibuki; Ohtawa, Masaki; Watanabe, Nozomu; Demachi, Ayumu; Ohte, Satoshi; Katagiri, Takenobu; Nagamitsu, Tohru; Tomoda, Hiroshi

    2017-11-03

    Three new compounds, designated scopranones A-C, were isolated from the culture broth of a soil isolate, Streptomyces sp. BYK-11038, and shown to be inhibitors of bone morphogenetic protein (BMP) induced alkaline phosphatase activity in a BMP receptor mutant cell line. The structures were elucidated using NMR and other spectral data. The scopranones have an unusual structure with two atypical scooplike moieties linked at the tails to form part of a unique 3-furanone ring.

  4. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Science.gov (United States)

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  5. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Andrea De Martino

    Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  6. Liquid crystalline polymers IX Main chain thermotropic poly (azomethine – ethers containing thiazole moiety linked with polymethylene spacers

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available A new homologous series of thermally stable thermotropic liquid crystalline poly(azomethine-ethers based on thiazole moiety were synthesized by solution polycondensation of 4,4`-diformyl-α,ω-diphenoxyalkanes, I–IV or 4,4`-diformyl-2,2`-dimethoxy-α,ω-diphenoxyalkanes V–VIII with the new bis(2-aminothiazole monomer X. A model compound XI was synthesized from X with benzaldehyde and characterized by elemental and spectral analyses. The inherent viscosities of the resulting polymers were in the range 0.43–1.34 dI/g. All the poly(azomethine-ethers were insoluble in common organic solvents but dissolved completely in concentrated H2SO4 and formic acid. The mesomorphic properties of these polymers were studied as a function of the diphenoxyalkane space length. Their thermotropic liquid crystalline properties were examined by DSC and optical polarizing microscopy and demonstrated that the resulting polymers form nematic mesophases over wide temperature ranges. The thermogravimetric analyses of those polymers were evaluated by TGA and DSC measurements and correlated to their structural units. X-ray analysis showed that polymers having some degree of crystallinity in the region 2θ = 5–60°. In addition, the morphological properties of selected examples were tested by scanning electron microscopy.

  7. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  8. Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents.

    Science.gov (United States)

    Lan, Xianmin; Xie, Dandan; Yin, Limin; Wang, Zhenzhen; Chen, Jin; Zhang, Awei; Song, Baoan; Hu, Deyu

    2017-09-15

    Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC 50 ) values of 284.67μg/mL and 216.30μg/mL, which were obviously superior to that of Ningnanmycin (352.08μg/mL and 262.53μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  10. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    Science.gov (United States)

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and antimicrobial properties of 1,3,4-oxadiazole analogs containing dibenzosuberone moiety

    Energy Technology Data Exchange (ETDEWEB)

    Moger, Manjunath [Mangalore University, Karnataka (India). Department of Chemistry; Satam, Vijay; Paniraj, A.S.; Gopinath, Vadiraj S.; Hindupur, Rama Mohan; Pati, Hari N., E-mail: hari.pati@advinus.com [Advinus Therapeutics Ltd., 21 and 22, Phase II, Peenya Industrial Area, Karnataka (India); Govindaraju, Darshan Raj C. [Department of Bio-Medicinal Research, Vidya Herbs Pvt. Ltd., Karnataka (India)

    2014-01-15

    A series of ten novel 1,3,4-oxadiazole analogs containing dibenzosuberone moiety were synthesized using linear as well as convergent synthesis approach. All the compounds were characterized by mass spectrometry, infrared (IR), {sup 1}H and {sup 13}C nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR) spectroscopies and elemental analysis. These compounds were evaluated for antibacterial and antifungal activities. Among ten analogs, four compounds, namely, 8a, 8d, 8e and 8j were found to be highly active antibacterial and antifungal agents (author)

  12. Synthesis and Herbicidal Activity of Novel Sulfonylureas Containing 1,2,4-Triazolinone Moiety

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuo; PAN Li; LI Yong-hong; WANG Su-hua; LI Zheng-ming

    2013-01-01

    A series of new sulfonylureas incorporating 1,2,4-triazolinone moiety was synthesized,which were further bio-assayed for the herbicidal activity against four herbs,representative of monocotyledons and dicotyledons.Some of them exhibited high potency to inhibit the growth of dicotyledons(Bassica napus and Amaranthus retroflexus) in the pot experiment.Compounds 9a and 9b also displayed an excellent herbicidal activity against Bassica napus at a concentration of 15 g/hectare,which were comparable with commercial triasulfuron.

  13. Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety

    Science.gov (United States)

    Shang, Ruofeng; Wang, Shengyu; Xu, Ximing; Yi, Yunpeng; Guo, Wenzhu; YuLiu; Liang, Jianping

    2013-01-01

    Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC) of 23S rRNA. PMID:24376551

  14. Chemical synthesis and biological activities of novel pleuromutilin derivatives with substituted amino moiety.

    Directory of Open Access Journals (Sweden)

    Ruofeng Shang

    Full Text Available Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC of 23S rRNA.

  15. Synthesis and Antibacterial Evaluation of Novel Heterocyclic Compounds Containing a Sulfonamido Moiety

    Directory of Open Access Journals (Sweden)

    Eman A. El-Bordany

    2013-01-01

    Full Text Available Aiming for the synthesis of new heterocyclic compounds containing a sulfonamido moiety suitable for use as antibacterial agents, the precursor ethyl {[4-N-(4,6-dimethylpyrimidin-2-ylsulfamoyl]phenylazo}cyanoacetate was reacted with a variety of active methylene compounds producing pyran, pyridine and pyridazine derivatives. Also, the reactivity of the precursor hydrazone towards hydrazine derivatives to give pyrazole and oxazole derivatives was studied. On the other hand, treatment of the same precursor with urea, thiourea and/or guanidine hydrochloride furnished pyrimidine and thiazine derivatives, respectively. The newly synthesized compounds were tested for antibacterial activity, whereby eight compounds were found to have high activities.

  16. Synthesis and antiproliferative activity of novel limonene derivatives with a substituted thiourea moiety

    International Nuclear Information System (INIS)

    Figueiredo, Isis M.; Santos, Luciane V. dos; Costa, Willian F. da; Silva, Cleuza C. da; Sarragiotto, Maria H.; Carvalho, Joao E. de; Sacoman, Juliana L.; Kohn, Luciana K.

    2006-01-01

    A series of R-(+)-limonene derivatives bearing a substituted thiourea moiety (3-13) and five S-methyl analogs (14-18) were synthesized and evaluated for their in vitro antiproliferative activity against human cancer cell lines. Compounds bearing aromatic substituents (3-6) exhibit cytostatic activity in the full panel of cell lines tested, with GI 50 values in the range of 2.5 to 24 μmol L -1 . Compounds 3, 10, 12 and 16 were the most active with GI 5 )0 values in the range of 0.41 to 3.0 μmol L -1 , against different cell lines. (author)

  17. Wittig Reaction: Domino Olefination and Stereoselectivity DFT Study. Synthesis of the Miharamycins' Bicyclic Sugar Moiety.

    Science.gov (United States)

    Cachatra, Vasco; Almeida, Andreia; Sardinha, João; Lucas, Susana D; Gomes, Ana; Vaz, Pedro D; Florêncio, M Helena; Nunes, Rafael; Vila-Viçosa, Diogo; Calhorda, Maria José; Rauter, Amélia P

    2015-11-20

    2-O-Acyl protected-d-ribo-3-uloses reacted with [(ethoxycarbonyl)methylene]triphenylphosphorane in acetonitrile to afford regio- and stereoselectively 2-(Z)-alkenes in 10-60 min under microwave irradiation. This domino reaction is proposed to proceed via tautomerization of 3-ulose to enol, acyl migration, tautomerization to the 3-O-acyl-2-ulose, and Wittig reaction. Alternatively, in chloroform, regioselective 3-olefination of 2-O-pivaloyl-3-uloses gave (E)-alkenes, key precursors for the miharamycins' bicyclic sugar moiety.

  18. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer.

    Science.gov (United States)

    Stimac, Adela; Segota, Suzana; Dutour Sikirić, Maja; Ribić, Rosana; Frkanec, Leo; Svetličić, Vesna; Tomić, Srđanka; Vranešić, Branka; Frkanec, Ruža

    2012-09-01

    The aim of the present study was to encapsulate mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides, namely [(2R)-N-(adamant-1-yl)-3-(α,β-d-mannopyranosyloxy)-2-methylpropanamide and (2R)-N-[3-(α-d-mannopyranosyloxy)-2-methylpropanoyl]-d,l-(adamant-2-yl)glycyl-l-alanyl-d-isoglutamine] in liposomes. The characterization of liposomes, size and surface morphology was performed using dynamic light scattering (DLS) and atomic force microscopy (AFM). The results have revealed that the encapsulation of examined compounds changes the size and surface of liposomes. After the concanavalin A (ConA) was added to the liposome preparation, increase in liposome size and their aggregation has been observed. The enlargement of liposomes was ascribed to the specific binding of the ConA to the mannose present on the surface of the prepared liposomes. Thus, it has been shown that the adamantyl moiety from mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides can be used as an anchor in the lipid bilayer for carbohydrate moiety exposed on the liposome surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Synthesis, Antiviral Bioactivity of Novel 4-Thioquinazoline Derivatives Containing Chalcone Moiety

    Directory of Open Access Journals (Sweden)

    Zhihua Wan

    2015-06-01

    Full Text Available A series of novel 4-thioquinazoline derivatives containing chalcone moiety were designed, synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited moderate to good anti-TMV activity. In particular, compounds M2 and M6 possessed appreciable protection activities against TMV in vivo, with 50% effective concentration (EC50 values of 138.1 and 154.8 μg/mL, respectively, which were superior to that of Ribavirin (436.0 μg/mL. The results indicated that chalcone derivatives containing 4-thioquinazoline moiety could effectively control TMV. Meanwhile, the structure-activity relationship (SAR of the target compounds, studied using the three-dimensional quantitative structure-activity relationship (3D-QSAR method of comparative molecular field analysis (CoMFA based on the protection activities against TMV, demonstrated that the CoMFA model exhibited good predictive ability with the cross-validated q2 and non-cross-validated r2 values of 0.674 and 0.993, respectively. Meanwhile, the microscale thermophoresis (MST experimental showed that the compound M6 may interaction with the tobacco mosaic virus coat protein (TMV CP.

  20. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    Directory of Open Access Journals (Sweden)

    Liu Long

    2011-11-01

    Full Text Available Abstract Hyaluronic acid (HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.

  1. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety.

    Science.gov (United States)

    Kim, Sungwon; Park, Kyong Mi; Ko, Jin Young; Kwon, Ick Chan; Cho, Hyeon Geun; Kang, Dongmin; Yu, In Tag; Kim, Kwangmeyung; Na, Kun

    2008-05-01

    Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers to deliver doxorubicin (DOX) was proposed in the present study. Two significant subjects (i) formation of nanoparticles loading and releasing DOX and (ii) binding specificity of them to cells, were examined. Folic acid (FA) was directly coupled with pullulan (Pul) backbone by ester linkage (FA/Pul conjugate) and the degree of substitution (DS) was varied, which were confirmed by 1H NMR and UV spectrophotometry. Light scattering results revealed that the nanogels possessed two major size distributions around 70 and 270 nm in an aqueous solution. Their critical aggregation concentrations (CACs) were less than 10 microg/mL, which are lower than general critical micelle concentrations (CMCs) of low-molecular-weight surfactants. Transmission electron microscopy (TEM) images showed well-dispersed nanogel morphology in a dried state. Depending on the DS, the nanogels showed different DOX-loading and releasing profiles. The DOX release rate from FA8/Pul (with the highest DS) for 24h was slower than that from FA4/or FA6/Pul, indicating that the FA worked as a hydrophobic moiety for drug holding. Cellular uptake of the nanogels (KB cells) was also monitored by confocal microscopy. All nanogels were internalized regardless of the DS of FA. Based on the results, the objectives of this study, to suggest a new method overcoming the complications in the drug carrier design, were successfully verified.

  2. Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, an α-hydroxy acid from rooibos (Aspalathus linearis) with hypoglycemic activity

    DEFF Research Database (Denmark)

    Muller, C.J.F.; Joubert, Elizabeth; Pheiffer, Carmen

    2013-01-01

    Scope: The rare enolic phenylpyruvic acid glucoside, Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) is one of the major constituents of fermented rooibos infusions. 3-Phenylpyruvic acid (2-oxo-3-phenylpropanoic acid) (PPA), without the sugar moiety and with a keto instead of enolic arr...

  3. 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet Ø; Peters, Dan

    2003-01-01

    A series of 2-arylureidobenzoic acids (AUBAs) was prepared by a short and effective synthesis, and the pharmacological activity at glutamate receptors was evaluated in vitro and in vivo. The compounds showed noncompetitive antagonistic activity at the kainate receptor subtype GluR5. The most potent...... on the benzoic acid moiety (ring A), whereas ring B tolerated a variety of substituents, but with a preference for lipophilic substituents. The most potent compounds had a 4-chloro substituent on ring A and 3-chlorobenzene (6b), 2-naphthalene (8h), or 2-indole (8k) as ring B and had IC(50) values of 1.3, 1...

  4. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    Science.gov (United States)

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety

    Directory of Open Access Journals (Sweden)

    Moustafa A. Gouda

    2016-03-01

    Full Text Available A series of thiophene incorporating pyrazolone moieties 5a–f and 6a–c were synthesized via diazo coupling of diazonium salt of 3-substituted-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophenes 1a–c with 3-methyl-1H-pyrazol-5(4H-one, 3-methyl-1-phenyl-1H-pyrazol-5(4H-one or 3-amino-1H-pyrazol-5(4H-one, respectively. Newly synthesized dyes were applied to polyester fabric as disperse dyes in which their color measurements and fastness properties were evaluated. These dyes showed generally red to blue shifted color with high extinction coefficient in comparison with aniline-based azo dyes. The antitumor activity of the synthesized dyes was evaluated. The results showed clearly that most of them exhibited good activity and compounds 5c and 5d exhibited moderate activity.

  6. Radiation chemistry of carbohydrates and of the sugar moiety in DNA

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1979-01-01

    The free radical chemistry of carbohydrates as studied by radiation techniques is briefly reviewed. In aqueous solutions OH radicals and H atoms abstract carbon-bound H atoms to give the primary carbohydrate radicals which can undergo a number of elimination and rearrangement reactions leading to secondary carbohydrate radicals. Oxygen can suppress these elimination and rearrangement reactions by converting the primary carbohydrate radicals into the corresponding peroxyl radicals. The reactions leading to the observed products are discussed. In the solid state a few carbohydrates show radiation-induced chain reactions which are of preparative interest. Hydroxyl radical attack at the sugar moiety of DNA eventually leads to DNA strand breaks and to alkali-labile sites. (Auth.)

  7. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety

    Directory of Open Access Journals (Sweden)

    Hong Dai

    2016-02-01

    Full Text Available In this study, in order to find novel biologically active pyrazole oxime compounds, a series of pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety were synthesized. Preliminary bioassays indicated that most title compounds were found to display good to excellent acaricidal activity against Tetranychus cinnabarinus at a concentration of 200 μg/mL, and some designed compounds still showed excellent acaricidal activity against Tetranychus cinnabarinus at the concentration of 10 μg/mL, especially since the inhibition rates of compounds 8e, 8f, 8l, 8m, 8n, 8p, and 8q were all 100.00%. Interestingly, some target compounds exhibited moderate to good insecticidal activities against Plutella xylostella and Aphis craccivora at a concentration of 200 μg/mL; furthermore, compounds 8e and 8l possessed outstanding insecticidal activities against Plutella xylostella under the concentration of 50 μg/mL.

  8. Peripheral Hole Acceptor Moieties on an Organic Dye Improve Dye‐Sensitized Solar Cell Performance

    Science.gov (United States)

    Hao, Yan; Gabrielsson, Erik; Lohse, Peter William; Yang, Wenxing; Johansson, Erik M. J.; Hagfeldt, Anders

    2015-01-01

    Investigation of charge transfer dynamics in dye‐sensitized solar cells is of fundamental interest and the control of these dynamics is a key factor for developing more efficient solar cell devices. One possibility for attenuating losses through recombination between injected electrons and oxidized dye molecules is to move the positive charge further away from the metal oxide surface. For this purpose, a metal‐free dye named E6 is developed, in which the chromophore core is tethered to two external triphenylamine (TPA) units. After photoinduced electron injection into TiO2, the remaining hole is rapidly transferred to a peripheral TPA unit. Electron–hole recombination is slowed down by 30% compared to a reference dye without peripheral TPA units. Furthermore, it is found that the added TPA moieties improve the electron blocking effect of the dye, retarding recombination of electrons from TiO2 to the cobalt‐based electrolyte. PMID:27722076

  9. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  10. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  11. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review

    Directory of Open Access Journals (Sweden)

    Nadeem Siddiqui

    2011-01-01

    Full Text Available Depression is currently the fourth leading cause of disease or disability worldwide. Antidepressant is approved for the treatment of major depression (including paediatric depression, obsessive-compulsive disorder (in both adult and paediatric populations, bulimia nervosa, panic disorder and premenstrual dysphoric disorder. Antidepressant is a psychiatric medication used to alleviate mood disorders, such as major depression and dysthymia and anxiety disorders such as social anxiety disorder. Many drugs produce an antidepressant effect, but restrictions on their use have caused controversy and off-label prescription a risk, despite claims of superior efficacy. Our current understanding of its pathogenesis is limited and existing treatments are inadequate, providing relief to only a subset of people suffering from depression. Reviews of literature suggest that heterocyclic moieties and their derivatives has proven success in treating depression.

  12. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sohaimi, Bander Roshadan [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Aljuhani, Ateyatallah; Al-Raqa, Shaya Y. [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Durmuş, Mahmut, E-mail: durmus@gtu.edu.tr [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey)

    2016-05-15

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as {sup 1}H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  13. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    International Nuclear Information System (INIS)

    Al-Sohaimi, Bander Roshadan; Pişkin, Mehmet; Aljuhani, Ateyatallah; Al-Raqa, Shaya Y.; Durmuş, Mahmut

    2016-01-01

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as 1 H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  14. Radioactive methionine: determination, and distribution of radioactivity in the sulfur, methyl and 4-carbon moieties

    International Nuclear Information System (INIS)

    Giovanelli, J.; Mudd, S.H.

    1985-01-01

    A simple and inexpensive method is described for isolation and determination of [ 14 C]methionine in the non-protein fraction of tissues extensively labeled with 14 C. The effectiveness of the method was demonstrated by isolation of non-protein [ 14 C]methionine (as the carboxymethylsulfonium salt) of proven radiopurity from the plant Lemna which had been grown for a number of generations on (U- 14 C]sucrose and contained a 2000-fold excess of 14 C in undefined non-protein compounds. An advantage is that the isolated methioninecarboxymethlysulfonium salt is readily degraded to permit separate determination of radioactivity in the 4-carbon, methyl and sulfur moieties of methionine. During this work, a facile labilization of 3 H attached to the (carboxy)methylene carbon of methioninecarboxymethylsulfonium salt was observed. This labilization is ascribed to formation of a sulfur ylid. (Auth.)

  15. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report.

    Science.gov (United States)

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically.

  16. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

    Science.gov (United States)

    Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming

    2016-02-01

    Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    Energy Technology Data Exchange (ETDEWEB)

    Hissung, A; Isildar, M; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenforschung; Witzel, H [Biochemisches Institut der Westfaelischen Wilhelms-Universitaet, Muenster, West Germany

    1981-02-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N/sub 2/O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10/sup 5/s/sup -1/) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10/sup 3/ M/sup -1/s/sup -1/ was estimated. Compound 4 has also been investigated by product analysis after 60-Co-..gamma..-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O/sub 2/ to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA.

  18. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  19. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    International Nuclear Information System (INIS)

    Hissung, A.; Isildar, M.; Sonntag, C. von; Witzel, H.

    1981-01-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N 2 O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10 5 s -1 ) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10 3 M -1 s -1 was estimated. Compound 4 has also been investigated by product analysis after 60-Co-γ-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O 2 to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA. (author)

  20. Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium by ICP-MS

    International Nuclear Information System (INIS)

    Oshita, Koji; Oshima, Mitsuko; Gao Yunhua; Lee, Kyue-Hyung; Motomizu, Shoji

    2003-01-01

    A chitosan resin derivatized with serine moiety (serine-type chitosan) was newly developed by using the cross-linked chitosan as a base material. The adsorption behavior of trace amounts of metal ions on the serine-type chitosan resin was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The resin could adsorb a number of metal cations at pH from neutral to alkaline region, and several oxoanionic metals at acidic pH region by an anion exchange mechanism. Uranium and Cu could be adsorbed selectively at pH from acidic to alkaline region by a chelating mechanism; U could be adsorbed quantitatively even at pH 3-4. Uranium adsorbed on the resin was easily eluted with 1 M nitric acid: the preconcentration (5-, 10-, 50- and 100-fold) of U was possible. The column treatment method was used prior to the ICP-MS measurement of U in natural river, sea and tap waters; R.S.D. were 2.63, 1.13 and 1.37%, respectively. Uranium in tap water could be determined by 10-fold preconcentration: analytical result was 1.46±0.02 ppt. The resin also was applied to the recovery of U in sea water: the recovery tests for artificial and natural sea water were 97.1 and 93.0%, respectively

  1. Structural effects of a light emitting copolymer having perylene moieties in the side chain on the electroluminescent characteristics

    International Nuclear Information System (INIS)

    Lee, Chang Ho; Ryu, Seung Hoon; Jang, Hee Dong; Oh, Se Young

    2004-01-01

    We have synthesized a novel side chain light emitting copolymer. The side chain light emitting copolymer has a perylene moiety as an emitting unit and methylmethacrylate (MMA) as a spacer to decrease the concentration quenching of light emitting site in the polymer intrachain. These polymers are very soluble in most organic solvents such as monochlorobenzene, tetrahydrofuran, chloroform and benzene. The single-layered electroluminescent (EL) device consisting of ITO/carrier transporting copolymer and light emitting copolymer/Al was manufactured. The carrier transporting copolymer has triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. This device exhibits maximum external quantum efficiency when the MMA contents of light emitting copolymer is 30 wt.%. In particular, the device emits more blue light as MMA contents increase

  2. The nature of the Iron Moiety bisorped by immobilized Saccharomyces Cervisiae at low pH: A Mossbauer spectroscopic investigation

    International Nuclear Information System (INIS)

    Khalil, Mustaim I.; Al-Wassil, Abdulaziz I.

    1999-01-01

    The nature of the adsorped Fe-moiety on immobilized Saccharomyces Cervisiae at low pH has been investigated by Mossbauer spectroscopy. The Mossbauer spectrum at 77K exhibited two sites: the major one (69%) was a quadrupole-split double, Delta Q=0.77 mms with an isomer shift 0.46 mms, assigned to the high spin octahedrally coordinated iron (III); and a single line minor site (31%) with an isomer shift, d=0.36 mms, assigned to the high-spin tetrahedral iron (III) Cl-moiety. An electrostatic and a covalent mode of Fe binding were then inferred. (author)

  3. Robot-assisted pyeloplasty for pelvi-ureteric junction obstruction of lower moiety in partial duplex system: A technical challenge

    Directory of Open Access Journals (Sweden)

    Girdhar S Bora

    2016-01-01

    Full Text Available Management of pelvi-ureteric junction obstruction (PUJO in a duplex system is technically challenging as dissection at the pelvis may jeopardize the vascularity of the normal moiety ureter. Anastomosing the pelvis to the one single ureter will have a risk of future development of stricture which then will risk both the moieties. Robotic assistance enables appropriate tissue dissection; minimal handling of normal ureter and precision in suturing, overcoming the potential challenges involved in the minimally invasive management of such complex cases. We report the feasibility and efficacy of robot-assisted laparoscopic pyeloplasty in such case.

  4. Bifunctional cyclam-based ligands with phosphorus acid pendant moieties for radiocopper separation: thermodynamic and kinetic studies

    Czech Academy of Sciences Publication Activity Database

    Paúrová, M.; Havlíčková, J.; Pospíšilová, Aneta; Vetrík, Miroslav; Císařová, I.; Stephan, H.; Pietzsch, H.-J.; Hrubý, Martin; Hermann, P.; Kotek, J.

    2015-01-01

    Roč. 21, č. 12 (2015), s. 4671-4687 ISSN 0947-6539 R&D Projects: GA ČR GAP304/12/0950 Institutional support: RVO:61389013 Keywords : copper * ion-selective resins * kinetics Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 5.771, year: 2015

  5. Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Saleh A. Ahmed

    2017-11-01

    Full Text Available A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP. In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.

  6. Inhibitors of inosine monophosphate dehydrogenase: SARs about the N-[3-Methoxy-4-(5-oxazolyl)phenyl moiety.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Guo, Junqing; Pitts, William J; Murali Dhar, T G; Shen, Zhongqi; Chen, Ping; Gu, Henry H; Fleener, Catherine A; Rouleau, Katherine A; Cheney, Daniel L; Townsend, Robert M; Hollenbaugh, Diane L

    2003-06-16

    The first reported structure-activity relationships (SARs) about the N-[3-methoxy-4-(5-oxazolyl)phenyl moiety for a series of recently disclosed inosine monophosphate dehydrogenase (IMPDH) inhibitors are described. The syntheses and in vitro inhibitory values for IMPDH II, and T-cell proliferation (for select analogues) are given.

  7. Identification of three new phase II metabolites of a designer drug methylone formed in rats by N-demethylation followed by conjugation with dicarboxylic acids.

    Science.gov (United States)

    Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš

    2018-06-01

    1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.

  8. Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: structure-activity relationship and synergistic potential.

