WorldWideScience

Sample records for glucose-6-phosphate dehydrogenase extends

  1. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  2. Malaria Protection In Glucose-6-Phosphate Dehydrogenase ...

    African Journals Online (AJOL)

    The high frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency gene in malaria endemic regions is believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this protection is not well understood and therefore was investigated by comparing differences in ...

  3. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  4. Assessment of the activity of glucose-6-phosphate dehydrogenase ...

    African Journals Online (AJOL)

    Glucose-6-phosphate dehydrogenase (G-6-PD) is an enzyme in the pentose phosphate pathway (PPP) which reduces NADP to NADPH while oxidizing glucose-6-phosphate. In turn, NADPH then provides reducing equivalents needed for the conversion of oxidized glutathione to reduced glutathione, which protects against ...

  5. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  6. A role for glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    -phosphate dehydrogenase activity in male rats. Twelve (12) male rats were divided into two groups of six (6) rats each. Group 1 rats were control rats which received normal saline while group 2 rats were treated with.

  7. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  8. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... Meta-analysis;. Prevalence. Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects ...

  9. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  10. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase

    NARCIS (Netherlands)

    van Noorden, C. J.

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The

  11. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Abstract. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in ...

  12. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  13. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  14. Bilateral cataracts associated with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Nair, V; Hasan, S U; Romanchuk, K; Al Awad, E; Mansoor, A; Yusuf, K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) has an essential role in the defense against cellular oxidative injury. In neonates, the most common manifestation of G6PD deficiency is jaundice and hemolysis due to factors causing oxidative stress. Less known are the ocular associations described with G6PD deficiency, including cataracts. Oxidative injury is involved in the pathogenesis of almost all forms of cataracts, causing the lens proteins to undergo modifications, denaturation and form insoluble aggregates resulting in cataracts. Although cataracts in adult males have been reported in several studies, there are few reports of cataracts in infants with G6PD deficiency. We describe a preterm male neonate with G6PD deficiency who developed bilateral cataracts following an episode of neonatal sepsis and severe hemolysis necessitating an exchange blood transfusion.

  15. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  16. Early neonatal bilirubin, hematocrit, and glucose-6-phosphate dehydrogenase status.

    Science.gov (United States)

    Badejoko, Bolaji O; Owa, Joshua A; Oseni, Saheed B A; Badejoko, Olusegun; Fatusi, Adesegun O; Adejuyigbe, Ebunoluwa A

    2014-10-01

    To document the patterns of bilirubin and hematocrit values among glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-normal Nigerian neonates in the first week of life, in the absence of exposure to known icterogenic agents. The G6PD status of consecutive term and near-term neonates was determined, and their bilirubin levels and hematocrits were monitored during the first week of life. Infants were stratified into G6PD deficient, intermediate, and normal on the basis of the modified Beutler's fluorescent spot test. Means of total serum bilirubin (TSB) and hematocrits of the 3 groups of infants were compared. The 644 neonates studied comprised 353 (54.8%) boys and 291 (45.2%) girls and 540 (83.9%) term and 104 (16.1%) near-term infants. They consisted of 129 (20.0%) G6PD-deficient, 69 (10.7%) G6PD-intermediate, and 446 (69.3%) G6PD-normal neonates. The G6PD-deficient and G6PD-intermediate infants had higher mean TSB than their G6PD-normal counterparts at birth and throughout the first week of life (P hematocrits at birth were similar in the 3 G6PD groups. However, G6PD-deficient and -intermediate infants had higher declines in hematocrit, bilirubin levels, and need for phototherapy than G6PD-normal infants (P < .001). The G6PD-deficient and G6PD-intermediate neonates had a higher risk of neonatal hyperbilirubinemia and would therefore need greater monitoring in the first week of life, even without exposure to known icterogenic agents. Copyright © 2014 by the American Academy of Pediatrics.

  17. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  18. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  19. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  20. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  1. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers.

  2. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells

    NARCIS (Netherlands)

    Peters, Anna L.; van Bruggen, Robin; de Korte, Dirk; van Noorden, Cornelis J. F.; Vlaar, Alexander P. J.

    2016-01-01

    During storage, the activity of the red blood cell (RBC) antioxidant system decreases. Glucose-6-phosphate dehydrogenase (G6PD) is essential for protection against oxidative stress by producing NADPH. G6PD function of RBC transfusion products is reported to remain stable during storage, but activity

  3. In situ glucose-6-phosphate dehydrogenase activity during development of pre-implantation mouse embryos

    NARCIS (Netherlands)

    de Schepper, G. G.; Vander Perk, C.; Westerveld, A.; Oosting, J.; van Noorden, C. J.

    1993-01-01

    Glucose-6-phosphate dehydrogenase activity was analysed cytophotometrically in oocytes and pre-implantation embryos of mice. A bimodal distribution pattern was not found. Therefore, female and male embryos could not be discriminated on the basis of linkage of the enzyme with the X-chromosome during

  4. Biochemical and cytochemical evaluation of heterozygote individuals with glucose-6-phosphate dehydrogenase deficiency

    NARCIS (Netherlands)

    Gurbuz, Nilgun; Aksu, Tevfik Aslan; van Noorden, Cornelis J. F.

    2005-01-01

    The aim of this study was to diagnose heterozygous glucose-6-phosphate dehydrogenase (G6PD) deficient females by an inexpensive cytochemical G6PD staining method that is easy to perform, allowing diagnosis of G6PD deficiency without cumbersome genetic analysis. Three subject groups were included in

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Science.gov (United States)

    2010-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device... ultraviolet kinetics. (b) Classification. Class II (performance standards). [45 FR 60616, Sept. 12, 1980] ...

  6. Intravenous immunoglobulin to treat hyperbilirubinemia in neonates with isolated Glucose-6-Phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Wadah Khriesat

    2017-04-01

    Full Text Available Background Glucose-6-phosphate dehydrogenase deficiency alone or concomitant with ABO isoimmunisation is a widespread indication for neonatal exchange transfusion. Aims To evaluate the effectiveness of Intravenous Immunoglobulin in the treatment of neonatal hyperbilirubinemia due to glucose-6-phosphate dehydrogenase deficiency. Methods A retrospective cohort study was conducted between 2006 and 2014 at the Jordan University of Science and technology. The medical records of 43 infants admitted to the neonatal intensive care unit for isolated glucose-6- phosphate dehydrogenase deficiency hemolytic disease of the newborns were reviewed. Patients were divided into two groups. Group I, a historical cohort, included newborns born between 2006 and 2010, Treatment included phototherapy and exchange transfusion. Group II included newborns born between 2011 and 2014, where, in addition to phototherapy, intravenous immunoglobulin was administered. The duration of phototherapy and number of exchange transfusions were evaluated. Results Of 412 newborns that were admitted with neonatal hyperbilirubinemia, Glucose-6-phosphate dehydrogenase deficiency was present in 43. Of these, 22, did not receive intravenous immunoglobulin and served as a control group. The other 21 newborns received intravenous immunoglobulin. There was no difference in the demographic characteristics between the two groups. Infants in the control group were significantly more likely to receive exchange blood transfusion than infants in the immunoglobulin treatment group, but were significantly less likely to need phototherapy. Conclusion Intravenous immunoglobulin is an effective alternative to exchange transfusion in infants with glucose-6-phosphate dehydrogenase deficiency hemolytic disease of the newborn. It is suggested that intravenous immunoglobulin may be beneficial as a prophylaxis for infants with hyperbilirubinemia.

  7. Post-irradiation repairing processes of glucose-6-phosphate dehydrogenase and catalase from Hansenula Polymorpha yeast

    International Nuclear Information System (INIS)

    Postolache, Carmen; Postolache, Cristian; Dinu, Diana; Dinischiotu, Anca; Sahini, Victor Emanuel

    2002-01-01

    The post-irradiation repairing mechanisms of two Hansenula Polymorpha yeast enzymes, glucose-6-phosphate dehydrogenase and catalase, were studied. The kinetic parameters of the selected enzymes were investigated over one month since the moment of γ-irradiation with different doses in the presence of oxygen. Dose dependent decrease of initial reaction rates was noticed for both enzymes. Small variation of initial reaction rate was recorded for glucose-6-phosphate dehydrogenase over one month, with a decreasing tendency. No significant electrophoretic changes of molecular forms of this enzyme were observed after irradiation. Continuous strong decrease of catalase activity was evident for the first 20 days after irradiation. Partial recovery process of the catalytic activity was revealed by this study. (authors)

  8. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A series of recently reported experiments have indicated that inhaled ozone may induce several physical and biochemical changes affecting the membrane stability of red blood cells of normal human individuals. These biochemical modifications are similar to those that occur in glucose-6-phosphate dehydrogenase (G-6-PD) deficient individuals who experience acute hemolysis several days after exposure to ''oxidant stress'' in the form of various drugs, including the antimalarials, sulfur drugs, analgesics, antibacterials, and numerous miscellaneous types. The paper indicates the possibility of atmospheric ozone exposure as a causative agent of acute hemolysis in G-6-PD deficient individuals. A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers. (MU)

  9. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in Jeddah, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Azhar Essam

    2011-10-01

    Full Text Available Abstract Background The development of polymerase chain reaction (PCR-based methods for the detection of known mutations has facilitated detecting specific red blood cell (RBC enzyme deficiencies. We carried out a study on glucose-6-phosphate dehydrogenase (G6PD deficient subjects in Jeddah to evaluate the molecular characteristics of this enzyme deficiency and the frequency of nucleotide1311 and IVS-XI-93 polymorphisms in the glucose-6-phosphate dehydrogenase gene. Results A total of 1584 unrelated Saudis (984 neonates and 600 adults were screened for glucose-6-phosphate dehydrogenase deficiency. The prevalence of glucose-6-phosphate dehydrogenase deficiency was 6.9% (n = 110. G6PD Mediterranean mutation was observed in 98 (89.1% cases, G6PD Aures in 11 (10.0% cases, and G6PD Chatham in 1 (0.9% case. None of the samples showed G6PD A‾ mutation. Samples from 29 deficient subjects (25 males and 4 females were examined for polymorphism. The association of two polymorphisms of exon/intron 11 (c.1311T/IVS-XI-93C was observed in 14 (42.4% of 33 chromosomes studied. This association was found in 9 (31.0% carriers of G6PD Mediterranean and in 4 (13.8% carriers of G6PD Aures. Conclusions The majority of mutations were G6PD Mediterranean, followed by G6PD Aures and G6PD Chatham. We conclude that 1311T is a frequent polymorphism in subjects with G6PD Mediterranean and Aures variants in Jeddah.

  10. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

    Directory of Open Access Journals (Sweden)

    Nicholas A Stover

    Full Text Available Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconolactonase (6PGL, have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.

  11. D-glucose-6-phosphate dehydrogenase (Entner-Doudoroff enzyme) from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Lessmann, D.; Schimz, K.L.; Kurz, G.

    1975-01-01

    The existence of two different D-glucose-6-phosphate dehydrogenases in Pseudomonas fluorescens has been demonstrated. Based on their different specificity and their different metabolic regulation one enzyme is appointed to the Entner-Doudoroff pathway and the other to the hexose monophosphate pathway. A procedure is described for the isolation of that D-glucose-6-phosphate dehydrogenase which forms part of the Entner-Doudoroff pathway (Entner-Doudoroff enzyme). A 950-fold purification was achieved with an overall yield of 44%. The final preparation, having a specific activity of about 300μmol NADH formed per min per mg protein, was shown to be homogeneous. The molecular weight of the Entner-Doudoroff enzyme has been determined to be 220,000 by gel permeation chromatography, and that of the other enzyme (Zwischenferment) has been shown to be 265,000. The pI of the Entner-Doudoroff enzyme has been shown to be 5.24 and that of the Zwischenferment 4.27. The Entner-Doudoroff enzyme is stable in the range of pH 6 to 10.5 and shows its maximal acivity at pH 8.9. The Entner-Doudoroff enzyme showed specificity for NAD + as well as for NADP + and exhibited homotropic effects for D-glucose 6-phosphate. It is inhibited by ATP which acts as a negative allosteric effector. Other nucleoside triphosphates as well as ADP are also inhibitory. The enzyme catalyzes the transfer of the axial hydrogen at carbon-1 of β-D-glucopyranose 6-phosphate to the si face of carbon-4 of the nicotinamide ring and must be classified as B-side stereospecific dehydrogenase. (orig.) [de

  12. Possible Association between Glucose-6-Phosphate Dehydrogenase Deficiency and the Development of Preeclampsia

    OpenAIRE

    Omid R. Zekavat; Maryam Eskandary; Behia Namavar Jahromi; Athar Rasekh; Sara Barzegar; Nasrin Ized Panahy; Mehran Karimi

    2010-01-01

    Glucose-6-Phosphate dehydrogenase (G6PD) deficiency is acommon enzyme deficiency in the world. It's Prevalence inIran is about 12% in male & about 1% in female. The presentstudy did examine the relation between the development ofpreeclampsia and G6PD deficiency. It was investigatedwhether or not the risk of preeclampsia in G6PD deficientwomen is higher than that in normal pregnant women.A total of 400 pregnant patients with an age range of 20-34years were selected in the cities of Shiraz and ...

  13. Glucose-6-Phosphate Dehydrogenase Deficiency and Adrenal Hemorrhage in a Filipino Neonate with Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Akira Ohishi

    2013-05-01

    Full Text Available We report on a Filipino neonate with early onset and prolonged hyperbilirubinemia who was delivered by a vacuum extraction due to a prolonged labor. Subsequent studies revealed adrenal hemorrhage and glucose-6-phosphate dehydrogenase (G6PD deficiency. It is likely that asphyxia and resultant hypoxia underlie the occurrence of adrenal hemorrhage and the clinical manifestation of G6PD deficiency and that the presence of the two events explains the early onset and prolonged hyperbilirubinemia of this neonate. Our results represent the importance of examining possible underlying factors for the development of severe, early onset, or prolonged hyperbilirubinemia.

  14. Treatment of pediatric burn patient having glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Vijay Y Bhatia

    2016-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common red cell enzymopathy found in humans. It clearly has an X-linked recessive inheritance with its prevalence varying from 0% to 27% in a different caste, ethnic, and linguistic groups. This deficiency may result in hemolytic anemia during stress, infection, and use of certain drugs. The use of topical silver sulfadiazine can produce hemolysis in patients having G6PD deficiency. Here, we describe one case successfully treated of pediatric burn of 25% of body surface area who was a known case of G6PD deficiency.

  15. Glucose-6-phosphate dehydrogenase deficiency: an unusual cause of acute jaundice after paracetamol overdose.

    Science.gov (United States)

    Phillpotts, Simon; Tash, Elliot; Sen, Sambit

    2014-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest human enzyme defect causing haemolytic anaemia after exposure to specific triggers. Paracetamol-induced haemolysis in G6PD deficiency is a rare complication and mostly reported in children. We report the first case (to the best of our knowledge) of acute jaundice without overt clinical features of a haemolytic crisis, in an otherwise healthy adult female following paracetamol overdose, due to previously undiagnosed G6PD deficiency. It is important that clinicians consider this condition when a patient presents following a paracetamol overdose with significant and disproportionate jaundice, without transaminitis or coagulopathy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shreedhara Gupta

    2011-01-01

    Full Text Available In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH, the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents.

  17. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, A.; Ishii, A.; Hirono, K.; Miwa, S. [National Institute of Health, Tokyo (Japan); Kere, N. [Medical Research and Training Institute, Honiara (Japan); Fujii, H. [Tokyo Women`s Medical College, Tokyo (Japan)

    1995-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most prevalent genetic disorders, and >100 million people are considered to have mutant genes. G6PD deficiency is frequent in the area where plasmodium falciparum infection is endemic, probably because the G6PD-deficient subjects are resistant to the parasite. Falciparum and vivax malarias have been highly endemic in the Solomon Islands, and a high frequency of G6PD deficiency has also been expected. A recent investigation showed that the frequency of G6PD deficiency in the Solomon Islands was 8.4%-14.4%. Although >80 G6PD variants from various populations have been molecularly analyzed, little is known about those in Melanesians. G6PD Maewo, which was originally found in Vanuatu, has so far been the only Melanesian variant whose structural abnormality was determined. 14 refs., 1 fig.

  18. Protocol for Dental Management in a Patient with Glucose6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Ramachandran Anil Kumar

    2017-10-01

    Full Text Available Glucose-6-Phosphate Dehydrogenase (G6PD enzyme deficiency is the most common inherited genetic disorder affecting RBCs in humans. The disorder is characterised by inability of RBC to maintain a balanced redox state when challenged by oxidative stresses like drugs, infections and certain food substances leading to severe haemolytic anaemia which complicates any therapeutic management in these patients. This article reports on a successful endodontic management of a 36-year-old class III G6PD deficient male patient with deep carious lesion in left mandibular first molar tooth (36. Considering there is no protocol precedence in dental literature, in consultation with the physician/haemotologist a three step protocol for safe and efficient dental management is proposed.

  19. Anaesthetic management in patients with glucose-6-phosphate dehydrogenase deficiency undergoing neurosurgical procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Valiaveedan

    2011-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G-6-PD deficiency is an X-linked recessive enzymopathy responsible for acute haemolysis following exposure to oxidative stress. Drugs which induce haemolysis in these patients are often used in anaesthesia and perioperative pain management. Neurosurgery and few drugs routinely used during these procedures are known to cause stress situations. Associated infection and certain foodstuffs are also responsible for oxidative stress. Here, we present two patients with G-6-PD deficiency who underwent uneventful neurosurgical procedures. The anaesthetic management in such patients should focus on avoiding the drugs implicated in haemolysis, reducing the surgical stress with adequate analgesia, and monitoring for and treating the haemolysis, should it occur.

  20. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  1. A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. II. Further improvements of the staining procedure and some observations with glucose-6-phosphate dehydrogenase deficiency

    NARCIS (Netherlands)

    van Noorden, C. J.; Vogels, I. M.

    1985-01-01

    A cytochemical method for staining glucose-6-phosphate dehydrogenase (G6PD) activity in individual erythrocytes as reported previously has been optimized further by the incorporation of a number of technical improvements. Analysis of the enzyme content in erythrocytes of normal individuals as well

  2. Inhibition of glucose-6-phosphate dehydrogenase protects hepatocytes from aluminum phosphide-induced toxicity.

    Science.gov (United States)

    Salimi, Ahmad; Paeezi, Maryam; Yousefsani, Bahareh Sadat; Shadnia, Shahin; Hassanian-Moghaddam, Hossein; Zamani, Nasim; Pourahmad, Jalal

    2017-11-01

    Aluminum phosphide (AlP) poisoning is a severe toxicity with 30-70% mortality rate. However, several case reports presented AlP-poisoned patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and extensive hemolysis who survived the toxicity. This brought to our mind that maybe G6PD deficiency could protect the patients from severe fatal poisoning by this pesticide. In this research, we investigated the protective effect of 6-aminonicotinamide (6-AN)- as a well-established inhibitor of the NADP + - dependent enzyme 6-phosphogluconate dehydrogenase- on isolated rat hepatocytes in AlP poisoning. Hepatocytes were isolated by collagenase perfusion method and incubated into three different flasks: control, AlP, and 6-AN+ALP. Cellar parameters such as cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential collapse (MMP), lysosomal integrity, content of reduced (GSH) and oxidized glutathione (GSSG) and lipid peroxidation were assayed at intervals. All analyzed cellular parameters significantly decreased in the third group (6-AN+AlP) compared to the second group (AlP), showing the fact that G6PD deficiency induced by 6-AN had a significant protective effect on the hepatocytes. It was concluded that G6PD deficiency significantly reduced the hepatotoxicity of AlP. Future drugs with the power to induce such deficiency may be promising in treatment of AlP poisoning. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies

    DEFF Research Database (Denmark)

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper

    2015-01-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigran...

  4. Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts

    NARCIS (Netherlands)

    Butcher, R. G.; van Noorden, C. J.

    1985-01-01

    The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 degrees C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate

  5. Glucose-6-phosphate Dehydrogenase Deficiency and Malaria: Cytochemical Detection of Heterozygous G6PD Deficiency in Women

    NARCIS (Netherlands)

    Peters, Anna L.; van Noorden, Cornelis J. F.

    2009-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient

  6. A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. I. Optimalization of the staining procedure

    NARCIS (Netherlands)

    van Noorden, C. J.; Vogels, I. M.; James, J.; Tas, J.