    Science.gov (United States)

    Ben Hmidene, Asma; Smaoui, Abderrazak; Abdelly, Chedly; Isoda, Hiroko; Shigemori, Hideyuki

    2017-03-01

    O-Methylated and glucuronosylated flavonoids were isolated from Tamarix gallica as α-glucosidase inhibitors. Structure-activity relationship of these flavonoids suggests that catechol moiety and glucuronic acid at C-3 are factors in the increase in α-glucosidase inhibitory activity. Furthermore, rhamnetin, tamarixetin, rhamnazin, KGlcA, KGlcA-Me, QGlcA, and QGlcA-Me exhibit synergistic potential when applied with a very low concentration of acarbose to α-glucosidase from rat intestine.

  9. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  10. Synthesis and electroluminescent properties of anthracene derivatives containing electron-withdrawing oxide moieties

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jhin-yeong; Na, Eun Jae; Park, Soo Na [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • Blue fluorescent material is important for application in full-color displays. • We have synthesized emitters based on anthracene connected with oxide moieties. • 1C shows a highly efficient blue EL emission due to electron-injection property. - Abstract: A series of new blue-emitting materials: (4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)(phenyl)methanone (1); 9-(naphthalen-2-yl)-10-(4-((diphenyl)phosphine oxide)phenyl)anthracene (2); 9-(naphthalen-2-yl)-10-(4-(phenylsulfonyl)phenyl)anthracene (3) were designed and synthesized via Suzuki cross-coupling reaction. Multilayer OLEDs were fabricated in the following sequence: ITO (180 nm)/NPB (50 nm)/blue materials 1–3 (30 nm)/TPBi (15 nm)/Liq (2 nm)/Al (100 nm). All devices showed the efficient blue EL emissions. In particular, the device using 1 as an emitter exhibited efficient blue electroluminescent properties with a maximum luminous, power, external quantum efficiency and CIE coordinates of 0.36 cd/A, 0.90 lm/W, 0.55% at 20 mA/cm{sup 2} and (x = 0.16, y = 0.20) at 10.0 V, respectively.

  11. Different cell moieties and white blood cell (WBC) integrity in In-111 labeled WBC preparations

    International Nuclear Information System (INIS)

    Saha, G.B.; Feiglin, D.H.I.; McMahon, J.T.; Go, R.T.; O'Donnell, J.K.; MacIntyre, W.J.

    1985-01-01

    Indium-111 labeled white blood cells (WBC) have become very popular in detecting inflammatory diseases. The purpose of this paper is to determine the distribution of different types of cells in WBC preparation for In-111 oxine labeling, and also to assess the histological integrity of WBC's after labeling with In-111 oxine. Forty to fifty cc of blood was collected from each patient and WBC's were separated by sedimentation and centrifugation. After labeling with In-111 oxine, an aliquot of the WBC sample was used for cell counting and a second aliquot was used for electron microscopic (EM) examination. The different cell moieties were counted, and the mean and standard deviation of twelve determinations calculated. Cells were prepared by the standard technique for electron microscopic examination and images of the cells were obtained at different magnifications (X8,000-25,000). The EM images revealed that although minimal cytoplasmic vacuolization occurred in the WBC's due to the labeling process, the overall histological integrity of the cells remained intact. The relative labeling efficiency of WBC's is greater than those of RBC's and platelets (J Nuc) Med 25:p98, 1984) and, therefore, even a comparatively low population of WBC's gives optimal imaging due to their increased tracer uptake

  12. Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety.

    Science.gov (United States)

    Sekioka, Ryuichi; Honjo, Eriko; Honda, Shugo; Fuji, Hideyoshi; Akashiba, Hiroki; Mitani, Yasuyuki; Yamasaki, Shingo

    2018-01-15

    Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer's disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole. High-throughput screening identified 2-methyl-8-[(2-methylbenzyl)oxy]-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3a), which inhibited the cellular production of Aβ42 (IC 50  = 7.1 µM) without changing total production of Aβ. Structural optimization of this series of compounds identified 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethylisoindolin-1-one (3m) as a potent inhibitor of Aβ42 (IC 50  = 0.39 µM) but not CYP3A4. Further, 3m demonstrated a sustained pharmacokinetic profile in mice and sufficiently penetrated the brain. Copyright © 2017. Published by Elsevier Ltd.

  13. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study

    Directory of Open Access Journals (Sweden)

    Kimia Hirbod

    2017-06-01

    Full Text Available Objective(s: To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole using dibromoalkanes 3a-m. Final compounds were evaluated against acetylcholinesterase (AChE and butyrylcholinesterase (BuChE by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 µM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms.

  14. Facile synthesis and antimicrobial evaluation of some new heterocyclic compounds incorporating a biologically active sulfamoyl moiety.

    Science.gov (United States)

    Darwish, Elham S

    2014-01-01

    A facile and convenient synthesis of new heterocyclic compounds containing a sulfamoyl moiety suitable for use as antimicrobial agents was reported. The precursor 3-oxo-3-phenyl-N-(4-sulfamoylphenyl)propionamide was coupled smoothly with arenediazonium salt producing hydrazones which reacted with malononitrile or triethylorthoformate affording pyridazine and triazine derivatives, respectively. Also, the reactivity of the same precursor with DMF-DMA was followed by aminotriazole; aromatic aldehydes was followed by hydrazine hydrate, triethylorthoformate, or thiourea affording triazolo[1,5-a]pyrimidine, pyrazole, acrylamide, and dihydropyrimidine derivatives, respectively. On the other hand, treatment of the precursor propionamide with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt which was treated with dilute HCl followed by 2-bromo-1-phenylethanone affording carboxamide derivative. While the same intermediate salt reacted in situ with chloroacetone, ethyl 2-chloroacetate, 3-(2-bromoacetyl)-2H-chromen-2-one, methyl iodide, or 2-oxo-N-phenylpropane hydrazonoyl chloride afforded the thiophene, ketene N,S-acetal, and thiadiazole derivatives, respectively. The structure of the new products was established based on elemental and spectral analysis. Antimicrobial evaluation of some selected examples from the synthesized products was carried out whereby four compounds were found to have moderate activities and one compound showed the highest activity.

  15. Synthesis, characterization and theoretical study of a new asymmetrical tripodal amine containing morpholine moiety

    Directory of Open Access Journals (Sweden)

    Majid Rezaeivala

    2016-11-01

    Full Text Available A new asymmetrical tripodal amine, [H3L2]Br3 containing morpholine moiety was prepared from reacting of one equivalent of N-(3-aminopropylmorpholine and two equivalents of tosylaziridine, followed by detosylation with HBr/CH3COOH. The products were characterized by various spectroscopic methods such as FAB-MS, elemental analysis, 1H and 13C NMR spectroscopy. The crystal structure of the hydrobromide salt of the latter amine, [H3L2]Br3, was also determined. For triprotonated form of the ligand L2 we can consider several microspecies and/or conformers. A theoretical study at B3LYP/6-31G∗∗ level of theory showed that the characterized microspecies is the most stable microspecies for the triprotonated form of the ligand. It was shown that the experimental NMR data for [H3L2]Br3 in solution have good correlation with the corresponding calculated data for the most stable microspecies of [H3L2]3+ in the gas phase.

  16. Synthesis, Characterization, and Anti-Inflammatory Activities of Methyl Salicylate Derivatives Bearing Piperazine Moiety.

    Science.gov (United States)

    Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua

    2016-11-23

    In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.

  17. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh.

    Science.gov (United States)

    Leiro, José M; Castro, Rosario; Arranz, Jon A; Lamas, Jesús

    2007-07-01

    Water-soluble acidic polysaccharides from the cell walls of Ulva rigida are mainly composed of disaccharides that contain glucuronic acid and sulphated rhamnose. The structure of disaccharides resembles that of glycosaminoglycans (GAGs) as they both contain glucuronic acid and sulphated sugars. Glycosaminoglycans occur in the extracellular matrix of animal connective tissues but can also be produced by leucocytes at inflammatory sites. Certain types of GAGs can even activate macrophages and therefore the acidic polysaccharides from U. rigida probably modulate macrophage activity. In the present study, we evaluated the effects of U. rigida polysaccharides on several RAW264.7 murine macrophage activities, including expression of inflammatory cytokines and receptors, nitric oxide and prostaglandin E2 (PGE(2)) production, and nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2) gene expression. U. rigida acidic polysaccharides induced a more than two-fold increase in the expression of several chemokines (chemokine (C motif) ligand 1, chemokine (C-X-C motif) ligand 12, chemokine (C-C motif) ligand 22 and chemokine (C-X-C motif) ligand 14 (Cxcl14)) and in the expression of IL6 signal transducer and IL12 receptor beta 1. Incubation of macrophages with U. rigida polysaccharides also induced an increase in nitrite production, although this effect decreased considerably after desulphation of polysaccharides, suggesting that the sulphate group is important for the stimulatory capacity of these molecules. U. rigida polysaccharides also stimulated macrophage secretion of PGE(2) and induced an increase in COX-2 and NOS-2 expression. The results indicate that U. rigida acid polysaccharide can be used as an experimental immunostimulant for analysing inflammatory responses related to macrophage functions. In addition, these polysaccharides may also be of clinical interest for modifying certain macrophage activities in diseases where macrophage function is impaired or needs

  18. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    Science.gov (United States)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  19. The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494.

    Science.gov (United States)

    Rimaux, T; Vrancken, G; Vuylsteke, B; De Vuyst, L; Leroy, F

    2011-09-01

    The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catabolism occurred in any of the L. sakei strains tested. A detailed kinetic analysis of inosine and adenosine catabolism in the presence of arginine by L. sakei CTC 494, a fermented-meat starter culture, was performed. It showed that nucleoside catabolism occurred as a mixed-acid fermentation in a pH range (pH 5.0 to 6.5) relevant for sausage fermentation. This resulted in the production of a mixture of acetic acid, formic acid, and ethanol from ribose, while the nucleobase (hypoxanthine and adenine in the case of fermentations with inosine and adenosine, respectively) was excreted into the medium stoichiometrically. This indicates that adenosine deaminase activity did not take place. The ratios of the different fermentation end products did not vary with environmental pH, except for the fermentation with inosine at pH 5.0, where lactic acid was produced too. In all cases, no other carbon-containing metabolites were found; carbon dioxide was derived only from arginine catabolism. Arginine was cometabolized in all cases and resulted in the production of both citrulline and ornithine. Based on these results, a pathway for inosine and adenosine catabolism in L. sakei CTC 494 was presented, whereby both nucleosides are directly converted into their nucleobase and ribose, the latter entering the heterolactate pathway. The present study revealed that the pentose moiety (ribose) of the nucleosides inosine and adenosine is an effective fermentable substrate for L. sakei. Thus, the ability to use these energy sources offers a competitive advantage for this species in a meat environment.

  20. Synthesis of new, UV-photoactive dansyl derivatives for flow cytometric studies on bile acid uptake.

    Science.gov (United States)

    Rohacova, Jana; Marin, M Luisa; Martínez-Romero, Alicia; O'Connor, José-Enrique; Gomez-Lechon, M Jose; Donato, M Teresa; Castell, Jose V; Miranda, Miguel A

    2009-12-07

    Four new fluorescent derivatives of cholic acid have been synthesized; they incorporate a dansyl moiety at 3alpha-, 3beta-, 7alpha- or 7beta- positions. These cholic acid analogs are UV photoactive and also exhibit green fluorescence. In addition, they have been demonstrated to be suitable for studying the kinetics of bile acid transport by flow cytometry.

  1. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  2. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles?

    Science.gov (United States)

    Riss-Yaw, Benjamin; Morin, Justine; Clavel, Caroline; Coutrot, Frédéric

    2017-11-21

    Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N -substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.

  3. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...

  4. Molecular mechanisms for sweet-suppressing effect of gymnemic acids.

    Science.gov (United States)

    Sanematsu, Keisuke; Kusakabe, Yuko; Shigemura, Noriatsu; Hirokawa, Takatsugu; Nakamura, Seiji; Imoto, Toshiaki; Ninomiya, Yuzo

    2014-09-12

    Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca(2+)]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. New Flame-Retardant Poly(ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    Six new flame-retardant poly(ester-imide)s (9a-f) with high inherent viscosity and containing phosphine oxide moieties in the main chain were synthesized from the polycondensation reaction of N,N-(3,3-diphenylphenyl phosphine oxide) bistrimellitimide diacid chloride (7) with 6 aromatic diols (8a-f) by 2 different methods:--solution and microwave-assisted polycondensation. The results showed that compared to solution polycondensation, the microwave-assisted polycondensation reaction us...

  6. Porous Lactose-Modified Chitosan Scaffold for Liver Tissue Engineering: Influence of Galactose Moieties on Cell Attachment and Mechanical Stability

    Directory of Open Access Journals (Sweden)

    Birong Wang

    2016-01-01

    Full Text Available Galactosylated chitosan (CTS has been widely applied in liver tissue engineering as scaffold. However, the influence of degree of substitution (DS of galactose moieties on cell attachment and mechanical stability is not clear. In this study, we synthesized the lactose-modified chitosan (Lact-CTS with various DS of galactose moieties by Schiff base reaction and reducing action of NaBH4, characterized by FTIR. The DS of Lact-CTS-1, Lact-CTS-2, and Lact-CTS-3 was 19.66%, 48.62%, and 66.21% through the method of potentiometric titration. The cell attachment of hepatocytes on the CTS and Lact-CTS films was enhanced accompanied with the increase of galactose moieties on CTS chain because of the galactose ligand-receptor recognition; however, the mechanical stability of Lact-CTS-3 was reduced contributing to the extravagant hydrophilicity, which was proved using the sessile drop method. Then, the three-dimensional Lact-CTS scaffolds were fabricated by freezing-drying technique. The SEM images revealed the homogeneous pore bearing the favorable connectivity and the pore sizes of scaffolds with majority of 100 μm; however, the extract solution of Lact-CTS-3 scaffold significantly damaged red blood cells by hemolysis assay, indicating that exorbitant DS of Lact-CTS-3 decreased the mechanical stability and increased the toxicity. To sum up, the Lact-CTS-2 with 48.62% of galactose moieties could facilitate the cell attachment and possess great biocompatibility and mechanical stability, indicating that Lact-CTS-2 was a promising material for liver tissue engineering.

  7. Different Steric-Twist-Induced Ternary Memory Characteristics in Nonconjugated Copolymers with Pendant Naphthalene and 1,8-Naphthalimide Moieties.

    Science.gov (United States)

    Wang, Ming; Li, Zhuang; Li, Hua; He, Jinghui; Li, Najun; Xu, Qingfeng; Lu, Jianmei

    2017-10-18

    Herein, novel random copolymers PMNN and PMNB were designed and synthesized, and the memory devices Al/PMNN and PMNB/ITO both exhibited ternary memory performance. The switching voltages of the OFF-ON1 and ON1-ON2 transitions for both memory devices are around -2.0 and -3.5 V, respectively, and the ON1/OFF, ON2/ON1 current ratios are both up to 10 3 . The observed tristable electrical conductivity switching could be attributed to field-induced conformational ordering of the naphthalene rings in the side chains, and subsequent charge trapping by 1,8-naphthalimide moieties. More interestingly, by adjusting the connection sites of 1,8-naphthalimide moieties to tune the steric-twist effect, different memory properties were achieved (PMNN showed nonvolatile write once, read many (WORM) memory behavior, whereas PMNB showed volatile static RAM (SRAM) memory behavior). This result will offer a guideline for the design of different high-performance multilevel memory devices by tuning the steric effects of the chemical moieties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  9. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety.

    Science.gov (United States)

    Chen, Xiwen; Liao, Jin-Long; Liang, Yongmin; Ahmed, M O; Tseng, Hao-En; Chen, Show-An

    2003-01-22

    We report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes as dopants and charge transport moieties onto alky side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (Cz) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated iridium (Ir) complexes as the phosphorescent dopant. Energy transfer from the green Ir complex or an electroplex formed between the fluorene main chain and side-chain carbazole moieties, in addition to that from the PF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broad-band light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) are obtained.

  10. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    Science.gov (United States)

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  12. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  13. Muscle-type nicotinic receptor blockade by diethylamine, the hydrophilic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando eAlberola-Die

    2016-02-01

    Full Text Available Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs, this work was aimed to determine the inhibitory effects of diethylamine (DEA, a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh in a dose-dependent manner (IC50 close to 70 μM, but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3 and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and

  14. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  15. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  16. Miktoarm core-crosslinked star copolymers with biologically active moieties on peripheries

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2010-01-01

    ) of epsilon-caprolactone (epsilon-CL) initiated by functional alcohols provides alkyne or azide end-capped linear PCL chains. Further derivatization of the hydroxyl chain ends of these hetero-telechelic macromolecules by methacrylic acid (MA), and subsequent Cu(I) mediated "click" coupling of terminal alkyne...

  17. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  18. Distance-dependent energy transfer between indole and anthracene moieties in Langmuir Blodgett films

    Science.gov (United States)

    Saha, D. C.; Bhattacharjee, D.; Misra, T. N.

    1998-09-01

    1,2-Diphenyl indole (DPI) and 9,10-diphenyl anthracene (DPA) are non-amphiphilic molecules but form excellent LB films when mixed with stearic acid (SA). Spectroscopic investigations of these films indicate formation of aggregates of DPI and DPA in the mixed LB films. DPA has been used as the quencher of the fluorescence of the DPI donor. Distance-dependent energy transfer between donor and acceptor monolayers in the LB film, where they can be precisely separated by inert spacers of stearic acid layers of varied thickness, is shown to satisfy Khun's quadratic equation. This suggests that the donor excitations are delocalized. The large critical transfer distance estimated from the experimental results has been attributed to the formation of aggregates of the molecules in a LB monolayer.

  19. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    Science.gov (United States)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  20. Rodriguesic acids, modified diketopiperazines from the gastropod mollusc Pleurobranchus areolatus

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabio R.; Santos, Mario F.C.; Berlinck, Roberto G.S., E-mail: rgsberlinck@iqsc.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica; Williams, David E.; Andersen, Raymond J. [Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver (Canada); Padula, Vinicius [SNSB-Zoologische Staatssammlung München, München, Germany and Department Biology II and GeoBio-Center, Ludwig-Maximilians-Universität München, (Germany); Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-04-15

    In the present investigation, two specimens of the nudipleuran mollusc Pleurobranchus areolatus have shown to accumulate oxidized rodriguesin A derivatives. Rodriguesic acid presents a carboxylic acid replacing the terminal methyl group of the alkyl chain of rodriguesin A. A hydroxamate group was also present on the diketopiperazine moiety of a rodriguesic acid derivative. The structures of both rodriguesic acid and of rodriguesic acid hydroxamate have been established by analysis of spectroscopic data, including their absolute configuration. Two methyl esters of the rodriguesic acids have been isolated as major compounds, but were considered to be isolation artifacts. (author)

  1. Rodriguesic acids, modified diketopiperazines from the gastropod mollusc Pleurobranchus areolatus

    International Nuclear Information System (INIS)

    Pereira, Fabio R.; Santos, Mario F.C.; Berlinck, Roberto G.S.; Padula, Vinicius; Ferreira, Antonio G.

    2014-01-01

    In the present investigation, two specimens of the nudipleuran mollusc Pleurobranchus areolatus have shown to accumulate oxidized rodriguesin A derivatives. Rodriguesic acid presents a carboxylic acid replacing the terminal methyl group of the alkyl chain of rodriguesin A. A hydroxamate group was also present on the diketopiperazine moiety of a rodriguesic acid derivative. The structures of both rodriguesic acid and of rodriguesic acid hydroxamate have been established by analysis of spectroscopic data, including their absolute configuration. Two methyl esters of the rodriguesic acids have been isolated as major compounds, but were considered to be isolation artifacts. (author)

  2. Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety

    Science.gov (United States)

    Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz

    2015-02-01

    A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ - model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest - compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed.

  3. New Polyamides Based on Bis(p-amidobenzoic acid)-p-phenylene diacrylic acid and Hydantoin Derivatives: Synthesis and Characterization

    OpenAIRE

    FAGHIHI, Khalil

    2008-01-01

    Bis(p-amidobenzoic acid)-p-phenylene diacrylic acid (6) as a new monomer containing p-phenylenediacryloyl moiety was synthesized by using a 3-step reaction. At first p-phenylenediacrylic acid (3) was prepared by reaction of terephthal aldehyde (1) with malonic acid (2) in the presence of pyridine, and then diacid 3 was converted to p-phenylenediacryloyl chloride (4) by reaction with thionyl chloride. Finally bis(p-amidobenzoic acid)-p-phenylene diacrylic acid (6) was prepared by the ...

  4. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water.

    Science.gov (United States)

    Sung, Soo Park; Moorthy, Madhappan Santha; Song, Hyun-Jin; Ha, Chang-Sik

    2014-11-01

    Lithium ion has been increasingly recognized in a wide range of industrial applications. In this work, we studied on the adsorption of Li+ in the artificial seawater with high selectivity using methyl-crown ether (AC-SBA-15) and aza-crown ether (HMC-SBA-15) moieties-functionalized mesoporous silica materials. First, methyl-crown ether and aza-crown ether moieties-functionalized mesoporous silica materials were synthesized via two-step post-synthesis process using a grafting method. The functionalized materials were employed to the metal ion adsorption from aqueous solution (artificial seawater) containing Li+, Co2+, Cr3+ and Hg2+. The prepared hybrid material showed high selectivity for Li+ ion in the artificial seawater at pH 8.0. The absorbed amount of Li+ was 73 times higher than Cr3+ for aza-crown ether containing AC-SBA-15 as an absorbent. The absorbed amount of Co2+ (4.5 x 10(-5) mol/g), Cr3+ (1.5 x 10(-5) mol/g) and Hg2+ (2.25 x 10(-4) mol/g) were remarkably lower than the case of Li+. On the other hand, the absorbed amount of various metal ions of HMC-SBA-15 with amine groups in alky chains and crown ether moieties were 1.1 x 10(-3) mol/g for Li+, 5.0 x 10(-5) mol/g for Co2+, 2.9 x 10(-4) mol/g for Cr3+, 2.8 x 10(-4) mol/g for Hg2+ mol/g, respectively.

  5. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  6. The design and synthesis of novel SGLT2 inhibitors: C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties.

    Science.gov (United States)

    Guo, Cheng; Hu, Min; DeOrazio, Russell J; Usyatinsky, Alexander; Fitzpatrick, Kevin; Zhang, Zhenjun; Maeng, Jun-Ho; Kitchen, Douglas B; Tom, Susan; Luche, Michele; Khmelnitsky, Yuri; Mhyre, Andrew J; Guzzo, Peter R; Liu, Shuang

    2014-07-01

    The sodium glucose co-transporter 2 (SGLT2) has received considerable attention in recent years as a target for the treatment of type 2 diabetes mellitus. This report describes the design, synthesis and structure-activity relationship (SAR) of C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties as novel SGLT2 inhibitors. Compounds 5p and 33b demonstrated high potency in inhibiting SGLT2 and high selectivity against SGLT1. The in vitro ADMET properties of these compounds will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improvement of thermal properties and flame retardancy of epoxy-amine thermosets by introducing bisphenol containing azomethine moiety

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A novel bisphenol 1, 4'-bis{4-[(4-hydroxy phenyliminomethylidene] phenoxy} benzene (BHPB, which contains azomethine moiety and flexible aromatic ether linkage, was synthesized and introduced into the curing system composed of diglycidyl ether of bisphenol A (DGEBA and diamine. The curing behavior of DGEBA/diamine changed dramatically due to the introduction of BHPB. The resultant epoxy thermosets containing BHPB had high Tgs (127-160 °C, high Td, 5% (>=330°C and high integral procedure decomposition temperature (IPDT values (662-1230°C and good flame retardancy for their high Limited Oxygen Index (LOI values (above 29.5.

  8. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  9. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    OpenAIRE

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  10. Design of α-S-Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety

    DEFF Research Database (Denmark)

    Rojas-Ocáriz, Víctor; Compañón, Ismael; Aydillo Miguel, Carlos

    2016-01-01

    in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation...... for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal...

  11. Synthesis of Hydrophilic Sulfur-Containing Adsorbents for Noble Metals Having Thiocarbonyl Group Based on a Methacrylate Bearing Dithiocarbonate Moieties

    Directory of Open Access Journals (Sweden)

    Haruki Kinemuchi

    2018-01-01

    Full Text Available Novel hydrophilic sulfur-containing adsorbents for noble metals were prepared by the radical terpolymerization of a methacrylate bearing dithiocarbonate moieties (DTCMMA, hydrophilic monomers, and a cross-linker. The resulting adsorbents efficiently and selectively adsorbed noble metals (Au, Ag, and Pd from various multielement aqueous solutions at room temperature owing to the thiocarbonyl group having high affinity toward noble metals. The metal adsorption by the adsorbents was proceeded by simple mixing followed by filtration. The noble metal selectivity of the adsorbent obtained from DTCMMA and N-isopropylacrylamide was higher than that of the adsorbent obtained from DTCMMA and N,N-dimethylacrylamide due to the lower nonspecific adsorption.

  12. Synthesis and antioxidant activity study of pyrazoline carrying arylfuran/thiophene moiety

    Directory of Open Access Journals (Sweden)

    Jois Vidyashree H.S.

    2014-01-01

    Full Text Available A novel series of N-acetyl-3-aryl-5-(5-(p/o-nitrophenyl-2-arylfuryl/thienyl substituted pyrazoline (3a-o were synthesized by the reaction of 1-aryl-3-(5-(p/o-nitrophenyl-2-furyl/thienyl-2-propene-1-one with hydrazine hydrate in acetic acid medium. The structures of the newly synthesized compounds were established by IR, 1H NMR, mass spectra and single crystal X-ray study. The synthesized compounds were subjected to antioxidant activity using DPPH scavenging assay. The compounds 3a, 3f, 3h and 3o showed moderate activity.

  13. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  14. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  15. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  16. Endogenous acceptors for polyuronide biosynthesis in Mucor rouxii

    International Nuclear Information System (INIS)

    Carreon, A.F.; Balcazar, R.

    1984-01-01

    Cell walls of Mucor rouxii contain relatively high amounts of acidic polymers of D-glucuronic acid. Two types of polyuronides have been isolated from cell walls of M. rouxii: mucoric acid and mucoran. Mucoran isolated from yeast cell walls is a heteropolysaccharide containing D-mannose, D-fructose, D-galactose, and D-glucose, besides D-glucuronic acid. On the other hand, mucoric acid, from sporangiophore walls is a homopolymer of D-glucuronic acid. Glucuronosyl transferase, the enzyme which catalyzes the transfer of glucuronic acid from UDP-glucuronic acid to acidic polymers, has been demonstrated using crude membrane fractions from M. rouxii

  17. Watson-Crick hydrogen bonding of unlocked nucleic acids

    DEFF Research Database (Denmark)

    Langkjær, Niels; Wengel, Jesper; Pasternak, Anna

    2015-01-01

    We herein describe the synthesis of two new unlocked nucleic acid building blocks containing hypoxanthine and 2,6-diaminopurine as nucleobase moieties and their incorporation into oligonucleotides. The modified oligonucleotides were used to examine the thermodynamic properties of UNA against unmo...... unmodified oligonucleotides and the resulting thermodynamic data support that the hydrogen bonding face of UNA is Watson-Crick like....

  18. PYRENE INTERCALATING NUCLEIC ACIDS WITH A CARBON LINKER

    DEFF Research Database (Denmark)

    Østergaard, Michael E.; Wamberg, Michael Chr.; Pedersen, Erik Bjerregaard

    2011-01-01

    geminally attached. Fluorescence studies of this intercalating nucleic acid with the pyrene moieties inserted as a bulge showed formation of an excimer band. When a mismatch was introduced at the site of the intercalator, an excimer band was formed for the destabilized duplexes whereas an exciplex band...

  19. A new potent fusidic acid analogue

    DEFF Research Database (Denmark)

    Søtofte, Inger; Duvold, Tore

    2001-01-01

    The crystal structure of the compound, 17S,20S-dihydrofusidic acid diethylene glycol hydrate, C31H50O6.C4H10O3.H2O, consists of 17S,20S-dihydrofusidic acid, diethylene glycol and water. The fusidic acid moiety contains three six-membered rings and one five-membered ring. The fused-ring system...... adopts a chair, a twist boat, a chair and an envelope conformation. The crystal packing is influenced by hydrogen bonds....

  20. Facile Synthesis of Novel Vanillin Derivatives Incorporating a Bis(2-hydroxyethyl)dithhioacetal Moiety as Antiviral Agents.

    Science.gov (United States)

    Zhang, Jian; Zhao, Lei; Zhu, Chun; Wu, Zengxue; Zhang, Guoping; Gan, Xiuhai; Liu, Dengyue; Pan, Jianke; Hu, Deyu; Song, Baoan

    2017-06-14

    A series of vanillin derivatives incorporating a bis(2-hydroxyethyl)dithioacetal moiety was designed and synthesized via a facile method. A plausible reaction pathway was proposed and verified by computational studies. Bioassay results demonstrated that target compounds possessed good to excellent activities against potato virus Y (PVY) and cucumber mosaic virus (CMV), of which, compound 6f incorporating a bis(2-hydroxyethyl)dithioacetal moiety, exhibited the best curative and protection activities against PVY and CMV in vivo, with 50% effective concentration values of 217.6, 205.7 μg/mL and 206.3, 186.2 μg/mL, respectively, better than those of ribavirin (848.0, 808.1 μg/mL and 858.2, 766.5 μg/mL, respectively), dufulin (462.6, 454.8 μg/mL and 471.2, 465.4 μg/mL, respectively), and ningnanmycin (440.5, 425.3 μg/mL and 426.1, 405.3 μg/mL, respectively). Current studies provide support for the application of vanillin derivatives incorporating bis(2-hydroxyethyl)dithioacetal as new antiviral agents.

  1. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.

    Science.gov (United States)

    Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian

    2017-07-01

    Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.

  2. Synthesis and characterization of a new class of glycosylated porphyrins bearing the RGD moiety and their application in photodynamic therapy

    International Nuclear Information System (INIS)

    Chaleix, Vincent

    2003-01-01

    The use of porphyrins and analogues as photosensitisers together with visible light is a new treatment of tumors (photodynamic therapy, PDT). Carbohydrate-substituted porphyrins are in this domain very promising compounds. In addition, it is known that endothelial cells of the neo-vascularisation in tumors express αVβ3 integrin. Extracellular domains of this transmembrane glycoprotein are able to bind components of the extracellular matrix (ECM) and more precisely the sequence Arg-Gly-Asp. With the aim of their utilization in photodynamic therapy of cancers, we describe the synthesis and characterization (UV-Visible, mass, NMR) of new glucosylated porphyrins bearing the RGD moiety. The first synthesised compounds were derived from tritolyl and tri-glucosyl-aryl-porphyrins where the peptidic moiety is linked to the phenyl group by a spacer arm by means of a solid phase reaction.. The second series consists of glucosylated porphyrin derivatives bearing a cyclical unsaturated pentapeptide including RGD sequence, obtained by ring closing metathesis in solid phase. We have also synthesized a dimer in which the two glucosylated porphyrins are linked by the RGD sequence. These compounds produced 1 O 2 and photo-cyto-toxicities against K562 leukemia cell line were favourably compared to Photofrin II R . Due to their sensitising abilities, these compounds are of considerable interest for photodynamic therapy. (author) [fr

  3. Synthesis of N-succinyl-L,L-diaminopimelic acid mimetics via selective protection.

    Science.gov (United States)

    Vanek, V; Pícha, J; Budesínský, M; Sanda, M; Jirácek, J; Holz, R C; Hlavácek, J

    2010-03-01

    The search for potential inhibitors that target so far unexplored bacterial enzyme mono-N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) has stimulated a development of methodology for quick and efficient preparation of mono-N-acylated 2,6-diaminopimelic acid (DAP) derivatives bearing the different carboxyl groups or lipophilic moieties on their amino group.

  4. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime

    2013-01-01

    Nlayered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6–31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid...

  5. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could

  6. Synthesis and Thermal and Photo Behaviors of New Polyamide/Organocaly Nanocomposites Containing Para Phenylenediacrylic Moiety

    Science.gov (United States)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadat

    2011-06-01

    New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution process in N-methyl-2-pyrolidone. Amide chains were synthesized from 4,4'-diaminodiphenyl sulfone and p-phenylenediacrylic acid in N-methyl-2-pyrolidone. The resulting nanocomposite films containing 5-15 mass % of organoclay were characterized for FT-IR, scanning electronmicroscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.

  7. Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization.

    Science.gov (United States)

    Li, Hui-Shan; Piao, Da-Chuan; Jiang, Tao; Bok, Jin-Duck; Cho, Chong-Su; Lee, Yoon-Seok; Kang, Sang-Kee; Choi, Yun-Jaie

    2015-04-15

    Development and application of safe and effective mucosal adjuvants are important to improve immunization efficiency in oral vaccine. Here, we report a novel mucosal adjuvant, IL-6-CKS9, a recombinant cytokine generated by conjugating an M cell-targeting peptide (CKS9) with c-terminus of the murine interleukin 6 (IL-6), which facilitated enhancement of mucosal immune response. Lactococcus lactis IL1403, a food-grade strain of lactic acid bacteria (LAB) which is widely used in dairy industry, was used as a host cell to express and secrete the IL-6-CKS9 for a mucosal vaccine adjuvant. The recombinant L. lactis IL1403 secreting IL-6-CKS9 was orally administered with a model antigen protein, M-BmpB (Brachyspira membrane protein B conjugated with CKS9), to BALB/c mice for mucosal immunization. ELISA analyses showed consistent enhancement tendencies in induction of anti-M-BmpB antibody levels both with mucosal (IgA) and systemic (IgG) immune responses in IL-6-CKS9-LAB treated group compared with other groups tested by conducting two separated mice immunization assays. In addition, we characterized that the oral administration of model protein antigen with live LAB producing IL-6-CKS9 could induce both Th1 and Th2 type immune responses by analysis of the specific anti-BmpB IgG1 and IgG2a isotypes in the sera and also investigated possible oral tolerance in our vaccine strategy. Collectively, our results showed successful production and secretion of recombinant murine IL-6 with M cell-targeting moiety (IL-6-CKS9) from L. lactis IL1403 and demonstrated the live recombinant LAB producing IL-6-CKS9 could have a potential to be used as an efficient adjuvant for peroral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  9. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    Science.gov (United States)

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  10. Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials.

    Science.gov (United States)

    Kudanga, Tukayi; Prasetyo, Endry Nugroho; Sipilä, Jussi; Guebitz, Georg M; Nyanhongo, Gibson S

    2010-08-20

    Enzymatic processes provide new perspectives for modification of lignocellulose materials. In the current study, laccase catalyzed coupling of long chain alkylamines to lignin model molecules and lignocellulose was investigated. Up to two molecules of dodecylamine (DA) and dihexylamine (DHA) were successfully coupled with lignin monomers (guaiacol, catechol and ferulic acid) while coupling onto complex lignin model compounds (syringylglycerol beta-guaiacyl ether, guaiacylglycerol beta-guaiacyl ether and dibenzodioxocin) yielded 1:1 coupling products. Surface analysis of beech veneers enzymatically grafted with DA showed an increase in nitrogen content of 3.18% compared to 0.71% in laccase only treated controls while the O/C ratio decreased from 0.52 to 0.46. Concomitantly the grafting of DHA or DA onto beech veneers resulted in a 53.8% and 84.2% increase in hydrophobicity, respectively when compared to simple adsorption. Therefore, laccase-mediated grafting of long chain alkylamines onto lignocellulose materials can be potentially exploited for improving their hydrophobicity. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Muscle-type nicotinic receptor modulation by 2,6-dimethylaniline, a molecule resembling the hydrophobic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando Alberola-Die

    2016-11-01

    Full Text Available To identify the molecular determinants responsible for lidocaine blockade of muscle-type nAChRs, we have studied the effects on this receptor of 2,6-dimethylaniline (DMA, which resembles lidocaine’s hydrophobic moiety. Torpedo marmorata nAChRs were microtransplanted to Xenopus oocytes and currents elicited by ACh (IACh, either alone or co-applied with DMA, were recorded. DMA reversibly blocked IACh and, similarly to lidocaine, exerted a closed-channel blockade, as evidenced by the enhancement of IACh blockade when DMA was pre-applied before its co-application with ACh, and hastened IACh decay. However, there were marked differences among its mechanisms of nAChR inhibition and those mediated by either the entire lidocaine molecule or diethylamine (DEA, a small amine resembling lidocaine’s hydrophilic moiety. Thereby, the IC50 for DMA, estimated from the dose-inhibition curve, was in the millimolar range, which is one order of magnitude higher than that for either DEA or lidocaine. Besides, nAChR blockade by DMA was voltage-independent in contrast to the increase of IACh inhibition at negative potentials caused by the more polar lidocaine or DEA molecules. Accordingly, virtual docking assays of DMA on nAChRs showed that this molecule binds predominantly at intersubunit crevices of the transmembrane-spanning domain, but also at the extracellular domain. Furthermore, DMA interacted with residues inside the channel pore, although only in the open-channel conformation. Interestingly, co-application of ACh with DEA and DMA, at their IC50s, had additive inhibitory effects on IACh and the extent of blockade was similar to that predicted by the allotopic model of interaction, suggesting that DEA and DMA bind to nAChRs at different loci. These results indicate that DMA mainly mimics the low potency and non-competitive actions of lidocaine on nAChRs, as opposed to the high potency and voltage-dependent block by lidocaine, which is emulated by the

  12. Copolymers based on N-acryloyl-L-leucine and urea methacrylate with pyridine moieties

    Directory of Open Access Journals (Sweden)

    Buruiana Emil C.

    2016-01-01

    Full Text Available By using free radical polymerization of (N-methacryloyloxyethyl-N′-4-picolyl-urea (MAcPU and N-acryloyl-L-leucine (AcLeu, an optically active copolymer, poly[(N-methacryloyloxyethyl-N′-4-picolyl-urea-co-N-acryloyl-L-leucine], MAcPU-co-AcLeu (1.86:1 molar ratio was prepared and subsequently functionalized at the pyridine-N with (1R/S-(−/+-10-camphorsulfonic acid (R/S-CSA and at carboxyl group with (R-(+-α-ethylbenzylamine (R-EBA or trans-4-stilbene methanol (t-StM. The structures, chemical composition and chiroptical activity of the monomers and the copolymers were characterized by spectral analysis (FTIR, 1H (13C-NMR, 1H,1H-COSY, UV/vis, thermal methods (TGA, DSC, fluorescence spectroscopy, gel permeation chromatography and specific rotation measurements. Influence of the optical activity of monomer and modifier on modified copolymers suggested a good correlation between the experimental data obtained (23[α]589=+12.5° for AcLeu and MAcPU-co-AcLeu, 23[α]589=0°+27.5° for (MAcPU-co-AcLeu-R/S-CSA, 23[α]589=+25° for (MAcPU-co-AcLeu-R-EBA, and 23[α]589 = 0° for (MAcPU-co-AcLeu-St. In addition, the photobehavior of the stilbene copolymer (MAcPU-co-AcLeu-St in film was investigated by UV-vis spectroscopy. The fluorescence quenching of the stilbene species in the presence of aliphatic/aromatic amine in DMF solution was evaluated, more efficiently being 4,4′−dipyridyl (detection limit: 7.2 x 10-6 mol/L.

  13. Synthesis and Tuberculostatic Activity Evaluation of Novel Benzazoles with Alkyl, Cycloalkyl or Pyridine Moiety

    Directory of Open Access Journals (Sweden)

    Malwina Krause

    2018-04-01

    Full Text Available Compounds possessing benzimidazole system exhibit significant antituberculous activity. In order to examine how structure modifications affect tuberculostatic activity, a series of benzazole derivatives were synthesized and screened for their antitubercular activity. The compounds 1–20 were obtained by the reaction between o-diamine, o-aminophenol, or o-aminothiophenol with carboxylic acids or thioamides. The newly synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Synthesized benzazoles were evaluated for their tuberculostatic activity toward Mycobacterium tuberculosis strains. Quantum chemical calculations were performed to study the molecular geometry and the electronic structure of benzimidazoles GK-151B, 4, 6, and benzoxazole 11, using the Gaussian 03W software (Gaussian, Inc., Wallingford, CT, USA. Three-dimensional structure of benzimidazoles 1–3, MC-9, and GK-151B was determined by ab initio calculation using Gamess-US software. The activity of the received benzimidazoles was moderate or good. All of the benzoxazoles and benzothiazoles demonstrated much lower activity. Benzoxazoles were less active by about 50 times, and benzothiazole by 100 times than the benzimidazole analogs. Quantum chemical calculations showed differences in the distribution of electrostatic potential in the benzazole system of benzimidazoles and benzoxazoles. Three-dimensional structure calculations revealed how the parity of the alkyl substituent at the C2 position impacts the activity. Benzimidazole system is essential for the antituberculosis activity that is associated with the presence of the imine nitrogen atom in N-1 position. Its replacement by an oxygen or sulfur atom results in a decrease of the activity. The parity of the alkyl substituent at the C-2 position also modifies the activity.

  14. Theoretical pKa prediction of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc

    Science.gov (United States)

    Vipperla, Bhavaniprasad; Griffiths, Thomas M.; Wang, Xingyong; Yu, Haibo

    2017-01-01

    The pKa value of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc (UDP-GlcNAc) has been successfully calculated using density functional theory methods in conjunction with the Polarizable Continuum Models. Theoretical methods were benchmarked over a dataset comprising of alkyl phosphates. B3LYP/6-31+G(d,p) calculations using SMD solvation model provide excellent agreement with the experimental data. The predicted pKa for UDP-GlcNAc is consistent with most recent NMR studies but much higher than what it has long been thought to be. The importance of this study is evident that the predicted pKa for UDP-GlcNAc supports its potential role as a catalytic base in the substrate-assisted biocatalysis.

  15. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    CERN Document Server

    Kim, B J; Choi, D H

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

  16. Thermal and Optical Properties of New Poly(amide-imide)/Nanocomposite Reinforced by Layer Silicate Containing Diphenyl Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam

    2011-04-01

    New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  17. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  18. Synthesis and pharmacological characterization of a novel nitric oxide-releasing diclofenac derivative containing a benzofuroxan moiety.

    Science.gov (United States)

    de Carvalho, Paulo Sérgio; Maróstica, Marta; Gambero, Alessandra; Pedrazzoli, José

    2010-06-01

    1-oxy-benzo[1,2,5]oxadiazol-5-ylmethyl [2-(2,6-dichloro-phenylamino)-phenyl]-acetate, a new diclofenac derivative bearing a benzofuroxan heterocyclic moiety in its structure, was prepared by the reaction of sodium diclofenac and 5-bromomethyl-benzo[1,2,5]oxadiazole 1-oxide. Pharmacological characterization of this modified diclofenac maintained the anti-inflammatory activity similar to its parent compound assayed in vitro and in vivo. The ulcerogenic properties of native diclofenac were not observed with this modified compound, despite the inhibition of prostaglandin E2 gastric content. The better gastric tolerability seems to be related to nitric oxide release ability. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  19. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Science.gov (United States)

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  20. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2015-02-01

    Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.

  1. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    International Nuclear Information System (INIS)

    Kim, Beom Jun; Park, Soo Young; Choi, Dong Hoon

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light

  2. Electron Transfer and Geometric Conversion of Co-NO Moiety in Saddled Porphyrins: Implications for Trigger Role of Tetrapyrrole Distortion.

    Science.gov (United States)

    Tang, Min; Yang, Yan; Zhang, Shaowei; Chen, Jiafu; Zhang, Jian; Zhou, Zaichun; Liu, Qiuhua

    2018-01-02

    The electrons of NO and Co are strongly delocalized in normal {Co-NO} 8 species. In this work, {Co-NO} 8 complexes are induced to convert from (Co II ) +• -NO • to Co III -NO - by a core contraction of 0.06 Å in saddled cobalt(II) porphyrins. This intramolecular electron transfer mechanism indicates that nonplanarity of porphyrin is involved in driving conversion of the NO units from electrophilic NO • as a bent geometry to nucleophilic NO - as a linear geometry. This implies that distortion acts as a trigger in enzymes containing tetrapyrrole. The electronic behaviors of the Co II ions and Co-NO moieties were confirmed by X-ray crystallography, EPR spectroscopy, theoretical calculation, UV-vis and IR spectroscopy, and electrochemistry.

  3. 3D printed modular centrifugal contactors and method for separating moieties using 3D printed optimized surfaces

    Science.gov (United States)

    Wardle, Kent E.

    2017-08-29

    The present invention provides an annular centrifugal contactor, having a housing to receive a plurality of liquids; a rotor inside the housing; an annular mixing zone, with a plurality of fluid retention reservoirs; and an adjustable stem that can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of liquid into the rotor. The invention also provides a method for transferring moieties from a first liquid to a second liquid, the method having the steps of combining the fluids in a housing whose interior has helically shaped first channels; subjecting the fluids to a spinning rotor to produce a mixture, whereby the channels simultaneously conduct the mixture downwardly and upwardly; and passing the mixture through the rotor to contact second channels, whereby the channels pump the second liquid through a first aperture while the first fluid exits a second aperture.

  4. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    Science.gov (United States)

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  5. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Directory of Open Access Journals (Sweden)

    Pilar T. V. Florentino

    2018-04-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels, it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease.

  6. Investigating the use of endogenous quinoid moieties on carbon fibre as means of developing micro pH sensors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ashleigh; Phair, Jolene; Benson, John; Meenan, Brian; Davis, James, E-mail: james.davis@ulster.ac.uk

    2014-10-01

    The redox profile obtained from electrochemically oxidised carbon fibre was exploited as a foundation from which to design a reusable pH probe. X-ray photoelectron spectroscopy of the surface after anodisation revealed an increase in the population of endogenous quinone moieties. Square wave voltammograms recorded in various buffer solutions (pH 3–9) yielded a distinct and unambiguous oxidation process through which to ascribe the peak potential — with the latter found to shift in a sub-Nernstian (− 0.052 V/pH) manner. The design of a discrete 2-electrode reusable probe which provides a rapid assessment of pH is described and a preliminary characterisation of the electrochemical performance is critically assessed. - Graphical abstract: The redox profile obtained from electrochemically oxidised carbon fibre was exploited as a foundation from which to design a reusable pH probe. X-ray photoelectron spectroscopy of the surface after anodisation revealed an increase in the population endogenous quinone moieties. Square wave voltammograms recorded in various buffer solutions (pH 3–9) yielded a distinct and unambiguous oxidation process through which to ascribe the peak potential — with the latter found to shift in a sub-Nernstian (− 0.052 V/pH) manner. The design of a discrete 2-electrode reusable probe which provides a rapid assessment of pH is described and a preliminary characterisation of the electrochemical performance is critically assessed. - Highlights: • In situ creation of pH sensitive quinone groups on carbon fibre • Versatile and accessible approach to manufacturing disposable pH sensors • Miniature probe design enables monitoring pH in small volumes. • Detailed surface characterisation of electrochemically modified carbon fibre.

  7. Quantum mechanics study of repulsive π-π interaction and flexibility of phenyl moiety in the iron azodioxide complex

    Science.gov (United States)

    Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.

    2015-10-01

    In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.

  8. Investigating the use of endogenous quinoid moieties on carbon fibre as means of developing micro pH sensors

    International Nuclear Information System (INIS)

    Anderson, Ashleigh; Phair, Jolene; Benson, John; Meenan, Brian; Davis, James

    2014-01-01

    The redox profile obtained from electrochemically oxidised carbon fibre was exploited as a foundation from which to design a reusable pH probe. X-ray photoelectron spectroscopy of the surface after anodisation revealed an increase in the population of endogenous quinone moieties. Square wave voltammograms recorded in various buffer solutions (pH 3–9) yielded a distinct and unambiguous oxidation process through which to ascribe the peak potential — with the latter found to shift in a sub-Nernstian (− 0.052 V/pH) manner. The design of a discrete 2-electrode reusable probe which provides a rapid assessment of pH is described and a preliminary characterisation of the electrochemical performance is critically assessed. - Graphical abstract: The redox profile obtained from electrochemically oxidised carbon fibre was exploited as a foundation from which to design a reusable pH probe. X-ray photoelectron spectroscopy of the surface after anodisation revealed an increase in the population endogenous quinone moieties. Square wave voltammograms recorded in various buffer solutions (pH 3–9) yielded a distinct and unambiguous oxidation process through which to ascribe the peak potential — with the latter found to shift in a sub-Nernstian (− 0.052 V/pH) manner. The design of a discrete 2-electrode reusable probe which provides a rapid assessment of pH is described and a preliminary characterisation of the electrochemical performance is critically assessed. - Highlights: • In situ creation of pH sensitive quinone groups on carbon fibre • Versatile and accessible approach to manufacturing disposable pH sensors • Miniature probe design enables monitoring pH in small volumes. • Detailed surface characterisation of electrochemically modified carbon fibre

  9. Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces

    Science.gov (United States)

    de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.

    2018-01-01

    The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile

  10. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Science.gov (United States)

    Florentino, Pilar T. V.; Real, Fernando; Orikaza, Cristina M.; da Cunha, Julia P. C.; Vitorino, Francisca N. L.; Cordero, Esteban M.; Sobreira, Tiago J. P.; Mortara, Renato A.

    2018-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease. PMID:29692765

  11. Carcinostatic effects of diverse ascorbate derivatives in comparison with aliphatic chain moiety structures: Promotion by combined hyperthermia and reduced cytotoxicity to normal cells.

    Science.gov (United States)

    Asada, Ryoko; Kageyama, Katsuhiro; Tanaka, Hiroshi; Kimura, Masatugu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2012-05-01

    In this study, using human tongue squamous carcinoma cells (HSC-4) carcinostatic activity was compared for diverse L-ascorbic acid (Asc) derivatives, including the 'straight-C(16)-chain types', 6-O-palmitoyl-Asc (A6-P) and Asc-2-phosphate-6-O-palmitate sodium salt (APPS), as well as the 'branched-C(16)-chain types', Asc-2-phosphate-6-O-(2'-hexyl)decanoate (APHD), an isomer of APPS, and Asc-2,3,5,6-O-tetra-(2'-hexyl)decanoate (VCIP). The order of magnitude of the carcinostatic effects at 37°C was: APPS>A6-P = APHD>VCIP and at 42°C was APPS = A6-P>APHD>VCIP. Therefore, the two straight-C(16)-chain derivatives, APPS and A6-P, had a greater effect compared to the two branched-C(16)-chain Asc derivatives, which are considered to have more difficulty with 'orientation along cell-membrane-glycerolipid direction'. APPS-treated HCS-4 cells were observed for a decrease in cell number, cell shrinkage, pycnosis indicative of apoptosis and cell deformation. The order of cytotoxicity for the normal human dermal fibroblasts (OUMS-36) at 37°C was: A6-P (50% inhibitory concentration: 150-300 μM)>APHD (450-600 μM)>Asc = APPS (800-1000 μM). Accordingly, APHD was more cytotoxic than APPS, since the straight-C(16)-chain type, which was eliminated after the enzymatic esterolysis of APPS, is metabolized via the 'fatty acid β-oxidation cycle' more efficiently in normal cells. Thus, APPS had a greater advantage over APHD, A6-P and VCIP in terms of carcinostatic effects at 37°C, carcinostasis promotion at 42°C and a decrease of cytotoxicity to normal cells. This observation suggests a marked potential for aliphatic chain-moiety structures as anticancer agents, due to their cancer-selective carcinostasis and combined efficacy with hyperthermia, without causing side effects.

  12. Discovery and biological evaluation of some (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Wu, Qing-Xia; Wang, Lin; Yang, Su; Sun, Qi; Meng, Fan-Hao

    2017-02-15

    A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC 50 values of 0.6μM and 0.8μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  14. Structures of the K35 and K15 capsular polysaccharides of Acinetobacter baumannii LUH5535 and LUH5554 containing amino and diamino uronic acids.