    1982-01-01

    A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual human erythrocytes is described. This staining method can be used for the rapid routine discrimination of patients with a deficiency of the enzyme in its homozygote or heterozygote form, but also

  7. Possible Association between Glucose-6-Phosphate Dehydrogenase Deficiency and the Development of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Omid R. Zekavat

    2010-12-01

    Full Text Available Glucose-6-Phosphate dehydrogenase (G6PD deficiency is acommon enzyme deficiency in the world. It's Prevalence inIran is about 12% in male & about 1% in female. The presentstudy did examine the relation between the development ofpreeclampsia and G6PD deficiency. It was investigatedwhether or not the risk of preeclampsia in G6PD deficientwomen is higher than that in normal pregnant women.A total of 400 pregnant patients with an age range of 20-34years were selected in the cities of Shiraz and Jahrom, Iran,They were on 24 weeks inside their first or second pregnancy.There were 4 cases of G6PD deficiency in preeclamtic womencompared to two cases in normal pregnant women. (OR=2.02,CI: 0.37-11.02. Although the relation between G6PD deficiencyand preeclamsia did not reach statistical significance,the higher incidence of the deficiency in preecclamtic womenmight suggest that the test for G6PD deficiency might be usedas a screening tool for preeclamsia.Iran J Med Sci 2010; 35(4: 323-326.

  8. Antioxidant vitamins and glucose-6-phosphate dehydrogenase deficiency in full-term neonates

    Directory of Open Access Journals (Sweden)

    Obediat, Ahmad D.

    2008-09-01

    Full Text Available Objective: The mechanism by which glucose-6-phosphate dehydrogenase (G6PD deficiency causes neonatal hyperbilirubinemia is not completely understood. However, the genetic disorder G6PD deficiency predisposes red blood cells to oxidative stress. The aim of this study was to establish the relationship between plasma antioxidant vitamin (E and C levels and the development of hyperbilirubinemia in full-term neonates with deficient G6PD. Methods: A total of 196 live birth neonates of healthy mothers were included in this study. Twelve of them were deficient in G6PD. In addition to demographic data, serum total bilirubin, hemoglobin, hematocrit, and vitamin E and C levels were measured on the first day after birth.Results: Neonates with G6PD deficiency (n=7 who did not develop hyperbilirubinemia (mean serum bilirubin level of 70.8±23 µmol/l, median 71.8 and neonates with G6PD deficiency (n=4 who developed hyperbilirubinemia (mean serum bilirubin level of 226.7±79 µmol/l, median 233.4 on the first day of life had similar gestational weights and age. The second group, however, had lower hemoglobin and hematocrit as well as plasma vitamin C and E levels. None of these results showed significant difference. Conclusion: The results of the present study indicate that red blood cell hemolysis as a result of inadequate antioxidants system in G6PD-deficient neonates is not the only contributing factor for hyperbilirubinemia.

  9. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence.

    Science.gov (United States)

    Kwok, Man Ki; Leung, Gabriel M; Schooling, C Mary

    2016-01-01

    To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. In a population-representative Chinese birth cohort: "Children of 1997" (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.

  10. Screening for glucose-6-phosphate dehydrogenase deficiency can prevent severe neonatal jaundice.

    Science.gov (United States)

    Mallouh, A A; Imseeh, G; Abu-Osba, Y K; Hamdan, J A

    1992-01-01

    Infants with the severe variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop hyperbilirubinaemia sufficiently severe to cause kernicterus and death, acute haemolysis on exposure to oxidant stress, congenital non-spherocytic haemolytic anaemia and, rarely, increased susceptibility to bacterial infection. In spite of these potential problems, G6PD deficiency is often not included among screening programmes for inherited disorders. In a comprehensive screening and educational programme, we tested around 34,000 infants for G6PD deficiency. Of the total group, 18.4% (24.5% boys and 11.8% girls) were deficient. Forty-two of the 6246 (0.67%) G6PD-deficient infants required exchange transfusion. None of them developed kernicterus. By contrast, of 4755 infants who had not been screened because they were born at home, three developed kernicterus. In addition, four G6PD-deficient infants had developed kernicterus in the 20-month period prior to the screening programme. None of the hyperbilirubinaemic infants had blood group incompatibility or any other identifiable cause of hyperbilirubinaemia. To avoid this disastrous result, we believe that neonatal screening for G6PD deficiency, together with a comprehensive education programme, is advisable in those parts of the world where the severe variant of G6PD deficiency is prevalent.

  11. Vitamin C Inhibits Aggravated Eryptosis by Hydrogen Peroxide in Glucose-6-Phosphated Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Feng Shan

    2016-09-01

    Full Text Available Background/Aims: The study was aimed to investigate if vitamin C could exert protective effects on development of eryptosis caused by glucose-6-phosphate dehydrogenase (G6PD deficiency and hydrogen peroxide. Methods: Isolated erythrocytes with different G6PD activity (normal or deficient were divided into various groups treated by either Vitamin C or H2O2. Phosphatidylserine (PS extroversion rate was detected by Annexin V binding. The intracellular Ca2+ concentration was detected by Fluo3-fluorescence, and western blot was used to detect the expression of apoptosis factor caspase 3. Results: Compared with the blank group, the PS extroversion rate (P 2+ concentration (P P 2O2. Then the index of eryptosis significantly decreased after erythrocytes were treated with Vitamin C (1 mg/ml for 30 min (all P Conclusion: Vitamin C could effectively inhibit the eryptosis contributed by H2O2 oxidative stress, and the suppression on eryptosis with G6PD normal activity was more effective than that with G6PD deficiency.

  12. Glucose-6-phosphate dehydrogenase (G6PD) deficiency among tribal populations of India - Country scenario.

    Science.gov (United States)

    Mukherjee, Malay B; Colah, Roshan B; Martin, Snehal; Ghosh, Kanjaksha

    2015-05-01

    It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from India more than 50 years ago. t0 he prevalence varies from 2.3 to 27.0 per cent with an overall prevalence of 7.7 per cent in different tribal groups. Since the tribal populations live in remote areas where malaria is/has been endemic, irrational use of antimalarial drugs could result in an increased number of cases with drug induced haemolysis. Therefore, before giving antimalarial therapy, routine screening for G6PD deficiency should be undertaken in those tribal communities where its prevalence is high.

  13. Radiation target analyses of free and immobilized glucose 6-phosphate dehydrogenase

    International Nuclear Information System (INIS)

    Kempner, E.S.; Miller, J.H.

    2010-01-01

    The sensitivity of the enzyme glucose 6-phosphate dehydrogenase to ionizing radiation was examined under several conditions, including the presence of several free-radical scavengers. The enzyme was also irradiated when covalently bound to polyacrylamide beads whose structure is very similar to the polypeptide backbone of proteins. All the enzyme forms were irradiated in the frozen state with high-energy electrons from a linear accelerator. Surviving enzyme activity and surviving monomers were determined; the data were analyzed by target theory. Free-radical scavengers reduced the radiation target size of both the activity and monomers of the free enzyme, but not that of the immobilized enzyme activity. The target size of the activity of the free enzyme was that of a dimer mass, but in the case of the immobilized enzyme it was equal to the smaller mass of the monomer. Free-radical scavengers reduce the target size by modifying radiation energy transfer. The target size of the polyacrylamide-bound enzyme activity was expected to be very large since the connection between polyacrylamide and protein is a peptide bond which permits transfer of radiation-deposited energy. Several explanations concerning energy transfer are suggested for this result.

  14. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC. Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  15. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence.

    Directory of Open Access Journals (Sweden)

    Man Ki Kwok

    Full Text Available To examine the association of glucose-6-phosphate dehydrogenase (G6PD deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported.In a population-representative Chinese birth cohort: "Children of 1997" (n = 8,327, we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting.Among 5,520 screened adolescents (66% follow-up, 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI gain (-0.38 z-score, 95% confidence interval (CI -0.57, -0.20, adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050. G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence.G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.

  16. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  17. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency in the neonatal period.

    Science.gov (United States)

    Keihanian, F; Basirjafari, S; Darbandi, B; Saeidinia, A; Jafroodi, M; Sharafi, R; Shakiba, M

    2017-06-01

    Considering the high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborns, different screening methods have been established in various countries. In this study, we aimed to assess the prevalence of G6PD deficiency among newborns in Rasht, Iran, and compare G6PD activity in cord blood samples, using quantitative and qualitative tests. This cross-sectional, prospective study was performed at five largest hospitals in Rasht, Guilan Province, Iran. The screening tests were performed for all the newborns, referred to these hospitals. Specimens were characterized in terms of G6PD activity under ultraviolet light, using the kinetic method and the qualitative fluorescent spot test (FST). We also determined the sensitivity, specificity, negative predictive value, and positive predictive value of the qualitative assay. Blood samples were collected from 1474 newborns. Overall, 757 (51.4%) subjects were male. As the findings revealed, 1376 (93.4%) newborns showed normal G6PD activity, while 98 (6.6%) had G6PD deficiency. There was a significant difference in the mean G6PD level between males and females (P = 0.0001). Also, a significant relationship was detected between FST results and the mean values obtained in the quantitative test (P < 0.0001). According to the present study, FST showed acceptable sensitivity and specificity for G6PD activity, although it appeared inefficient for diagnostic purposes in some cases. © 2017 John Wiley & Sons Ltd.

  18. Three-dimensional modeling of glucose-6-phosphate dehydrogenase-deficient variants from German ancestry.

    Directory of Open Access Journals (Sweden)

    Farooq Kiani

    2007-07-01

    Full Text Available Loss of function of dimeric glucose-6-phosphate dehydrogenase (G6PD represents the most common inborn error of metabolism throughout the world affecting an estimated 400 million people. In Germany, this enzymopathy is very rare.On the basis of G6PD crystal structures, we have analyzed six G6PD variants of German ancestry by three-dimensional modeling. All mutations present in the German population are either close to one of the three G6P or NADP(+ units or to the interface of the two monomers. Two of the three mutated amino acids of G6PD Vancouver are closer to the binding site of NADP(+. The G6PD Aachen mutation is also closer to the second NADP(+ unit. The G6PD Wayne mutation is closer to the G6P binding region. These mutations may affect the binding of G6P and NADP(+ units. Three mutations, i.e. G6PD Munich, G6PD Riverside and G6PD Gastonia, lie closer to the interface of the two monomers. These may also affect the interface of two monomers.None of these G6PD variants share mutations with the common G6PD variants known from the Mediterranean, Near East, or Africa indicating that they have developed independently. The G6PD variants have been compared with mutants from other populations and the implications for survival of G6PD variants from natural selection have been discussed.

  19. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nguyen, Trinh Thi My; Kitajima, Sakihito; Izawa, Shingo

    2014-09-01

    Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major biomass conversion inhibitor, also induces oxidative stress and is reduced in an NAD(P)H-dependent manner to its less toxic alcohol derivative. Therefore, the pentose phosphate pathway (PPP), through which most NADPH is generated, plays a role in tolerance to furfural. Although vanillin also induces oxidative stress and is reduced to vanillyl alcohol in a NADPH-dependent manner, the relationship between vanillin and PPP has not yet been investigated. In the present study, we examined the importance of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the rate-limiting NADPH-producing step in PPP, for yeast tolerance to vanillin. The growth of the null mutant of G6PDH gene (zwf1Δ) was delayed in the presence of vanillin, and vanillin was efficiently reduced in the culture of wild-type cells but not in the culture of zwf1Δ cells. Furthermore, zwf1Δ cells easily induced the activation of Yap1, an oxidative stress responsive transcription factor, mitochondrial fragmentation, and P-body formation with the vanillin treatment, which indicated that zwf1Δ cells were more susceptible to vanillin than wild type cells. These findings suggest the importance of G6PDH and PPP in the response of yeast to vanillin. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Prevalence of glucose-6-phosphate dehydrogenase deficiency and sickle cell trait among blood donors in Riyadh

    Directory of Open Access Journals (Sweden)

    Alabdulaali Mohammed

    2010-01-01

    Full Text Available Background and Aims: Blood donation from glucose-6-phosphate dehydrogenase (G6PD-deficient and sickle cell trait (SCT donors might alter the quality of the donated blood during processing, storage or in the recipient′s circulatory system. The aim of this study was to determine the prevalence of G6PD deficiency and SCT among blood donors coming to King Khalid University Hospital (KKUH in Riyadh. It was also reviewed the benefits and risks of transfusing blood from these blood donors. Materials and Methods: This cross-sectional study was conducted on 1150 blood samples obtained from blood donors that presented to KKUH blood bank during the period April 2006 to May 2006. All samples were tested for Hb-S by solubility test, alkaline gel electrophoresis; and for G6PD deficiency, by fluorescent spot test. Results: Out of the 1150 donors, 23 (2% were diagnosed for SCT, 9 (0.78% for G6PD deficiency and 4 (0.35% for both conditions. Our prevalence of SCT and G6PD deficiency is higher than that of the general population of Riyadh. Conclusion: We recommend to screen all units for G6PD deficiency and sickle cell trait and to defer donations from donors with either of these conditions, unless if needed for special blood group compatibility, platelet apheresis or if these are likely to affect the blood bank inventory. If such blood is to be used, special precautions need to be undertaken to avoid complications in high-risk recipients.

  1. Glucose-6-phosphate-dehydrogenase deficiency as a risk factor for pterygium.

    Science.gov (United States)

    Peiretti, Enrico; Mandas, Antonella; Cocco, Pierluigi; Norfo, Claudia; Abete, Claudia; Angius, Fabrizio; Pani, Alessandra; Vascellari, Sarah; Del Fiacco, Guido; Cannas, Dolores; Diaz, Giacomo; Dessì, Sandra; Fossarello, Maurizio

    2010-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an important site of metabolic control in the pentose phosphate pathway (PPP), providing reducing power (NADPH) and pentose phosphates. The purpose of this study was to investigate the possible involvement of G6PD deficiency (G6PD-) in the pathogenesis of pterygium. Erythrocyte G6PD activity was evaluated in 123 pterygium patients and in 112 age-matched control patients. Enzyme activity, mRNA, rate of growth, green autofluorescence, response to oxidative stress, and cholesterol metabolism were determined in pterygium fibroblasts (PFs) and in normal conjunctival fibroblasts (NCFs) isolated from G6PD normal (NCFs+ and PFs+) and G6PD- (NCFs- and PFs-) patients. Higher prevalence of G6PD- was found in patients affected by primary pterygium than in control subjects, both men and women, suggesting that this enzymatic defect may be a predisposing factor for pterygium. G6PD activity was significantly lower in NCFs- than in NCFs+, but not in PFs- than in PFs+. In PFs-, G6PD mRNA levels were significantly higher than in PFs+. Growth-stimulated NCFs- grew at half the rate of NCFs+, although PFs- and PFs+ grew at the same rate. Increased green autofluorescence and susceptibility to oxidative stress were observed in PFs (+/-) and in NCFs-, but not in NCFs+. Moreover, ex vivo PFs (+/-) accumulated more lipids than corresponding NCFs. The results of this study, although restricted to a limited group of subjects (i.e., those of Sardinian ancestry), suggest that G6PD- not only does not protect against pterygium, but may even be considered a risk factor for the development of this disorder.

  2. Purification and Characterization of Glucose-6-Phosphate Dehydrogenase from Camel Liver

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Ibrahim

    2014-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2′, 5′ ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The Km value was found to be 0.081 mM of NADP+. Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI of pH 6.6–6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with Ki value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver.

  3. Correlation between Hemolysis and Jaundice in Glucose 6-Phosphate Dehydrogenase Deficient Neonates

    Directory of Open Access Journals (Sweden)

    Marzban Asghar

    2009-10-01

    Full Text Available Glucose 6-phosphate dehydrogenase (G6PD deficiency is an enzyme deficiency of the red blood cells and the most important disease of hexose monophosphate pathway. The role of hemolysis in the pathophysiology of neonatal jaundice due to G6PD deficiency is in contencious. Our aim is to study the role of hemolysis in neonatal jaundice associated with G6PD deficiency. This prospective descriptive study has been done on 244 neonates who were admitted with the symptoms and signs of icter to the Ali-Asghar Children Hospital, affiliated to Iran University of Medical Sciences, Tehran, Iran, during April 2006 to April 2007. Two groups of the babies, G6PD-defcient with neonatal jaundice and G6PD-normal with neonatal jaundice, were compared based on the parameters related to hemolysis such as hemoglobin, reticulocyte count and bilirubin level. The criteria of hemolysis in our study were reticulocyte count more than >5% and hemoglobin less than <14 mg/dl. Our data have shown that 14 (5.7% of 244 neonates with the chief complain of icter suffered G6PD-deficiency with high male to female ratio (3.6 to 1. The mean hemoglobin levels and reticulocyte counts (16.72 vs. 16.97 and %2.48 vs. %2.79 respectively did not differ significantly between both groups (P>0.05. The present study indicate, G6PD- deficiency as a major cause of neonatal jaundice "nand hemolysis is not a main determinant of neonatal jaundice in G6PD-deficient babies and most of them have non hemolytic jaundice.

  4. The Prevalence of Mediterranean Mutation of Glucose-6-Phosphate Dehydrogenase (G6PD in Zahedan

    Directory of Open Access Journals (Sweden)

    Alireza Nakhaee

    2012-03-01

    Full Text Available Background: glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common genetic defects in the world, so that more than 400 million people in worldwide are affected with it, but its prevalence varies from 1-65% in different populations. Clinical manifestation of this defect is acute hemolytic anemia, neonatal hyperbilirubinemia and chronic nonspherocytic haemolytic anaemia. So far, almost 140 mutations have been identified in the gene of G6PD enzyme. Mediterranean is the most common mutation. The purpose of this study is to determine the prevalence of G6PD Mediterranean mutation in the deficient people in the city of Zahedan.Materials and Methods: In this descriptive cross-sectional study, blood samples of 1440 male individuals, who were referred to Zahedan Reference Laboratory for premarital testing, were examined for G6PD deficiency using fluorescent spot test. Genomic DNA from blood of people with G6PD deficiency was extracted by DNA extraction kit. Mediterranean mutation was identified using PCR-RFLP method.Results: 101 out of 1440 subjects had G6PD deficiency. Therefore prevalence of G6PD deficiency in Zahedan city was estimated about 7%. Mediterranean mutation frequency in patients with defect of G6PD was estimated 84.2% (85 out of 101 patients and 15.8% (16 out of 101 patients did not have mutation Mediterranean. The frequency of G6PD deficiency was expressed as a percentage of total cases and Mediterranean mutation prevalence was expressed as a percentage of total impaired individuals.Conclusion: The result of this study showed that the frequency of G6PD deficiency in Zahedan city is lower than other cities of sistan and baluchestan province. Dominant mutation in present study was Mediterranean type and its frequency was very similar with prevalence of this mutation in other parts of Iran.

  5. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis

    Science.gov (United States)

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59–1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40–0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96–1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57–0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46–1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61–1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender. PMID:28382932

  6. Glucose 6-Phosphate Dehydrogenase Deficiency Increases Redox Stress and Moderately Accelerates the Development of Heart Failure

    Science.gov (United States)

    Hecker, Peter A.; Lionetti, Vincenzo; Ribeiro, Rogerio F.; Rastogi, Sharad; Brown, Bethany H.; O’Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Gamble, Dionna; Sabbah, Hani N.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.; Stanley, William C.

    2013-01-01

    Background Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in the world. In failing hearts, G6PD is upregulated and generates NADPH that is used by the glutathione pathway to remove reactive oxygen species (ROS), but also as a substrate by ROS-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and ROS production. Methods and Results This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ~40% normal activity). Myocardial infarction with 3 months followup resulted in LV dilation and dysfunction in both WT and G6PDX mice, but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater LV dilation in G6PDX mice than WT. We further stressed TAC mice by feeding a high fructose diet to increase flux through G6PD and ROS production, and again observed worse LV remodeling and a lower ejection fraction in G6PDX than WT mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with TAC, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. Conclusions Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of LV remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher, but limited by compensatory mechanisms. PMID:23170010

  7. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease

    Science.gov (United States)

    Hecker, Peter A.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes. PMID:23241320

  8. Glucose-6-Phosphate Dehydrogenase Regulation in Anoxia Tolerance of the Freshwater Crayfish Orconectes virilis

    Directory of Open Access Journals (Sweden)

    Benjamin Lant

    2011-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH, the enzyme which catalyzes the rate determining step of the pentose phosphate pathway (PPP, controls the production of nucleotide precursor molecules (R5P and powerful reducing molecules (NADPH that support multiple biosynthetic functions, including antioxidant defense. G6PDH from hepatopancreas of the freshwater crayfish (Orconectes virilis showed distinct kinetic changes in response to 20 h anoxic exposure. Km values for both substrates decreased significantly in anoxic crayfish; Km NADP+ dropped from 0.015±0.008 mM to 0.012±0.008 mM, and Km G6P decreased from 0.13±0.02 mM to 0.08±0.007 mM. Two lines of evidence indicate that the mechanism involved is reversible phosphorylation. In vitro incubations that stimulated protein kinase or protein phosphatase action mimicked the effects on anoxia on Km values, whereas DEAE-Sephadex chromatography showed the presence of two enzyme forms (low- and high-phosphate whose proportions changed during anoxia. Incubation studies implicated protein kinase A and G in mediating the anoxia-responsive changes in G6PDH kinetic properties. In addition, the amount of G6PDH protein (measured by immunoblotting increased by ∼60% in anoxic hepatopancreas. Anoxia-induced phosphorylation of G6PDH could contribute to modifying carbon flow through the PPP under anoxic conditions, potentially maintaining NADPH supply for antioxidant defense during prolonged anoxia-induced hypometabolism.

  9. Glucose-6 phosphate dehydrogenase mutations and haplotypes in various ethnic groups.

    Science.gov (United States)

    Xu, W; Westwood, B; Bartsocas, C S; Malcorra-Azpiazu, J J; Indrák, K; Beutler, E

    1995-01-01

    Mutations that produce glucose-6-phosphate dehydrogenase (G6PD) deficiency have been identified in samples from patients with hemolytic disease in the United States, and in G6PD-deficient samples from Greece, the Canary Islands, the Czech and Slovak Republics, South China, and in samples from the Coriell Cell Repository. Eight new mutations are described. Particularly unusual were a nonsense mutation ("G6PD Georgia"1284A), a deletion of six bases ("G6PD Stony Brook" 724-729 del) coding for two amino acids, and a deletion of the invariant dinucleotide ApG at the 3' acceptor splice site in the highly conserved sequence between intron 10 and exon 11 ("G6PD Varnsdorf"). In addition, five new missense point mutations were identified: "G6PD Cleveland"820A creates a deduced AA 274 Glu-->Lys; "G6PD West Virginia"910T AA 303 Val-->Phe; "G6PD Fushan"1004A, AA 335 Ala-->Asp; "G6PD Olomouc"1141C AA 381 Leu-->Phe; and "G6PD Praha"1166G AA 389 Glu-->Gly. All of the new mutations except for "G6PD Fushan"1004A were found in patients with hereditary nonspherocytic hemolytic anemia. A coincidental finding in the case of G6PD "West Virginia" was a C-->T transition at nucleotide 1,191. This silent mutation, Asn-->Asn, appears to be rare. Haplotype analysis of mutations in samples from the Canary Islands and South China agreed with previous findings.

  10. External quality assurance programme for newborn screening of glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Chiang, Szu-Hui; Fan, Mei-Ling; Hsiao, Kwang-Jen

    2008-12-01

    The nationwide neonatal screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency in Taiwan was started on 1 July 1987. A network of G6PD referral hospitals distributed all around Taiwan was organised for follow-up, confirmatory testing, medical care and genetic counselling. To assess the reliability of confirmatory and screening tests, an external quality assurance (QA) programme for G6PD assay was developed. Lyophilised quality control (QC) materials and dried blood spots were prepared from erythrocytes and whole blood for confirmatory and screening tests, respectively. The external QA surveys were carried out every 1 to 2 months. The QA results were evaluated and compared to the consensus result and reference value. The test results were submitted through internet by participating laboratories and the summary reports were published on a webpage (http:// www.g6pd.tw) within 2 weeks. Twenty-one referral laboratories in Taiwan and 16 screening laboratories in Germany, Lebanon, Mainland China, Philippines, Thailand, Taiwan, Turkey, and Vietnam have been participating in the QA programme. From 1988 to 2007, 144 QA surveys for confirmatory testing were sent to referral laboratories. Among the 2,622 reports received, 292 (11.1%) were found to be abnormal. Interlaboratory coefficient of variation (CV) for the confirmatory test has reached below 10% in recent years. The significant improvement in interlaboratory CV was found to be correlated with the preventive site visits to the referral laboratories since November 2004. From 1999 to 2007, 52 external QA surveys for the screening test were performed. Among 504 reports received, 97 (19.2%) were found to be abnormal. From the 5040 blood spots tested by the screening laboratories, 95 false negative (1.9%) and 187 false positive (3.7%) results were reported. The external QA programme has been useful for monitoring the performance of the referral hospitals and screening laboratories and helpful for the participating

  11. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity

    Directory of Open Access Journals (Sweden)

    Dallol Ashraf

    2012-09-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established. Methods In this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction. Results All previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr was the most common variant in the cohort (30% in males patients followed by the Mediterranean variant (p.Ser188Phe detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females were identified. Five of these were previously unreported (Jeddah A, B, C, D and E and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency. Conclusions Our findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.

  12. Frequency of malaria and glucose-6-phosphate dehydrogenase deficiency in Tajikistan

    Directory of Open Access Journals (Sweden)

    Saipphudin Karimov

    2006-06-01

    Full Text Available Abstract Background During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Methods Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Results Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. Conclusion The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require

  13. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities.

    Science.gov (United States)

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Zhang, Dong-Jie; Guo, Zhen-Hua; Guo, Yun-Yun; Zhu, Meng; Bai, Jing

    2015-12-01

    The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (-) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB- oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  14. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2015-12-01

    Full Text Available The in vitro maturation (IVM efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+ oocytes with low glucose-6-phosphate dehydrogenase (G6PDH activity have shown superior quality than BCB negative (− oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9 and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  15. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  16. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Engel Paul C

    2009-03-01

    Full Text Available Abstract Background Human glucose 6-phosphate dehydrogenase (G6PD, active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP, providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with

  17. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    Directory of Open Access Journals (Sweden)

    Suprovath Kumar Sarker

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is a common X-linked human enzyme defect of red blood cells (RBCs. Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly in six samples, c.G487A substitution (exon-6:Gly163Ser in five samples and c.G949A substitution (exon-9: Glu317Lys of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  18. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border

    Science.gov (United States)

    Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (PT/IVS11nt93T>C SNPs. Further

  19. Study of Glucose-6-phosphate Dehydrogenase (G6PD Status in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Kazi Salma Binte Faruky

    2010-04-01

    Full Text Available Background: Glucose-6-phosphate dehydrogenase (G6PD deficiency is one of the common enzymopathy and may be one of the risk factor for complicated pregnancy. Objectives: To measure erythrocyte G6PD level in pregnant women with preeclampsia in order to observe this enzyme status and also to measure Hb, TC of RBC, serum bilirubin, reticulocyte count to observe hemolytic status. In addition, to correlate this enzyme level with all these hematological parameters in order to find out any relationships among them. Methods: This cross sectional study was carried out in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU, Shahbag, Dhaka from January to December 2008. For this, 30 pregnant women with preeclampsia, age ranged from 20 to 34 years during their third trimester (>24th weeks were studied (group B. They were selected from the Obstetric and Gynae Out Patient Department (OPD of BSMMU and Bangladesh Medical College Hospital (BMCH of Dhaka City. For comparison age matched 30 apparently normal pregnant women of the same gestational age (control group - group A were also studied. They were selected by personal contact. Erythrocyte G6PD level was measured by Spectrophotometric method using kit of Randox. Serum bilirubin, hemoglobin concentration, total count of RBC and reticulocyte count were measured by standard laboratory techniques. For statistical analysis ANOVA, independent sample t test, Chi-square test and Pearson's correlation coefficient test were performed by using SPSS for windows version-12 as applicable. Results: In this study, erythrocyte G6PD level was significantly lower in preeclampsia in comparison to that of control but their percentages of involvement was not statistically significant. In addition, hemoglobin concentration and RBC count were significantly lower and serum bilirubin and reticulicyte count were significantly higher in the study group than those of control group. On the other hand

  20. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2018-02-01

    Full Text Available ObjectiveTransfusion of fresh frozen plasma (FFP helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs, numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc. are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD−, the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD− cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD− males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels.MethodsThe quality of n = 12 G6PD− and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools.ResultsHigher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD− FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD−. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD− FFPs compared with control.ConclusionOur results point

  1. Evaluation of Glucose-6-Phosphate Dehydrogenase stability in stored blood samples.

    Science.gov (United States)

    Jalil, Norunaluwar; Azma, Raja Zahratul; Mohamed, Emida; Ithnin, Azlin; Alauddin, Hafiza; Baya, Siti Noor; Othman, Ainoon

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days.

  2. Immune Thrombocytopenia Resolved by Eltrombopag in a Carrier of Glucose-6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Laura Scaramucci

    2016-03-01

    Full Text Available Eltrombopag, a thrombopoietin mimetic peptide, may provide excellent clinical efficacy in steroid-refractory patients with immune thrombocytopenic purpura (ITP [1,2]. Eltrombopag is generally well tolerated. However, its use in the particular setting of glucose-6-phosphate dehydrogenase (G6PD and history of acute hemolytic anemia (AHA has not been reported so far. A 51-year-old female was diagnosed as having ITP in September 2014. She was not taking any medication and her past history was negative, apart from having been diagnosed a carrier (heterozygous of G6PD deficiency (Mediterranean variant after a familial screening by molecular and biochemical methods. She presented with only slightly reduced (about 50% enzyme level, belonging to World Health Organization-defined class 3 [3,4]. In the following years, the patient experienced some episodes of AHA, which were managed at outside institutions; in particular, a severe episode of AHA, probably triggered by urinary infection and antibiotics [5], had complicated her second and last delivery. The hemolytic episodes were selflimiting and resolved without sequelae. No other causes of hemolysis were documented. When the case came to our attention, a diagnosis of ITP was made; hemolytic parameters were normal, although the G6PD enzyme concentration was not measured. Oral prednisone (1 mg/kg was given with only a transient benefit. The patient was then a candidate for elective splenectomy. However, given her extremely low platelet count, she was started in October 2014 on eltrombopag at 50 mg/day as a bridge to splenectomy. Given that, to the best of our knowledge, the use of this drug has never been reported in the particular setting of G6PD deficiency, the patient was constantly monitored. A prompt platelet increase (178x109/L was observed 1 week after the start of treatment. After she achieved the target platelet count, the dose of eltrombopag was tapered to the lowest effective dose. The patient

  3. Glucose-6-phosphate dehydrogenase deficiency in people living in malaria endemic districts of Nepal.

    Science.gov (United States)

    Ghimire, Prakash; Singh, Nihal; Ortega, Leonard; Rijal, Komal Raj; Adhikari, Bipin; Thakur, Garib Das; Marasini, Baburam

    2017-05-23

    Glucose-6-phosphate dehydrogenase (G6PD) is a rate limiting enzyme of the pentose phosphate pathway and is closely associated with the haemolytic disorders among patients receiving anti-malarial drugs, such as primaquine. G6PD deficiency (G6PDd) is an impending factor for radical treatment of malaria which affects the clearance of gametocytes from the blood and subsequent delay in the achievement of malaria elimination. The main objective of this study was to assess the prevalence of G6PD deficiency in six malaria endemic districts in Southern Nepal. A cross-sectional population based prevalence survey was conducted in six malaria endemic districts of Nepal, during April-Dec 2013. A total of 1341 blood samples were tested for G6PDd using two different rapid diagnostic test kits (Binax-Now ® and Care Start™). Equal proportions of participants from each district (n ≥ 200) were enrolled considering ethnic and demographic representation of the population groups. Out of total 1341 blood specimens collected from six districts, the overall prevalence of G6PDd was 97/1341; 7.23% on Binax Now and 81/1341; 6.0% on Care Start test. Higher prevalence was observed in male than females [Binax Now: male 10.2%; 53/521 versus female 5.4%; 44/820 (p = 0.003) and Care Start: male 8.4%; 44/521 versus female 4.5%; 37/820 (p = 0.003)]. G6PDd was higher in ethnic groups Rajbanshi (11.7%; 19/162) and Tharu (5.6%; 56/1005) (p = 0.006), major inhabitant of the endemic districts. Higher prevalence of G6PDd was found in Jhapa (22/224; 9.8%) and Morang districts (18/225; 8%) (p = 0.031). In a multivariate analysis, male were found at more risk for G6PDd than females, on Binax test (aOR = 1.97; CI 1.28-3.03; p = 0.002) and Care Start test (aOR = 1.86; CI 1.16-2.97; p = 0.009). The higher prevalence of G6PDd in certain ethnic group, gender and geographical region clearly demonstrates clustering of the cases and ascertained the risk groups within the population. This is the

  4. The Preterm Infant: A High-Risk Situation for Neonatal Hyperbilirubinemia Due to Glucose-6-Phosphate Dehydrogenase Deficiency.

    Science.gov (United States)

    Kaplan, Michael; Hammerman, Cathy; Bhutani, Vinod K

    2016-06-01

    Prematurity and glucose-6-phosphate dehydrogenase (G6PD) deficiency are risk factors for neonatal hyperbilirubinemia. The 2 conditions may interact additively or synergistically, contributing to extreme hyperbilirubinemia, with the potential for bilirubin neurotoxicity. This hyperbilirubinemia is the result of sudden, unpredictable, and acute episodes of hemolysis in combination with immaturity of bilirubin elimination, primarily of conjugation. Avoidance of contact with known triggers of hemolysis in G6PD-deficient individuals will prevent some, but not all, episodes of hemolysis. All preterm infants with G6PD deficiency should be vigilantly observed for the development of jaundice both in hospital and after discharge home. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism: A Review of the Literature and Case Report

    Directory of Open Access Journals (Sweden)

    Daniela Hernández-Pérez

    2015-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management.

  6. Effect of High-Dose Vitamin C Infusion in a Glucose-6-Phosphate Dehydrogenase-Deficient Patient

    Science.gov (United States)

    Gerber, Bryan; Kenyon, Katharine; Muthukanagaraj, Purushothaman

    2017-01-01

    Vitamin C supplementation is generally regarded as benign. There has been a resurgence of interest in the general medical community regarding the use of vitamin C most notably in the care of sepsis. Nonetheless, caution must be taken if supraphysiologic vitamin C supplementation is being administered as it should be considered a medication just like any other. We present a case of hemolysis in a glucose-6-phosphate dehydrogenase- (G6PD-) deficient patient receiving high-dose vitamin C infusions for his rheumatoid arthritis. PMID:29317868

  7. Effects of fescue and clover forage on serum lactate dehydrogenase and glucose 6-phosphate dehydrogenase isoenzymic profiles in steers.

    Science.gov (United States)

    Rosenkrans, C F; Coffey, K P; Paria, B C; Tarn, C Y; Johnson, Z B; Moyer, J L

    2000-12-01

    We determined the effects of forage type on isoenzymes of lactate dehydrogenase (LDH) and glucose 6-phosphate dehydrogenase (G6PDH). Forty-eight crossbred steers were randomly allotted to replicated pastures consisting of fungus-infected (Neotyphodium coenophialum) fescue or fungus-free fescue each with or without ladino clover overseeding. At the end of the 180-d grazing period, serum was harvested from the steers. Steers were finished in a feedlot and slaughtered after approximately 150 d in the feedlot. Isoenzymes for LDH and G6PDH were separated using PAGE. Five LDH isoenzymes (L1-15) were typically detected. Isoenzyme L1 (most anodic) had the greatest area percent as detected by laser densitometry (72, 12, 10, 5, and 7%, respectively, for L1, L2, L3, L4, and L5). Four proteins had G6PDH activity (G1-G4) with G2 having the greatest area percent (15, 52, 27, and 14, respectively, for G1, G2, G3, and G4). Isoenzymes within a dehydrogenase were correlated (P < .05). In addition, area percentage of L1 was correlated (P < .05; r = .34) with area percentage of G2, and area percentage of L4 was correlated (P < .07; r = .73) with area percentage of G1. Area percentages of L1, L2, and L3 were affected by an interaction (P < .09) of forage types. Body weight gains for steers grazing endophyte-infected fescue were depressed (P < .05); however, steers compensated with increased (P < .05) weight gains during the finishing phase. Fungal toxins produced by Neotyphodium coenophialum may alter an animal's metabolism, growth, and development via shifts in reducing equivalents (NADH).

  8. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    Science.gov (United States)

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  9. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Bayliak, M; Gospodaryov, D; Semchyshyn, H; Lushchak, V

    2008-04-01

    The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.

  10. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Vulliamy, T.J.; D' Urso, M.; Battistuzzi, G.; Estrada, M.; Foulkes, N.S.; Martini, G.; Calabro, V.; Poggi, V.; Giordano, R.; Town, M.; Luzzatto, L.; Persico, M.G. (Royal Postgraduate Medical School, London (England))

    1988-07-01

    Glucose-6-phosphate dehydrogenase deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. The authors have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A they have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. The mutations observed show a striking predominance of C {yields} T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency.

  11. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  12. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the dise......Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure...

  13. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  14. Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its application to hydrogen production in vitro.

    Science.gov (United States)

    Huang, Rui; Chen, Hui; Zhou, Wei; Ma, Chunling; Zhang, Y-H Percival

    2018-04-01

    Glucose 6-phosphate dehydrogenase (G6PDH) is one of the most important dehydrogenases responsible for generating reduced NADPH for anabolism and is also the rate-limiting enzyme in the Entner-Doudoroff pathway. For in vitro biocatalysis, G6PDH must possess both high activity and good thermostability due to requirements of efficient use and low expense of biocatalyst. Here, we used directed evolution to improve thermostability of the highly active G6PDH from Zymomonas mobilis. Four generations of random mutagenesis and Petri-dish-based double-layer screening evolved the thermolabile wild-type enzyme to the thermostable mutant Mut 4-1, which showed a more than 124-fold increase in half-life time (t 1/2 ) at 60 °C, a 3.4 °C increase in melting temperature (T m ), and a 5 °C increase in optimal temperature (T opt ), without compromising the specific activity. In addition, the thermostable mutant was conducted to generate hydrogen from maltodextrin via in vitro synthetic biosystems (ivSB), gaining a more than 8-fold improvement of productivity rate with 76% of theoretical yield at 60 °C. Thus, the engineered G6PDH has been shown to effectively regenerate NADPH at high temperatures and will be applicable for NAD(P)H regeneration in numerous in vitro biocatalysis applications.

  15. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    DEFF Research Database (Denmark)

    Enevold, Anders; Vestergaard, Lasse S; Lusingu, John

    2005-01-01

    BACKGROUND: Mutations in the haemoglobin beta-globin (HbB) and glucose-6-phosphate dehydrogenase (G6PD) genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority...

  16. Quantitative aspects of the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetrazolium salts studied in a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.; Sanders, J. A.

    1981-01-01

    The enzyme cytochemical demonstration of glucose-6-phosphate dehydrogenase (G6PDH) with several tetrazolium salts has been studied with an artificial model of polyacrylamide films in corporated with the enzyme, which enabled teh correlation of cytochemical and biochemical data. In the model films no

  17. Quantitative aspects of the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetranitro BT studied in a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1980-01-01

    The cytochemical determination of the activity of glucose-6-phosphate dehydrogenase (G6PDH) with tetranitro blue tetrazolium (TNBT) was studied with model films of polyacrylamide gel incorporating purified enzyme. This model system enabled a quantitative study to be made of different parameters

  18. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females

    NARCIS (Netherlands)

    Peters, Anna L.; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M. M.; Vlaar, Alexander P. J.; van Bruggen, Robin; de Korte, Dirk; van Noorden, Cornelis J. F.; van Zwieten, Rob

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for

  19. Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections

    NARCIS (Netherlands)

    van Bruggen, Robin; Bautista, José M.; Petropoulou, Theoni; de Boer, Martin; van Zwieten, Rob; Gómez-Gallego, Felíx; Belohradsky, Bernd H.; Hartwig, Nico G.; Stevens, David; Mason, Philip J.; Roos, Dirk

    2002-01-01

    In this study the blood cells of 4 male patients from 2 unrelated families with chronic nonspherocytic anemia and recurrent bacterial infections were investigated. The activity of glucose-6-phosphate dehydrogenase (G6PD) in the red blood cells and in the granulocytes of these patients was below

  20. Comparison between the chromate inhibition test and a cytochemical method for the determination of glucose-6-phosphate dehydrogenase deficiency in erythrocytes

    NARCIS (Netherlands)

    Jonges, G. N.; Hagen, H.; van Noorden, C. J.; Weening, R. S.; Roos, D.

    1989-01-01

    The sensitivity and specificity of the chromate inhibition test for the determination of glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes were compared with a cytochemical staining method. Fifty blood samples were used in a double blind study. The samples were selected from 600

  1. Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes

    NARCIS (Netherlands)

    van Noorden, C. J.; Dolbeare, F.; Aten, J. A.