    Science.gov (United States)

    Shashkov, Alexander S; Liu, Bin; Kenyon, Johanna J; Popova, Anastasiya V; Shneider, Mikhail M; Senchenkova, Sof'ya N; Arbatsky, Nikolay P; Miroshnikov, Konstantin A; Wang, Lei; Knirel, Yuriy A

    2017-08-07

    Capsular polysaccharides were isolated from A. baumannii LUH5535 (K35 CPS) and LUH5554 (K15 CPS) and studied by 1D and 2D 1 H and 13 C NMR spectroscopy. The CPSs were found to consist of linear tetrasaccharide repeats (K units) containing 2-acetamido-2-deoxy-d-galacturonic acid (K35) or 2,3-diacetamido-2,3-deoxy-d-glucuronic acid (K15) and 2,4-diacetamido-2,4,6-trideoxy-d-glucose (both CPSs). The K35 unit includes three O-acetyl groups on different GalNAcA residues. A. baumannii LUH5535 and LUH5554 carry the KL35 and KL15 gene clusters, respectively, and putatively assigned functions of genes in these clusters were consistent with the CPS structures established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  16. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A role played by the lactone moiety.

    Science.gov (United States)

    Qiu, Haibo; Qian, Shan; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-10-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, a new analog ZJ-109 was designed and synthesized to probe the importance of the lactone moiety of the molecule by replacing the lactone in ZJ-101 with a lactam. The biological evaluation showed that ZJ-109 is about 8-12 times less active against cancer cells in vitro than ZJ-101, suggesting that the lactone moiety of the molecule is important for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular radiobiology of nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Fuciarelli, A F

    1987-01-01

    In addition to radiolytic adenine release, radiolysis of adenosine 5'-monophosphate, in the absence of oxygen, can result in the formation of 8-hydroxyadenosine 5'-monophosphate and both the (R)- and (S)-epimer of 8,5'-cycloadenosine 5'-monophosphate. The mononucleoside derivatives of these modified nucleotides were also observed in irradiated solutions of adenosine and in the enzyme hydrolysates of irradiated solutions of polyadenylic acid (poly A) using high-performance liquid chromatography (HPLC). In an effort to detect 8,5'-cyclo(deoxy) adenosine formation in irradiated nucleic acids, polyclonal antiserum were raised with specificity to the 8,5'-cycloadenosine 5'-monophosphate moiety and used in an enzyme-linked immunosorbent assay (ELISA). The 8,5'-cyclo(deoxy)adenosine moiety could be detected in nitrous oxide-saturated aqueous solutions containing unhydrolyzed poly A at 10 Gy and DNA at 200 Gy using the colorimetric ELISA. Correlation of product yield measured by ELISA with HPLC analysis of irradiated, enzyme-hydrolyzed solutions of poly A revealed that the ELISA was precisely reflecting changes in the combined yield of (R)- and (S)-8,5'-cycloadenosine.

  18. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  19. Metallocene-based antimalarials: an exploration into the influence of the ferrocenyl moiety on in vitro antimalarial activity in chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum.

    Science.gov (United States)

    Blackie, Margaret A L; Beagley, Paul; Croft, Simon L; Kendrick, Howard; Moss, John R; Chibale, Kelly

    2007-10-15

    To establish the role of the ferrocenyl moiety in the antiplasmodial activity of ferroquine, compounds in which this moiety is replaced by the corresponding ruthenium-based moieties were synthesized and evaluated. In both the sensitive (D10) and resistant (K1) strains of Plasmodium falciparum, ruthenoquine analogues showed comparable potency to ferroquine. This suggests that a probable role of the ferrocenyl fragment is to serve simply as a hydrophobic spacer group. In addition, ferroquine analogues with different aromatic substituents were synthesized and evaluated. Unexpectedly high activity for quinoline compounds lacking the 7-chloro substituent suggests the ferrocenyl moiety may have an additive and/or synergistic effect.

  20. Quantum mechanics models of the methanol dimer: O-H…O hydrogen bonds of ß-D-glucose moieties from crystallographic data.

    Science.gov (United States)

    In this study, a survey of the Cambridge Crystal Structure Database for all donor-acceptor interactions in ß-D-glucose moieties was performed to examine the similarities and differences among the different hydroxyl groups and ether oxygen atoms that participate in hydrogen bonds. Comparable behavior...

  1. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

    DEFF Research Database (Denmark)

    Iwai, Ichiro; Han, Hongmei; Hollander, Lianne den

    2012-01-01

    not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin...

  2. The Synthesis of Novel 3-Substituted Poly(pyrroles) Bearing Crown-ether Moieties and a Study of their Electrochemical Properties

    DEFF Research Database (Denmark)

    Guernion, Nicolas J.L.; Blencowe, A.; Hayes, Wayne

    2006-01-01

    A series of fourteen novel pyrrole monomers substituted at the 3-position with aliphatic and aromatic crown-ether moieties have been synthesised in good yield and characterised extensively. Several of those compounds were electropolymerised successfully in acetonitrile, using both potentiostatic ...

  3. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    Science.gov (United States)

    Darwish, Elham S.; Abdel Fattah, Azza M.; Attaby, Fawzy A.; Al-Shayea, Oqba N.

    2014-01-01

    This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl) phenyl]-2-cyano-2-(1,3-dithian-2-ylidene)acetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results. PMID:24445259

  4. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    Directory of Open Access Journals (Sweden)

    Elham S. Darwish

    2014-01-01

    Full Text Available This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonylphenyl]-2-cyanoacetamide (3. The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl phenyl]-2-cyano-2-(1,3-dithian-2-ylideneacetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results.

  5. Synthesis, characterization and gas separation properties of novel polyimides containing cardo and tert-butyl-m-terphenyl moieties

    Directory of Open Access Journals (Sweden)

    L. A. Bermejo

    2018-05-01

    Full Text Available A series of aromatic polyimides has been obtained by the reaction of two dianhydrides, the commercial 2,2′-bis(3,4-dicarboxyphenylhexafluoropropane dianhydride (6FDA and another having a 5′-tert-butyl-m-terphenyl moiety (BTPDA, with several diamines, including two that have a cardo structure (derived from 9H-fluorene, one of them bearing methyl groups ortho to the amino functionalities (TMeCardo. The solubility, and also the thermal, mechanical, and gas separation properties of the corresponding polyimide membranes were evaluated and compared in order to explore the effect of the different groups in the polyimide backbone. The novel polyimides, which were derived from BTPDA and the cardo diamines, showed high thermal stability, excellent solubility in organic solvents and good gas separation properties, especially the polyimide that bore the ortho methyl substituents. The behavior was especially good for the pair O2/N2, where the TMeCardo polymer overpassed the Robeson upper bound.

  6. Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: a spectroscopic and thermodynamic characterization.

    Directory of Open Access Journals (Sweden)

    Sandip Pal

    Full Text Available The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC and epicatechin gallate (ECG are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the circulatory system and eliminate reactive oxygen species (ROS induced injury. In the present study ECG is observed to have higher antioxidant activity; which is attributed to the presence of galloyl moiety. The binding affinity of these catechins to bovine serum albumin (BSA will govern the efficacy of their biological activity. EC and ECG bind with BSA with binding constants 1.0 × 10(6 M(-1 and 6.6 × 10(7 M(-1, respectively. Changes in secondary structure of BSA on interaction with EC and ECG have been identified by circular dichroism (CD and Fourier transform infrared (FT-IR spectroscopy. Thermodynamic characterization reveals the binding process to be exothermic, spontaneous and entropy driven. Mixed binding forces (hydrophobic, electrostatic and hydrogen bonding exist between ECG and BSA. Binding site for EC is primarily site-II in sub-domain IIIA of BSA and for ECG; it is site-I in sub-domain IIA. ECG with its high antioxidant activity accompanied by high affinity for BSA could be a model in drug designing.

  7. Photocatalytic Conversion of CO2 to CO using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties

    Science.gov (United States)

    Andrade, Gabriel A.; Pistner, Allen J.; Yap, Glenn P.A.; Lutterman, Daniel A.; Rosenthal, Joel

    2013-01-01

    Harnessing of solar energy to drive the reduction of carbon dioxide to fuels requires the development of efficient catalysts that absorb sunlight. In this work, we detail the synthesis, electrochemistry and photophysical properties of a set of homologous fac-ReI(CO)3 complexes containing either an ancillary phenyl (8) or BODIPY (12) substituent. These studies demonstrate that both the electronic properties of the rhenium center and BODIPY chromophore are maintained for these complexes. Photolysis studies demonstrate that both assemblies 8 and 12 are competent catalysts for the photochemical reduction of CO2 to CO in DMF using triethanolamine (TEOA) as a sacrificial reductant. Both compounds 8 and 12 display TOFs for photocatalytic CO production upon irradiation with light (λex ≥ 400 nm) of ~5 hr−1 with TON values of approximately 20. Although structural and photophysical measurements demonstrate that electronic coupling between the BODIPY and fac-ReI(CO)3 units is limited for complex 12, this work clearly shows that the photoactive BODIPY moiety is tolerated during catalysis and does not interfere with the observed photochemistry. When taken together, these results provide a clear roadmap for the development of advanced rhenium bipyridine complexes bearing ancillary BODIPY groups for the efficient photocatalytic reduction of CO2 using visible light. PMID:24015374

  8. Ultrasound-aided formation of gold nanoparticles on multi-walled carbon nanotubes functionalized with mercaptobenzene moieties.

    Science.gov (United States)

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun

    2011-07-01

    A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.

  9. Mycoplasma infection of cell lines can simulate the expression of Fc receptors by binding of the carbohydrate moiety of antibodies.

    Science.gov (United States)

    Lemke, H; Krausse, R; Lorenzen, J; Havsteen, B

    1985-05-01

    During the production of Fc receptor (FcR)-bearing hybridomas it was observed with a particular monoclonal anti-sheep red blood cell antibody (anti-SRBC 1/5, IgG1) that the contamination with Mycoplasma arginini of in vitro cultured cell lines leads to an apparent FcR activity. This property did not correspond with the serological typing since other antibodies of the same isotype could not support FcR rosette formation. Another mycoplasma strain M. orale lacked this property. Analysis of the binding reaction revealed that M. arginini contains a lectin which binds the carbohydrate moiety of the anti-SRBC 1/5 antibody, i.e. anti-SRBC 1/5 synthesized under the influence of tunicamycin or deglycosylated by NaIO4 oxidation did not support rosette formation. These data suggest that binding of antibodies to certain mycoplasma strains may be a pathogenic factor during mycoplasma infections by masking the microorganisms with the host's own defense molecules. The experiments with M. arginini-infected cell lines gain immunological importance since we obtained identical results with staphylococcal protein A, as another bacteriological FcR, and cell lines expressing intrinsic membrane FcR. Although it is an open question whether the glycoconjugates are directly bound by the FcR or else by influencing the three-dimensional structure of the antibodies, it seems possible that FcR in general may be lectins.

  10. Levels of Urinary Trypsin Inhibitor and Structure of Its Chondroitin Sulphate Moiety in Type 1 and Type 2 Diabetes

    Science.gov (United States)

    Ucciferri, Nadia; Idini, Michela; De Muro, Pierina

    2018-01-01

    Background Diabetes mellitus is a global health problem representing the fifth leading cause of mortality and a major risk factor for cardiovascular diseases. In the last years, we reported an association among urinary trypsin inhibitor (UTI), a small proteoglycan that plays pleiotropic roles in many inflammatory processes, and both type 1 and 2 diabetes and developed a method for its direct quantitation and structural characterization. Methods Urine from 39 patients affected by type 1 diabetes, 32 patients with type 2 diabetes, and 52 controls were analysed. UTI was separated from the main glycosaminoglycans physiologically present in urine by anion exchange chromatography, treated for chondroitin sulphate (CS) chain complete depolymerisation, and analysed for both UTI content and CS structure. UTI identification was performed by nano-LC-MS/MS analysis. Results We evidenced increased UTI levels, as well as reduced sulphation of its CS moiety in association with diabetes, regardless of both age and medium-term glycaemic control. Furthermore, no association between UTI and albumin excretion rate was found. Conclusions Evidences suggest that UTI levels are not directly correlated with renal function or, otherwise, that they may increase before the onset of renal impairment in diabetes, representing a potential marker for the underlying inflammatory condition. PMID:29541644

  11. The ecotoxicity of zinc and zinc-containing substances in soil with consideration of metal-moiety approaches and organometal complexes.

    Science.gov (United States)

    Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska

    2017-12-01

    Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown

  12. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.

    Science.gov (United States)

    Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang

    2011-07-15

    We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of

  13. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by {sup 1}H NMR of their (S)-2-methylbutyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Francisco A. da C.; Mendes, Maricleide P. de L.; Fonseca, Neuracy C. da, E-mail: fandrade@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2013-06-15

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by {sup 1}H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH{sub 2}-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  14. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  15. Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7

    Directory of Open Access Journals (Sweden)

    K. Jagadeeswara Reddy

    2013-01-01

    Full Text Available Hyaluronic acid (HA is a hydrated gel and comprises repeating units of glucuronic acid and N-acetylglucosamine. Production and recovery of HA has gained great importance due to its vast clinical applications. In pursuit of obtaining highly pure HA, we have developed a fed-batch fermentation process using Streptococcus zooepidemicus in a 25 L bioreactor that resulted in a maximum yield of 2.3 g/L HA. In addition, we have devised an efficient method for separation and recovery of hyaluronic acid from a highly viscous broth by treating with trichloroacetic acid (0.1% and charcoal (1-2%, passing through filtration (0.45 μm and ultrafiltration that resulted in recovery of 72.2% of clinical grade HA with molecular weight of 2.5×106 Da. We have also characterized our purified HA using FTIR and NMR spectroscopy. These studies revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. zooepidemicus indicating that the reported process is more efficient in terms of better yield and high quality (99.2%.

  16. Uptake of acidic and basic sugar derivatives in Lemna gibba G1

    International Nuclear Information System (INIS)

    Sanz, A.; Ullrich, C.I.

    1989-01-01

    The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution induced a small decrease of the membrane potential. After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. ( 14 C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species

  17. Synthesis and Biological Activity of Substituted Urea and Thiourea Derivatives Containing 1,2,4-Triazole Moieties

    Directory of Open Access Journals (Sweden)

    David E. Wedge

    2013-03-01

    Full Text Available A series of novel thiourea and urea derivatives containing 1,2,4-triazole moieties were synthesized and evaluated for their antifungal and larvicidal activity. Triazole derivatives 3a–e and 4a–e were synthesized by reacting thiocarbohydrazide with thiourea and urea compounds 1a–e and 2a–e, respectively, in a 130–140 °C oil bath. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR and mass spectroscopy. All compounds were evaluated for antifungal activity against plant pathogens, larvicidal and biting deterrent activity against the mosquito Aedes aegypti L. and in vitro cytotoxicity and anti-inflammatory activity against some human cell lines. Phomopis species were the most sensitive fungi to these compounds. Compounds 1b, 1c, 3a and 4e demonstrated selectively good activity against Phomopis obscurans and only 1b and 4e showed a similar level of activity against P. viticola. Compound 3d, with a LD50 value of 67.9 ppm, followed by 1c (LD50 = 118.8 ppm and 3e (LD50 = 165.6 ppm, showed the highest toxicity against Aedes aegypti larvae. Four of these compounds showed biting deterrent activity greater than solvent control, with the highest activity being seen for 1c, with a proportion not biting (PNB value of 0.75, followed by 1e, 2b and 1a. No cytotoxicity was observed against the tested human cancer cell lines. No anti-inflammatory activity was observed against NF-kB dependent transcription induced by phorbol myristate acetate (PMA in human chondrosarcoma cells.

  18. Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp.

    Science.gov (United States)

    Levy-Ontman, Oshrat; Arad, Shoshana (Malis); Harvey, David J.; Parsons, Thomas B.; Fairbanks, Antony; Tekoah, Yoram

    2011-01-01

    We report here the structural determination of the N-linked glycans in the 66-kDa glycoprotein, part of the unique sulfated complex cell wall polysaccharide of the red microalga Porphyridium sp. Structures were elucidated by a combination of normal phase/reverse phase HPLC, positive ion MALDI-TOF MS, negative ion electrospray ionization, and MS/MS. The sugar moieties of the glycoprotein consisted of at least four fractions of N-linked glycans, each composed of the same four monosaccharides, GlcNAc, Man, 6-O-MeMan, and Xyl, with compositions Man8–9Xyl1–2Me3GlcNAc2. The present study is the first report of N-glycans with the terminal Xyl attached to the 6-mannose branch of the 6-antenna and to the 3-oxygen of the penultimate (core) GlcNAc. Another novel finding was that all four glycans contain three O-methylmannose residues in positions that have never been reported before. Although it is known that some lower organisms are able to methylate terminal monosaccharides in glycans, the present study on Porphyridium sp. is the first describing an organism that is able to methylate non-terminal mannose residues. This study will thus contribute to understanding of N-glycosylation in algae and might shed light on the evolutionary development from prokaryotes to multicellular organisms. It also may contribute to our understanding of the red algae polysaccharide formation. The additional importance of this research lies in its potential for biotechnological applications, especially in evaluating the use of microalgae as cell factories for the production of therapeutic proteins. PMID:21515680

  19. Co-crystallization phase transformations in all π-conjugated block copolymers with different main-chain moieties.

    Science.gov (United States)

    Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An

    2014-05-21

    Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

  20. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  1. Anion sensing with a Lewis acidic BODIPY-antimony(v) derivative.

    Science.gov (United States)

    Christianson, Anna M; Gabbaï, François P

    2017-02-21

    We describe the synthesis of a BODIPY dye substituted with a Lewis acidic antimony(v) moiety. This compound, which has been fully characterized, shows a high affinity for small anions including fluoride and cyanide, the complexation of which elicits a fluorescence turn-on response.

  2. Mixed-mode chromatographic matrices for the resolution of transfer ribonucleic acids

    NARCIS (Netherlands)

    Bischoff, Rainer; Mclaughlin, L.W.

    1984-01-01

    Modification of approximately 65% of the amine groups of an aminopropylsilyl bonded-phase silica high-performance liquid chromatographic anion exchanger (APS-Hypersil) with organic acids containing n-alkyl moieties of different chain lengths, results in mixed mode chromatographic matrices of varying

  3. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    Science.gov (United States)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  4. Pentose pathway in human liver

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1988-01-01

    [1- 14 C]Ribose and [1- 14 C]glucose were given to normal subjects along with glucose loads (1 g per kg of body weight) after administration of diflunisal and acetaminophen, drugs that are excreted in urine as glucuronides. Distributions of 14 C were determined in the carbons of the excreted glucoronides and in the glucose from blood samples drawn from hepatic veins before and after glucagon administration. Eighty percent or more of the 14 C from [1- 14 C]ribose incorporated into the glucuronic acid moiety of the glucuronides was in carbons 1 and 3, with less than 8% in carbon 2. In glucuronic acid from glucuronide excreted when [2- 14 C]glucose was given, 3.5-8.1% of the 14 C was in carbon 1, 2.5-4.3% in carbon 3, and more than 70% in carbon 2. These distributions are in accord with the glucuronides sampling the glucose unit of the glucose 6-phosphate pool that is a component of the pentose pathway and is intermediate in glycogen formation. It is concluded that the glucuronic acid conjugates of the drugs can serve as a noninvasive means of sampling hepatic glucose 6-phosphate. In human liver, as in animal liver, the classical pentose pathway functions, not the L-type pathway, and only a small percentage of the glucose is metabolized via the pathway

  5. How do 10-camphorsulfonic acid, silver or aluminum nanoparticles influence optical, electrochemical, electrochromic and photovoltaic properties of air and thermally stable triphenylamine-based polyazomethine with carbazole moieties?

    Czech Academy of Sciences Publication Activity Database

    Ivan, A.; Boharewicz, B.; Tazbir, I.; Filapek, M.; Korona, P.K.; Wróbel, Piotr; Stefaniuk, T.; Ciesielski, A.; Wojtkiewicz, J.; Wronkowska, A.A.; Wronkowski, A.; Zboromirska-Wnukiewicz, B.; Grankowska-Ciechanowicz, S.; Kaminska, M.; Szoplik, T.

    2015-01-01

    Roč. 185, December (2015), s. 198-210 ISSN 0013-4686 Institutional support: RVO:67985882 Keywords : refraction index * nanoparticles * bulk heterojunction polymer solar cells Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.803, year: 2015

  6. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo -MOFs: Application to methane purification and storage

    KAUST Repository

    Belmabkhout, Youssef; Mouttaki, Hasnaa; Eubank, Jarrod F.; Guillerm, Vincent; Eddaoudi, Mohamed

    2014-01-01

    Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1

  7. Novel nucleotide analogues bearing (1H-1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of Plasmodium and human 6-oxopurine phosphoribosyltransferases

    Czech Academy of Sciences Publication Activity Database

    Lukáč, Miloš; Hocková, Dana; Keough, D. T.; Guddat, L. W.; Janeba, Zlatko

    2017-01-01

    Roč. 73, č. 6 (2017), s. 692-702 ISSN 0040-4020 R&D Projects: GA ČR(CZ) GA16-06049S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * 6-oxopurine * hypoxanthine-guanine-(xanthine) phosphoribosyltransferase * copper(I)-catalyzed azide-alkyne cycloaddition Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.651, year: 2016

  8. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation

    OpenAIRE

    Cádiz, V.; Galià, M.; Ronda, J.C.; Lligadas, G.; Bordons, A.; Esteve-Zarzoso, B.; Lluch, C.

    2014-01-01

    10.1002/mabi.201400017 In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylen...

  9. 3-[(E-(2,4-Dichloropbenzylideneamino]benzoic acid

    Directory of Open Access Journals (Sweden)

    Adnan Ashraf

    2011-01-01

    Full Text Available In the crystal of the title compound, C14H9Cl2NO2, inversion-related dimers with R22(8 ring motifs are formed by intermolecular O—H...O hydrogen bonding. The 3-aminobenzoic acid group and the 2,4-dichlobenzaldehyde moiety subtend a dihedral angle of 55.10 (2°. The H atom of the carboxyl group is disordered over two sites with equal occupancies.

  10. A New Flame-Retardant Polyamide Containing Phosphine Oxide and N,N-(4,4-diphenylether) Moieties in the Main Chain: Synthesis and Characterization

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    A new flame-retardant polyamide containing phosphine oxide moieties in the main chain was synthesized from the solution polycondensation reaction of bis(3-aminophenyl) phenyl phosphine oxide with N,N-(4,4-diphenylether) bis trimellitimide, using thionyl chloride, N-methyl-2-pyrolidone, and pyridine as condensing agents. This new polymer was obtained in high yield (92%), has high inherent viscosity (0.73 dL/g), and was characterized by elemental analysis, FT-IR spectroscopy, thermal gr...

  11. Computer Based Design and Synthesis of Some Novel Thiazole Derivatives Bearing a Sulfonamide Moiety and Studying Their Potential Synergistic Anticancer Effect With γ-Irradiation

    International Nuclear Information System (INIS)

    Soliman, A.M.M.

    2011-01-01

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new thiazole, thiazolo pyrimidine, thiazolo pyrane and thiazolo pyrano pyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  12. Cyclohexane/benzene organic glasses and ethylene/styrene copolymers behaviour under ionizing radiations: energy and species transfers between aliphatic and aromatic moieties

    International Nuclear Information System (INIS)

    Ferry, M.

    2008-11-01

    The aim of this study is to understand how aliphatic and aromatic groups interact under ionizing radiations. Three research orientations were explored: the determination of the relative contribution of energy and radical transfers, the determination of the intermolecular and intra-chain relative contribution, and the influence of the repartition of the aliphatic and aromatic units inside the polymer chain. Three systems composed of aromatic and aliphatic units were studied: the cyclohexane/benzene organic glasses (intermolecular reactions), the ethylene/styrene random copolymers (inter-chain and intra-chain reactions) and ethylene/styrene di-blocs copolymers (influence of the repartition of the aliphatic and aromatic units in the material). Considering the results obtained, we have concluded that energy transfers are important in the radiation protection effect of the aliphatic moiety by the aromatic one, although radical transfers are also contributing. Intermolecular transfers are efficient in the solid state and their efficiency seems equivalent to that of the intra-chain ones. Thanks to the use of infrared spectroscopy, we have shown an important effect of radiation sensitization of the aromatic moiety, whatever the irradiation temperature and the system studied: energy transfers to the aromatic moiety are carried out at the detriment of its stability. Finally, the repartition of the aliphatic and aromatic units in the polymer chain is not an important factor in the effects induced by the energy transfers. (author)

  13. Enhancement of Ag-Based Plasmonic Photocatalysis in Hydrogen Production from Ammonia Borane by the Assistance of Single-Site Ti-Oxide Moieties within a Silica Framework.

    Science.gov (United States)

    Verma, Priyanka; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2017-03-13

    Ag nanoparticles (NPs) have gained great attention owing to their interesting plasmonic properties and efficient catalysis under visible-light irradiation. In this study, an Ag-based plasmonic catalyst supported on mesoporous silica with isolated and tetrahedrally coordinated single-site Ti-oxide moieties, namely, Ag/Ti-SBA-15, was designed with the purpose of utilizing the broad spectral range of solar energy. The Ti-SBA-15 support allows the deposition of small Ag NPs with a narrow size distribution. The chemical structure, morphology, and optical properties of the prepared catalyst were characterized by techniques such as UV/Vis, FT extended X-ray absorption fine structure, and X-ray photoelectron spectroscopy, field-emission SEM, TEM, and N 2 physisorption studies. The catalytic activity of Ag/Ti-SBA-15 in hydrogen production from ammonia borane by hydrolysis was significantly enhanced in comparison with Ag/SBA-15 without Ti-oxide moieties and Ag/TiO 2 /SBA-15 involving agglomerated TiO 2 , both in the dark and under light irradiation. Improved electron transfer under light irradiation caused by the creation of heterojunctions between Ag NPs and Ti-oxide moieties explains the results obtained in the present study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties

    International Nuclear Information System (INIS)

    González-Domínguez, Jose M; Ansón-Casaos, A; Martínez, M Teresa; Martínez-Rubí, Yadienka; Simard, Benoit; Díez-Pascual, Ana M; Gómez-Fatou, Marian

    2012-01-01

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40–60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ∼10 −13 to ∼10 −3 S cm −1 , which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. (paper)

  15. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography].