    1989-01-01

    We developed a method for accurate cytofluorometric analysis of the final reaction product of enzyme reactions in individual cells. Glucose-6-phosphate dehydrogenase (G6PD) activity in human erythrocytes was demonstrated cytochemically, and the amount of final reaction product (formazan) per cell

  2. Detection of glucose-6-phosphate dehydrogenase deficiency in erythrocytes: a spectrophotometric assay and a fluorescent spot test compared with a cytochemical method

    NARCIS (Netherlands)

    Wolf, B. H.; Weening, R. S.; Schutgens, R. B.; van Noorden, C. J.; Vogels, I. M.; Nagelkerke, N. J.

    1987-01-01

    The results of a quantitative spectrophotometric enzyme assay, a fluorescent spot test and a cytochemical assay for glucose-6-phosphate dehydrogenase deficiency were compared systematically. The high sensitivity of the spectrophotometric assay and the fluorescent spot test in the detection of

  3. Glucose-6-phosphate dehydrogenase status and risk of hemolysis in Plasmodium falciparum-infected African children receiving single-dose primaquine

    NARCIS (Netherlands)

    Eziefula, A.C.; Pett, H. van; Grignard, L.; Opus, S.; Kiggundu, M.; Kamya, M.R.; Yeung, S.; Staedke, S.G.; Bousema, T.; Drakeley, C.

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) enzyme function and genotype were determined in Ugandan children with uncomplicated falciparum malaria enrolled in a primaquine trial after exclusion of severe G6PD deficiency by fluorescent spot test. G6PD A- heterozygotes and hemizygotes/homozygotes

  4. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections

    NARCIS (Netherlands)

    Roos, D.; van Zwieten, R.; Wijnen, J. T.; Gómez-Gallego, F.; de Boer, M.; Stevens, D.; Pronk-Admiraal, C. J.; de Rijk, T.; van Noorden, C. J.; Weening, R. S.; Vulliamy, T. J.; Ploem, J. E.; Mason, P. J.; Bautista, J. M.; Khan, P. M.; Beutler, E.

    1999-01-01

    We have investigated the blood cells from a woman with a low degree of chronic nonspherocytic hemolytic anemia and frequent bacterial infections accompanied by icterus and anemia, The activity of glucose 6-phosphate dehydrogenase (G6PD) in her red blood cells (RBCs) was below detection level, and in

  5. Inhibition of Glucose-6-Phosphate Dehydrogenase Reverses Cisplatin Resistance in Lung Cancer Cells via the Redox System

    Science.gov (United States)

    Hong, Weipeng; Cai, Peiheng; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2018-01-01

    The pentose phosphate pathway (PPP), which branches from glycolysis, is correlated with cancer cell proliferation, survival and senescence. In this study, differences in the metabolic profile of the PPP and the redox status of human lung carcinoma A549 cells and cisplatin-induced multidrug-resistant A549/DDP cells were analyzed and evaluated. The results showed that A549/DDP cells exhibited differential PPP-derived metabolic features and redox-related molecules. A549/DDP cells exhibited increased expression and enzymatic activity of PPP enzyme glucose-6-phosphate dehydrogenase (G6PD). Furthermore, as demonstrated by the apoptotic rate, cell viability, and colony formation, inhibition of G6PD by siRNA or an inhibitor sensitized A549/DDP cells to cisplatin. Additionally, inhibition of G6PD restored the cisplatin sensitivity of A549/DDP cells by influencing redox homeostasis. In conclusion, overcoming cisplatin resistance through inhibition of G6PD could improve the understanding of the mechanisms underlying cisplatin-induced resistance in human lung cancer and may provide insights into the therapeutic potential of this treatment to combat resistance. PMID:29445340

  6. High prevalence of Dapsone-induced oxidant hemolysis in North American SCT recipients without glucose-6-phosphate-dehydrogenase deficiency.

    Science.gov (United States)

    Olteanu, H; Harrington, A M; George, B; Hari, P N; Bredeson, C; Kroft, S H

    2012-03-01

    Dapsone (4-4'-diaminodiphenylsulfone) is commonly used for Pneumocystis jirovecii pneumonia (PCP) prophylaxis in immunocompromised patients. Oxidant hemolysis is a known complication of dapsone, but its frequency in adult patients who have undergone a SCT for hematological malignancies is not well established. We studied the presence of oxidant hemolysis, by combining examination of RBC morphology and laboratory data, in 30 patients who underwent a SCT and received dapsone for PCP prophylaxis, and compared this group with 26 patients who underwent a SCT and received trimethoprim-sulfamethoxazole (TMP-SMX) for PCP prophylaxis. All patients had normal glucose-6-phosphate dehydrogenase (G6PDH) enzymatic activity. In SCT patients, dapsone compared with TMP-SMX for PCP prophylaxis was associated with a high incidence of oxidant hemolysis (87 vs 0%, PSCT patients is 20-fold higher than the reported rate in the population of HIV-infected patients, and thus much higher than the prevalence of G6PDH variants in the general population. In our patients, it manifested clinically as a lower Hb that was not significant enough to result in increased packed RBC transfusions.

  7. PCR-based allelic discrimination for glucose-6-phosphate dehydrogenase (G6PD) deficiency in Ugandan umbilical cord blood.

    Science.gov (United States)

    Hsu, Jennifer; Fink, Deanna; Langer, Erica; Carter, Michelle L; Bengo, Derrik; Ndidde, Susan; Slusher, Tina; Ross, Julie A; Lund, Troy C

    2014-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common X-linked disorder in the world. G6PD deficiency puts children at risk for hyperbilirubinemia and kernicterus during the newborn period and an increased risk of severe hemolysis after exposure to many antimalarial medications. A laboratory diagnosis of G6PD deficiency is rare in the developing world due to limited resources. We developed a TaqMan-based allele-specific assay to rapidly determine rates of G6PD deficiency contributing alleles (G202A and A376G) in East Africa. We tested umbilical cord blood from 100 Ugandan newborns and found that the overall allele frequency of G202A was .13 and A376G was .32. The overall incidence of G6PD A- (G202A/A376G) was 6%; all A- variants were males. There was no correlation between G6PD deficiency and umbilical cord blood hemoglobin, white blood count, platelet count, or other hematologic parameters. Allele-specific PCR can serve as a rapid method to determine specific G6PD deficiency allele frequencies in a given population and as a diagnostic tool in a hospital setting in which laboratory resources are present.

  8. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso.

    Science.gov (United States)

    Ouattara, Abdoul Karim; Bisseye, Cyrille; Bazie, Bapio Valery Jean Télesphore Elvira; Diarra, Birama; Compaore, Tegwindé Rebeca; Djigma, Florencia; Pietra, Virginio; Moret, Remy; Simpore, Jacques

    2014-08-01

    To investigate 4 combinations of mutations responsible for glucose-6-phosphate dehydrogenase (G6PD) deficiency in a rural community of Burkina Faso, a malaria endemic country. Two hundred individuals in a rural community were genotyped for the mutations A376G, G202A, A542T, G680T and T968C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism. The prevalence of the G6PD deficiency was 9.5% in the study population. It was significantly higher in men compared to women (14.3% vs 6.0%, P=0.049). The 202A/376G G6PD A- was the only deficient variant detected. Plasmodium falciparum asymptomatic parasitaemia was significantly higher among the G6PD-non-deficient persons compared to the G6PD-deficient (P<0.001). The asymptomatic parasitaemia was also significantly higher among G6PD non-deficient compared to G6PD-heterozygous females (P<0.001). This study showed that the G6PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  9. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    Science.gov (United States)

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  10. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women.

    Science.gov (United States)

    Peters, Anna L; Van Noorden, Cornelis J F

    2009-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.

  11. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  12. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  13. Identification of point mutations in Glucose-6-Phosphate Dehydrogenase gene in Timor Island people : A preliminary report

    Directory of Open Access Journals (Sweden)

    Widanto Hardjowasito

    2001-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD deficiency is common in malaria endemic region, however no molecular study has been performed on G6PD deficiency in Timor Island, Indonesia a malarial hyperendemic area which Proto Malay is the majority of the people in that island. To observe the frequency and molecular type of mutations in G6PD deficient Proto Malay people, 118 native people were screened using formazan ring test. Mutation in the G6PD gene were determined by MPTP (Multiple PCR using Multiple Tandem Forward Primers and a common Reserve Pimer method and confirmed by automatic sequencer. This study shows that three males have lower G6PD activity. Using MPTP method, a point mutation could be indicated in the two cases. Sequencing of the amplified products in 2 G6PD patients disclosed mutations of T383C in exon 5 and C 592 T in exon 6 in respective case. Our result documents point mutations in exon 5 and exon 6 in the G6PD gene of two Proto Malay people in Timor. These mutations are common in Asia region. (Med J Indones 2001; 10: 210-3Keywords: mutations, G6PD, Proto Malay.

  14. Inhibition of Glucose-6-Phosphate Dehydrogenase Could Enhance 1,4-Benzoquinone-Induced Oxidative Damage in K562 Cells

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2016-01-01

    Full Text Available Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD maintains the reduced state of glutathione (GSH. This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ. G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure.

  15. Estimation of risk of glucose 6-phosphate dehydrogenase-deficient red cells to ozone and nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, M.A.; Ryer, J.; Easton, D.; Witz, G.; Goldstein, B.D.

    1986-07-01

    It has been suggested that the more than 1 million black Americans with the A- variant of glucose-6-phosphate dehydrogenase deficiency (G6PD) are at risk for adverse hematologic effects due to inhalation of ambient levels of oxidant gases. To evaluate this hypothesis studies were performed that included direct exposure of human G6PD-deficient red cells, and of mouse strains with different G6PD levels, to the oxidant gases ozone and nitrogen dioxide. Using the oxidant drug phenylhydrazine in part as a point of comparison, conservative extrapolation of the data indicates that exposure to levels of ozone or nitrogen dioxide at least one and probably two orders of magnitude above the LD50 would be required for any hematologic effect to be observed of pertinence to G6PD deficiency. It is concluded that there is no reason to remove or preclude from the workplace black employees with the common A- variant of red cell G6PD deficiency who potentially are exposed to oxidant gases.

  16. Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency revealed by single-strand conformation and sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Calabro, V.; Mason, P.J.; Luzzatto, L. (Hammersmith Hospital, London (United Kingdom)); Filosa, S.; Martini, G. (CNR, Naples (Italy)); Civitelli, D.; Cittadella, R.; Brancati, C. (CNR, Cosenza (Italy))

    1993-03-01

    The authors have carried out a systematic study of the molecular basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency on a sample of 53 male subjects from Calabria, in southern Italy. Their sequential approach consisted of the following steps: (1) Partial biochemical characterization was used to pinpoint candidate known variants. The identity of these was then varified by restriction-enzyme or allele-specific oligonucleotide hybridization analysis of the appropriate PCR-amplified fragment. (2) On samples for which there was no obvious candidate mutation, they proceeded to amplify the entire coding region in eight fragments, followed by single-strand conformation polymorphism (SSCP) analysis of each fragment. (3) The next step was M13 phage cloning and sequencing of those individual fragments that were found to be abnormal by SSCP. Through this approach they have identified the molecular lesion in 51 of the 53 samples. In these they found a total of nine different G6PD-deficient variants, five of which (G6PD Mediterranean, G6PD A[sup [minus

  17. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    Directory of Open Access Journals (Sweden)

    Misako Taniguchi

    2016-01-01

    Full Text Available Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine to examine relationship between glutathione (GSH levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD and malic enzyme (ME, in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule.

  18. Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis.

    Science.gov (United States)

    Long, Xiangyu; He, Bin; Fang, Yongjun; Tang, Chaorong

    2016-01-01

    As a key enzyme in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides nicotinamide adenine dinucleotide phosphate (NADPH) and intermediary metabolites for rubber biosynthesis, and plays an important role in plant development and stress responses. In this study, four Hevea brasiliensis (Para rubber tree) G6PDH genes (HbG6PDH1 to 4) were identified and cloned using a genome-wide scanning approach. All four HbG6PDH genes encode functional G6PDH enzymes as shown by heterologous expression in E. coli. Phylogeny analysis and subcellular localization prediction show that HbG6PDH3 is a cytosolic isoform, while the other three genes (HbG6PDH1, 2 and 4) are plastidic isoforms. The subcellular locations of HbG6PDH3 and 4, two latex-abundant isoforms were further verified by transient expression in rice protoplasts. Enzyme activity assay and expression analysis showed HbG6PDH3 and 4 were implicated in PPP during latex regeneration, and to influence rubber production positively in rubber tree. The cytosolic HbG6PDH3 is a predominant isoform in latex, implying a principal role for this isoform in controlling carbon flow and NADPH production in the PPP during latex regeneration. The expression pattern of plastidic HbG6PDH4 correlates well with the degree of tapping panel dryness, a physiological disorder that stops the flow of latex from affected rubber trees. In addition, the four HbG6PDHs responded to temperature and drought stresses in root, bark, and leaves, implicating their roles in maintaining redox balance and defending against oxidative stress.

  19. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets

    Science.gov (United States)

    Hecker, Peter A.; Mapanga, Rudo F.; Kimar, Charlene P.; Ribeiro, Rogerio F.; Brown, Bethany H.; O'Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Asemu, Girma; Essop, M. Faadiel

    2012-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects. PMID:22829586

  20. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in southeast Iran: implications for malaria elimination.

    Science.gov (United States)

    Tabatabaei, Seyed Mehdi; Salimi Khorashad, Alireza; Sakeni, Mohammad; Raeisi, Ahmad; Metanat, Zahra

    2015-03-15

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is an X-linked genetic disorder with a relatively high frequency in malaria-endemic regions. It is an obstacle to malaria elimination, as primaquine administered in the treatment of malaria can cause hemolysis in G6PD-deficient individuals. This study presents information on the prevalence of G6PD deficiency in Sistan and Balouchetsan province, which hosts more than 90% of Plasmodium vivax malaria cases in Iran. This type of information is needed for a successful malaria elimination program. A total of 526 students were randomly recruited through schools located in southeast Iran. Information was collected by interviewing the students using a structured questionnaire. Blood samples taken on filter papers were examined for G6PD deficiency using the fluorescent spot test. Overall, 72.8% (383/526) of the subjects showed normal G6PD enzyme function. Mild and severe G6PD deficiency was observed in 14.8% (78) and 12.2% (64) of subjects, respectively. A total 193/261 males (73.9%) and 190/265 (72%) females had normal enzyme activity. Mild G6PD deficiency was observed in 10.8% (28) and 18.9% (50) of male and female subjects, respectively. However, in comparison with females, a greater proportion of males showed severe enzyme deficiency (15.3% versus 9.1%). All these differences were statistically significant (p G6PD deficiency is highly prevalent in southeast Iran. G6PD-deficient individuals are susceptible to potentially severe and life-threatening hemolytic reactions after primaquine treatment. In order to achieve malaria elimination goals in the province, G6PD testing needs to be made routinely available within the health system.

  1. Glucose-6-phosphate dehydrogenase (G6PD) deficiency in nonarteritic anterior ischemic optic neuropathy in a Sardinian population, Italy.

    Science.gov (United States)

    Pinna, Antonio; Solinas, Giuliana; Masia, Carlo; Zinellu, Angelo; Carru, Ciriaco; Carta, Arturo

    2008-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, with a high prevalence in Sardinia, Italy. Evidence indicates that G6PD-deficient patients are protected against ischemic heart and cerebrovascular disease and retinal vein occlusion. The purpose of this study was to assess the frequency of G6PD deficiency in Sardinian patients with nonarteritic anterior ischemic optic neuropathy (NAION) and ascertain whether G6PD deficiency may offer protection against NAION. Erythrocyte G6PD activity was determined by using a quantitative assay in 140 patients with NAION and 280 age- and gender-matched comparison patients. Conditional logistic regression models were used to investigate the association between G6PD deficiency and NAION. G6PD deficiency was found in 7 (5%) patients with NAION and 34 (12.1%) control subjects. Differences between cases and controls were statistically significant (P = 0.02). Conditional logistic regression analysis, including as covariates G6PD deficiency, hypertension, diabetes, and hypercholesterolemia, revealed that G6PD deficiency was significantly associated with decreased risk for NAION (odds ratio [OR] = 0.4, 95% confidence interval [CI] = 0.17-0.94, P = 0.035). Conditional logistic regression analyses, including systolic or diastolic blood pressure and plasma glucose and cholesterol levels confirmed that G6PD deficiency was associated with a decreased risk for NAION, but the ORs were not significant at the 0.05 significance level (P = 0.085 and P = 0.071). Models including gender x G6PD deficiency interaction disclosed that gender was not an effect modifier of G6PD deficiency (P > 0.20). The frequency of G6PD deficiency in patients with NAION was significantly lower than expected. Results suggest that G6PD-deficient patients in the Sardinian population have a significantly decreased risk of having NAION.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency and Diabetes Mellitus with Severe Retinal Complications in a Sardinian Population, Italy

    Science.gov (United States)

    Pinna, Antonio; Contini, Emma Luigia; Carru, Ciriaco; Solinas, Giuliana

    2013-01-01

    Background: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, with a high prevalence in Sardinia, Italy. Evidence indicates that G6PD-deficient patients are protected against vascular disease. Little is known about the relationship between G6PD deficiency and diabetes mellitus. The purpose of this study was to compare G6PD deficiency prevalence in Sardinian diabetic men with severe retinal vascular complications and in age-matched non-diabetic controls and ascertain whether G6PD deficiency may offer protection against this vascular disorder. Methods: Erythrocyte G6PD activity was determined using a quantitative assay in 390 diabetic men with proliferative diabetic retinopathy (PDR) and 390 male non-diabetic controls, both aged ≥50 years. Conditional logistic regression models were used to investigate the association between G6PD deficiency and diabetes with severe retinal complications. Results: G6PD deficiency was found in 21 (5.4 %) diabetic patients and 33 (8.5 %) controls (P=0.09). In a univariate conditional logistic regression model, G6PD deficiency showed a trend for protection against diabetes with PDR, but the odds ratio (OR) fell short of statistical significance (OR=0.6, 95% confidence interval=0.35-1.08, P=0.09). In multivariate conditional logistic regression models, including as covariates G6PD deficiency, plasma glucose, and systemic hypertension or systolic or diastolic blood pressure, G6PD deficiency showed no statistically significant protection against diabetes with PDR. Conclusions: The prevalence of G6PD deficiency in diabetic men with PDR was lower than in age-matched non-diabetic controls. G6PD deficiency showed a trend for protection against diabetes with PDR, but results were not statistically significant. PMID:24324368

  3. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity

    International Nuclear Information System (INIS)

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-01-01

    Aim: The inhibitory effects of thallium-201 ( 201 Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. Methods: For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the 201 Tl solution including Tl + , Fe +3 and Cu +2 metals and the in vitro effects of the radiation effect of the 201 Tl solution and non-radioactive Tl + , Fe +3 and Cu +2 metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 deg. C. Results: 201 Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC 50 value of 201 Tl solution was 36.86 μl ([Tl + ]: 0.0036 μM, [Cu +2 ]: 0.0116 μM, [Fe +3 ]: 0.0132 μM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of 201 Tl solution. Furthermore, non-radioactive Tl + , Fe +3 and Cu +2 were found not to have influenced the enzyme in vitro. Conclusion: Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg 201 Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of 201 Tl solution.

  4. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    Science.gov (United States)

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C

    2008-08-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.

  5. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  6. A novel c.197T ® A variant among Brazilian neonates with glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    José Pereira de Moura Neto

    2008-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is the most common enzyme deficiency worldwide, causing a spectrum of diseases including neonatal hyperbilirubinemia and acute or chronic hemolysis. We used the methemoglobin reduction test and G6PD electrophoresis to screen 655 neonates (354 females and 301 males for common G6PD mutations in the city of Salvador in the Northeastern Brazilian state Bahia and found that 66 (10.1% were G6PD-deficient (41 females and 25 males. The 66 (10.1% G6PD-deficient neonates were assessed for the c.376 A -> G (exon 5 and c.202 G -> A (exon 4 mutations using the polymerase chain reaction and restriction enzyme fragment length polymorphism (PCR-RFLP analysis and the results validated by DNA sequencing. Of the 66 G6PD-deficient neonates investigated we found that 54 (81.8% presented the c.376 A -> G (p.Asn126Asp and c.202 G -> A (p.Val68Met mutations, two (3% had the c.376 A -> G mutation only, two (3% had the c.202 G -> A mutation only, five (7.6% exhibited a previously unrecorded 197T -> A (p.Phe66Thr substitution in exon 4 and three showed no mutations at any of these sites. Of the five neonates exhibiting the new 197T -> A (p.Phe66Thr substitution, four (6.1% also presented the c.202 G -> A and c.376 A -> G mutations and one (1.5% had the c.[197T -> A / 202 G -> A] combination. We propose to name the new variant G6PD Bahia.

  7. Glucose-6-phosphate dehydrogenase (G6PD-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Hsieh

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key enzyme in the pentose phosphate pathway and provides reducing energy to all cells by maintaining redox balance. The most common clinical manifestations in patients with G6PD deficiency are neonatal jaundice and acute hemolytic anemia. The effects of microbial infection in patients with G6PD deficiency primarily relate to the hemolytic anemia caused by Plasmodium or viral infections and the subsequent medication that is required. We are interested in studying the impact of bacterial infection in G6PD-deficient cells. G6PD knock down A549 lung carcinoma cells, together with the common pathogen Staphylococcus aureus, were employed in our cell infection model. Here, we demonstrate that a lower cell viability was observed among G6PD-deficient cells when compared to scramble controls upon bacterial infection using the MTT assay. A significant increase in the intracellular ROS was detected among S. aureus-infected G6PD-deficient cells by observing dichlorofluorescein (DCF intensity within cells under a fluorescence microscope and quantifying this signal using flow cytometry. The impairment of ROS removal is predicted to enhance apoptotic activity in G6PD-deficient cells, and this enhanced apoptosis was observed by annexin V/PI staining under a confocal fluorescence microscope and quantified by flow cytometry. A higher expression level of the intrinsic apoptotic initiator caspase-9, as well as the downstream effector caspase-3, was detected by Western blotting analysis of G6PD-deficient cells following bacterial infection. In conclusion, we propose that bacterial infection, perhaps the secreted S. aureus α-hemolysin in this case, promotes the accumulation of intracellular ROS in G6PD-deficient cells. This would trigger a stronger apoptotic activity through the intrinsic pathway thereby reducing cell viability when compared to wild type cells.

  8. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply.

    Science.gov (United States)

    Xue, Jiao; Balamurugan, Srinivasan; Li, Da-Wei; Liu, Yu-Hong; Zeng, Hao; Wang, Lan; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2017-05-01

    Oleaginous microalgae have great prospects in the fields of feed, nutrition, biofuel, etc. However, biomass and lipid productivity in microalgae remain a major economic and technological bottleneck. Here we present a novel regulatory target, glucose-6-phosphate dehydrogenase (G6PD) from the pentose phosphate pathway (PPP), in boosting microalgal lipid accumulation. G6PD, involved in the formation of NADPH demanded in fatty acid biosynthesis as reducing power, was characterized in oleaginous microalga Phaeodactylum tricornutum. In G6PD overexpressing microalgae, transcript abundance of G6PD increased by 4.4-fold, and G6PD enzyme activity increased by more than 3.1-fold with enhanced NADPH production. Consequently, the lipid content increased by 2.7-fold and reached up to 55.7% of dry weight, while cell growth was not apparently affected. The fatty acid composition exhibited significant changes, including a remarkable increase in monounsaturated fatty acids C16:1 and C18:1 concomitant with a decrease in polyunsaturated fatty acids C20:5 and C22:6. G6PD was localized to the chloroplast and its overexpression stimulated an increase in the number and size of oil bodies. Proteomic and metabolomic analyzes revealed that G6PD play a key role in regulating pentose phosphate pathway and subsequently upregulating NADPH consuming pathways such as fatty acid synthesis, thus eventually leading to lipid accumulation. Our findings show the critical role of G6PD in microalgal lipid accumulation by enhancing NADPH supply and demonstrate that G6PD is a promising target for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Field Trial of the CareStart Biosensor Analyzer for the Determination of Glucose-6-Phosphate Dehydrogenase Activity in Haiti.

    Science.gov (United States)

    Weppelmann, Thomas A; von Fricken, Michael E; Wilfong, Tara D; Aguenza, Elisa; Philippe, Taina T; Okech, Bernard A

    2017-10-01

    Throughout many developing and tropical countries around the world, malaria remains a significant threat to human health. One barrier to malaria elimination is the ability to safely administer primaquine chemotherapy for the radical cure of malaria infections in populations with a high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the current study, a field trial of the world's first quantitative, point-of-care assay for measuring G6PD activity was conducted in Haiti. The performance of the CareStart Biosensor Analyzer was compared with the gold standard spectrophotometric assay and genotyping of the G6PD allele in schoolchildren ( N = 343) from the Ouest Department of Haiti. In this population, 19.5% of participants (67/343) had some form of G6PD deficiency (< 60% residual activity) and 9.9% (34/343) had moderate-to-severe G6PD deficiency (< 30% residual activity). Overall, 18.95% of participants had the presence of the A-allele (65/343) with 7.87% (27/343) considered at high risk for drug-induced hemolysis (hemizygous males and homozygous females). Compared with the spectrophotometric assay, the sensitivity and specificity to determine participants with < 60% residual activity were 53.7% and 94.6%, respectively; for participants with 30% residual activity, the sensitivity and specificity were 5.9% and 99.7%, respectively. The biosensor overestimated the activity in deficient individuals and underestimated it in participants with normal G6PD activity, indicating the potential for a systematic measurement error. Thus, we suggest that the current version of the biosensor lacks adequate sensitivity and should be improved prior to its use as a point-of-care diagnostic for G6PD deficiency.

  11. Screening for glucose-6-phosphate dehydrogenase deficiency in neonates: a comparison between cord and peripheral blood samples.

    Science.gov (United States)

    AlSaif, Saif; Ponferrada, Ma Bella; AlKhairy, Khalid; AlTawil, Khalil; Sallam, Adel; Ahmed, Ibrahim; Khawaji, Mohammed; AlHathlol, Khalid; Baylon, Beverly; AlSuhaibani, Ahmed; AlBalwi, Mohammed

    2017-07-11

    The use of cord blood in the neonatal screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency is being done with increasing frequency but has yet to be adequately evaluated against the use of peripheral blood sample which is usually employed for confirmation. We sought to determine the incidence and gender distribution of G6PD deficiency, and compare the results of cord against peripheral blood in identifying G6PD DEFICIENCY neonates using quantitative enzyme activity assay. We carried out a retrospective and cross-sectional study employing review of primary hospital data of neonates born in a tertiary care center from January to December 2008. Among the 8139 neonates with cord blood G6PD assays, an overall incidence of 2% for G6PD deficiency was computed. 79% of these were males and 21% were females with significantly more deficient males (p blood samples (n = 1253) showed a significantly higher mean G6PD value for peripheral than cord blood (15.12 ± 4.52 U/g and 14.52 ± 4.43 U/g, respectively, p = 0.0008). However, the proportion of G6PD deficient neonates did not significantly differ in the two groups (p = 0.79). Sensitivity of cord blood in screening for G6PD deficiency, using peripheral G6PD assay as a gold standard was 98.6% with a NPV of 99.5%. There was no difference between cord and peripheral blood samples in discriminating between G6PD deficient and non-deficient neonates. A significantly higher mean peripheral G6PD assay reinforces the use of cord blood for neonatal screening since it has substantially low false negative results.

  12. Icterícia neonatal e deficiência de glicose-6-fosfato desidrogenase Neonatal jaundice and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Amauri Antiquera Leite

    2010-01-01

    Full Text Available A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase in newborn babies may be responsible for neonatal jaundice. There is a concern of many authors from other countries in respect to complications in neonates with hyperbilirubinemia; some authors even propose screening for glucose-6-phosphate dehydrogenase deficiency in newborn babies. A scientific report on this subject is published in this issue.

  13. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency

    OpenAIRE

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Junkree, Thanyaphorn; Day, Nicholas P.J.; White, Nicholas J.; Imwong, Mallika

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. It is responsible for various clinical manifestations, including favism, hemolytic anemia, chronic non-spherocytic hemolytic anemia, spontaneous abortion, and neonatal hyperbilirubinemia. Understanding the molecular mechanisms underlying the severity of G6PD deficiency is of great importance but that of many G6PD variants are stil...

  14. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    Science.gov (United States)

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  15. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

    Science.gov (United States)

    Isaac, IZ; Mainasara, AS; Erhabor, Osaro; Omojuyigbe, ST; Dallatu, MK; Bilbis, LS; Adias, TC

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3%) males and 41 (34.7%) females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4%) were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%). Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01). The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2%) were moderately deficient, while five (29.4%) were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD deficiency in our environment, to allow for evidence-based management of these children and to ensure the avoidance of food, drugs, and infective agents that can potentially predispose these children to oxidative stress as well as diseases that deplete micronutrients that protect against oxidative stress. There is need to build capacity in our

  16. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors

    Directory of Open Access Journals (Sweden)

    Julie A. Reisz

    2018-01-01

    Full Text Available ObjectiveIn glucose 6-phosphate dehydrogenase (G6PD deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated.MethodsWe performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data.ResultsOther than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor

  17. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus.

    Science.gov (United States)

    Jovanović, Marina D; Jelenković, Ankica; Stevanović, Ivana D; Bokonjić, Dubravko; Colić, Miodrag; Petronijević, Natasa; Stanimirović, Danica B

    2014-06-01

    Aluminum (Al) toxicity is closely linked to the pathogenesis of Alzheimer's disease (AD). This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx), hippocampus and basal forebrain (BF). Seven days after intra-hippocampal (CA1 sector) injection of AlCl3 into adult male Wistar rats they were subjected to two-way active avoidance (AA) tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE) and glucose-6-phosphate dehydrogenase (G6PDH) were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl3-treated rats but was moderate in G6PDH/AlCl3-treated rats. Strong tau staining was noted bilaterally in AlCl3-treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl3-treated rats. Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl3-treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential therapeutic benefit. The present model could serve as a useful tool in AD investigations.

  18. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells.

    Science.gov (United States)

    Das, Mahua R; Bag, Arup K; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S

    2016-02-24

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  19. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Isaac IZ

    2013-07-01

    Full Text Available IZ Isaac,1 AS Mainasara,2 Erhabor Osaro,1 ST Omojuyigbe,1 MK Dallatu,3 LS Bilbis,3 TC Adias4 1Department of Haematology and Transfusion Medicine, 2Department of Chemical Pathology, 3Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria; 4Bayelsa State College of Health Technology, Ogbia, Nigeria Abstract: Glucose-6-phosphate dehydrogenase (G6PD deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3% males and 41 (34.7% females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4% were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%. Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01. The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2% were moderately deficient, while five (29.4% were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD

  20. Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq

    Directory of Open Access Journals (Sweden)

    Jamal Shakir AR

    2010-07-01

    Full Text Available Abstract Background Glucose-6-Phosphate dehydrogenase (G6PD is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds. Methods A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T, G6PD Chatham (1003 G→A, G6PD A- (202 G→A, G6PD Aures (143 T→C and G6PD Cosenza (1376 G→C, as well as the silent 1311 (C→T mutation. Results Among 580 random Iraqi male Kurds, 63 (10.9% had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8% had the G6PD Mediterranean variant and 10 (8.7% had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5% uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases. Conclusions The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD

  1. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  2. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  3. Molecular genetics of the glucose-6-phosphate dehydrogenase (G6PD) Mediterranean variant and description of a new G6PD mutant, G6PD Andalus1361A.

    OpenAIRE

    Vives-Corrons, J L; Kuhl, W; Pujades, M A; Beutler, E

    1990-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has b...

  4. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  5. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2016-09-01

    Full Text Available This article contains data on the variation in several physiological parameters of red blood cells (RBCs donated by eligible glucose-6-phosphate dehydrogenase (G6PD deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+ cells. Intracellular reactive oxygen species (ROS generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1]. Keywords: G6PD deficiency, Red blood cell storage lesion, Oxidative stress, Cell fragility, Microparticles

  6. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi Javadi

    2015-02-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  7. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi

    2015-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  8. Kinetic Behaviour of Glucose 6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Different Tissues of Rainbow Trout (Oncorhynchus mykiss Exposed to Non-Lethal Concentrations of Cadmium

    Directory of Open Access Journals (Sweden)

    Olcay Hisar

    2009-01-01

    Full Text Available The effects of cadmium (Cd on the enzymatic activities of glucose 6-phosphate dehydrogenase (G6PD and 6-phosphogluconate dehydrogenase (6PGD were investigated in the gill, liver and kidney tissues of rainbow trout (Oncorhynchus mykiss. Three test groups of fish were subjected to increasing concentrations (1, 3 and 5 mg/l of cadmium (Cd in vivo, respectively. The G6PD and 6PGD activities in the gill, liver, and kidney tissues of each group of fish were measured on days 1, 3, 5 and 7. G6PD and 6PGD enzyme activities, measured in gill, liver and kidney homogenates, were stimulated by various concentrations (1, 3, and 5 mg/l of cadmium. Although the dose-response pattern of G6PD enzyme activities in liver and kidney tissue was very similar, that in gill was different from both other tissues. The enzyme activity of G6PD enzyme was significantly stimulated after three days (Day 3 in liver and kidney tissues at a dose of 1 mg/l Cd (p p p p p p < 0.05 in liver and kidney tissues at the doses of 3 and 1 mg/l Cd. The stimulation effect of cadmium on the three tissues studied was also calculated; for both of the enzymes (G6PD and 6PGD, the enzyme activity levels were stimulated by approximately 60% and 38% in gills, 68% and 44% in liver, and 67% and 41% in kidneys, respectively, over the base-line enzyme activity of the control groups during the sevenday experimental period. These findings indicate that tissue G6PD and 6PGD enzymes function to protect against cadmium toxicity.

  9. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure...... by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania....... Blood samples from 1959 individuals aged 6 months to 45 years were collected. A total of 415 (21%) and 1181 (60%) samples were analysed for G6PD deficiency and HbS, respectively. Malarial parasite prevalence was 17.2% (114/1959) in the highlands and 39.6% (49/1959) in the lowlands. Lowlands had higher...

  10. Antiplatelet and invasive treatment in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and acute coronary syndrome. The safety of aspirin.

    Science.gov (United States)

    Kafkas, N V; Liakos, C I; Mouzarou, A G

    2015-06-01

    Aspirin is an important drug in acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI). However, its use is contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency (risk for haemolytic anaemia). We report the management of 2 patients with class II G6PD deficiency and non-ST-segment elevation ACS (NSTE-ACS). The two patients were safely and efficiently treated with dual antiplatelet treatment (DAPT, aspirin plus ticagrelor) and PCI using new-generation drug-eluting stent (DES) despite G6PD deficiency. NSTE-ACS management with DAPT and DES is probably safe and effective in class II G6PD-deficient patients. © 2015 John Wiley & Sons Ltd.

  11. In vitro effects of radioactive properties of 99mTc and 99mTc-MDP on human glucose 6-phosphate dehydrogenase activity

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat

    2017-04-01

    The inhibitory effects of Na99mTcO4 (Sodium pertechnetate) and Na99mTcO4-metilendifosfonat (MDP) on human erythrocyte glucose 6-phosphate dehydrogenase (hG6PD) activity were investigated. For this purpose, hG6PD was initially purified 557-fold at a yield of 51.43% using 2',5'-adenosine diphosphate (ADP) sepharose 4B affinity gel chromatography. The in vitro effects of these compounds on hG6PD enzyme were studied. It was detected in in vitro studies that the hG6PD enzyme is inhibited due to Na99mTcO4 and Na99mTcO4-metilendifosfonat (MDP).

  12. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  13. Neonatal screening for sickle cell disease, Glucose-6-PhosphateDehydrogenase deficiency and Alpha-Thalassemia in Qatif and Al-Hasa

    International Nuclear Information System (INIS)

    Nasserullah, Z.; Srair, Hussain Abu; Al-Jame, A.; Mokhtar, M.; Al-Qatari, G.; Al-Naim, S.; Al-Aqib, A.

    1998-01-01

    Screening programs to determine the frequency of sickle cell,glucose-6-phosphate dehydrogenase deficiency and alpha-thalassemia gene areavailable in Saudi Arabia, although not used frequently. Greater use of theseprograms will decrease the morbidity and mortality of Saudi children affectedby these disorders. Neonatal hemoglobin electrophoresis andglucose-6-dehydrogenase fluorescent spot tests were performed on new bornbabies delivered between December 1992 and December 1993 at the Qatif CentralHospital and at the King Fahd Hospital in Al-Hasa. Cord blood samples werecollected from babies born in these two hospitals. Babies born in otherhospitals had blood collected in their first visit to Qatif primary carecenters at the time of vaccination. All specimens were sent to Dammam CentralLaboratory. The diagnosis of sickle cell and alpha-thalassemia was based oncellulose acetate electrophoresis and confirmed by agar gel electrophoresisand glucose-6-phosphate dehydrgenase was confirmed by fluorescent spot test.A total of 12,220 infants, including 11,313 Saudis (92.6%), were screenedover a 12-month period. The common phenotype detected in these infantsincluded AF, SFA, SFA Bart's, FS and FS Bart's. In Saudi infants, homozygoussickle cell disease was detected in 2.35% and 1.08% in Qatif and Al-Hasa,respectively. The frequencies of sickle cell gene were 0.1545% and 0.1109% inQatif and Al-Hasa. Alpha-thalassemia genes based on an elevated level of HbBart's were 28% and 16.3% in Qatif and Al-Hasa. The screening for G6PDdeficiency revealed a high prevalence of 30.6% and 14.7% in Qatif andAl-Hasa. In the non-Saudi infants the frequencies were low. The outcome ofthis study indicates that the Saudi populations in Qatif and Al-Hasa are atrisk for hemoglobinopathies and G6PD. Neonatal screening programs areessential and cost effective and should be maintained as a routine practice.(author)

  14. Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1.

    Science.gov (United States)

    Nguyen, Quoc-Thai; Trinco, Gianluca; Binda, Claudia; Mattevi, Andrea; Fraaije, Marco W

    2017-04-01

    Cofactor F 420 , a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F 420 -dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F 420 -dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F 420 + glucose-6-phosphate → F 420 H 2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F 420 cofactor required for numerous F 420 H 2 -dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F 420 -dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F 420 -dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F 420 H 2 -dependent reductases in industry and bioremediation.

  15. Heinz Bodies Demonstration for Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    Blood samples from 100 apparently healthy individuals were screened for glucose-6-phosphate dehydrogenase (G-6-PD) by the demonstration of Heinz bodies. Results were compared to those obtained by methaemoglobin reduction method which is the existing standard procedure in our laboratory. Heinz bodies were ...

  16. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD-null): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.

    NARCIS (Netherlands)

    P.P. Pandolfi; F. Sonati; R. Rivi; P. Mason; F.G. Grosveld (Frank); L. Luzzatto

    1995-01-01

    textabstractGlucose 6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme encoded in mammals by an X-linked gene. It has important functions in intermediary metabolism because it catalyzes the first step in the pentose phosphate pathway and provides reductive potential in the form of NADPH. In

  17. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  18. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency, and the G6PD Santa Maria and A+ (less severe deficiency (Class I, II and III, respectively affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  19. Dexmedetomidine-based intravenous anesthesia of a pediatric patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency: A case report.

    Science.gov (United States)

    Takahashi, Nanae; Ogawa, Takashi; Wajima, Zen'ichiro; Omi, Akibumi

    2017-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, resulting in deficits in nicotinamide adenine dinucleotide phosphate production, an important intracellular antioxidant enzyme. G6PD-deficient subjects present with a susceptibility of erythrocytes to oxidative stress and hemolysis, and should avoid drugs or stressors that have oxidative actions. Dexmedetomidine is an anesthetic agent with antioxidant actions. A 5-year-old boy with G6PD deficiency. The patient was diagnosed with G6PD deficiency at birth. His red blood cell levels were indicating Class II G6PD activity by the World Health Organization (WHO) classification, but had no history of hemolytic anemia. Because of the patient's anxiety and hyperactivity prior to an operation for upper labial frenum resection, we performed perioperative management using intravenous sedation with dexmedetomidine, which provides upper airway patency and has an antioxidant action. There was no abnormal breathing observed during anesthesia, and arousal was smooth with stable hemodynamics. The patient had no symptoms of hemolytic anemia up to 1 week postsurgery. Antioxidant sedatives such as dexmedetomidine may be useful for reducing the risk of hemolysis after surgery in infant G6PD deficiency cases.

  20. Glucose-6-phosphate dehydrogenase deficiency in an endemic area for malaria in Manaus: a cross-sectional survey in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Marli Stela Santana

    Full Text Available BACKGROUND: There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD deficiency in endemic areas for malaria in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon. Six individuals (3% were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A(-. The deficiency was not associated with the ethnic origin (P = 0.571. In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049, independently of the age, and was associated with a history of jaundice (P = 0.020 and need of blood transfusion (P = 0.045 during previous treatment for malarial infection, independently of the age and the previous malarial exposure. CONCLUSIONS/SIGNIFICANCE: The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A(- variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation.

  1. The role of erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD) deficiency in the pathogenesis of anemia in patients on hemodialysis.