    Science.gov (United States)

    Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua

    2007-01-01

    An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.

  16. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon [Konkuk Univ., Seoul (Korea, Republic of)

    2012-09-15

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC{sub 50} values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC{sub 50} values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin

  17. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    International Nuclear Information System (INIS)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon

    2012-01-01

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC 50 values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC 50 values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin framework

  18. Syntheses of New Unsymmetrical and Symmetrical Diarylsulphides and Diarylsulphones Containing Thiazolinyl and Thiazolidinonyl Moieties Using 4,4'-Diacetyldiphenylsulphide

    Directory of Open Access Journals (Sweden)

    M. I. Abdel-Monem

    2003-07-01

    Full Text Available Condensation of 4,4’-diacetyldiphenyl sulphide (2 with variable amounts of thiosemicarbazide (3 in refluxing ethanol and in the presence of catalytic amounts of dry piperidine afforded only 4-acetylthiosemicarbazone-4’-acetyldiphenyl sulphide (5. Condensation of 2 with excess semicarbazide hydrochloride (4 in the presence of fused sodium acetate and/or piperidine yielded 4,4’-diacetylsemicarbazone diphenyl sulphide (6, whereas use of equimolar amounts of 2 and 4 afforded 4-acetyl-semicarbazone-4’-acetyldiphenyl sulphide (7. 4-Acetylsemicarbazone-4’-acetylthiosemicarbazone diphenyl sulphide (8 was also obtained via two different routes. The effect of tautomeric structure 5d is discussed. 4-(4"-phenyl-Δ3-thiazoline-2"-acetylazino-4’-acetyldiphenyl sulphide (9, 4-(5"-carboxyethyl-4"-thiazolidinone-2"-acetylazino-4’-acetyldiphenyl sulphide (10, 4-(4"-thiazolidinone-2’-acetylazino-4’-acetyldiphenyl sulphide (11 and 4-(4"-methyl-Δ3-thiazoline-2"-acetylazino-4’-acetyldiphenyl sulphide (12 were prepared by interaction of 5 with phenacylbromide, bromodiethylmalonate, chloro ethylacetate and chloroacetone, respectively. Sulphides 9-12 were easily condensed with 3 to afford the corresponding 4-(heterocyclic moiety-2"-acetylazino-4’-acetylthiosemicarbazone diphenyl sulphides 23-26. Oxidation of the prepared sulphides 5-7, 9-12, 23 and 25-26 using H2O2/glacial AcOH mixtures yielded only 4,4’-diacetyldiphenyl sulphone (13 as the main product in every case, besides 3 and 4 in certain cases. Unsymmetrical and symmetrical sulphones 14-22 were obtained starting from 13. The structures of the synthesized compounds are based on IR, 1H-NMR, 13C-NMR and mass spectral data. A theoretical study on some of the prepared compounds using molecular modeling was carried out.

  19. Aspartic acid

    Science.gov (United States)

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  20. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Science.gov (United States)

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Identification of the C3H7 moiety of isopropyl- and propylphosphonates by electrospray tandem mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1998-01-01

    Structure analysis of phosphorus compounds within the framework of the Chemical Weapons Convention requires the specific identification of alkyl substituents on phosphorus. In this work the distinction of the P-propyl substituent in propylphosphonic acid derivatives by electrospray tandem mass

  2. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  3. Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry.

    Science.gov (United States)

    Brox, Stephan; Seiwert, Bettina; Haase, Nora; Küster, Eberhard; Reemtsma, Thorsten

    2016-01-01

    The zebrafish embryo (ZFE) is increasingly used in ecotoxicology research but detailed knowledge of its metabolic potential is still limited. This study focuses on the xenobiotic metabolism of ZFE at different life-stages using the pharmaceutical compound clofibric acid as study compound. Liquid chromatography with quadrupole-time-of-flight mass spectrometry (LC-QToF-MS) is used to detect and to identify the transformation products (TPs). In screening experiments, a total of 18 TPs was detected and structure proposals were elaborated for 17 TPs, formed by phase I and phase II metabolism. Biotransformation of clofibric acid by the ZFE involves conjugation with sulfate or glucuronic acid, and, reported here for the first time, with carnitine, taurine, and aminomethanesulfonic acid. Further yet unknown cyclization products were identified using non-target screening that may represent a new detoxification pathway. Sulfate containing TPs occurred already after 3h of exposure (7hpf), and from 48h of exposure (52hpf) onwards, all TPs were detected. The detection of these TPs indicates the activity of phase I and phase II enzymes already at early life-stages. Additionally, the excretion of one TP into the exposure medium was observed. The results of this study outline the high metabolic potential of the ZFE with respect to the transformation of xenobiotics. Similarities but also differences to other test systems were observed. Biotransformation of test chemicals in toxicity testing with ZFE may therefore need further consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Amino acid analogs for tumor imaging

    International Nuclear Information System (INIS)

    Goodman, M.M.; Shoup, T.

    1998-01-01

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [ 18 F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an α-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of α-aminoisobutyric acid

  5. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  6. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohamed F. Mady

    2013-01-01

    Full Text Available Novel homoallylic alcohols incorporating sulfone moieties were synthesized by the treatment of different carbonyl compounds with allylic bromides in aqueous media via sonochemical Barbier-type reaction conditions. Sulfonation of α-bromoketones with sodium benzenesulfinate in presence of CuI/2,6-lutidine rapidly gave β-keto-sulfones in good yields. In general, ultrasound irradiation offered the advantages of high yields, short reaction times, and simplicity compared to the conventional methods. The structures of all the compounds were confirmed by analytical and spectral data.

  7. Synthesis and Positive Inotropic Activity of [1,2,4]Triazolo[4,3-a] Quinoxaline Derivatives Bearing Substituted Benzylpiperazine and Benzoylpiperazine Moieties

    Directory of Open Access Journals (Sweden)

    Xue-Kun Liu

    2017-02-01

    Full Text Available In an attempt to search for more potent positive inotropic agents, two series of [1,2,4]triazolo[4,3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties were synthesized and their positive inotropic activities evaluated by measuring left atrial stroke volume in isolated rabbit heart preparations. Several compounds showed favorable activities compared with the standard drug, milrinone. Compound 6c was the most potent agent, with an increased stroke volume of 12.53% ± 0.30% (milrinone: 2.46% ± 0.07% at 3 × 10−5 M. The chronotropic effects of compounds having considerable inotropic effects were also evaluated.

  8. Synthesis and biological activity of some 1,3-dihydro-2H-3-benzazepin-2-ones with a piperazine moiety as bradycardic agents.

    Science.gov (United States)

    Liang, Hong-Yu; Zhang, Deng-Qing; Yue, Yun; Shi, Zhe; Zhao, Sheng-Yin

    2010-02-01

    A series of 1,3-dihydro-2H-3-benzazepin-2-ones with a piperazine moiety were designed and synthesized by treating the common intermediate of 1,3-dihydro-7,8-dimethoxy-3-[3-(1-piperazinyl)propyl]-2H-3-benzazepin-2-ones with a variety of N-aryl-2-chloroacetamides and acyl chlorides. Their structures have been characterized by (1)H-NMR, MS, and elemental analysis. The title compounds were evaluated for their bradycardic activity in vitro. Most of the synthesized compounds exhibited some vasorelaxant activity and heart-rate-reducing activity with bradycardic potency.

  9. New carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, X-ray crystallography and anticancer activity.

    Science.gov (United States)

    Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria

    2014-01-01

    An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Monosaccharide composition of acidic gum exudates from Indian Acacia tortilis ssp. raddiana (Savi) Brenan.

    Science.gov (United States)

    Lakhera, Ajeet Kumar; Kumar, Vineet

    2017-01-01

    Acacia tortilis ssp. raddiana (Savi) Brenan commonly known as Israeli Babool has contributed immensely for sand dunes management in Indian desert leading to wind erosion control and increased biological productivity. The species is extensively used in traditional medicine system for a number of therapeutic applications and as nutraceutical. The polysaccharide was isolated in 43.6% yield from gum exudates. The monosaccharides, L-arabinose, D-galactose D-glucose, L-rhamnose and D-mannose were determined in molar ratio of 78.1%, 18.64%, 0.60%, 1.71% and 0.74% respectively. The molar ratio of uronic acids was studied using diverse spectrophotometric methods and compared with GLC. The content of D-galacturonic acid and D-glucuronic was determined as 3.88% and 4.35% respectively by GLC. The results were compared with the spectrophotometric methods. The results using DMP as chromogenic reagent are closer to that obtained by GLC. Structural analysis of the polysaccharide may provide scientific basis for nutraceutical, pharmaceutical and biological applications of gum exudates from A. tortilis, which is extensively planted in India. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids.

    Science.gov (United States)

    Catana, Dan-Andrei; Renard, Brice-Loïc; Maturano, Marie; Payrastre, Corinne; Tarrat, Nathalie; Escudier, Jean-Marc

    2012-01-01

    We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

  12. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    Science.gov (United States)

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied.

  13. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  14. Use of Nucleic Acid Analogs for the Study of Nucleic Acid Interactions

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2011-01-01

    Full Text Available Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.

  15. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    Science.gov (United States)

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside

    Directory of Open Access Journals (Sweden)

    Xican Li

    2017-07-01

    Full Text Available The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging, •O2– scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50 values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at 510 nm than astragalin, and was also found to be darker in color. Both of these compounds were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC damaged assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin. Tiliroside bearing a 6′′-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects than astragalin. The 6′′-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC implantation therapy.

  17. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.

    Science.gov (United States)

    Allard, Sébastien; Criquet, Justine; Prunier, Anaïs; Falantin, Cécilia; Le Person, Annaïg; Yat-Man Tang, Janet; Croué, Jean-Philippe

    2016-10-15

    Large amount of iodinated contrast media (ICM) are found in natural waters (up to μg.L(-)(1) levels) due to their worldwide use in medical imaging and their poor removal by conventional wastewater treatment. Synthetic water samples containing different ICM and natural organic matter (NOM) extracts were subjected to UV254 irradiation followed by the addition of chlorine (HOCl) or chloramine (NH2Cl) to simulate final disinfection. In this study, two new quantum yields were determined for diatrizoic acid (0.071 mol.Einstein(-1)) and iotalamic acid (0.038 mol.Einstein(-1)) while values for iopromide (IOP) (0.039 mol.Einstein(-1)), iopamidol (0.034 mol.Einstein(-1)) and iohexol (0.041 mol.Einstein(-1)) were consistent with published data. The photodegradation of IOP led to an increasing release of iodide with increasing UV doses. Iodide is oxidized to hypoiodous acid (HOI) either by HOCl or NH2Cl. In presence of NOM, the addition of oxidant increased the formation of iodinated disinfection by-products (I-DBPs). On one hand, when the concentration of HOCl was increased, the formation of I-DBPs decreased since HOI was converted to iodate. On the other hand, when NH2Cl was used the formation of I-DBPs was constant for all concentration since HOI reacted only with NOM to form I-DBPs. Increasing the NOM concentration has two effects, it decreased the photodegradation of IOP by screening effect but it increased the number of reactive sites available for reaction with HOI. For experiments carried out with HOCl, increasing the NOM concentration led to a lower formation of I-DBPs since less IOP are photodegraded and iodate are formed. For NH2Cl the lower photodegradation of IOP is compensated by the higher amount of NOM reactive sites, therefore, I-DBPs concentrations were constant for all NOM concentrations. 7 different NOM extracts were tested and almost no differences in IOP degradation and I-DBPs formation was observed. Similar behaviour was observed for the 5 ICM

  18. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  19. Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity.

    Science.gov (United States)

    Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C

    2006-05-01

    Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and

  20. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  1. The tryptic cleavage product of the mature form of the bovine desmoglein 1 ectodomain is one of the antigen moieties immunoprecipitated by all sera from symptomatic patients affected by a new variant of endemic pemphigus.

    Science.gov (United States)

    Abréu-Vélez, Ana María; Javier Patiño, Pablo; Montoya, Fernando; Bollag, Wendy B

    2003-01-01

    Multiple antigens are recognized by sera from patients with pemphigus foliaceus (PF). Several have been identified including keratin 59, desmocollins, envoplakin, periplakin, and desmogleins 1 and 3 (Dsg1 and Dsg3). In addition, an 80 kDa antigen was identified as the N-terminal fragment of Dsg1 using as antigen source an insoluble epidermal cell envelope preparation. However, still unsolved was the identity of the most important antigenic moiety, a 45 kDa tryptic fragment which is recognized by all sera from patients with fogo selvagem, pemphigus foliaceus, by half of pemphigus vulgaris sera and by a new variant of endemic pemphigus in E1 Bagre, Colombia that resembles Senear-Usher syndrome. Here, we report the identification of the 45 kDa conformational epitope of a soluble tryptic cleavage product from viable bovine epidermis. To elucidate the nature of this peptide, viable bovine epidermis was trypsin-digested, and glycosylated peptides were partially purified on a concanavalin A (Con-A) affinity column. This column fraction was then used as an antigen source for further immunoaffinity purification. A PF patient's serum covalently coupled to a Staphylococcus aureus protein A column was incubated with the Con-A eluted products and the immuno-isolated antigen was separated by SDS-PAGE, transferred to a membrane, and visualized with Coomassie blue, silver and amido black stains. The 45 kD band was subjected to amino acid sequence analysis revealing the sequence, EXIKFAAAXREGED, which matched the mature form of the extracellular domain of bovine Dsg1. This study confirms the biological importance of the ectodomain of Dsg1 as well as the relevance of conformational epitopes in various types of pemphigus.

  2. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  3. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  4. Amino Acid Interaction (INTAA) web server.

    Science.gov (United States)

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies.

    Science.gov (United States)

    Kabani, Mehdi; Melki, Ronald

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.

  6. Room Temperature Synthesis and Antibacterial Activity of New Sulfonamides Containing N,N-Diethyl-Substituted Amido Moieties

    Directory of Open Access Journals (Sweden)

    Olayinka O. Ajani

    2012-01-01

    Full Text Available Sulfonamide drugs which have brought about an antibiotic revolution in medicine are associated with a wide range of biological activities. We have synthesized a series of α-tolylsulfonamide, 1–11 and their substituted N,N-diethyl-2-(phenylmethylsulfonamido alkanamide derivatives, 12–22 in improved and excellent yields in aqueous medium at room temperature through highly economical synthetic routes. The chemical structures of the synthesized compounds 1–22 were confirmed by analytical and spectral data such as IR, 1H- and 13C-NMR, and mass spectra. The in vitro antibacterial activity of these compounds along with standard clinical reference, streptomycin, was investigated on two key targeted organisms. It was observed that 1-(benzylsulfonylpyrrolidine-2-carboxylic acid, 2 emerged as the most active compound against Staphylococcus aureus at MIC value of 1.8 μg/mL while 4-(3-(diethylamino-3-oxo-2-(phenylmethylsulfonamido propylphenyl phenylmethanesulfonate, 22 was the most active sulfonamide scaffold on Escherichia coli at MIC value of 12.5 μg/mL.

  7. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy.

    Science.gov (United States)

    Shan, Lingling; Zhuo, Xin; Zhang, Fuwu; Dai, Yunlu; Zhu, Guizhi; Yung, Bryant C; Fan, Wenpei; Zhai, Kefeng; Jacobson, Orit; Kiesewetter, Dale O; Ma, Ying; Gao, Guizhen; Chen, Xiaoyuan

    2018-01-01

    Folate receptor (FR) has proven to be a valuable target for chemotherapy using folic acid (FA) conjugates. However, FA-conjugated chemotherapeutics still have low therapeutic efficacy accompanied with side effects, resulting from complications such as short circulation half-life, limited tumor delivery, as well as high kidney accumulation. Herein, we present a novel FA-conjugated paclitaxel (PTX) prodrug which was additionally conjugated with an Evans blue (EB) derivative for albumin binding. The resulting bifunctional prodrug prolonged blood circulation, enhanced tumor accumulation, and consequently improved tumor therapeutic efficacy. Methods: Fmoc-Cys(Trt)-OH was coupled onto PTX at the 7'-OH position for further synthesis of ester prodrug FA-PTX-EB. The targeting ability was investigated using confocal microscopy and flow cytometry. The pharmacokinetics of this bifunctional compound was also studied. Meanwhile, cell viability was evaluated in normal cells and three cancer cell lines by MTT assay. In vivo therapeutic effect was tested on FR-α overexpressing MDA-MB-231 tumor model. Results: Compared with free PTX, the FA-PTX, PTX-EB and FA-PTX-EB prodrugs increased circulation half-life in mice from 2.19 to 3.82, 4.41, and 7.51 h, respectively. Pharmacokinetics studies showed that the FA-PTX-EB delivered more PTX to tumors than FA-PTX and free PTX. In vitro and in vivo studies demonstrated that FA-EB-conjugated PTX induced potent antitumor activity. Conclusion: FA-PTX-EB showed prolonged blood circulation, enhanced drug accumulation in tumors, higher therapeutic index, and lower side effects than either free PTX or monofunctional FA-PTX and EB-PTX. The results support the potential of using EB for the development of long-acting therapeutics.

  8. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Facile Synthesis of Oleanolic Acid Monoglycosides and Diglycosides

    Directory of Open Access Journals (Sweden)

    Mao-Sheng Cheng

    2008-07-01

    Full Text Available Oleanolic acid and its glycosides are important natural products, possessing various attractive biological activities such as antitumor, antivirus and anti-inflammatory properties. In the present work, fifteen oleanolic acid saponins bearing various saccharide moieties, including 3-monoglycoside, 28-monoglycoside and 3,28-diglycoside, were easily synthesized in high yields. Benzyl was chosen as the protective group for the COOH(28 group, instead of commonly used methyl and allyl, to avoid difficulties in the final deprotection. Alkali-promoted condensation of the carboxylic acid with bromoglycosides was found to be more efficient in the synthesis of 28-glycosides. Two approaches were investigated and proved practicable in the preparation of 3,28- diglycosides. This method is suitable for preparing oleanolic acid glycosides with structural diversity for extensive biological evaluation and structure-activity relationship study, and it also apply new idea for the corresponding synthetic methods to the glycoside derivatives of other triterpenoid.

  10. Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety.

    Science.gov (United States)

    Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong

    2015-08-28

    To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties

    Directory of Open Access Journals (Sweden)

    Al-Said Mansour S

    2012-07-01

    Full Text Available Abstract Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3–19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7 comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  12. Heliotropiumides A and B, new phenolamides with N-carbamoyl putrescine moiety from Heliotropium foertherianum collected in Hawaii and their biological activities.

    Science.gov (United States)

    Cai, You-Sheng; Sarotti, Ariel M; Gündisch, Daniela; Kondratyuk, Tamara P; Pezzuto, John M; Turkson, James; Cao, Shugeng

    2017-10-15

    Two new compounds heliotropiumides A (1) and B (2), phenolamides each with an uncommon carbamoyl putrescine moiety, were isolated from the seeds of a naturalized Hawaiian higher plant, Heliotropium foertherianum Diane & Hilger in the borage family, which is widely used for the treatment of ciguatera fish poisoning. The structures of compounds 1 and 2 were characterized based on MS spectroscopic and NMR analysis, and DP4+ calculations. The absolute configuration (AC) of compound 1 was determined by comparison of its optical rotation with those reported in literature. Compound 2 showed inhibition against NF-κB with an IC 50 value of 36μM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of [3,5-14C]trachelanthamidine and [5-3H]isoretronecanol and their incorporation into the retronecine moiety of riddelliine in Senecio riddellii

    International Nuclear Information System (INIS)

    Leete, E.; Rana, J.

    1986-01-01

    (+/-)-[3,5- 14 C]Trachelanthamidine and (+/-)-[5- 3 H]isoretronecanol, which are diastereomers, were prepared from potassium [ 14 C]cyanide and [5- 3 H]proline, respectively. These compounds and [1,4- 14 C]putrescine were administered to Senecio riddellii plants resulting in the formation of labeled riddelliine, in which almost all the radioactivity was located in its retronecine moiety. The activity of the beta-alanine obtained by degradation of the retronecine was consistent with specific labeling of this pyrrolizidine base at the expected positions. The extremely high absolute incorporation (15.1, 22.1%) of trachelanthamidine into riddelliine strongly favors this 1-hydroxymethylpyrrolizidine as the one on the main biosynthetic pathway to retronecine. The lower incorporation (0.75%) of isoretronecanol may represent a minor or aberrant pathway to retronecine

  15. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities.

    Science.gov (United States)

    Kashyap, Dharambir; Sharma, Ajay; Tuli, Hardeep S; Punia, Sandeep; Sharma, Anil K

    2016-01-01

    Plant derived products are not only served as dietary components but also used to treat and prevent the inflammatory associated diseases like cancer. Among the natural products pentacyclic terpenoids including ursolic acid and oleanolic acid are considered as the promising anti-inflammatory therapeutic agents. The current review extensively discusses the anti-inflammatory therapeutic potential of these pentacyclic moieties along with their proposed mechanisms of action. Furthermore, the relevant patents have also been listed to present the health benefits of these promising therapeutic agents to pin down the inflammatory diseases. Expert opinion: Pentacyclic terpenoids are known to negatively down-regulate a variety of extracellular and intracellular molecular targets associated with disease progression. The major anti-inflammatory effects of these molecules have been found to be mediated via inactivation of NFkB, STAT3/6, Akt/mTOR pathways. A number of patents on UA & OA based moieties have been reported between 2010 and 2016. Still there have been only a few compounds which meet the need of sufficient hydro solubility and bioavailability along with higher anti-inflammatory activities. Thus, it is essential to develop novel derivatives of terpenpoids which may not only overcome the solubility issues but also may improve their therapeutic effects. In addition, scientific community may utilize nanotechnology based drug delivery systems so as to increase the bio-availability, selectivity and dosages related problems.

  16. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-01-01

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form

  17. A Nitric Oxide-Donor Furoxan Moiety Improves the Efficacy of Edaravone against Early Renal Dysfunction and Injury Evoked by Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Fausto Chiazza

    2015-01-01

    Full Text Available Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, EDV is a free-radical scavenger reduces organ ischemic injury. Here we investigated whether the protective effects of EDV in renal ischemia/reperfusion (I/R injury may be enhanced by an EDV derivative bearing a nitric oxide- (NO- donor furoxan moiety (NO-EDV. Male Wistar rats were subjected to renal ischemia (45 minutes, followed by reperfusion (6 hours. Administration of either EDV (1.2–6–30 µmol/kg, i.v. or NO-EDV (0.3–1.2–6 µmol/kg, i.v. dose-dependently attenuated markers of renal dysfunction (serum urea and creatinine, creatinine clearance, urine flow, urinary N-acetyl-β-D-glucosaminidase, and neutrophil gelatinase-associated lipocalin/lipocalin-2. NO-EDV exerted protective effects in the dose-range 1.2–6 µmol/kg, while a higher dose (30 µmol/kg was needed to obtain protection by EDV. Both EDV and NO-EDV modulated tissue markers of oxidative stress and lipid peroxidation. NO-EDV, but not EDV, activated endothelial NO synthase (NOS and blunted I/R-induced upregulation of inducible NOS, secondary to modulation of Akt and NF-κB activation, respectively. Besides NO-EDV administration inhibited I/R-induced IL-1β, IL-18, IL-6, and TNF-α overproduction. Overall, these findings demonstrate that the NO-donor moiety contributes to the protection against early renal I/R injury and suggest that NO-donor EDV codrugs are worthy of additional study as innovative pharmacological tools.

  18. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues

    DEFF Research Database (Denmark)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte

    2016-01-01

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we...... investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead...

  19. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues.

    Science.gov (United States)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2016-11-15

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis.

    Science.gov (United States)

    Tokiwa, Yutaka; Kitagawa, Masaru; Raku, Takao; Yanagitani, Shusaku; Yoshino, Kenji

    2007-06-01

    Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.

  1. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  2. Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate.

    Science.gov (United States)

    Rudovský, Jakub; Cígler, Petr; Kotek, Jan; Hermann, Petr; Vojtísek, Pavel; Lukes, Ivan; Peters, Joop A; Vander Elst, Luce; Muller, Robert N

    2005-04-08

    A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid

  3. Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells

    International Nuclear Information System (INIS)

    Sánchez, C.O.; Bèrnede, J.C.; Cattin, L.; Makha, M.; Gatica, N.

    2014-01-01

    Polytriphenylamine (PTPA), a Schiff base polymer containing triphenylamine (TPA) segments and whose monomer contains triphenylamine and thiophene end groups, was synthesized. The monomer structure enabled the polymerization to be performed under conditions similar to those of thiophene. Oxidative coupling using FeCl 3 as oxidizing agent in anhydrous CHCl 3 medium was employed for the polymer synthesis. Scanning electron microscopy, fluorescence spectroscopy, and cyclic voltammetry were used to characterize the polymer. PTPA exhibited high thermal stability with a mass loss of 13.3 % at 546.5 °C. The fluorescence spectrum showed emission at 300–550 nm and the optical band gap was found to be 2.6 eV. It was also established that PTPA forms complexes with Lewis acids, e.g. MoO 3 and CuI. Its absorption band widened and extended up to the near-IR. It was seen that PTPA is rich in π-electrons and thus can act as electron donor. The value of the Highest Occupied Molecular Orbital (HOMO) was − 5.35 eV indicating its potential application in optoelectronic devices. An attempt was also made to investigate the photovoltaic potential of PTPA. Organic photovoltaic devices with various buffer layer structures, namely ITO/CuI/PTPA/C 60 /BCP/Al, ITO/MoO 3 /PTPA/C 60 /BCP/Al, and ITO/MoO 3 /CuI/PTPA/C 60 /BCP/Al, where ITO stands for indium tin oxide and BCP for bathocuproine, were utilized for the studies. Power conversion efficiency of these devices ranged between 0.21 and 0.43% under simulated AM 1.5 illumination (100 mW cm −2 ). This result proved that polymers containing TPA in the main chain hold promising properties that would allow their use in photovoltaic devices. - Highlights: • A Schiff base polymer with triphenylamine and thiophene segments was synthesized. • In organic cells, the highest efficiency was obtained in a MoO 3 /CuI double layer. • Polymer exhibited a power conversion efficiency between 0.21 and 0.43 %

  4. Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C.O. [Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Avda. Las Encinas 220, Campus Isla Teja, Valdivia (Chile); Bèrnede, J.C. [L' UNAM, Moltech Anjou, UMR 6200, 2 rue de la Houssinière, BP 92208, Nantes F-44000 (France); Cattin, L. [L' UNAM, Institut Jean Rouxel (IMN), UMR 6502, 2 rue de la Houssinière, BP 92208, Nantes F-44000 (France); Makha, M. [L' UNAM, Moltech Anjou, UMR 6200, 2 rue de la Houssinière, BP 92208, Nantes F-44000 (France); Gatica, N. [Departamento de Polímeros, Facultad de Ciencias, Universidad de Concepción, Avda. Edmundo Larenas 129, Concepción (Chile)

    2014-07-01

    Polytriphenylamine (PTPA), a Schiff base polymer containing triphenylamine (TPA) segments and whose monomer contains triphenylamine and thiophene end groups, was synthesized. The monomer structure enabled the polymerization to be performed under conditions similar to those of thiophene. Oxidative coupling using FeCl{sub 3} as oxidizing agent in anhydrous CHCl{sub 3} medium was employed for the polymer synthesis. Scanning electron microscopy, fluorescence spectroscopy, and cyclic voltammetry were used to characterize the polymer. PTPA exhibited high thermal stability with a mass loss of 13.3 % at 546.5 °C. The fluorescence spectrum showed emission at 300–550 nm and the optical band gap was found to be 2.6 eV. It was also established that PTPA forms complexes with Lewis acids, e.g. MoO{sub 3} and CuI. Its absorption band widened and extended up to the near-IR. It was seen that PTPA is rich in π-electrons and thus can act as electron donor. The value of the Highest Occupied Molecular Orbital (HOMO) was − 5.35 eV indicating its potential application in optoelectronic devices. An attempt was also made to investigate the photovoltaic potential of PTPA. Organic photovoltaic devices with various buffer layer structures, namely ITO/CuI/PTPA/C{sub 60}/BCP/Al, ITO/MoO{sub 3}/PTPA/C{sub 60}/BCP/Al, and ITO/MoO{sub 3}/CuI/PTPA/C{sub 60}/BCP/Al, where ITO stands for indium tin oxide and BCP for bathocuproine, were utilized for the studies. Power conversion efficiency of these devices ranged between 0.21 and 0.43% under simulated AM 1.5 illumination (100 mW cm{sup −2}). This result proved that polymers containing TPA in the main chain hold promising properties that would allow their use in photovoltaic devices. - Highlights: • A Schiff base polymer with triphenylamine and thiophene segments was synthesized. • In organic cells, the highest efficiency was obtained in a MoO{sub 3}/CuI double layer. • Polymer exhibited a power conversion efficiency between 0.21 and 0.43 %.

  5. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    Science.gov (United States)

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  6. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  7. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  8. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  9. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  10. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  11. KSF-supported heteropoly acids catalyzed one-pot synthesis of α-aminonitriles

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2010-08-01

    Full Text Available In the presence of KSF-supported heteropoly acid as a heterogeneous, reusable and inexpensive catalyst, three-component reactions between aldehydes or ketones, amines, and trimethylsilyl cyanide preceded to afford α-aminonitriles in excellent yields, very short reaction times, and low loading of catalyst. This catalyst was highly selective and other functional groups including carbon-carbon double bond, and heterocyclic moieties did not affect the reaction.

  12. [Synthesis and physico-chemical characterisation of some new derivatives of rutoside and clofibric acid].

    Science.gov (United States)

    Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh

    2006-01-01

    Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.

  13. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  14. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    Science.gov (United States)

    Ruslin, Farah bt; Yamin, Bohari M.

    2014-09-01

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  15. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  16. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    Science.gov (United States)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  17. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    Science.gov (United States)

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bis(4-aminobenzoic acid-κNdichloridozinc(II

    Directory of Open Access Journals (Sweden)

    Melanie Rademeyer

    2010-12-01

    Full Text Available Molecules of the title compound [ZnCl2(C7H7NO22], are located on a twofold rotation axis. Two 4-aminobenzoic acid moieties, and two chloride ligands are coordinated to a Zn atom in a tetrahedral fashion, forming an isolated molecule. Neighbouring molecules are linked through hydrogen-bonded carboxyl groups, as well as N—H...Cl hydrogen-bonding interactions between amine groups and the chloride ligands of neighbouring molecules, forming a three-dimensional network.

  19. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  20. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  1. Electro-optical and charge injection investigations of the donor-π-acceptor triphenylamine, oligocene–thiophene–pyrimidine and cyanoacetic acid based multifunctional dyes

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2015-10-01

    Full Text Available The corner stone of present study is to tune the electro-optical and charge transport properties of donor-bridge-acceptor (D-π-A triphenylamine (TPA derivatives. In the present investigation, an electron deficient moiety (pyrimidine, electron-rich moiety (thiophene and oligocene (benzene, naphthalene, anthracene, tetracene and pentacene have been incorporated as π-spacer between the donor TPA unit and cyanoacetic acid acceptor and anchoring group. The elongation of bridge usually affects the energy levels, i.e., higher the highest occupied molecular orbital (HOMO while lower the lowest unoccupied molecular orbital (LUMO thus reduces the HOMO–LUMO energy gap. The lowered LUMO energy levels of cyano-{2-[6-(4-diphenylamino-phenyl-pyrimidin-4-yl]-tetraceno[2,3-b]thiophen-8-yl}-acetic acid (TPA-PTT4 and cyano-{2-[6-(4-diphenylamino-phenyl-pyrimidin-4-yl]-pentaceno[2,3-b]thiophen-9-yl}-acetic acid (TPA-PPT5 dyes revealed that electron injected from dye to semiconductor surface might be auxiliary stable resulting in impediment of quenching. The broken co-planarity between the π-spacer conceiving LUMO and the TPA moiety would help to impede the recombination process. Moreover, it is expected that TPA derivatives with the tetracenothiophene and pentacenothiophene moieties as π-bridge would show better photovoltaic performance due to lowered LUMO energy level, higher electronic coupling constant, light harvesting efficiency and electron injection values.

  2. Novel poly(triphenylamine-alt-fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation

    KAUST Repository

    Wang, Po-I.

    2016-01-13

    © The Royal Society of Chemistry 2016. In this study, a new triphenylamine-alt-fluorene conjugated copolymer, HPBPYFL6, with hexaphenylbenzene (HPB) and pyrene as asymmetrical pendant groups was synthesized via Suzuki coupling polymerization. The conjugated polymer had a weight-average molecular weight of 5.8 × 104 g mol-1 with a polydispersity index of 2.5 characterized by gel permeation chromatography (GPC). HPBPYFL6 showed good solubility in common organic solvents such as NMP, THF, toluene and dichloromethane at 25°C. In addition, HPBPYFL6 possessed a high glass transition temperature of 260°C and a 10% weight-loss temperature of 503°C in nitrogen. HPBPYFL6 bearing a pyrene moiety had a solvatochromic fluorescence shift from a green to an orange emission as the polarity of the solvent increased. Cyclic voltammetry of HPBPYFL6 films cast onto indium-tin oxide-coated glass (ITO-glass) exhibited two oxidation redox couples at an E1/2 value of 0.82 and 1.17 V versus Ag/Ag+ in an acetonitrile solution. The HPBPYFL6 film on graphene-coated PET had an E1/2 value of 0.24 and 1.12 V. Conjugated polymer films exhibited reversible electrochromic behaviour with a colour change from pale yellow to deep blue upon electrochemical oxidation and high absorbance in the near-infrared (NIR) region. The switching and bleaching times were 5.16 s and 3.12 s for 1231 nm and were 3.30 s and 3.74 s for 1030 nm of HPBPYFL6 on ITO-glass. The strong NIR electrochromic absorbance of HPBPYFL6 was attributed to intervalence charge transfer by the incorporation of the HPB moiety. This phenomenon was confirmed by chemical oxidation as the oxidant contents increased in the solution state. Furthermore, the electrochromic mechanism was interpreted by DFT calculation and the simulated NIR electrochromic spectra of model compound HPBPYFL are in good agreement with the experimental data.

  3. Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties

    Science.gov (United States)

    Köksoy, Baybars; Aygün, Meryem; Çapkin, Aylin; Dumludağ, Fatih; Bulut, Mustafa

    The synthesis of metallophthalocyanines (M = Co, Cu, Mn) bearing four ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties was performed. These novel compounds were characterized by elemental analysis, 1H-NMR spectroscopy, FT-IR, UV-vis and mass spectral data. DC and AC electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. AC measurements were performed in the frequency range of 40-105 Hz. Activation energy values of the films took place between 0.55 eV-0.93 eV. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature, indicating semiconductor properties. DC conductivity results also supported this result. Their gas sensing properties were also investigated for the vapors of Volatile Organic Compounds (VOCs), n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C. Sensitivity and response times of the films for the tested vapors were reported. The results were found to be reversible and sensitive to the vapors of n-butyl acetate and ammonia. It was found that Mn(OAc)Pc showed better sensitivity than CoPc and CuPc for n-butyl acetate vapors at all measured vapor concentrations and temperatures. Mn(OAc)Pc also showed better sensitivity than CoPc and CuPc for ammonia vapors at 22°C. Co(II), Cu(II), Mn(III)OAc phthalocyanines bearing four ethyl 7-oxy-4,8-dimethyl-coumarin-3-propanoate moieties were prepared and characterized. DC and AC (40-105 Hz) electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature indicating semiconductor property. Their gas sensing properties were also investigated for the vapors of VOCs, n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C.

  4. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  5. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities.

    Science.gov (United States)

    Hafsa, Jawhar; Chaouch, Mohamed Aymen; Charfeddine, Bassem; Rihouey, Christophe; Limem, Khalifa; Le Cerf, Didier; Rouatbi, Sonia; Majdoub, Hatem

    2017-12-01

    Recently, low-molecular-weight hyaluronic acid (LMWHA) has been reported to have novel features, such as free radical scavenging activities, antioxidant activities and dietary supplements. In this study, hyaluronic acid (HA) was extracted from rooster comb and LMWHA was obtained by ultrasonic degradation in order to assess their antioxidant and antiglycation activities. Molecular weight (Mw) and the content of glucuronic acid (GlcA) were used as the index for comparison of the effect of ultrasonic treatment. The effects on the structure were determined by ultraviolet (UV) spectra and Fourier transform infrared spectra (FTIR). The antioxidant activity was determined by three analytical assays (DPPH, NO and TBARS), and the inhibitory effect against glycated-BSA was also assessed. The GlcA content of HA and LMWHA was estimated at about 48.6% and 47.3%, respectively. The results demonstrate that ultrasonic irradiation decreases the Mw (1090-181 kDa) and intrinsic viscosity (1550-473 mL/g), which indicate the cleavage of the glycosidic bonds. The FTIR and UV spectra did not significantly change before and after degradation. The IC 50 value of HA and LWMHA was 1.43, 0.76 and 0.36 mg/mL and 1.20, 0.89 and 0.17 mg/mL toward DPPH, NO and TBARS, respectively. Likewise LMWHA exhibited significant inhibitory effects on the AGEs formation than HA. The results demonstrated that the ultrasonic irradiation did not damage and change the chemical structure of HA after degradation; furthermore, decreasing Mw and viscosity of LMWHA after degradation may enhance the antioxidant and antiglycation activity.

  6. Three new fatty acid esters from the mushroom Boletus pseudocalopus.

    Science.gov (United States)

    Kim, Ki Hyun; Choi, Sang Un; Lee, Kang Ro

    2012-06-01

    A bioassay-guided fractionation and chemical investigation of a MeOH extract of the Korean wild mushroom Boletus pseudocalopus resulted in the identification of three new fatty acid esters, named calopusins A-C (1-3), along with two known fatty acid methyl esters (4-5). These new compounds are structurally unique fatty acid esters with a 2,3-butanediol moiety. Their structures were elucidated through 1D- and 2D-NMR spectroscopic data and GC-MS analysis as well as a modified Mosher's method. The new compounds 1-3 showed significant inhibitory activity against the proliferation of the tested cancer cell lines with IC(50) values in the range 2.77-12.51 μM.

  7. Quantum Chemical Calculations and Molecular Docking Studies of Some NSAID Drugs (Aceclofenac, Salicylic Acid, and Piroxicam as 1PGE Inhibitors

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2016-01-01

    Full Text Available The molecular structure of the three compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III has been determined using Gaussian 03W program with B3LYP method using 6-311++G (d,p basis set calculations. The molecular structures were fully optimized with atomic numbering scheme adopted in the study. To understand the mode of binding and molecular interaction, the docking studies of compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III have been carried out with prostaglandin H2 synthase-1 (1PGE as target using induced fit docking. The molecular docking results show that the interactions and energy for Aceclofenac, Salicylic Acid, and Piroxicam show the best results when docked with prostaglandin H2 synthase-1 (1PGE. The hydrogen bonding interactions of compound I (Aceclofenac are prominent with Arginine moiety, those of compound II (Salicylic Acid are prominent with Tyrosine and Serine moieties, and compound III (Piroxicam shows such interaction with Tyrosine and Arginine moieties. These interactions of prostaglandin H2 synthase-1 (1PGE with substrates are responsible for governing COX-1 inhibitor potency which in turn is a direct measure of the potency of the drug.

  8. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  9. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae.

    Science.gov (United States)

    Goetstouwers, Tiphanie; Van Poucke, Mario; Coddens, Annelies; Nguyen, Van Ut; Melkebeek, Vesna; Deforce, Dieter; Cox, Eric; Peelman, Luc J

    2014-10-03

    Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R(+)) and F4 receptor-negative (F4R(-)) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC.

  10. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase.

    Science.gov (United States)

    Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na

    2015-01-01

    In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects.

    Science.gov (United States)

    Bhadra, S; Arshad, M A; Rymaszewski, Z; Norman, E; Wherley, R; Subbiah, M T

    1991-04-15

    Oxidation of lipoproteins is believed to play a key role in atherogenesis. In this study, low density lipoproteins (LDL) was subjected to oxidation in the presence of either human umbilical vein endothelial cells or with Cu+2 ions and the major oxides formed were identified. While cholesterol-alpha-epoxide (C-alpha EP) was the major product of cholesterol peroxidation in the presence of endothelial cells, cholest-3,5-dien-7-one (CD) predominated in the presence of Cu+2 ion. Both steroids were identified by gas chromatography/mass spectrometry. HDL cholesterol was resistant to oxidation. When tested on human skin fibroblasts in culture C-alpha EP (10 micrograms/ml) caused marked stimulation of 14C-oleate incorporation into cholesterol esters, while CD stimulated cholesterol esterification only mildly. These studies show that a) C-alpha EP is the major peroxidation product of LDL cholesterol moiety in the presence of endothelial cells and b) it causes marked stimulation of cholesterol esterification in cells. C-alpha EP may play a key role in increasing cholesterol esterification noted in atherogenesis.

  12. LEGO-Inspired Drug Design: Unveiling a Class of Benzo[d]thiazoles Containing a 3,4-Dihydroxyphenyl Moiety as Plasma Membrane H+ -ATPase Inhibitors.

    Science.gov (United States)

    Tung, Truong-Thanh; Dao, Trong T; Junyent, Marta G; Palmgren, Michael; Günther-Pomorski, Thomas; Fuglsang, Anja T; Christensen, Søren B; Nielsen, John

    2018-01-08

    The fungal plasma membrane H + -ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for the design, synthesis, and discovery of benzo[d]thiazoles containing a 3,4-dihydroxyphenyl moiety as potential Pma1p inhibitors. A series of 2-(benzo[d]thiazol-2-ylthio)-1-(3,4-dihydroxyphenyl)ethanones was found to inhibit Pma1p, with the most potent IC 50 value of 8 μm in an in vitro plasma membrane H + -ATPase assay. These compounds were also found to strongly inhibit the action of proton pumping when Pma1p was reconstituted into liposomes. 1-(3,4-Dihydroxyphenyl)-2-((6-(trifluoromethyl)benzo[d]thiazol-2-yl)thio)ethan-1-one (compound 38) showed inhibitory activities on the growth of Candida albicans and Saccharomyces cerevisiae, which could be correlated and substantiated with the ability to inhibit Pma1p in vitro. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Theoretical study on the electronic structures and phosphorescent properties of a series of iridium(III) complexes with the different positional N-substitution in the pyridyl moiety

    Energy Technology Data Exchange (ETDEWEB)

    Han, Deming; Hao, Fengqi [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Tian, Jian [Clean Energy Technology Laboratory, Changchun University of Science and Technology, Changchun 130022 (China); Pang, Chunying; Li, Jingmei [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

    2015-03-15

    The geometry structures, electronic structures, absorption and phosphorescent properties of a series of iridium(III) complexes with the different N-substitution cyclometalating ligand and the same benzyldiphenylphosphine auxiliary ligand have been theoretically investigated by using the density functional theory method. The lowest energy absorption wavelengths are located at 378 nm for A, 430 nm for B, 411 nm for C, 436 nm for D, and 394 nm for E. The introduction of N atom substitution at 1-, 2-, 3-, and 4-positions on the pyridyl moiety of complex A leads to an obvious redshifted absorption. The lowest energy emissions for complexes A–E are localized at 450, 409, 438, 483, and 429 nm, respectively, simulated in CH{sub 2}Cl{sub 2} medium at M052X level. Ionization potential and electron affinity have been calculated to evaluate the injection abilities of holes and electrons into these complexes. For complex C, the calculated results showed that it can possibly possess the larger radiative decay rate (k{sub r}) value than those of other four complexes. It is anticipated that the theoretical studies can provide valuable information for designing new phosphorescent metal complexes of organic light-emitting diodes. - Highlights: • Five Ir(III) complexes have been theoretically investigated. • The effect of N-substitution cyclometalating ligand has been studied. • The complex C possibly possesses the largest radiative decay rate value.

  14. Formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1921-12-03

    The production of formic acid by the oxidation of methane with a metallic oxide or by the interaction of carbon monoxide and water vapor in the presence of a catalyst, preferably a metallic oxide, is described along with the destructive distillation of carbonaceous material in the preesnce of formic acid vapor for the purpose of increasing the yield of condensible hydrocarbons.

  15. The acidic complexation of tetracycline with sucralfate for its mucoadhesive preparation.

    Science.gov (United States)

    Higo, Shoichi; Takeuchi, Hirofumi; Yamamoto, Hiromitsu; Hino, Tomoaki; Kawashima, Yoshiaki

    2004-08-01

    The complex of antibiotics with sucralfate (SF) was prepared with acid. The mechanism of the complexation and some factors concerning the preparation, which influence the mucoadhering property, were studied. The complexation was confirmed by the change in color and instrumental analysis. The acidic complex appeared to be produced by reagglomeration of SF preliminary particles. It was suggested that the amide or amine groups of tetracycline (TC) and aluminum moieties of SF serve as the binding sites. The potential of multiple binding sites and a priority in them were suggested by the Scatchard plot analysis. The additional amounts of acid and the increase in the surface area increased the number of sites. The amount of the additional acid appeared to be the most important factor during the preparation of the acidic complex. The appropriate amount of acid added appeared to produce a complex rich in TC. However, an excess amount might cause the excess dissociation of aluminum moieties, which destroys the mucoadhesive paste-forming property.

  16. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents

    KAUST Repository

    Aouad, Mohamed Reda; Messali, Mouslim; Rezki, Nadjet; Ali, Adeeb Al-Sheikh; Lesimple, Alain

    2015-01-01

    (1,4,5-Triphenylimidazol-2-yl-thio)butyric acid hydrazide (3) was obtained via alkylation of 1,4,5-triphenylimidazol-2- thiol (1) with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide

  17. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda

    2017-07-14

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  18. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda; Kongtes, Chutima; Barthel, Alexander; Vummaleti, Sai V. C.; Poater, Albert; Wannakao, Sippakorn; Cavallo, Luigi; D'Elia, Valerio

    2017-01-01

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  19. Enzymatic synthesis of hydrophilic undecylenic acid sugar esters and their biodegradability.

    Science.gov (United States)

    Raku, Takao; Kitagawa, Masaru; Shimakawa, Hiromi; Tokiwa, Yutaka

    2003-01-01

    To enhance water solubility of 10-undecylenic acid, which has anti-fungus, anti-bacterial and anti-virus activity, D-glucose, trehalose and sucrose were regioselectively esterified with vinyl 10-undecylenic acid ester in dimethyl formamide by a commercial protease, Bioprase conc., from Bacillus subtilis. 6-O-(10-Undecylenoyl) D-glucose, 6-O-(10-undecylenoyl) trehalose and 1'-O-(10-undecylenoyl) sucrose were obtained. The influence of structural variation by changing the sugar moiety was analyzed the surface tension and biodegradability.

  20. Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids.

    Science.gov (United States)

    Kiss, Loránd; Nonn, Melinda; Sillanpää, Reijo; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2016-12-06

    This work describes a substrate-directed fluorination of some highly functionalized cyclopentane derivatives. The cyclic products incorporating CH 2 F or CHF 2 moieties in their structure have been synthesized from diexo- or diendo-norbornene β-amino acids following a stereocontrolled strategy. The synthetic study was based on an oxidative transformation of the ring carbon-carbon double bond of the norbornene β-amino acids, followed by transformation of the resulted "all cis" and "trans" diformyl intermediates by fluorination with "chemodifferentiation". © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA Nanoparticles in Rat Plasma

    Directory of Open Access Journals (Sweden)

    Hua-Shi Guan

    2013-04-01

    Full Text Available This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD at 250 nm (excitation and 435 nm (emission using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA nanoparticles (PSS-NP in rat plasma after a single intravenous (PSS only and oral administration (PSS and PSS-NP. Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability.

  2. 5-Acetamido-3,5-dideoxy-L-glycero-L-manno-non-2-ulosonic acid-containing O-polysaccharide from marine bacterium Pseudomonas glareae KMM 9500T.

    Science.gov (United States)

    Kokoulin, Maxim S; Kalinovsky, Anatoly I; Romanenko, Lyudmila A; Mikhailov, Valery V

    2018-05-22

    The O-polysaccharide was isolated from the lipopolysaccharide of a marine bacterium Pseudomonas glareae KMM 9500 T and studied by chemical methods along with 1D and 2D 1 H and 13 C NMR spectroscopy including 1 H, 1 H-TOCSY, 1 H, 1 H-COSY, 1 H, 1 H-ROESY, 1 H, 13 C-HSQC and 1 H, 13 C-HMBC experiments. The O-polysaccharide was found to consist of linear tetrasaccharide repeating units constituted by D-glucuronic acid (D-GlcA), L-rhamnose (L-Rha), D-glucose (D-Glc) and 5-acetamido-7,9-O-[(S)-1-carboxyethylidene]-3,5-dideoxy-L-glycero-L-manno-non-2-ulosonic acid (Sug7,9(S-Pyr)), partially O-acetylated at position 8 (∼70%): →4)-α-D-GlcpA-(1→3)-β-L-Rhap-(1→4)-β-D-Glcp-(1→4)-β-Sugp8Ac(∼70%)7,9(S-Pyr)-(2→. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    International Nuclear Information System (INIS)

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.

    1990-01-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients

  4. A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase.

    Science.gov (United States)

    Cornelius, Flemming; Kanai, Ryuta; Toyoshima, Chikashi

    2013-03-01

    The Na,K-ATPase is specifically inhibited by cardiotonic steroids (CTSs) like digoxin and is of significant therapeutic value in the treatment of congestive heart failure and arrhythmia. Recently, new interest has arisen in developing Na,K-ATPase inhibitors as anticancer agents. In the present study, we compare the potency and rate of inhibition as well as the reactivation of enzyme activity following inhibition by various cardiac glycosides and their aglycones at different pH values using shark Na,K-ATPase stabilized in the E2MgPi or in the E2BeFx conformations. The effects of the number and nature of various sugar residues as well as changes in the positions of hydroxyl groups on the β-side of the steroid core of cardiotonic steroids were investigated by comparing various cardiac glycoside compounds like ouabain, digoxin, digitoxin, and gitoxin with their aglycones. The results confirm our previous hypothesis that CTS binds primarily to the E2-P ground state through an extracellular access channel and that binding of extracellular Na(+) ions to K(+) binding sites relieved the CTS inhibition. This reactivation depended on the presence or absence of the sugar moiety on the CTS, and a single sugar is enough to impede reactivation. Finally, increasing the number of hydroxyl groups of the steroid was sterically unfavorable and was found to decrease the inhibitory potency and to confer high pH sensitivity, depending on their position on the steroid β-face. The results are discussed with reference to the recent crystal structures of Na,K-ATPase in the unbound and ouabain-bound states.

  5. Release of the cyano moiety in the crystal structure of N-cyanomethyl-N-(2-methoxyethyl)-daunomycin complexed with d(CGATCG).