    Science.gov (United States)

    Ali, Elshazali Widaa; Ahmed, Emad Eldean Mohammed

    2013-11-01

    Anemia is a common feature among patients with chronic renal failure (CRF). Low activity of the erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD), which plays a major role in protecting red blood cells against oxidative agents, has been described as one of the contributing factors to anemia in patients with CRF treated with hemodialysis (HD). In this study, blood samples were randomly collected from 65 patients on HD and investigated for G6PD deficiency using the methemoglobin reduction test. The hemoglobin (Hb) concentration, packed cell volume (PCV), red blood cells (RBCs) count and reticulocyte count were determined in all the samples. Our results showed that 39 of 65 patients (60%) on HD had low G6PD activity and 26 (40%) patients had normal activity; 59% of the patients with low G6PD activity were males. The mean Hb, PCV and RBCs counts were lower in patients with low G6PD activity than in those with normal G6PD activity, but the difference was not statistically significant. Likewise, no statistically significant difference was found in the reticulocyte count in patients with low G6PD activity and in those with normal G6PD activity. The low G6PD activity that was found in a large proportion of patients on HD seems to be the result of enzyme inhibition rather than deficiency. No statistically significant difference was found in anemia parameters between patients with and without G6PD deficiency.

  2. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  3. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using γ irradiation to use in biotechnological processes

    International Nuclear Information System (INIS)

    Atia, K.S.

    2005-01-01

    The co-immobilization of cyclohexanone monooxygenase (CHMO) and glucose-6-phosphate dehydrogenase (G6PDH) was optimized by completely coating, via covalent immobilization, the surface aldehyde groups of porous agarose (glyoxyl-agarose) with amine groups of polyethylenimine (PEI). The highest immobilization efficiency (∼87%) (activity of enzyme per amount of immobilized enzyme) was obtained with a CHMO/G6PDH ratio 2:1. The effects of different ratios of the support to the amount of enzymes (CHMO:G6PDH=2:1), the optimum incubation pH and the incubation time on the enzymatic activity of the enzymes were determined and found to be 5:1, 8.5 and 30 min, respectively. Subjecting the co-immobilized enzymes to doses of γ-radiation (5-100 kGy) resulted in complete loss in the activity of the free enzymes at a dose of 40 kGy, while the co-immobilized ones showed relatively high resistance to γ-radiation up to a dose of 50 kGy

  4. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  5. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems.

    Science.gov (United States)

    Gurpilhares, Daniela B; Pessoa, Adalberto; Roberto, Inês C

    2015-07-01

    Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.

  6. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae.

    Science.gov (United States)

    Sacomboio, Euclides Nenga Manuel; Kim, Edson Yu Sin; Correa, Henrique Leonardo Ruchaud; Bonato, Paloma; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Müller-Santos, Marcelo

    2017-10-19

    The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP + ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H 2 O 2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.

  7. Definitive localization of intracellular proteins: Novel approach using CRISPR-Cas9 genome editing, with glucose 6-phosphate dehydrogenase as a model.

    Science.gov (United States)

    Spencer, Netanya Y; Yan, Ziying; Cong, Le; Zhang, Yulong; Engelhardt, John F; Stanton, Robert C

    2016-02-01

    Studies to determine subcellular localization and translocation of proteins are important because subcellular localization of proteins affects every aspect of cellular function. Such studies frequently utilize mutagenesis to alter amino acid sequences hypothesized to constitute subcellular localization signals. These studies often utilize fluorescent protein tags to facilitate live cell imaging. These methods are excellent for studies of monomeric proteins, but for multimeric proteins, they are unable to rule out artifacts from native protein subunits already present in the cells. That is, native monomers might direct the localization of fluorescent proteins with their localization signals obliterated. We have developed a method for ruling out such artifacts, and we use glucose 6-phosphate dehydrogenase (G6PD) as a model to demonstrate the method's utility. Because G6PD is capable of homodimerization, we employed a novel approach to remove interference from native G6PD. We produced a G6PD knockout somatic (hepatic) cell line using CRISPR-Cas9 mediated genome engineering. Transfection of G6PD knockout cells with G6PD fluorescent mutant proteins demonstrated that the major subcellular localization sequences of G6PD are within the N-terminal portion of the protein. This approach sets a new gold standard for similar studies of subcellular localization signals in all homodimerization-capable proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The role of erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD deficiency in the pathogenesis of anemia in patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Elshazali Widaa Ali

    2013-01-01

    Full Text Available Anemia is a common feature among patients with chronic renal failure (CRF. Low activity of the erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD, which plays a major role in protecting red blood cells against oxidative agents, has been described as one of the contributing factors to anemia in patients with CRF treated with hemodialysis (HD. In this study, blood samples were randomly collected from 65 patients on HD and investigated for G6PD deficiency using the methemoglobin reduction test. The hemoglobin (Hb concentration, packed cell volume (PCV, red blood cells (RBCs count and reticulocyte count were determined in all the samples. Our results showed that 39 of 65 patients (60% on HD had low G6PD activity and 26 (40% patients had normal activity; 59% of the patients with low G6PD activity were males. The mean Hb, PCV and RBCs counts were lower in patients with low G6PD activity than in those with normal G6PD activity, but the difference was not statistically significant. Likewise, no statistically significant difference was found in the reticulocyte count in patients with low G6PD activity and in those with normal G6PD activity. The low G6PD activity that was found in a large proportion of patients on HD seems to be the result of enzyme inhibition rather than deficiency. No statistically significant difference was found in anemia parameters between patients with and without G6PD deficiency.

  9. Effect of in vivo ozone exposure to Dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.S.; Calabrese, E.J.; Schulz, E.

    1981-02-01

    Considerable interest has recently been directed to the possible extrapulmonary effects caused by exposure to ambient ozone. As a result of ozone induced in vivo alteration of red cell function within human subjects, it has been hypothesized that individuals with an erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) deficiency would be at increased hemolytic risk to elevated ambient ozone exposure. In order to evaluate such an hypothesis in an experimental setting it would be of great value to have an appropriate animal model with erythrocyte G-6-PD activity similar to the absolute activity range found in the human population. While no such unique animal model is presently known, the literature has revealed that Dorset sheep have an erythrocyte G-6-PD activity comparable in absolute units to a human G-6-PD deficient. Based on this information, we evaluated the mechanisms by which sheep and human G-6-PD deficient red cells handle oxidant stress. We evaluated the effects of in vivo ozone exposure in Dorset sheep over a broad range of concentrations.

  10. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    Energy Technology Data Exchange (ETDEWEB)

    Kaeda, J.S.; Bautista, J.M.; Stevens, D. [Univ. College London Medical School (United Kingdom)] [and others

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  11. Effects of temperature, pH-values and sodium chloride concentrations on the glucose-6-phosphate dehydrogenase activity by thermotolerant Bacillus strains

    Directory of Open Access Journals (Sweden)

    HAZEM AQEL

    2012-01-01

    Full Text Available Thirteen new isolated thermotolerant Bacillus strains and four known Bacillus species were used to evaluate the effect of growth temperature, pH-values and NaCl concentrations on the intracellular glucose-6-phosphate dehydrogenase (G6PDH activity. Results had shown a significant difference in G6PDH production among all species at all used temperatures (p<0.05. The response of individual new isolates and controls for production of G6PDH under growth conditions was variable. The optimal growth conditions did not correspond to the optimal cultivation conditions for maximum G6PDH production. The growth temperature showed the most significant effect on G6PDH activity. The combined effect of temperature and NaCl on the G6PDH activity was strongly pronounced in comparison with the combined effect of temperature and pH or pH and NaCl. Thermal stability at 53ºC and electrophoretic mobility were also investigated. G6PDH from HUTB41 was the most thermostable G6PDH enzyme with T50% of more than 360 minutes. Electrophoretic study demonstrated that G6PDH was composed of two isoenzymes for all strains except B. marinus and B. schlegelii that had three isoenzymes.

  12. Association of glucose-6-phosphate dehydrogenase activity with oocyte cytoplasmic lipid content, developmental competence, and expression of candidate genes in a sheep model.

    Science.gov (United States)

    Mohammadi-Sangcheshmeh, Abdollah; Veshkini, Arash; Hajarizadeh, Athena; Jamshidi-Adegani, Fatemeh; Zhandi, Mahdi; Abazari-Kia, Amir Hossein; Cinar, Mehmet Ulas; Soleimani, Masoud; Gastal, Eduardo L

    2014-08-01

    To evaluate associations of glucose-6-phosphate dehydrogenase (G6PDH) activity in sheep oocytes with cytoplasmic lipid content, maturational competence, developmental competence to the blastocyst stage, and gene expression of certain molecular markers. Before brilliant cresyl blue (BCB) staining test, oocytes were classified as high, middle, and low cytoplasmic lipid content (HCLC, MCLC, and LCLC) and after the test as having low or high G6PDH-activity (BCB(+) and BCB(-), respectively). After maturation in vitro, a group of oocytes were subjected to IVF followed by in vitro embryo culture and another group was used for evaluation of expression of candidate genes. The cleavage and blastosyst rates were lowest (P BCB(+), and higher (P BCB(+) oocytes than the BCB(-) oocytes. Our gene expression data indicated that mRNA transcript abundance of ITGB2, pZP3, BMP15, and GDF9 genes was similar between BCB oocytes groups. However, the expression of ATP1A1 was higher (P BCB(+) oocytes compared to BCB(-) oocytes. In addition, BAX transcript abundance was similar (P > 0.05) among BCB(+), BCB(-), and control groups, before and after maturation in vitro. Activity of G6PDH in sheep oocytes is highly associated with lipid content, and compared with the morphological parameters might be a more precise and objective predictor for subsequent developmental competence in vitro.

  13.  Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors inSana’a City, Yemen

    Directory of Open Access Journals (Sweden)

    Molham AL-Habori

    2012-01-01

    Full Text Available  Objectives: To determine the prevalence of Glucose-6-phosphatedehydrogenase (G-6-PD deficiency among Yemeni people fromdifferent regions of the country living in the capital city, Sana’a,giving an indication of its overall prevalence in Yemen.Methods: A cross-sectional study was conducted among Yemenimale blood donors attending the Department of Blood Bank atthe National Centre of the Public Health Laboratories in thecapital city, Sana’a, Yemen. Fluorescent spot method was used forscreening, spectrophotometeric estimation of G-6-PD activityand separation by electrophoresis was done to determine the G-6-PD phenotype.Results: Of the total 508 male blood donors recruited into thestudy, 36 were G-6-PD deficient, giving a likely G-6-PD deficiencyprevalence of 7.1�20None of these deficient donors had history ofanemia or jaundice. Thirty-five of these deficient cases (97.2�howed severe G-6-PD deficiency class II (<10�0of normalactivity, and their phenotyping presumptively revealed a G-6-PDMediterraneanvariant.Conclusion: The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiencytype in these blood donors in Sana’a City, which could representan important health problem through occurrence of hemolyticanemia under oxidative stress. A larger sample size is needed todetermine the overall prevalence of G-6-PD deficiency, and shouldbe extended to include DNA analysis to identify its variants in Yemen.

  14. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... certain chemicals in food or medicine, or to stress. Symptoms are more common in men and may include: Dark urine Enlarged spleen Fatigue Pallor Rapid heart rate Shortness of breath Yellow skin color ( jaundice ) Exams and Tests A blood test can be done ...

  15. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    Directory of Open Access Journals (Sweden)

    Landry Losi

    2010-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration.

  16. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency.

    Science.gov (United States)

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Junkree, Thanyaphorn; Day, Nicholas P J; White, Nicholas J; Imwong, Mallika

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. It is responsible for various clinical manifestations, including favism, hemolytic anemia, chronic non-spherocytic hemolytic anemia, spontaneous abortion, and neonatal hyperbilirubinemia. Understanding the molecular mechanisms underlying the severity of G6PD deficiency is of great importance but that of many G6PD variants are still unknown. In this study, we report the construction, expression, purification, and biochemical characterization in terms of kinetic properties and stability of five clinical G6PD variants-G6PD Bangkok, G6PD Bangkok noi, G6PD Songklanagarind, G6PD Canton+Bangkok noi, and G6PD Union+Viangchan. G6PD Bangkok and G6PD Canton+Bangkok noi showed a complete loss of catalytic activity and moderate reduction in thermal stability when compared with the native G6PD. G6PD Bangkok noi and G6PD Union+Viangchan showed a significant reduction in catalytic efficiency, whereas G6PD Songklanagarind showed a catalytic activity comparable to the wild-type enzyme. The Union+Viangchan mutation showed a remarkable effect on the global stability of the enzyme. In addition, our results indicate that the location of mutations in G6PD variants affects their catalytic activity, stability, and structure. Hence, our results provide a molecular explanation for clinical manifestations observed in individuals with G6PD deficiency. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Dengue virus type 2 (DENV2-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD-deficient and G6PD normal subjects.

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Al-Alimi

    2014-03-01

    Full Text Available BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. METHODOLOGY: Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO, superoxide anions (O2-, and oxidative stress were determined and compared with normal controls. PRINCIPAL FINDINGS: Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2- in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2- were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. CONCLUSIONS/SIGNIFICANCE: Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.

  18. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report

    Science.gov (United States)

    2013-01-01

    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here. PMID:23537118

  19. Genetic polymorphisms in paraoxonase 1 and G protein-coupled receptor 77, and the risk of glucose-6-phosphate dehydrogenase deficiency in a Saudi population

    Science.gov (United States)

    Alharbi, Khalid K.

    2015-01-01

    Objectives: To investigate the role of amino acid substitution variants Q192R and C698T in the development of glucose-6-phosphate dehydrogenase (G6PD) deficiency in a Saudi male population. Methods: This case-control study was carried out in 200 Saudi male individuals: 100 patients with G6PD deficiency, and 100 control subjects collected between July and August 2011 in the Taif region of Saudi Arabia. A total of 2100 male Saudi individuals were screened by a fluorescence spot test, and 100 with G6PD deficiency were selected. Two common variants PON1 (rs662) and C5L2 (rs149572881) were genotyped using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: The results showed that the R allele and QR genotype were associated with the Q192R polymorphism in PON1 (R versus Q odds ratio [OR], 1.72; 95% confidence interval [95% CI], 1.1-2.6; p=0.01; and QR versus QQ: OR, 1.98; 95% CI, 1.1-3.6; p=0.02). All the C698T genotypes and allele frequencies in C5L2 were almost similar in both the cases and controls (CT versus CC: OR, 2.04; 95% CI, 0.3-11.4; p=0.40; and T versus C: OR, 2.02; 95% CI, 0.3-11.1; p=0.41). Conclusions: These findings suggest the association of PON1 with G6PD deficiency in the Saudi male population studied herein. Future studies, including correlation analyses between the clinical features and genotypes in populations of different ethnicities, are warranted to confirm the disease association with these genetic mutations. PMID:25935173

  20. First evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in vivax malaria endemic regions in the Republic of Korea.

    Science.gov (United States)

    Goo, Youn-Kyoung; Ji, So-Young; Shin, Hyun-Il; Moon, Jun-Hye; Cho, Shin-Hyung; Lee, Won-Ja; Kim, Jung-Yeon

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK). Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test) were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  1. Red cell glucose 6-phosphate dehydrogenase deficiency in the northern region of Turkey: is G6PD deficiency exclusively a male disease?

    Science.gov (United States)

    Albayrak, Canan; Albayrak, Davut

    2015-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive genetic defect that can cause hemolytic crisis. However, this disease affects both males and females. In Turkey, the frequency of this enzyme deficiency was reported to vary, from 0.25 to 18%, by the geographical area. Its prevalence in the northern Black Sea region of Turkey is unknown. The aims of this study were to assess the prevalence of G6PD deficiency in the northern region Turkey in children and adults with hyperbilirubinemia and hemolytic anemia. This report included a total of 976 G6PD enzyme results that were analyzed between May 2005 and January 2014. G6PD deficiency was detected in 5.0% of all patients. G6PD deficiency was significantly less frequent in females (1.9%, 6/323) than in males (6.6%, 43/653). G6PD deficiency was detected in 3.7% of infants with hyperbilirubinemia, 9.2% of children, and 4.5% of adults with hemolytic anemia. In both the newborn group and the group of children, G6PD deficiency was significantly more frequent in males. In the combined group of children (groups I and II), the proportion of males was 74% and 67% in all groups (P = .0008). In conclusion, in northern region of Turkey, G6PD deficiency is an important cause of neonatal hyperbilirubinemia and hemolytic crisis in children and adults. This study suggests that most pediatricians thought that G6PD deficiency is exclusively a male disease. For this reason, some female patients may have been undiagnosed.

  2. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation.

    Science.gov (United States)

    Zhao, Chengzhou; Wang, Xiaomin; Wang, Xiaoyu; Wu, Kunlun; Li, Ping; Chang, Ning; Wang, Jianfeng; Wang, Feng; Li, Jiaolong; Bi, Yurong

    2015-06-01

    In this study, a new mechanism involving glucose-6-phosphate dehydrogenase (G6PDH) and alternative pathways (AP) in salt pretreatment-induced tolerance of highland barley to UV-B radiation was investigated. When highland barley was exposed to UV-B radiation, the G6PDH activity decreased but the AP capacity increased. In contrast, under UV-B+NaCl treatment, the G6PDH activity was restored to the control level and the maximal AP capacity and antioxidant enzyme activities were reached. Glucosamine (Glucm, an inhibitor of G6PDH) obviously inhibited the G6PDH activity in highland barley under UV-B + NaCl treatment and a similar pattern was observed in reduced glutathione (GSH) and ascorbic acid (Asc) contents. Similarly, salicylhydroxamic acid (SHAM, an inhibitor of AOX) significantly reduced the AP capacity in highland barley under UV-B + NaCl treatment. The UV-B-induced hydrogen peroxide (H2O2) accumulation was also followed. Further studies indicated that non-functioning of G6PDH or AP under UV-B+NaCl + Glucm or UV-B + NaCl + SHAM treatment also caused damages in photosynthesis and stomatal movement. Western blot analysis confirmed that the alternative oxidase (AOX) and G6PDH were dependent each other in cross tolerance to UV-B and salt. The inhibition of AP or G6PDH activity resulted in a significant accumulation or reduction of NADPH content, respectively, under UV-B+NaCl treatment in highland barley leaves. Taken together, our results indicate that AP and G6PDH mutually regulate and maintain photosynthesis and stomata movement in the cross adaptation of highland barley seedlings to UV-B and salt by modulating redox homeostasis and NADPH content. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report.

    Science.gov (United States)

    von Seidlein, Lorenz; Auburn, Sarah; Espino, Fe; Shanks, Dennis; Cheng, Qin; McCarthy, James; Baird, Kevin; Moyes, Catherine; Howes, Rosalind; Ménard, Didier; Bancone, Germana; Winasti-Satyahraha, Ari; Vestergaard, Lasse S; Green, Justin; Domingo, Gonzalo; Yeung, Shunmay; Price, Ric

    2013-03-27

    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.

  4. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females.

    Science.gov (United States)

    Peters, Anna L; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M M; Vlaar, Alexander P J; van Bruggen, Robin; de Korte, Dirk; Van Noorden, Cornelis J F; van Zwieten, Rob

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.

  5. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shukla Shreya

    2011-10-01

    Full Text Available Abstract Background Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. Results Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. Conclusions Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off

  6. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  7. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    Directory of Open Access Journals (Sweden)

    Theander Thor G

    2005-12-01

    Full Text Available Abstract Background Mutations in the haemoglobin beta-globin (HbB and glucose-6-phosphate dehydrogenase (G6PD genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority of these deficiencies. Examining at a larger scale the clinical importance of these independent genetic disorders, their possible association with malaria pathogenesis and innate resistance, and their relevance for antimalarial drug treatment, would be easier if an accurate screening method with limited costs was available. Methods A simple and rapid technique was developed to detect the most prominent single nucleotide polymorphisms (SNPs in the HbB and G6PD genes. The method is able to detect the different haemoglobin polymorphisms A, S, C and E, as well as G6PD polymorphisms B, A and A- based on PCR-amplification followed by a hybridization step using sequence-specific oligonucleotide probes (SSOPs specific for the SNP variants and quantified by ELISA. Results The SSOP-ELISA method was found to be specific, and compared well to the commonly used PCR-RFLP technique. Identical results were obtained in 98% (haemoglobin and 95% (G6PD of the tested 90 field samples from a high-transmission area in Tanzania, which were used to validate the new technique. Conclusion The simplicity and accuracy of the new methodology makes it suitable for application in settings where resources are limited. It would serve as a valuable tool for research purposes by monitoring genotype frequencies in relation to disease epidemiology.