    Science.gov (United States)

    Saminadin, P; Dautant, A; Mondon, M; Langlois D'estaintot, B; Courseille, C; Précigoux, G

    2000-01-01

    Doxorubicin is among the most widely used anthracycline in cancer chemotherapy. In an attempt to avoid the cardiotoxicity and drug resistance of doxorubicin therapy, several analogues were synthesized. The cyanomorpholinyl derivative is the most cytotoxic. They differ greatly from their parent compound in their biological and pharmacological properties, inducing cross-links in drug DNA complexes. The present study concerns N-cyanomethyl-N-(2-methoxyethyl)-daunomycin (CMDa), a synthetic analogue of cyanomorpholino-daunomycin. Compared to doxorubicin, CMDa displays a cytotoxic activity on L1210 leukemia cells at higher concentration but is effective on doxorubicin resistant cells. The results of fluorescence quenching experiments as well as the melting temperature (DeltaTm = 7.5 degrees C) studies are consistent with a drug molecule which intercalates between the DNA base pairs and stabilizes the DNA double helix. The crystal structure of CMDa complexed to the hexanucleotide d(CGATCG) has been determined at 1.5 A resolution. The complex crystallizes in the space group P41212 and is similar to other anthracycline-hexanucleotide complexes. In the crystal state, the observed densities indicate the formation of N-hydroxymethyl-N-(2-methoxyethyl)-daunomycin (HMDa) with the release of the cyano moiety without DNA alkylation. The formation of this degradation compound is discussed in relation with other drug modifications when binding to DNA. Comparison with two other drug-DNA crystal structures suggests a correlation between a slight change in DNA conformation and the nature of the amino sugar substituents at the N3' position located in the minor groove.

  6. 1H and 13C NMR coordination-induced shifts in a series of tris(α-diimine)ruthenium(II) complexes containing pyridine, pyrazine, and thiazole moieties

    International Nuclear Information System (INIS)

    Orellana, G.; Ibarra, C.A.; Santoro, J.

    1988-01-01

    1 H and 13 C NMR chemical shifts of a series of ruthenium(II) tris chelates containing the heterocyclic ligands 2,2'-bipyridine, 2-(2-pyridyl)thiazole, 2-(2-pyrazyl)thiazole, and 2,2'-bithiazole are reported and compared to those of the corresponding free ligands. Calculated coordination-induced shifts (CIS, δ complexed - δ free ) range from +0.41 to -1.00 ppM for 1 H and from +5.8 to -3.7 ppM for 13 C nuclei. These values are discussed on the basis of the various effects (charge perturbation and field interactions) that arise upon chelation: electronic σ-donation to the metallic center via the nitrogen lone pair, d-π* back-donation to the ligand, van der Waals interactions, and magnetic anisotropy of the spectator ligands. Semiquantitative values of each effect at the different positions have been proposed, taking theoretical calculations of steric and anisotropic contributions as the starting point. Shielding van der Waals interaction between proximate atoms influences only the H(3') CIS of six-membered moieties, but to a very low extent (<0.15 ppM). Magnetic anisotropy of proximate ring currents practically determines the CIS of the α positions for all the complexed ligands examined (upfield shifts from -0.8 to -1.0 ppm), has a lower influence on external β positions (< 0.2 ppM), and is negligible for γ-protons. σ-donation deshields all the positions, its contribution increasing as protons separate from the coordinated nitrogen atom (up to 0.4 ppM). Π-back-bonding is a weaker effect (< 0.2 ppM upfield contribution) that operates mainly on the γ position of the pyridine and α and β positions of the pyrazine rings. 36 refs., 3 figs., 4 tabs

  7. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    International Nuclear Information System (INIS)

    Labbe, G.; Descatoire, V.; Beaune, P.; Letteron, P.; Larrey, D.; Pessayre, D.

    1989-01-01

    Incubation of rat liver microsomes with [3H]methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalen (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B)

  8. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids.

    Science.gov (United States)

    Eignerova, Barbara; Tichy, Michal; Krasulova, Jana; Kvasnica, Miroslav; Rarova, Lucie; Christova, Romana; Urban, Milan; Bednarczyk-Cwynar, Barbara; Hajduch, Marian; Sarek, Jan

    2017-11-10

    To improve the properties of cytotoxic triterpenoid acids 1-5, a large set of hydrophilic esters was synthesized. We choose betulinic acid (1), dihydrobetulinic acid (2), 21-oxoacid 3 along with highly active des-E lupane acids 4 and 5 as a model set of compounds for esterification of which the properties needed to be improved. As ester moieties were used - methoxyethanol and 2-(2-methoxyethoxy)ethanol and glycolic unit (type a-d), pyrrolidinoethanol, piperidinoethanol and morpholinoethanol (type f-h), and monosaccharide groups (type i-l). As a result, 56 triterpenic esters (49 new compounds) were obtained and their cytotoxicity on four cancer cell lines and normal human fibroblasts was tested. All new compounds were fully soluble at all tested concentrations, which used to be a problem of the parent compounds 1 and 2. 16 compounds had IC 50  acids 1-5. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Ajmi, Khawla Y.; Al-Harthi, Salim H.

    2014-01-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage

  10. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  11. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  12. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  13. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans.

    Science.gov (United States)

    Mandøe, Mette J; Hansen, Katrine B; Hartmann, Bolette; Rehfeld, Jens F; Holst, Jens J; Hansen, Harald S

    2015-09-01

    Dietary triglycerides can, after digestion, stimulate the intestinal release of incretin hormones through activation of G protein-coupled receptor (GPR) 119 by 2-monoacylglycerol and by the activation of fatty acid receptors for long- and short-chain fatty acids. Medium-chain fatty acids do not stimulate the release of intestinal hormones. To dissect the mechanism of fat-induced glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) release in humans, we compared the effects of tributyrin (containing short-chain fatty acids; i.e., butyric acid), olive oil [containing long-chain fatty acids; e.g., oleic acid plus 2-oleoyl glycerol (2-OG)], and 1,3-dioctanoyl-2-oleoyl glycerol (C8-dietary oil), which is digested to form medium-chain fatty acids : i.e., octanoic acid : and 2-OG. In a randomized, single-blinded crossover study, 12 healthy white men [mean age: 24 y; BMI (in kg/m(2)): 22] were given the following 4 meals on 4 different days: 200 g carrots + 6.53 g tributyrin, 200 g carrots + 13.15 g C8-dietary oil, 200 g carrots + 19 g olive oil, or 200 g carrots. All of the lipids totaled 0.0216 mol. Main outcome measures were incremental areas under the curve for total GLP-1, GIP, and cholecystokinin (CCK) in plasma. C8-dietary oil and olive oil showed the same GLP-1 response [583 ± 101 and 538 ± 71 (pmol/L) × 120 min; P = 0.733], whereas the GIP response was higher for olive oil than for C8-dietary oil [3293 ± 404 and 1674 ± 270 (pmol/L) × 120 min; P = 0.002]. Tributyrin and carrots alone resulted in no increase in any of the measured hormones. Peptide YY (PYY) and neurotensin responses resembled those of GLP-1. Only olive oil stimulated CCK release. Under our study conditions, 2-OG and GPR119 activation can fully explain the olive oil-induced secretion of GLP-1, PYY, and neurotensin. In contrast, both oleic acid and 2-OG contributed to the GIP response. Dietary butyrate did not stimulate gut hormone secretion. Olive oil

  14. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations

    Science.gov (United States)

    Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier

    2018-02-01

    Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.

  15. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...... the synthesis of the compounds and our investigations on glucose complexation as studied by C-13 NMR spectroscopy. The crystal structure of 2,4,6-tris[2-(N-ferrocenylmethyl-N-methylaminomethyl) phenyl] boroxin (13) (boroxin of boronic acid 3) (boroxin = cyclotriboroxane) was obtained and compared...... with structures obtained of 2,4,6-tris[2-(N,N-dimethylaminomethyl)phenyl]boroxin (14) and 2,2-dimethyl-1,3-diyl[2-(N,N-dimethylaminomethyl)phenyl]boronate (15). The structure of 13 shows the existence of intramolecular B-N bonds in the solid phase....

  16. Dioxaphosphorinane-Constrained Nucleic Acid Dinucleotides as Tools for Structural Tuning of Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Dan-Andrei Catana

    2012-01-01

    Full Text Available We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

  17. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A critical role played by the conjugated trienyl lactone moiety.

    Science.gov (United States)

    Qian, Shan; Shah, Aashay K; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-08-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, two new analogs, ZJ-105 and ZJ-106, were designed and synthesized to probe the importance of the conjugated trienyl lactone moiety of the molecule by replacing the C2-C3 double bond in ZJ-101 with a single bond and switching the geometry of the C4-C5 double bond in ZJ-101 from Z to E, respectively. Biological evaluation showed that ZJ-105 completely loses antiproliferative activity whereas ZJ-106 is significantly less active against cancer cells in vitro than ZJ-101, suggesting that the conjugated trienyl lactone moiety of the molecule is critical for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid

    Science.gov (United States)

    Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen; Debbabi, Mongi

    2013-01-01

    Mixed calcium-copper hydroxyapatite (Ca-CuHAp), with general formula Ca(10-x)Cux(PO4)6(OH)2, where 0 ≤ x ≤ 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca-CuHAp-PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (Psbnd OH) band of (HPO4)2- groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.

  19. Lipoic Acid

    Directory of Open Access Journals (Sweden)

    Ramazan Tetikcok

    2015-09-01

    Full Text Available Lipoic acid, which is defined as a miralce antioxidan, is used by many departments. Eventhough clinical using data are very limited , it is used in treatment of diabetic neuropathy, physical therapy and rehabilitation clinic, dermatology clinic, geriatric clinics. It has usage area for cosmetic purposes. Although there are reports there are the direction of the effectiveness in these areas, the works done are not enough. Today lipoic acid , used in many areas ,is evaluated as universal antioxidant [J Contemp Med 2015; 5(3.000: 206-209

  20. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans

    DEFF Research Database (Denmark)

    Mandøe, Mette J.; Hansen, Katrine B.; Hartmann, Bolette

    2015-01-01

    acid), olive oil [contg. long-chain fatty acids; e.g., oleic acid plus 2-oleoyl glycerol (2-OG)], and 1,3-dioctanoyl-2-oleoyl glycerol (C8-dietary oil), which is digested to form medium-chain fatty acids (i.e., octanoic acid) and 2-OG. Design: In a randomized, single-blinded crossover study, 12 healthy...... white men [mean age: 24 y; BMI (in kg/m2): 22] were given the following 4 meals on 4 different days: 200 g carrots + 6.53 g tributyrin, 200 g carrots + 13.15 g C8-dietary oil, 200 g carrots + 19 g olive oil, or 200 g carrots. All of the lipids totaled 0.0216 mol. Main outcome measures were incremental...... areas under the curve for total GLP-1, GIP, and cholecystokinin (CCK) in plasma. Results: C8-dietary oil and olive oil showed the same GLP-1 response [583 ± 101 and 538 ± 71 (pmol/L) × 120 min; P = 0.733], whereas the GIP response was higher for olive oil than for C8-dietary oil [3293 ± 404 and 1674...

  1. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  2. Mefenamic Acid

    Science.gov (United States)

    Mefenamic acid comes as a capsule to take by mouth. It is usually taken with food every 6 hours as needed for up to 1 week. Follow ... pain vomit that is bloody or looks like coffee grounds black, tarry, or bloody stools slowed breathing ...

  3. Acid rain. Les pluies acides

    Energy Technology Data Exchange (ETDEWEB)

    Curren, T

    1979-11-28

    This report was produced for the use of Members of Parliament and House of Commons committees. The document describes the formation of acid rain, emissions of acidifying pollutants in North America, the growth of the problem and its environmental effects on aquatic and terrestrial ecosystems, human health and man-made structures. Areas of Canada which are most susceptible are identified. Actions taken by Parliament are given, including the formation of a sub-committee on acid rain and the passing of Bill C-51 in 1980 to amend the Clean Air Act, bringing it closer to a similar law in the U.S. A chronology of government responses to acid rain at the international, national and provincial level, is given. The most recent government actions included the passing of the US Clean Air Act by the Senate, the amending of the act into law, and commencement of negotiations to develop a Canada-US Air Quality Accord. 10 refs.

  4. Synthesis and pharmacology of 3-hydroxy-delta2-isoxazoline-cyclopentane analogues of glutamic acid

    DEFF Research Database (Denmark)

    Conti, P; De Amici, M; Bräuner-Osborne, Hans

    2002-01-01

    The synthesis and pharmacology of two potential glutamic acid receptor ligands are described. Preparation of the bicyclic 3-hydroxy-delta2-isoxazoline-cyclopentane derivatives (+/-)-7 and (+/-)-8 was accomplished via 1,3-dipolar cycloaddition of bromonitrile oxide to suitably protected 1-amino......-cyclopent-3-enecarboxylic acids. Their structure was established using a combination of 1H NMR spectroscopy and molecular mechanics calculations carried out on the intermediate cycloadducts (+/-)-11 and (+/-)-12. Amino acid derivatives (+/-)-7 and (+/-)-8 were assayed at ionotropic and metabotropic glutamic...... acid receptor subtypes and their activity compared with that of trans-ACPD and cis-ACPD. The results show that the replacement of the omega-carboxylic group of the model compounds with the 3-hydroxy-delta2-isoxazoline moiety abolishes or reduces drastically the activity at the metabotropic glutamate...

  5. In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama-Mannich reaction.

    Science.gov (United States)

    Bai, Jian-Fei; Sasagawa, Hajime; Yurino, Taiga; Kano, Taichi; Maruoka, Keiji

    2017-07-18

    Readily available Boc-protected Z-alkenyl aminals could be used as Z-alkenyl and E-alkenyl imine precursors under acidic conditions. In the Mukaiyama-Mannich reaction of Z-alkenyl Boc-aminals, the E/Z geometry of the products was controlled by the catalyst used. The present method was also applied to asymmetric Mukaiyama-Mannich reactions.

  6. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties

    Directory of Open Access Journals (Sweden)

    Catalin V. Maftei

    2013-10-01

    Full Text Available Taking into consideration the biological activity of the only natural products containing a 1,2,4-oxadiazole ring in their structure (quisqualic acid and phidianidines A and B, the natural product analogs 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylpyrrolidine-2,5-dione (4 and 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenyl-1H-pyrrole-2,5-dione (7 were synthesized starting from 4-(3-tert-butyl-1,2,4-oxadiazol-5-ylaniline (1 in two steps by isolating the intermediates 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylamino-4-oxobutanoic acid (3 and (Z-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylamino-4-oxobut-2-enoic acid (6. The two natural product analogs 4 and 7 were then tested for antitumor activity toward a panel of 11 cell lines in vitro by using a monolayer cell-survival and proliferation assay. Compound 7 was the most potent and exhibited a mean IC50 value of approximately 9.4 µM. Aniline 1 was synthesized by two routes in one-pot reactions starting from tert-butylamidoxime and 4-aminobenzoic acid or 4-nitrobenzonitrile. The structures of compounds 1, 2, 4, 5 and 6 were confirmed by X-ray crystallography.

  7. Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets

    Energy Technology Data Exchange (ETDEWEB)

    Starck, Matthieu; Laporte, Fanny A.; Oros, Stephane; Sisommay, Nathalie; Gathu, Vicky; Lebrun, Colette; Delangle, Pascale [INAC/SyMMES, UMR5819, Universite Grenoble Alpes, CEA, CNRS, Grenoble (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Creff, Gaelle; Den Auwer, Christophe [Institut de Chimie de Nice, UMR7272, Universite Cote d' Azur, Nice (France); Roques, Jerome [Institut de Physique Nucleaire d' Orsay, CNRS-IN2P3, Univ. Paris-Sud, Universite Paris-Saclay (France)

    2017-04-19

    The specific molecular interactions responsible for uranium toxicity are not yet understood. The uranyl binding sites in high-affinity target proteins have not been identified yet and the involvement of phosphoamino acids is still an important question. Short cyclic peptide sequences, with three glutamic acids and one phosphoamino acid, are used as simple models to mimic metal binding sites in phosphoproteins and to help understand the mechanisms involved in uranium toxicity. A combination of peptide design and synthesis, analytical chemistry, extended X-ray absorption fine structure (EXAFS) spectroscopy, and DFT calculations demonstrates the involvement of the phosphate group in the uranyl coordination sphere together with the three carboxylates of the glutamate moieties. The affinity constants measured with a reliable analytical competitive approach at physiological pH are significantly enhanced owing to the presence of the phosphorous moiety. These findings corroborate the importance of phosphoamino acids in uranyl binding in proteins and the relevance of considering phosphoproteins as potential uranyl targets in vivo. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis of N,N-Bis(nonaflyl) Squaric Acid Diamide and its Application to Organic Reactions

    International Nuclear Information System (INIS)

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    We have developed a new strong Brφnsted acid bearing two nonaflyl groups based on the squaric acid scaffold. The Brφnsted acid 2 showed the almost same reactivity as bistriflyl squaramide 1 in Mukaiyama aldol and Michael reactions of benzaldehyde with silyl enol ether. Moreover, the utility of Brφnsted acid 2 could be expanded to carbonyl ene reaction of rac-citronellal. Further application of this new Brφnsted acid to organic reactions and to flow system reactors is currently underway in our laboratory. Brφnsted acid catalysis is one of the growing fields in modern organic synthesis.1 Although several Brφnsted acids, such as urea/thiourea, TADDOL, and phosphoric acid, have been applied to a variety of organic reactions, other Brφnsted acid scaffolds have been much less explored. Recently, Rawal et al have developed a Brφnsted acid catalyst based on squaric acid moiety and successfully applied it as a catalyst for conjugate addition of 1,3-dicarbonyl compounds to nitroolefins. More recently, we have developed a strong Brφnsted acid derived from squaric acid by introducing a strong electron withdrawing trifluoromethanesulfonyl (Tf) group and applied it to Mukaiyama aldol and Michael reaction of a variety of aldehydes, ketones, and α,β-unsaturated ketones. As a continuing effort to develop strong Brφnsted acids based on the squaric acid scaffold, it was expected that replacement of Tf group with a longer perfluoro-alkanesulfonyl group would be able to tune the physical properties, such as solubilities in organic solvents and fluoro-philicity, without loss of reactivity. Herein, we report the development of a new Brφnsted acid based on the squaric acid scaffold carrying two nonafluorobutanesulfonyl (Nf) groups and the preliminary results of its reactivity to various organic reactions

  9. Levulinic acid

    Directory of Open Access Journals (Sweden)

    Barbara Hachuła

    2013-09-01

    Full Text Available The title compound (systematic name: 4-oxopentanoic acid, C5H8O3, is close to planar (r.m.s. deviation = 0.0762 Å. In the crystal, the molecules interact via O—H...O hydrogen bonds in which the hydroxy O atoms act as donors and the ketone O atoms in adjacent molecules as acceptors, forming C(7 chains along [20-1].

  10. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation.

    Science.gov (United States)

    Fu, Yin-Chih; Fu, Tzu-Fun; Wang, Hung-Jen; Lin, Che-Wei; Lee, Gang-Hui; Wu, Shun-Cheng; Wang, Chih-Kuang

    2014-11-01

    Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. A lectin histochemical study on carbohydrate moieties of the gonadotropin-like substance in the epithelial cells of Hatschek's pit of Branchiostoma belcheri

    Science.gov (United States)

    Fang, Y. Q.; Welsch, U.

    1997-03-01

    The present light microscopic lectin, histochemical study suggests for the first time that the vertebrate gonadotropin-like substance in the basal part of the epithelial cells of Hatschek's pit is a sialic acid-containing glycoprotein. The binding intensity of the epithelial cells in Hatschek's pit to 6 lectins ( Limulus polyphemus agglutinin (LPA), Wheat germ agglutinin (WGA), Helix pomatia agglutinin (HPA), Concanavalin A (Con A), Ulex europaeus agglutinin I (UEA I) and Ricinus communis agglutinin I (RCA I)) indicate that the carbohydrate composition of the gonadotrophic glycoprotein is similar to that of mammals and fish, and that N-acetyl-D-galactosamine, sialic acid, glucosamine, D-mannose and L-fucose are components of the carbohydrate portion.

  12. Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity

    International Nuclear Information System (INIS)

    Cui, Haijun; Chen, Ying; Li, Lianshan; Tang, Zhiyong; Wu, Yishi; Fu, Hongbing; Tian, Zhiyuan

    2014-01-01

    Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone. (author)

  13. Synthesis and Antiangiogenic Properties of Tetrafluorophthalimido and Tetrafluorobenzamido Barbituric Acids.

    Science.gov (United States)

    Ambrożak, Agnieszka; Steinebach, Christian; Gardner, Erin R; Beedie, Shaunna L; Schnakenburg, Gregor; Figg, William D; Gütschow, Michael

    2016-12-06

    The development of novel thalidomide derivatives as immunomodulatory and anti-angiogenic agents has revived over the last two decades. Herein we report the design and synthesis of three chemotypes of barbituric acids derived from the thalidomide structure: phthalimido-, tetrafluorophthalimido-, and tetrafluorobenzamidobarbituric acids. The latter were obtained by a new tandem reaction, including a ring opening and a decarboxylation of the fluorine-activated phthalamic acid intermediates. Thirty compounds of the three chemotypes were evaluated for their anti-angiogenic properties in an ex vivo assay by measuring the decrease in microvessel outgrowth in rat aortic ring explants. Tetrafluorination of the phthalimide moiety in tetrafluorophthalimidobarbituric acids was essential, as all of the nonfluorinated counterparts lost anti-angiogenic activity. An opening of the five-membered ring and the accompanying increased conformational freedom, in case of the corresponding tetrafluorobenzamidobarbituric acids, was well tolerated. Their activity was retained, although their molecular structures differ in torsional flexibility and possible hydrogen-bond networking, as revealed by comparative X-ray crystallographic analyses. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photoinduced Birefringent Pattern and Photoinactivation of Liquid-Crystalline Copolymer Films with Benzoic Acid and Phenylaldehyde Side Groups.

    Science.gov (United States)

    Kawatsuki, Nobuhiro; Inada, Shogo; Fujii, Ryosuke; Kondo, Mizuho

    2018-02-06

    In situ formation of N-benzylideneaniline (NBA) side groups achieved photoinduced cooperative reorientation of photoinactive copolymers with phenylaldehyde (PA) and benzoic acid (BA) side groups doped with 4-methoxyaniline (AN) molecules. Thermally stimulated molecular reorientation of the side groups was generated due to the axis-selective photoreaction of the NBA moieties. Selective coating with AN on the copolymer film formed NBA moieties in the desired region, resulting in a photoinduced birefringent pattern. Additionally, postannealing at an elevated temperature for a long time attained photoinactivation of the reoriented film, and recoating with AN to form NBA achieved the multiple birefringent patterns and repatterning of the reoriented structures. The slow thermal hydrolysis of NBA, which was 50 times slower than the thermally stimulated self-organization of the side groups due to the presence of BA side groups, contributed to the photodurability of the reoriented film and multiple birefringent patterns.

  15. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    Science.gov (United States)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  16. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents

    KAUST Repository

    Aouad, Mohamed Reda

    2015-05-23

    (1,4,5-Triphenylimidazol-2-yl-thio)butyric acid hydrazide (3) was obtained via alkylation of 1,4,5-triphenylimidazol-2- thiol (1) with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide in an ethanolic potassium hydroxide solution gave the intermediate potassium dithiocarbazinate salt, which was cyclized to 4-amino-5-[(1,4,5-triphenylimidazol- -2-yl)thiopropyl]-2H-1,2,4-triazole-3-thione (4) in the presence of hydrazine hydrate. Condensation of compound 3 with alkyl/arylisothiocyanate afforded the corresponding 1-[4-(1,4,5-triphenylimidazol-2-ylthio)butanoyl]-4-alkyl/arylthiosemicarbazides (5-7), which upon refluxing with sodium hydroxide, yielded the corresponding 1,2,4-triazole - -3-thiols 8-10. Under acidic conditions, compounds 4-6 were converted to aminothiadiazoles 11-13. Moreover, the series of Schiff bases 14-18 were synthesized from the condensation of compound 3 with different aromatic aldehydes. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analyses. They were also preliminarily screened for their antimicrobial activity.

  17. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.

    Science.gov (United States)

    Taha, M O; Aiedeh, K M; Al-Hiari, Y; Al-Khatib, H

    2005-10-01

    The aim of this study is to explore the potential of synthetic modifications of alginic acid as a method to enhance the stability of its complexes with divalent cations under physiological conditions. A fraction of algin's carboxylic acid moieties was substituted with thiol groups to different substitution degrees through conjugating alginate to cysteine to produce alginate-cysteine (AC) conjugates. Infrared spectrophotometry and iodometry were used to characterize the resulting polymeric conjugates in terms of structure and degree of substitution. Moreover, zinc ions were used to crosslink the resulting AC polymers. Folic acid loaded beads were prepared from Zinc-crosslinked AC polymers (AC-Zn) of different cysteine substitution degrees. The generated beads were then investigated in vitro for their capacity to modify folic acid release. AC-Zn polymeric beads resisted drug release under acidic conditions (pH 1.0). However, upon transfer to a phosphate buffer solution (pH 7.0) they released most of their contents almost immediately. This change in drug release behavior is most probably due to the sequestering of zinc cations by phosphate ions within the buffer solution to form insoluble chelates and, to a lesser extent, the ionization of the carboxylic acid and thiol moieties. Removal of zinc ions from the polymeric matrix seems to promote polymeric disintegration and subsequent drug release. A similar behavior is expected in vivo due to the presence of natural zinc sequestering agents in the intestinal fluids. AC-Zn polymers provided a novel approach for enteric drug delivery as drug release from these matrices complied with the USP specifications for enteric dosage forms.

  18. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    Science.gov (United States)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-09-01

    New magnetic Fe@C nanoparticles in the size range of about 20-50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  19. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  20. Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.).

    Science.gov (United States)

    Kim, Sang-Min; Shang, Ya Fang; Um, Byung-Hun

    2010-01-01

    Blueberries (genus Vaccinium) have gained worldwide focus because of the high anthocyanin content of their fruits. In contrast, the leaves of blueberry have not attracted any attention, even though they contain large quantities of chlorogenic acid, a strong antioxidant compound. The aim of this investigation was the quantification and preparative isolation of chlorogenic acid (5-caffeoylquinic acid, 5-CQA) from blueberry leaves using a new separation scheme, centrifugal partition chromatography (CPC). A water fraction containing a high concentration of 5-CQA (14.5% of dry weight extract) was obtained by defatting a crude methanol extract from blueberry leaves. CPC was applied to isolate 5-CQA from this water fraction using a two-phase solvent system of ethyl acetate-ethanol-water at a volume ratio 4:1:5 (v/v/v). The flow-rate of mobile phase was 2 mL/min with the ascending mode while rotating at 1200 rpm. The eluate was monitored at 330 nm. The structure of chlorogenic acid in the CPC fraction was confirmed with HPLC, UV, ESI/MS and NMR spectra. The HPLC chromatogram showed that the fractions collected by CPC contained chlorogenic acid with 96% purity based on peak area percentage. The total amount of chlorogenic acid isolated from 0.5 g of a water fraction was 52.9 mg, corresponding to 10.6% of the water fraction. The isolated compound was identified successively as 5-CQA with MS (parent ion at m/z 355.1 [M + H](+)) and (1)H NMR spectra [caffeoyl moiety in the down field (δ 6.0-8.0 ppm) and quinic acid moiety in the up field (δ 2.0-5.5 ppm)]. 5-CQA was successfully isolated from blueberry leaves by the CPC method in a one-step procedure, indicating a further potential use for blueberry leaves. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  2. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  3. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  4. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    Science.gov (United States)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  5. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  6. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  7. In-situ quartz crystal microgravimetric studies of molecular adsorbates containing thiol and hydroquinone moieties bound to Au(111) surfaces in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Y.; Sukenik, C.; Sandifer, M. [Case Western Univ., Cleveland, OH (United States); Barriga, R.J.; Soriaga, M.P.; Scherson, D. [Texas A& M Univ., College Station, TX (United States)

    1995-12-01

    The microgravimetric properties of monolayers of 2, 5-dihydroxythiophenol, 2,5-dihydroxybenzyl mercaptan, and 2, 5-dihydroxy-4-methylbenzyl mercaptan adsorbed on Au(111) single crystal electrodes were examined by in situ quartz crystal microbalance techniques in aqueous perchloric acid electrolytes. The results obtained are consistent with the reversible loss of an average of about three waters per adsorbed molecule as the layers are oxidized and subsequently reduced. These observations provide evidence for discrete changes in the extent of bound water within the hydroquinone/quinone layer as the oxidation state of the monolayer is changed. 9 refs., 4 figs.

  8. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Ferreri

    2016-12-01

    Full Text Available Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1; and (ii the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  9. The position of rumenic acid on triacylglycerols alters its bioavailability in rats.

    Science.gov (United States)

    Chardigny, J M; Masson, E; Sergiel, J P; Darbois, M; Loreau, O; Noël, J P; Sébédio, J-L

    2003-12-01

    The metabolic fate of rumenic acid (9cis,11trans-octadecenoic acid) related to its position on the glycerol moiety has not yet been studied. In the present work, synthetic triacylglycerols (TAG) esterified with oleic and rumenic acids were prepared. Rats were force-fed synthetic dioleyl monorumenyl glycerol with (14)C labeled rumenic acid in the internal (sn-2) or in the external position (sn-1 or sn-3). Rats were then placed in metabolic cages for 16 h. At the end of the experiment, the radioactivity in tissues, carcass and expired CO(2) was measured. Rumenic acid that was esterified at the external positions on the TAG was better absorbed and oxidized to a greater extent than when esterified at the internal position. The fatty acid from the 2-TAG form was also better incorporated into the rat carcass. In the liver, rumenic acid appeared mainly in TAG (50%) and to a lesser extent in phospholipids (33%) whatever its dietary form. Moreover, analyses of lipids from Camembert cheese and butter revealed that rumenic acid was located mainly on the sn-1 or sn-3 positions (74%). Taken together, these data suggest that rumenic acid from dairy fat may be well absorbed and used extensively for energy production.

  10. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  11. Synthesis, characterization of some novel 1,3,4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents

    Directory of Open Access Journals (Sweden)

    Vinayak Mahadev Adimule

    2014-12-01

    Full Text Available In the present work a series of novel derivatives of 8-hydroxy quinolone substituted 1,3,4-oxadiazole compounds were synthesized by convergent synthetic method and studied for their antibacterial and anticancer properties. The cell lines used for cytotoxic evaluation were HeLa, Caco-2 and MCF7. The synthetic chemistry involved conversion of various substituted aromatic acids into ethyl ester 2a-e. The ethyl ester was converted into corresponding carbohydrazide 3a-e. Carbohydrazides are reacted with chloroacetic acid, phosphorous oxytrichloride and irradiated with microwave in order to obtain the various key intermediates 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole 4a-e. The 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole was reacted with 8-hydroxy quinolone in presence of sodium hydride and obtained a series of 8-hydroxy quinoline substituted 1,3,4-oxadiazoles 5a-e. Among the synthesised compounds, the cytotoxicity of the compound 5b i.e. 8-{[5-(2,4-dichlorophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline against MCF7 with IC50 of 5.3µM and the compound 5e i.e. 8-{[5-(4-bromophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline showed MIC of < 6.25µg/mL against Staphylococcus aureus which is comparable with the known standards. The standards used for cytotoxic evaluation was 5-fluorouracil and for antibacterial was nitrofurazone

  12. Synthesis and Characterization of a Ru(II Complex with Functionalized Phenanthroline Ligands Having Single-Double Linked Anthracenyl and 1-Methoxy-1-buten-3-yne Moieties

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2010-10-01

    Full Text Available Two series of bidentate polypyridine ligands, made of phenanthroline chelating subunits having substituted mono-and di-anthracenyl groups, and 1-methoxy-1-buten-3-yne at the 4 and 7-positions with the corresponding heteroleptic Ru(II complex have been synthesized and characterized. The complex is formulated as [(Ru(L1(L2(NCS2], (where L1 = 4-(9-dianthracenyl-10-(2,3-dimethylacrylic acid-7-(9-anthracenyl-10-(2,3-dimethylacrylic acid-1,10-phenanthroline and L2 = 4,7-bis(1-methoxy-1-buten-3-yne-1,10-phenanthroline. The Ru(II complex shows characteristic broad and intense metal-to-ligand charge transfer (MLCT bands absorption and appreciable photoluminescence spanning the visible region. The ligands and complex were characterized by FT-IR, 1H, 13C NMR spectroscopy, UV-Vis, photoluminescence and elemental analysis (see in supplementary materials. The anchoring groups in both ligands have allowed an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT excited state.

  13. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivation.

    Science.gov (United States)

    Zhang, Yong; Liu, Wei; Xu, Chunping; Huang, Wei; He, Peixin

    2017-01-01

    In this study, a high yield of crude polysaccharide (16.73 ± 0.756%) was extracted from the spent mushroom substrate of Lentinus edodes using a hot alkali extraction method. Two groups of polysaccharides (designated as LSMS-1 and LSMS-2) were obtained from the crude extract by size exclusion chromatography (SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index detector system. The weight-average molar masses of LSMS-1 and LSMS-2 were determined to be 6.842 × 106 and 2.154 × 106 g/mol, respectively. The SEC/MALLS analysis revealed that the molecular shapes of LSMS-1 and LSMS-2 were sphere-like forms in aqueous solution. Carbohydrate composition analysis using chromatography--mass spectrometry revealed that they were both acid heteropolysaccharides. LSMS-1 comprised mainly glucose and galacturonic acid, whereas LSMS-2 mainly consisted of xylose and glucuronic acid. Fourier transform infrared spectral analysis of the purified fractions revealed typical characteristic polysaccharide groups. In addition, MTT assays with refined polysaccharide doses of 25, 50, 100, 200, and 400 µg/mL suggested that both of the polysaccharide fractions exhibited antiproliferative activity against 6 tested human tumor cell lines in a concentration-dependent manner, and LSMS-2 had better anticancer capacity in vitro than LSMS-1. The inhibition ratio of LSMS-2 against A549 human lung cancer cells, the SGC7901 gastric cancer cell line, MCF-7 breast cancer cells, the U937 histiocytic lymphoma cell line, and the MG-63 human osteosarcoma cell line reached 43.55%, 29.97%, 19.63%, 18.24%, and 17.93%, respectively, at a concentration of 400 µg/mL.

  14. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  16. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    are the hallmark of phospholipidosis, a pathological condition characterized by lysosomal phospholipid accumulation. Phospholipidosis is observed in acquired lysosomal storage diseases and is induced by a large number of cationic amphiphilic drugs. Unlike the latter, however, OA does not act by accumulating...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....... hyper protein phosphorylation, but no detectable loss of cell polarity or cytoskeletal integrity of the enterocytes. Using a fluorescent membrane marker, FM dye, endocytosis from the brush border was affected by the toxin. Although constitutive uptake into subapical terminal web-localized early...

  17. ORIGIN OF PALMITIC ACID CARBON IN PALMITATES FORMED FROM HEXADECANE-1-C14 AND TETRADECANE-1-C14 BY MICROCOCCUS CERIFICANS

    Science.gov (United States)

    Finnerty, W. R.; Kallio, R. E.

    1964-01-01

    Finnerty, W. R. (University of Iowa, Iowa City), and R. E. Kallio. Origin of palmitic acid carbon in palmitates formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans. J. Bacteriol. 87:1261–1265. 1964.—Degradation of the palmitic acid moiety of cetyl palmitate and myristyl palmitate formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans was carried out. The patterns of C14 labeling in palmitic acid from cetyl palmitate showed that hexadecane is oxidized at the C1 position, and cetyl alcohol and palmitic acid thus formed are directly esterified. Palmitic acid arising from tetradecane and esterified to tetradecanol appeared to have been synthesized by the addition of two carbon atoms to an existing 14-carbon atom skeleton. Considerable mixing of C14 occurred in the C1 and C2 positions of palmitic acid thus synthesized. PMID:14188700

  18. SERS spectrum of gallic acid obtained from a modified silver colloid

    Science.gov (United States)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  19. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  20. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    Science.gov (United States)

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photo-crosslinked hyaluronic acid coated upconverting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mrazek, Jiri, E-mail: jiri.mrazek@contipro.com; Kettou, Sofiane; Matuska, Vit; Svozil, Vit; Huerta-Angeles, Gloria; Pospisilova, Martina; Nesporova, Kristina; Velebny, Vladimir [Contipro a. s. (Czech Republic)

    2017-02-15

    Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY{sub 0.80}Yb{sub 0.18}Er{sub 0.02}F{sub 4}@NaYF{sub 4} nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.

  2. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-01-01

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO 2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO 2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO 2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO 2 with ubiquitous amino acids present in natural waters.

  3. Synthesis and Antioxidant Activity Evaluation of New Compounds from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing Diarylsulfone and 2,4-Difluorophenyl Moieties

    Directory of Open Access Journals (Sweden)

    Stefania-Felicia Barbuceanu

    2014-06-01

    Full Text Available In the present investigation, new hydrazinecarbothioamides 4–6 were synthesized by reaction of 4-(4-X-phenylsulfonylbenzoic acids hydrazides (X= H, Cl, Br 1–3 with 2,4-difluorophenyl isothiocyanate and further these were treated with sodium hydroxide to obtain 1,2,4-triazole-3-thione derivatives 7–9. The reaction of 7–9 with α-halogenated ketones, in basic media, afforded new S-alkylated derivatives 10–15. The structures of the synthesized compounds have been established on the basis of 1H-NMR, 13C-NMR, IR, mass spectral studies and elemental analysis. The antioxidant activity of all compounds has been screened. Hydrazinecarbothioamides 4–6 showed excellent antioxidant activity and 1,2,4-triazole-3-thiones 7–9 showed good antioxidant activity using the DPPH method.

  4. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study

    International Nuclear Information System (INIS)

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.; Rak, Janusz

    2007-01-01

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.

  5. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  6. Atypical cleavage of protonated N-fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments.

    Science.gov (United States)

    Boukerche, Toufik Taalibi; Alves, Sandra; Le Faouder, Pauline; Warnet, Anna; Bertrand-Michel, Justine; Bouchekara, Mohamed; Belbachir, Mohammed; Tabet, Jean-Claude

    2016-12-01

    Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA (*D) and LAA (*E) ). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA (*D/*E) +H)-C 2 H 5 OH] + product ions dissociate via distinct pathways in sequential MS 3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA (*D), whereas LAA (*E) leads to the [*E+H-H 2 O] + anhydride. The former releases ammonia to provide acylium, which gives the C n H (2n-1) and C n H (2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.

  7. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  8. Ultrasound-assisted degradation of a new bacterial ...

    African Journals Online (AJOL)

    user

    2012-05-14

    May 14, 2012 ... polysaccharide composed of rhamnose, glucose, mannose, galactose and glucuronic acid in the molar ... distinguish it from thermal or photochemical degradation ..... hydrolysis with dilute acid cleaves the glycosidic bonds in.

  9. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  10. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin.

    Directory of Open Access Journals (Sweden)

    Itsuo Murakami

    Full Text Available Resveratrol (RESV is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV.

  11. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum NAKAI, induces the differentiation of human acute promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae

    2002-11-01

    The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.

  12. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  13. Difference between Extra- and Intracellular T1 Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    on the quantification of intracellular metabolicactivity. It is expected that the significantly shorter T1valueof the carboxylic moieties inside cells is a result of macro-molecular crowding. An artificial cytosol has been preparedand applied to predict the T1of other carboxylic acids. Wedemonstrate the value......Incomplete knowledge of the longitudinal relaxationtime constant (T1) leads to incorrect assumptions in quantita-tive kinetic models of cellular systems, studied by hyper-polarized real-time NMR. Using an assay that measures theintracellular signal of small carboxylic acids in living cells...

  14. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  15. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  16. Uric acid - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on ... are no risks with this test. Images Uric acid test Uric acid crystals References Burns CM, Wortmann RL. Clinical ...

  17. Uric acid test (image)

    Science.gov (United States)

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... for testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  18. Methylmalonic acid blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid in the ...

  19. Facts about Folic Acid

    Science.gov (United States)

    ... Information For… Media Policy Makers Facts About Folic Acid Language: English (US) Español (Spanish) Recommend on Facebook ... of the baby’s brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  20. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    International Nuclear Information System (INIS)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-01-01

    New magnetic Fe@C nanoparticles in the size range of about 20–50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  1. New carbocyclic N(6)-substituted adenine and pyrimidine nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, antiviral, anticancer activity and X-ray crystallography.

    Science.gov (United States)

    Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria

    2015-10-01

    New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Alexander; Magerusan, Lidia [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Morjan, Ion [National Institute for Lasers, Plasma and Radiation Physics (Romania); Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2015-09-15

    New magnetic Fe@C nanoparticles in the size range of about 20–50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  3. Synthesis of (3,5-/sup 14/C)trachelanthamidine and (5-/sup 3/H)isoretronecanol and their incorporation into the retronecine moiety of riddelliine in Senecio riddellii

    Energy Technology Data Exchange (ETDEWEB)

    Leete, E.; Rana, J.

    1986-09-01

    (+/-)-(3,5-/sup 14/C)Trachelanthamidine and (+/-)-(5-/sup 3/H)isoretronecanol, which are diastereomers, were prepared from potassium (/sup 14/C)cyanide and (5-/sup 3/H)proline, respectively. These compounds and (1,4-/sup 14/C)putrescine were administered to Senecio riddellii plants resulting in the formation of labeled riddelliine, in which almost all the radioactivity was located in its retronecine moiety. The activity of the beta-alanine obtained by degradation of the retronecine was consistent with specific labeling of this pyrrolizidine base at the expected positions. The extremely high absolute incorporation (15.1, 22.1%) of trachelanthamidine into riddelliine strongly favors this 1-hydroxymethylpyrrolizidine as the one on the main biosynthetic pathway to retronecine. The lower incorporation (0.75%) of isoretronecanol may represent a minor or aberrant pathway to retronecine.

  4. Spiroketalcarminic Acid, a Novel Minor Anthraquinone Pigment in Cochineal Extract Used in Food Additives.

    Science.gov (United States)

    Ito, Yusai; Harikai, Naoki; Ishizuki, Kyoko; Shinomiya, Kazufusa; Sugimoto, Naoki; Akiyama, Hiroshi

    2017-09-01

    Cochineal extract prepared from the scale insect Dactylopus coccus (American cochineal) has been used as a natural red dye for food, cosmetics, and pharmaceuticals. The major pigment in cochineal extract is carminic acid (CA), an anthraquinone glucoside, and several minor pigments have been previously reported. Our investigation aimed at establishing the safety of cochineal dye products using ultra performance liquid chromatography-photo diode array-electrospray ionization-time of flight (UPLC-PDA-ESI-TOF)/MS found an unknown minor pigment, spiroketalcarminic acid (1), in three commercial cochineal extract samples; cochineal extract used in food additives, carmine that is an aluminum salt of cochineal extract used as natural dye, and a research reagent of CA. The purification of 1 from cochineal extract involved sequential chromatographic techniques, including preparative reversed-phase HPLC. Two dimensional (2D)-NMR and mass analyses established the structure of 1 to be a novel anthraquinone with an unusual 6,5-spiroketal system instead of the C-glucosyl moiety of CA. The absolute stereochemistry of the spiroketal moiety in 1 was determined by nuclear Overhauser effect spectroscopy (NOESY) correlations and optical rotation. No data corresponding to 1 had previously been reported for extracts of dried cochineal insects and traditional art products dyed with cochineal extract, indicating that 1 is likely produced during the preparation of commercial cochineal extract.

  5. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Lincoln C. [Fundacao Centro Tecnologico de Minas Gerais, Setor de Biotecnologia e Tecnologia Quimica, Minas Geraid (Brazil); Linden, James C.; Schroeder, Herbert A. [Colorado State Univ., Dept. of Chemical and Bioresource Engineering, Fort Collins, CO (United States)

    1999-01-01

    The use of several lignocellulosic materials for ethanol fuel production has been studied exhaustively in the U.S.A. Strong environmental legislation has been driving efforts by enterprise, state agencies, and universities to make ethanol from biomass economically viable. Production costs for ethanol from biomass have been decreasing year by year as a consequence of this massive effort. Pretreatment, enzyme recovery, and development of efficient microorganisms are some promising areas of study for reducing process costs. Sugar cane bagasse constitutes the most important lignocellulosic material to be considered in Brazil as new technology such as the production of ethanol fuel. At present, most bagasse is burned, and because of its moisture content, has a low value fuel. Ethanol production would result in a value-added product. The bagasse is available at the sugar mill site at no additional cost because harvesting, transportation and storage costs are borne by the sugar production. The present paper presents an alternative pretreatment with low energy input where biomass is treated in a silo type system without need for expensive capitalisation. Experimentally, ground sugar cane bagasse is placed in plastic bags and a peracetic acid solution is added to the biomass at concetrations of 0, 6, 9, 15, 21, 30 and 60% w/w of peracetic acid based on over dried biomass. The ratio of solution to wood is 6:1; a seven day storage period had been used. Tests using hydrolysing enzymes as an indicator for SSCF have been performed to evaluated the pretreatment efficiency. As an auxiliary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetate content in the sugar cane bagasse have been performed before addition of peracetic acid. The alkaline solutions are added to the raw bagasse in a ratio of 17:1 solution to biomass and mixed for 24 hours at room temperature. Biomass is filled

  6. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Directory of Open Access Journals (Sweden)

    Azusa Saika

    Full Text Available Mannosylerythritol lipids (MELs belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S-erythritol (R-form as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R-erythritol (S-form as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  7. Synthesis of Stable and Soluble One-Handed Helical Homopoly(substituted acetylenes without the Coexistence of Any Other Chiral Moieties via Two-Step Polymer Reactions in Membrane State: Molecular Design of the Starting Monomer

    Directory of Open Access Journals (Sweden)

    Takashi Kaneko

    2012-01-01

    Full Text Available A soluble and stable one-handed helical poly(substituted phenylacetylene without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1 removing the chiral groups (desubstitution; and (2 introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution. The starting chiral monomer should have four characteristic substituents: (i a chiral group bonded to an easily hydrolyzed spacer group; (ii two hydroxyl groups; (iii a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300/ε for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.

  8. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  9. Structural changes of corn stover lignin during acid pretreatment.

    Science.gov (United States)

    Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui

    2012-09-01

    In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

  10. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  11. SYNTHESIS AND CHARACTERIZATION OF NEW THERMALLY STABLE POLYAMIDES BASED ON 2,5-PYRIDINE DICARBOXYLIC ACID AND AROMATIC DIAMINES

    OpenAIRE

    FAGHIHI, KHALIL

    2009-01-01

    Six new thermally stable polyamides 3a-f were synthesized through the polycondensation reaction of 2,5-pyridine dicarboxylic acid 1 with six different derivatives of aromatic diamines 2a-f in amedium consisting of N-methyl-2-pyrrolidone, triphenyl phosphite, calcium chloride and pyridine. The polycondensation reaction produced a series of novel polyamides containing pyridyl moieties in the main chain in high yield with inherent viscosities between 0.50-0.82 dL/g. The resulting polymers were f...

  12. Synthesis and Properties of New Polyamides Based on 4-Phenylenediacrylic Acid and Hydantoin Derivatives in the Main Chain

    OpenAIRE

    FAGHIHI, Khalil

    2008-01-01

    Six new polyamides (5a-f) containing p-phenylenediacrylic and hydantoin moieties in the main chain were prepared by direct polycondensation reaction of 4-phenylenediacrylic acid (3) with 6 different hydantoin derivatives (4a-f) using thionyl chloride and pyridine as condensing agents and N-methyl-2-pyrolidone as solvent. These new polymers (5a-f) were obtained in high yield and inherent viscosity between 0.35-0.55 dL/g. The resulting polyamides were characterized by elemental analysi...

  13. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels-Alder Reaction.

    Science.gov (United States)

    Nishikawa, Yasuhiro; Nakano, Saki; Tahira, Yuu; Terazawa, Kanako; Yamazaki, Ken; Kitamura, Chitoshi; Hara, Osamu

    2016-05-06

    Chiral pyridinium phosphoramide 1·HX was designed to be a new class of chiral Brønsted acid catalyst in which both the pyridinium proton and the adjacent imide-like proton activated by the electron-withdrawing pyridinium moiety could work cooperatively as strong dual proton donors. The potential of 1·HX was shown in the enantioselective Diels-Alder reactions of 1-amino dienes with various dienophiles including N-unsubstituted maleimide, which has yet to be successfully used in an asymmetric Diels-Alder reaction.

  14. Homoconjugation vs. Exciton Coupling in Chiral α,β-Unsaturated Bicyclo[3.3.1]nonane Dinitrile and Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Gintautas Bagdžiūnas

    2014-07-01

    Full Text Available The chiroptical properties of enantiomerically pure bicyclo[3.3.1]nona-2,6-diene-2,6-dicarbonitrile and related acids were studied by circular dichroism spectroscopy and theoretical computations. A consideration of the molecular structure of the synthesized difunctional compounds revealed that chromophores are predisposed to transannular through-space interaction due to a favourable conformation of the bicyclic skeleton and a rather small interchromophoric distance. Evidence for non-exciton-type coupling between the two acrylonitrile and acrylate moieties in 3 and 4, respectively, was obtained by chiroptical spectroscopy and DFT calculations.

  15. Design, Synthesis and in vitro Biochemical Activity of Novel Amino Acid Sulfonohydrazide Inhibitors of MurC.

    Science.gov (United States)

    Frlan, Rok; Kovač, Andreja; Blanot, Didier; Gobec, Stanislav; Pečar, Slavko; Obreza, Aleš

    2011-06-01

    Mur ligases are essential enzymes involved in the cytoplasmic steps of peptidoglycan synthesis which remain attractive, yet unexploited targets. In order to develop new antibacterial agents, we have designed a series of new MurC and MurD inhibitors bearing amino acid sulfonohydrazide moiety. The L-Leu series of this class displayed the highest enzyme inhibition with IC50 in the concentration range between 100 and 500 µM, with L-Thr, L-Pro and L-Ala derivatives being inactive. The most promising compound of the series also expressed weak antibacterial activity against S. aureus with MIC = 128 µg/mL.

  16. A novel and selective fluoride opening of aziridines by XtalFluor-E. synthesis of fluorinated diamino acid derivatives.

    Science.gov (United States)

    Nonn, Melinda; Kiss, Loránd; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2015-03-06

    The selective introduction of fluorine onto the skeleton of an aminocyclopentane or cyclohexane carboxylate has been developed through a novel and efficient fluoride opening of an activated aziridine ring with XtalFluor-E. The reaction proceeded through a stereoselective aziridination of the olefinic bond of a bicyclic lactam and regioselective aziridine ring opening with difluorosulfiliminium tetrafluoroborate with the neighboring group assistance of the sulfonamide moiety to yield fluorinated diamino acid derivatives. The method based on the selective aziridine opening by fluoride has been generalized to afford access to mono- or bicyclic fluorinated substances.

  17. The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions.

    Science.gov (United States)

    Touré, B Barry; Miller-Moslin, Karen; Yusuff, Naeem; Perez, Lawrence; Doré, Michael; Joud, Carol; Michael, Walter; DiPietro, Lucian; van der Plas, Simon; McEwan, Michael; Lenoir, Francois; Hoe, Madelene; Karki, Rajesh; Springer, Clayton; Sullivan, John; Levine, Kymberly; Fiorilla, Catherine; Xie, Xiaoling; Kulathila, Raviraj; Herlihy, Kara; Porter, Dale; Visser, Michael

    2013-02-14

    Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

  18. Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus▿†

    OpenAIRE

    Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.

    2011-01-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glu...

  19. Citric acid urine test

    Science.gov (United States)

    Urine - citric acid test; Renal tubular acidosis - citric acid test; Kidney stones - citric acid test; Urolithiasis - citric acid test ... No special preparation is necessary for this test. But the results ... test is usually done while you are on a normal diet. Ask your ...

  20. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    Science.gov (United States)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.