  8. Survey of the Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD Deficiency in Admitted Men for Premarriage Tests in Zahedan-Iran Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Nakhaee Ali Reza

    2009-09-01

    Full Text Available Background: GLucose-6-phosphate dehydrogenase (G6PD deficiency is the most common known enzymopathy in human. G6PD deficiency is usually asymptomatic, however, deficient individuals are at increased risk of developing acute hemolytic anemia and hyperbilirubinemia following intake of oxidative agents and fava. The objective of present study was to detect prevalence of G6PD deficiency in admitted males for premarriage tests in Zahedan Reference Laboratory. Also, we compared blood indices of normal and G6PD deficient individuals.Materials and Methods: This descriptive study was carried out on 1340 admitted males in Zahedan Reference Laboratory from February 2008 to March 2009. G6PD activity was determined in EDTA containing blood samples by qualitative fluorescence spot test, then G6PD deficiency was confirmed by quantitative spectrophotometric method. Total leukocyte count and RBC indices of G6PD deficient samples and the same number of normal samples were compared. The differences between two groups were compared using Sigmaplot software and t-Student test. A P-value less than 0.05 was considered statistically significant.Results: G6PD deficiency was found in 84 individuals of total 1340 by fluorescence spot test and confirmed in 79 by quantitative method. Therefore, prevalence of G6PD deficiency in Zahedan was estimated to be 5.9%. Comparison of deficient and normal individuals did not show significant difference in WBC count, RBC count, hemoglobin concentration, hematocrit, mean corpuscular hemoglobin (MCH and RDW-SD. However, mean corpuscular volume (MCV was significantly high and mean corpuscular hemoglobin concentration (MCHC and RDW-CV were significantly low in G6PD deficient individuals compared to those with normal enzyme level.Discussion: Present study revealed that the prevalence of G6PD deficiency in Zahedan is 5.9%. Severity of G6PD deficiency in quantitative assay indicated that class I and II are probably dominant variants in

  9. Prevalence of glucose-6-phosphate dehydrogenase (G6PD defiiency in malaria endemic region of Iran (Sistan and Baluchestan Province: Epidemiological profie and trends over time

    Directory of Open Access Journals (Sweden)

    Alireza Ansari-Moghaddam

    2017-10-01

    Full Text Available Objective: To estimate the prevalence of glucose-6-phosphate dehydrogenase (G6PD deficiency in a malarious region of Sistan and Baluchestan Province in south-east of Iran. Methods: A total of 2 997 subjects were selected through a multistage random sampling method from 14 districts of the province. Data were collected by trained interviewers and blood samples taken on filter papers by lab technicians. Filter papers were examined for deficiency of G6PD using the fluorescent spot test. Results: The combined prevalence rate of partial or severe G6PD deficiency was 12% (95% CI: 10.9–13.3 among participants. Prevalence of G6PD deficiency differed by sex, age and residency of participants. Ratio of male to female with G6PD deficiency was 1.4. Age-groups of 40–49 years [13.4% (95% CI: 10.3–17.1] and 50–59 years [13.8% (95% CI: 10.7–17.5] had the highest prevalence of G6PD deficiency in comparison to newborns with prevalence lower than 10% [8.40% (95% CI: 4.4–14.3]. The prevalence rates of G6PD deficiency varied from 3.30% (95% CI: 1.4–6.7 in Zahedan to 17.9% (95% CI: 13.8–22.4 in Chabahar. Conclusions: The present study provided valuable data for health policy makers and those who are involved in malaria elimination program.

  10. First evaluation of glucose-6-phosphate dehydrogenase (G6PD deficiency in vivax malaria endemic regions in the Republic of Korea.

    Directory of Open Access Journals (Sweden)

    Youn-Kyoung Goo

    Full Text Available BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK. METHODS: Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. RESULTS: Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. CONCLUSIONS: No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  11. Nine different glucose-6-phosphate dehydrogenase (G6PD) variants in a Malaysian population with Malay, Chinese, Indian and Orang Asli (aboriginal Malaysian) backgrounds.

    Science.gov (United States)

    Wang, Jichun; Luo, Enjie; Hirai, Makoto; Arai, Meiji; Abdul-Manan, Eas; Mohamed-Isa, Zaleha; Hidayah, Ni; Matsuoka, Hiroyuki

    2008-10-01

    The Malaysian people consist of several ethnic groups including the Malay, the Chinese, the Indian and the Orang Asli (aboriginal Malaysians). We collected blood samples from outpatients of 2 hospitals in the State of Selangor and identified 27 glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects among these ethnic groups. In the Malay, G6PD Viangchan (871GA, 1311CT, IVS11 nt93TC) and G6PD Mahidol (487GA) types, which are common in Cambodia and Myanmar, respectively, were detected. The Malay also had both subtypes of G6PD Mediterranean:the Mediterranean subtype (563CT, 1311CT, IVS11 nt93TC) and the Indo-Pakistan subtype (563CT, 1311C, IVS11 nt93T). In Malaysians of Chinese background, G6PD Kaiping (1388GA), G6PD Canton (1376GT) and G6PD Gaohe (95AG), which are common in China, were detected. Indian Malaysians possessed G6PD Mediterranean (Indo-Pakistan subtype) and G6PD Namoru (208TC), a few cases of which had been reported in Vanuatu and many in India. Our findings indicate that G6PD Namoru occurs in India and flows to Malaysia up to Vanuatu. We also discovered 5 G6PD-deficient cases with 2 nucleotide substitutions of 1311CT and IVS11 nt93TC, but without amino-acid substitution in the G6PD molecule. These results indicate that the Malaysian people have incorporated many ancestors in terms of G6PD variants.

  12. INFLUENCE OF pH, TEMPERATURE AND DISSOLVED OXYGEN CONCENTRATION ON THE PRODUCTION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE AND INVERTASE BY Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    J. Abrahão-Neto

    1997-03-01

    Full Text Available The effect of pH (from 4.0 to 5.0, temperature (T (from 30 oC to 40 oC and dissolved oxygen concentration (DO (from 0.2 to 6.0 mg O2/L on glucose 6-phosphate dehydrogenase (G6PDH (EC 1.1.1.49 and Invertase (EC 3.2.1.26 formation by S. cerevisiae were studied. The best culture conditions for G6PDH and Invertase formation were: 2.55 L culture medium (yeast extract, 3.0 g/L; 5peptone, 5.0 g/L; glucose, 2.0 g/L; sucrose, 15.0 g/L; Na2HPO4.12 H2O, 2.4 g/L; (NH42SO4, 5.1 g/L and MgSO4. 7H2O, 0.075 g/L; 0.45 L inoculum (0.70 g dry cell/L; pH = 4.5; T = 35 oC and DO = 4.0 mg/L. G6PDH was highly sensitive to pH, T and DO variation. The increase in G6PDH production was about three times when the DO ranged from 0.2 to 4.0 mg O2/L. Moreover, by shifting pH from 5.0 to 4.5 and temperature from 30 oC to 35 oC, G6PDH formation increased by 57% and 70%, respectively. Invertase activity (IA of whole cells decreased at least 50% at extremes values of DO (2.0 and 6.0 mg O2/L and pH (4.0 and 5.0. Furthermore, IA oscillated during the fermentation due to the glucose repression/derepression mechanism

  13. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  14. High prevalence of hemoglobin disorders and glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Republic of Guinea (West Africa).

    Science.gov (United States)

    Millimono, Tamba S; Loua, Kovana M; Rath, Silvia L; Relvas, Luis; Bento, Celeste; Diakite, Mandiou; Jarvis, Martin; Daries, Nathalie; Ribeiro, Leticia M; Manco, Licínio; Kaeda, Jaspal S

    2012-01-01

    Reliable and accurate epidemiological data is a prerequisite for a cost effective screening program for inherited disorders, which however, is lacking in a number of developing countries. Here we report the first detailed population study in the Republic of Guinea, a sub-Saharan West African country, designed to assess the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies, including screening for thalassemia. Peripheral blood samples from 187 Guinean adults were screened for hemoglobin (Hb) variants by standard hematological methods. One hundred and ten samples from males were screened for G6PD deficiency by the fluorescent spot test. Molecular analysis was performed for the most common α-thalassemia (α-thal) deletions, β-globin gene mutations, G6PD variants B (376A), A (376G), A- (376G/202A) and Betica (376G/968C), using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) or sequencing. Of the 187 subjects screened, 36 were heterozygous for Hb S [β6(A3)Glu→Val, GAG>GTG] (allele frequency 9.62%). Sixty-four subjects were heterozygous and seven were homozygous for the -α(3.7) kb deletion (allele frequency 20.85%). β-Thalassemia alleles were detected in five subjects, four with the -29 (A>G) mutation (allele frequency 1.07%) and one with codon 15 (TGG>TAG) (allele frequency 0.96%). The G6PD A- and G6PD Betica deficient variants were highly prevalent with a frequency of 5.7 and 3.3%, respectively. While we did not test for ferritin levels or α(0)-thal, four females (5.2%) had red cell indices strongly suggestive of iron deficient anemia: Hb 19.8%. Our results are consistent with high frequency of alleles such as Hb S, α-thal and G6PD deficient alleles associated with malaria resistance. Finding a 9.6% Hb S allele frequency supports the notion for a proficient neonatal screening to identify the sickle cell patients, who might benefit from early prophylactic treatment for infections. The

  15. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia

    Science.gov (United States)

    He, Lijun; Li, Qing; Wu, Yanrui; Luo, Lan; Li, Hong; Ma, Limei; Yang, Zhaoqing; He, Yongshu; Cui, Liwang

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, β26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (G6PD deficiency (>1.2–4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria. PMID:28531196

  16. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Van Malderen Carine

    2012-07-01

    Full Text Available Abstract Background Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA was a promising artemisinin-based combination therapy (ACT, but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children Methods This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases within the first four days (days 0, 1, 2, and 3, were compared with those without an Hb drop (controls. Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. Results G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117 in cases and 6.8% (16/234 in controls (p = 0.56. The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR: 0.81; p = 0.76 or CDA treatment (AOR: 1.28; p = 0.37 alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25 of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals

  17. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

    Science.gov (United States)

    2012-01-01

    Background Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria. Methods This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. Results G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G

  18. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Zeshuai Deng

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency and hemoglobin E (HbE, β26 Glu-Lys are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (1.2-4.5 U/g Hb. Among the 24 G6PD-deficient subjects, 22 (92% had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes, while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females, including 15 HbEE (seven males and eight females and 24 HbAE (13 males and 11 females. Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE. Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria.

  19. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

    Science.gov (United States)

    Uyoga, Sophie; Ndila, Carolyne M; Macharia, Alex W; Nyutu, Gideon; Shah, Shivang; Peshu, Norbert; Clarke, Geraldine M; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N

    2015-01-01

    Summary Background The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. Methods We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3–12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category. Findings 2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant

  20. Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials

    Directory of Open Access Journals (Sweden)

    Duparc Stephan

    2011-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD deficiency is common in populations living in malaria endemic areas. G6PD genotype and phenotype were determined for malaria patients enrolled in the chlorproguanil-dapsone-artesunate (CDA phase III clinical trial programme. Methods Study participants, aged > 1 year, with microscopically confirmed uncomplicated Plasmodium falciparum malaria, and haemoglobin ≥ 70 g/L or haematocrit ≥ 25%, were recruited into two clinical trials conducted in six African countries (Burkina Faso, Ghana, Kenya, Nigeria, Tanzania, Mali. G6PD genotype of the three most common African forms, G6PD*B, G6PD*A (A376G, and G6PD*A- (G202A, A542T, G680T and T968C, were determined and used for frequency estimation. G6PD phenotype was assessed qualitatively using the NADPH fluorescence test. Exploratory analyses investigated the effect of G6PD status on baseline haemoglobin concentration, temperature, asexual parasitaemia and anti-malarial efficacy after treatment with CDA 2/2.5/4 mg/kg or chlorproguanil-dapsone 2/2.5 mg/kg (both given once daily for three days or six-dose artemether-lumefantrine. Results Of 2264 malaria patients enrolled, 2045 had G6PD genotype available and comprised the primary analysis population (1018 males, 1027 females. G6PD deficiency prevalence was 9.0% (184/2045; 7.2% [N = 147] male hemizygous plus 1.8% [N = 37] female homozygous, 13.3% (273/2045 of patients were heterozygous females, 77.7% (1588/2045 were G6PD normal. All deficient G6PD*A- genotypes were A376G/G202A. G6PD phenotype was available for 64.5% (1319/2045 of patients: 10.2% (134/1319 were G6PD deficient, 9.6% (127/1319 intermediate, and 80.2% (1058/1319 normal. Phenotype test specificity in detecting hemizygous males was 70.7% (70/99 and 48.0% (12/25 for homozygous females. Logistic regression found no significant effect of G6PD genotype on adjusted mean baseline haemoglobin (p = 0.154, adjusted mean baseline temperature (p = 0

  1. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...... and a low-affinity binding site with Ka2 2.9 +/- 1.1 x 10(8) L.mol-1 and MBC2 124.7 +/- 22.1 fmol/mg DNA (n = 6). Incubation of cells with 6 nmol/L T3 for 20 hours reduced NBT3 to 62.2% +/- 15.7% (P less than .01, n = 11). The Ka estimated from kinetic studies was reduced to 6.7 x 10(7) L.mol-1......, and the scatchard plots were linear, with Ka 4.5 +/- 1.6 x 10(8) L.mol-1 and MBC 137.0 +/- 44.6 fmol/mg DNA (n = 3) of the same magnitude as the low-affinity binding site in cells incubated without T3 (NS). The reduction in NBT3 was reversible and maximal at T3 concentrations saturating the high-affinity binding...

  2. Prevalence of Sickle Cell Trait and Glucose 6 Phosphate ...

    African Journals Online (AJOL)

    Blood donation from sickle cell trait (SCT) and glucose-6-phosphate dehydrogenase (G6PD)-deficient donors might alter the quality of the donated blood during processing, storage or in the recipients' circulatory system. The aim of this study was to determine the prevalence of SCT and G6PD deficiency among blood ...

  3. Comparative analysis of glucose-6-phosphate dehydrogenase levels in pre-term and term babies delivered at University of Ilorin Teaching Hospital, Nigeria

    Directory of Open Access Journals (Sweden)

    Temitope Olorunsola Obasa

    2012-03-01

    Full Text Available Glucose-6-phosphate (G6P is an enzyme in the hexose monophosphate shunt required for the production of reducing equivalents needed to mop up free radicals. thereby keeping hemoglobin in its free state. Deficiency of the enzyme can cause severe neonatal jaundice. The aim of this study was to compare G6PD levels in pre-term and term babies, and evaluate the extent to which G6PD deficiency determines the severity of jaundice in various gestational age groups. Samples of cord blood collected from consecutively delivered babies in the University of Ilorin Teaching Hospital, Nigeria, were assayed for G6PD levels, and the babies were observed for jaundice during the first week of life. Those who developed jaundice had serial serum bilirubin measured. Nine hundred and thirty-three babies had G6PD assayed, with 348 being G6PD deficient, giving a hospital based prevalence of 37.3%. Of the 644 who were followed up, 143 (22.2% were pre-term and 501(77.8% were term babies. Babies with gestational age (GA 27-29 weeks had the highest G6PD levels. However, there was no significant variation among the different gestational age groups (F=0.64, P=0.64. Jaundice occurred more in pre-term compared to term babies with a relative risk of 2.41 (χ2=60.95, P=0.00001. Occurrence of jaundice in pre-term babies was irrespective of G6PD status (χ2=0.2, P=0.66, RR=1.09, CI=0.83

  4. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    Science.gov (United States)

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  5. Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose-6-phosphate dehydrogenase and suppression of malic enzyme and lipogenesis.

    Science.gov (United States)

    Yoshimoto, K; Nakamura, T; Ichihara, A

    1983-10-25

    In primary cultured hepatocytes of adult rats epidermal growth factor (EGF) caused 2- to 3-fold induction of glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6P dehydrogenase) within 2 days. The effect of EGF was additive with a similar effect of insulin. The half-maximum dose of EGF for the induction was 1 ng/ml. Induction of this enzyme by these hormones was shown by immunotitration to be due to increase of the amount of enzyme. Furthermore, this increase in the amount of enzyme was found to result from increase of syntheses of mRNA and enzyme protein. In contrast, the induction of malic enzyme (EC 1.1.1.40, L-malate:NADP+) oxidoreductase) by insulin plus triiodothyronine was strongly suppressed by the concomitant addition of EGF. Induction of G6P dehydrogenase by EGF, like that by insulin, was not suppressed by either glucagon or dibutyryl cAMP, whereas that of malic enzyme was suppressed additively by EGF and dibutyryl cAMP. EGF also suppressed stimulation of lipogenesis by insulin, measured as incorporation of [1-14C]acetate into triglycerides and phospholipids. Another difference between the inductions of G6P dehydrogenase and malic enzyme was in their dependence on cell density; G6P dehydrogenase induction by insulin and EGF was high at low cell density (3 X 10(4) cells/cm2) and less at higher cell density (13 X 10(4) cells/cm2), whereas induction of malic enzyme was high at higher cell density and less at lower cell density. These results are consistent with the dual role of G6P dehydrogenase in lipogenesis in resting cells and in synthesis of nucleic acid in growing cells. Malic enzyme plays a role only for lipogenesis in mature hepatocytes.

  6. Co-production of hydrogen and ethanol from glucose inEscherichia coliby activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd).

    Science.gov (United States)

    Sundara Sekar, Balaji; Seol, Eunhee; Park, Sunghoon

    2017-01-01

    Biologically, hydrogen (H 2 ) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H 2 production yield is unsatisfactorily low as glucose. To address this challenge, simultaneous production of H 2 and ethanol has been suggested. Co-production of ethanol and H 2 requires enhanced formation of NAD(P)H during catabolism of glucose, which can be accomplished by diversion of glycolytic flux from the Embden-Meyerhof-Parnas (EMP) pathway to the pentose-phosphate (PP) pathway in Escherichia coli . However, the disruption of pgi ( p hospho g lucose i somerase) for complete diversion of carbon flux to the PP pathway made E. coli unable to grow on glucose under anaerobic condition. Here, we demonstrate that, when glucose-6-phosphate dehydrogenase (Zwf) and 6-phosphogluconate dehydrogenase (Gnd), two major enzymes of the PP pathway, are homologously overexpressed, E. coli Δ pgi can recover its anaerobic growth capability on glucose. Further, with additional deletions of Δ hycA , Δ hyaAB , Δ hybBC , Δ ldhA , and Δ frdAB , the recombinant Δ pgi mutant could produce 1.69 mol H 2 and 1.50 mol ethanol from 1 mol glucose. However, acetate was produced at 0.18 mol mol -1 glucose, indicating that some carbon is metabolized through the Entner-Doudoroff (ED) pathway. To further improve the flux via the PP pathway, heterologous zwf and gnd from Leuconostoc mesenteroides and Gluconobacter oxydans , respectively, which are less inhibited by NADPH, were overexpressed. The new recombinant produced more ethanol at 1.62 mol mol -1 glucose along with 1.74 mol H 2  mol -1 glucose, which are close to the theoretically maximal yields, 1.67 mol mol -1 each for ethanol and H 2 . However, the attempt to delete the ED pathway in the Δ pgi mutant to operate the PP pathway as the sole glycolytic route, was unsuccessful. By deletion of pgi and overexpression of heterologous zwf and gnd in E. coli Δ hyc

  7. Combined Effect of L-Cysteine and Vitamin E Injected Pre-Irradiation on Glucose-6-Phosphate Dehydrogenase Activity and Certain products of Glycolysis in Blood of Female Rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.; Kafafy, Y.A.; Ashry, O.M.

    1999-01-01

    The present work aims to evaluate the protective limits of L-cysteine and vitamin E combination against deleterious effects of gamma radiation on glucose-6-phosphate dehydrogenase activity, liver glycogen, blood glucose, pyruvic and lactic acids and their correlations in adult female rats. Mature female white rats were divided into four groups: 1- Control group. 2- Whole body gamma irradiated group at a dose level two Gy. 3-Group injected with 120 mg/100 g b.wt. L-cysteine+10 mg/100 g b.wt. vitamin E. 4- Group injected with cysteine+ vitamin E one hour before irradiation at 2 Gy dose level. Results revealed that combined administration of cysteine and vitamin E before gamma-irradiation have accelerated the radiation injury on liver glycogen, plasma glucose and G 6 Pd activity, while they showed a protective effect on lactic and pyruvic acids. This could be due to different mechanisms or a biphasic mechanism related to hormonal (like E 2 , T 3 and insulin), enzymatic or metabolic (e.g. oxidation/reduction, catabolic, anabolic factors) control

  8. Use of a simplified spectrophotometric method for quantitative determination of glucose-6-phosphate dehydrogenase activity in normal children from two day-care centers of the city of São Paulo

    Directory of Open Access Journals (Sweden)

    Roberto Muller

    2003-06-01

    Full Text Available Objective: To evaluate the applicability of a simplified method forquantitative determination of glucose-6-phosphate dehydrogenaseactivity in normal children; to determine the mean, standarddeviation and threshold value under which the enzyme activity isconsidered deficient. Methods: Blood samples were collected from201 children from two day-care centers in the city of São Paulo.The subjects were considered normal based on physicalexamination and laboratory tests. The enzyme activity wasdetermined in red blood cells of normal children using the “TestCombination G-6-PDH®” kit. The following statistical analyses werecarried out: the results were submitted to Student’s t test,Kolmogorov-Smirnov test, lower confidence interval (one-tailedtest and Spearman’s correlation coefficient. Results: The meanhemoglobin value for girls was slightly higher than the mean valuefor boys, but this difference was not statistically significant. Therewas no statistical difference in mean enzyme activities for Caucasianand non-Caucasian children. There was no significant correlation amongenzyme activity levels, red blood cells, hemoglobin levels,hematocrit, reticulocytes, white blood cells and age of patients.The mean enzyme activity for boys was 4.448 U/g Hb, standarddeviation = 1.380 U/g Hb. For girls, the mean enzyme activity was4.531 U/g Hb, standard deviation = 1.386 U/g Hb, and the differencewas not statistically significant. Therefore, the two populationgroups were considered as one single population, presenting amean enzyme activity of 4.490 U/g Hb, standard deviation = 1.380 U/g Hb.Since the distribution curve of enzyme activity values was normal,a lower confidence interval was determined (one-tailed test, witha cutoff point of 2.227 U/g Hb. Conclusion: The method used bySolem proved to be simple, fast, very accurate and useful to detectglucose-6-phosphate dehydrogenase activity and to identifychildren with enzyme deficiency.

  9. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism.

    Science.gov (United States)

    Chen, Tzu-Ling; Yang, Hung-Chi; Hung, Cheng-Yu; Ou, Meng-Hsin; Pan, Yi-Yun; Cheng, Mei-Ling; Stern, Arnold; Lo, Szecheng J; Chiu, Daniel Tsun-Yee

    2017-01-12

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A 2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.

  10. Risks of Hemolysis in Glucose-6-Phosphate Dehydrogenase Deficient Infants Exposed to Chlorproguanil-Dapsone, Mefloquine and Sulfadoxine-Pyrimethamine as Part of Intermittent Presumptive Treatment of Malaria in Infants.

    Science.gov (United States)

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus; Alifrangis, Michael; Carneiro, Ilona; Hashim, Ramadhan; Baraka, Vito; Mosha, Jacklin; Gesase, Samwel; Chandramohan, Daniel; Gosling, Roland

    2015-01-01

    Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi) antimalarial regimens. We sought to examine the joint effects of G6PD status and IPTi antimalarial treatment on incidence of hemolysis in asymptomatic children treated with CD, sulfadoxine-pyrimethamine (SP), and mefloquine (MQ). A secondary analysis of data from a double-blind, placebo-controlled trial of IPTi was conducted. Hemoglobin (Hb) measurements were made at IPTi doses, regular follow-up and emergency visits. G6PD genotype was determined at 9 months looking for SNPs for the A- genotype at coding position 202. Multivariable linear and logistic regression models were used to examine hemolysis among children with valid G6PD genotyping results. Hemolysis was defined as the absolute change in Hb or as any post-dose Hb <8 g/dL. These outcomes were assessed using either a single follow-up Hb on day 7 after an IPTi dose or Hb obtained 1 to 14 or 28 days after each IPTi dose. Relative to placebo, CD reduced Hb by approximately 0.5 g/dL at day 7 and within 14 days of an IPTi dose, and by 0.2 g/dL within 28 days. Adjusted declines in the CD group were larger than in the MQ and SP groups. At day 7, homo-/hemizygous genotype was associated with higher odds of Hb <8 g/dL (adjusted odds ratio = 6.7, 95% CI 1.7 to 27.0) and greater absolute reductions in Hb (-0.6 g/dL, 95% CI -1.1 to 0.003). There was no evidence to suggest increased reductions in Hb among homo-/hemizygous children treated with CD compared to placebo, SP or MQ. While treatment with CD demonstrated greater reductions in Hb at 7 and 14 days after an IPTi dose compared to both SP and MQ, there was no evidence that G6PD deficiency exacerbated the adverse effects of CD, despite evidence for higher hemolysis risk among G6PDd infants.

  11. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    Science.gov (United States)

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  12. Deficiencia de glucosa 6-fostato deshidrogenasa en hombres sanos y en pacientes maláricos; Turbo (Antioquia, Colombia Deficiency of glucose-6-phosphate dehydrogenase in healthy men and malaria patients; Turbo (Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Carmona-Fonseca

    2008-06-01

    Full Text Available INTRODUCCIÓN: En América Latina la deficiencia de glucosa 6-fosfato deshidrogenasa (d-G6PD ha sido poco estudiada y en Colombia solo conocemos tres publicaciones antiguas. Urge conocer más la prevalencia de d-G6PD, sobre todo ahora que el tratamiento de la malaria vivax plantea aumentar la dosis diaria o total de primaquina. OBJETIVO: Medir la prevalencia de d-G6PD en poblaciones masculina sana y de enfermos con malaria por Plasmodium vivax, en Turbo (Urabá, departamento de Antioquia, Colombia. METODOLOGÍA: Encuestas de prevalencia, para evaluar la G6PD en dos poblaciones de Turbo (Antioquia: hombres sanos; hombres y mujeres con malaria vivax. Se trabajó con muestras diseñadas con criterios estadístico-epidemiológicos. La actividad enzimática se midió con el método normalizado de Beutler para valorar la G6PD en hemolizados. RESULTADOS: Entre los hombres sanos (n = 508, el intervalo de confianza 95% para el promedio (IC95% estuvo entre 4,15 y 4,51 UI/g hemoglobina y 14,8% presentaron valores por debajo del "límite normal" de INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD deficiency in Latin America has not been fully studied and in Colombia only three outdated publications are known. Recent information on the prevalence of G6PD deficiency is required now, because the recommended treatment of vivax malaria requires higher daily or total doses of primaquine. OBJECTIVE: To measure the prevalence of G6PD in a healthy male population and in a Plasmodium vivax infected population in Turbo (Urabá, Antioquia Department, Colombia. METHOD: Prevalence survey to evaluate G6PD in two populations of Turbo (Antioquia: healthy male; male and female with vivax malaria. The work was carried out on population samples selected using statistical and epidemiological criteria. Enzyme activity was measured using Beutler's normalized method to evaluate G6PD after hemolysis. RESULTS: For the healthy male group (n = 508, and with a 95% confidence

  13. Partial purification of glucose-6-phosphate dehydrogenase by aqueous two-phase poly(ethyleneglycol/phosphate systems Purificação parcial de glucose-6-fosfato desidrogenase por sistemas de duas fases aquosas poli (etilenoglicol/fosfato

    Directory of Open Access Journals (Sweden)

    Marcela Zanella Ribeiro

    2007-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH is an important enzyme used in biochemical and medical studies and in several analytical methods that have industrial and commercial application. This work evaluated the extraction of G6PDH in aqueous two-phase system (ATPS of poly(ethyleneglycol (PEG/phosphate buffer, using as enzyme source a medium prepared through commercial baker's yeast disruption. Firstly, the effects of PEG molar mass on the enzyme partition and of homogenization and rest on the system equilibrium were investigated. Afterwards, several ATPS were prepared using statistical analysis (2² factorial design. The results, including kinetic and thermodynamic parameters for the G6PDH activity, showed partial purification of this enzyme in ATPS composed of 17.5% (w/w PEG400 and 15.0% (w/w phosphate. A high enzymatic recovery value (97.7%, a high partition coefficient (351, and an acceptable purification factor (2.28 times higher than in cell homogenate were attained from the top phase. So, it was possible to attain an effective enzyme pre-purification by separating some contaminants with a simple method such as liquid-liquid extraction in aqueous two-phase systems (ATPS.Glicose-6-fosfato desidrogenase (G6PDH é uma importante enzima usada em estudos bioquímicos e médicos, bem como em diversos métodos analíticos com aplicação comercial e industrial. Neste trabalho foi avaliado a extração da G6PDH em sistemas de duas fases aquosas (ATPS constituídos por poli(etilenoglicol (PEG/tampão fosfato, usando como fonte de enzima um meio preparado por rompimento de leveduras de panificação comercial. Inicialmente foram investigados os efeitos da massa molar do PEG na partição da enzima e da homogeneização e repouso no equilíbrio do sistema. Na sequência, diversos ATPS foram preparados usando análise estatística (planejamento fatorial 2². Os resultados, incluindo parâmetros cinéticos e termodinâmicos para a atividade da G6PDH

  14. Quantitative comparison between the gel-film and polyvinyl alcohol methods for dehydrogenase histochemistry reveals different intercellular distribution patterns of glucose-6-phosphate and lactate dehydrogenases in mouse liver

    NARCIS (Netherlands)

    Griffini, P.; Vigorelli, E.; Bertone, V.; Freitas, I.; van Noorden, C. J.

    1994-01-01

    The precise histochemical localization and quantification of the activity of soluble dehydrogenases in unfixed cryostat sections requires the use of tissue protectants. In this study, two protectants, polyvinyl alcohol (PVA) and agarose gel, were compared for assaying the activity of lactate

  15. Prevalência da deficiência da glicose-6-fosfato desidrogenase em doadores de sangue de Mossoró, Rio Grande do Norte Prevalence of glucose-6-phosphate dehydrogenase deficiency in blood donors of Mossoró, Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Ulysses Madureira Maia

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy. It affects as many as 330 million individuals worldwide. This deficiency may determine neonatal jaundice, chronic nonspherocytic hemolytic anemia and acute hemolytic anemia induced by drugs, infections and broad bean ingestion. The efficacy of blood transfusion is decreased when the donor is G6PD deficient. In this study, we aimed at determining the prevalence of G6PD deficiency in blood donors of Mossoro, Brazil. Samples of 714 blood donors (576 men and 138 women; 343 white and 371 non-white with ages ranging from 18 to 62 years and that accepted to participate in the study were analyzed. All participants answered a standard questionnaire. G6PD activity was analyzed by the methemoglobin reduction test with deficiency being confirmed by the semiquantitative test. The overall prevalence of G6PD deficiency in blood donors was 3.8%, similar to the rate described for others regions of Brazil. There was no significant statistical difference in the frequency of G6PD deficiency between men and women, nor between white and non-white blood donors. This relatively high frequency of G6PD deficiency highlights a need to screen blood donors for this condition.

  16. Alterações clínicolaboratoriais em pacientes com malária por Plasmodium vivax e deficiência de glicose-6-fosfato desidrogenase tratados com 0,50mg/kg/dia de primaquina Clinical and laboratorial alterations in Plasmodium vivax malaria patients and glucose-6-phosphate dehydrogenase deficiency treated with primaquine at 0.50mg/kg/day

    Directory of Open Access Journals (Sweden)

    Mônica C.M. Silva

    2004-06-01

    Full Text Available O efeito adverso da primaquina na dose de 0,50mg/kg/dia foi investigado em onze pacientes com malária vivax (três com deficiência de glicose-6-fosfato desidrogenase. Alterações clínicas e laboratoriais indicaram hemólise aguda apenas nos enzimopênicos, o que fez com que o tratamento fosse interrompido. Nossos resultados sugerem a necessidade do emprego de um teste de triagem para a deficiência de G6PD em áreas endêmicas de malária vivax a fim de se evitar complicações causadas pelo uso da primaquina.The adverse effects of primaquine (0.50mg/kg/day were investigated in eleven patients with vivax malaria (three patients with glucose-6-phosphate dehydrogenase deficiency. Clinical and laboratorial alterations indicated acute hemolysis in only the enzymopenic patients and treatment was interrupted. Our results suggest that screening for G6PD deficiency should be carried out in patients with vivax malaria infection in order to avoid complications due to primaquine.

  17. Incidence of Glucose-6-Phosphate Dehydrogenase (G-6-PD ...

    African Journals Online (AJOL)

    A community based study of the incidence of G-6-PD deficiency in apparently healthy individuals in Jos South (Plateau State) and Jaba (Kaduna State) Local Government Areas (LGAs) of North Central Nigeria was carried-out. The screening of G-6-PD deficiency was performed on 270 subjects which comprised 120 ...

  18. Prevalence of glucose-6-phosphate dehydrogenase deficiency and ...

    African Journals Online (AJOL)

    HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the disease.

  19. Molecular Aspects of Glucose-6-Phosphate Dehydrogenase Deficiency in Iran

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: G6PD deficiency is the most common hereditary enzyme deficiency that affected more than 400 million people worldwide. This enzyme deficiency is caused by a spectrum of mutations in the gene encoding G6PD on chromosome X. Epidemiologically; G6PD deficiency has been specially considered in Middle East countries including Iran, Oman and Saudi Arabia.Materials and Methods: This study has reviewed more than 70 papers related to the epidemiological significance and various diagnostic strategies of G6PD deficiency from 1956 to 2010.Results: The results showed a higher prevalence of Mediterranean variant followed by Chatham and Cosenza compared to other variants in Iran.Conclusion: Accurate identification of G6PD deficiency variants in areas with high prevalence of this disease will help to screen patients and their families with risk level when faced with oxidant agents.

  20. Glucose -6- phosphate dehydrogenase (g6pd) activity and ...

    African Journals Online (AJOL)

    The enzyme activity was determined quantitatively by spectrophotometer assay method. The activity of red cell G6PD enzyme was subnormal in 20% of the population studied. This agrees with previous report of the prevalence of G6PD deficiency in Nigerian males from the Western region of the country which is between 20 ...

  1. assessment of the activity of glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    Uwaifoh

    2012-10-31

    Oct 31, 2012 ... The Type 2 DM; which was previously referred to as non insulin- dependent diabetes mellitus (NIDDM) or "adult-onset diabetes" is said to results from insulin resistance, a condition in which cells fail to use insulin properly, sometimes combined with an absolute insulin deficiency or relatively reduced insulin ...

  2. Molecular genetics of glucose-6-phosphate dehydrogenase deficiency in Mexico.

    Science.gov (United States)

    Medina, M D; Vaca, G; Lopez-Guido, B; Westwood, B; Beutler, E

    1997-01-01

    Several studies carried out between 1965 and 1985 showed that G-6-PD deficiency in Mexico is heterogeneous at the biochemical level and that the G-6-PD A- phenotype is relatively common. We have now investigated the molecular basis of G-6-PD deficiency in Mexico. Up-to-date 60 chromosomes with G6PD mutations have been studied, 16 in previous studies and 44 in the present work. Molecular analysis of DNA from G-6-PD deficient Mexican mestizos and their relatives show that G-6-PD A- genotypes are relatively common but also that in Mexico G-6-PD deficiency is heterogeneous at the DNA level. Thus, five different genotypes have been observed: G-6-PD A-(202A/376G) (41 chromosomes), G-6-PD A-(376G/968C) (14 chromosomes), G-6-PD Seattle844C (3 chromosomes), G-6-PD "Mexico City"680A (1 chromosome) and G-6-PD Guadalajara1159T (1 chromosome). The G-6-PD A-(202A/376G), G-6-PD A-(376G/968C) and G-6-PD Seattle844C mutations in Mexico are on the same Pvu II/ Pst I/ 1311 / Nla III haplotypes as found in individuals from Africa, Spain and the Canary Islands. Consequently, these mutations were probably imported to Mexico through African slaves and/or the Spanish immigrants during and after the colonization.

  3. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    Science.gov (United States)

    ... People of Mediterranean heritage, including those of Italian, Greek, Arabic, and Sephardic Jewish backgrounds, also are commonly ... be at risk because of either a family history or your ethnic background, talk to your doctor ...

  4. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Sigma #119 Fracc. 20 de Noviembre II, 34220 Durango, México; Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan México, D.F. C.P. 14610, México; Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, ...

  5. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochem- ically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); ...

  6. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming V. [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Chen, Weiqin [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Harmancey, Romain N. [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Taegtmeyer, Heinrich [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Chan, Lawrence, E-mail: lchan@bcm.tmc.edu [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); St. Luke' s Episcopal Hospital, Houston, TX 77030 (United States)

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  7. Incremento de la glucosa-6-fosfato-deshidrogenasa eritrocitaria en jóvenes con síndrome de Down tras un programa de actividad física de 12 semanas A 12-week physical activity program increases glucose-6-phosphate-dehydrogenase activity in Down syndrome adolescents

    Directory of Open Access Journals (Sweden)

    Francisco J. Ordóñez

    2005-12-01

    Full Text Available Recientemente se ha publicado que las células trisómicas presentan una mayor sensibilidad al daño oxidativo, que podría justificar la frecuente asociación de síndrome de Down a aterosclerosis, envejecimiento precoz, etc. Para conocer el posible papel de la actividad física moderada en la mejora de la capacidad antioxidante se estudió el comportamiento de la enzima glucosa-6-fosfato-deshidrogenasa (G6PDH eritrocitaria en 31 adolescentes varones (16.3 ± 1.1 años tras desarrollar un programa de 12 semanas con tres sesiones (45-60 minutos y una intensidad del 60-75% frecuencia cardíaca máxima teórica. Nuestros resultados indican una mayor actividad de G6PDH en individuos con síndrome de Down cuando se compara con controles sin trisomía ajustados a su sexo, edad e índice de masa corporal. Asimismo observamos un incremento significativo de su actividad tras completar nuestro programa de 12 semanas. Podemos concluir que la actividad física moderada mejora la capacidad antioxidante en jóvenes con síndrome de Down.In recent years it has been claimed that trisomic cells are more sensitive to oxidative stress since there is an imbalance in the hydrogen peroxide metabolism. We designed the present study to assess the activity level of antioxidant enzyme glucose-6-phosphate-dehydrogenase (G6PDH of erythrocytes in 31 male adolescents with Down syndrome (mean age 16.3 ± 1.1 after performing a 12 week aerobic training program. First of all, a significant increase of 14.9% in the catalytic activity of G6PDH was observed in male adolescents with Down syndrome when compared with age, sex and body mass-matched controls without trisomy. After 12-wk program its activity increased significantly compared to baseline value in Down syndrome individuals. Our data are consistent with previous evidence of the existence of higher oxidative stress in adolescents with Down syndrome when compared to the general population. We may also conclude that G6PDH

  8. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenasee

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, M.P. (Rush Medical College, Chicago, IL); Wald, N.; Diloy-Puray, M.

    1980-03-01

    X radiation of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells causes distinct shortening of their survival time. This is accompanied by significant lowering of reduced glutathione content and is not observed in similarly prepared and treated normal cells. The damage is most likely related to irradiation-induced formation of activated oxygen products and to their subsequent effects on the cells. Neither methemoglobin increases nor Heinz body formation were observed, suggesting that hemolysis occurred prior to these changes. The study provides a model for examining the effects of irradiation and activated oxygen on red cells and suggests that patients with G6PD deficiency who receive irradiation could develop severe hemolysis in certain clinical settings.

  9. A novel glucose 6-phosphate isomerase from Listeria monocytogenes.

    Science.gov (United States)

    Cech, David L; Wang, Pan-Fen; Holt, Melissa C; Assimon, Victoria A; Schaub, Jeffrey M; Holler, Tod P; Woodard, Ronald W

    2014-10-01

    D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose 5-phosphate and D-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-β-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.

  10. Erythrocyte glucose-6-phosphate dehydrogenase deficiency in male newborn babies and its relationship with neonatal jaundice Deficiência de glicose-6-fosfato desidrogenase eritrocitária em recém-nascidos do sexo masculino e sua relação com a icterícia neonatal

    Directory of Open Access Journals (Sweden)

    Marli Auxiliadora C. Iglessias

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency, the commonest red cell enzymopathy in humans, has an X-linked inheritance. The major clinical manifestations are drug induced hemolytic anemia, neonatal jaundice and chronic nonspherocytic hemolytic anemia. The incidence of neonatal hyperbilirubinemia is much greater in G6PD-deficient neonates than babies without this deficiency. The aim of this study was to ascertain the presence of neonatal jaundice in erythrocyte G6PD-deficient male newborns. Samples of umbilical cord blood from a total of 204 male newborns of the Januário Cicco School Maternity located in Natal, Rio Grande do Norte, Brazil were analyzed. The G6PD deficiency was identified by the methemoglobin reduction test (Brewer's test. The deficiency was confirmed by quantitative spectrophotometric assay for enzyme activity and cellulose acetate electrophoresis was used to identify the G6PD variant. Eight newborns were found to be G6PD deficient with four of them exhibiting jaundice during the first 48 hours after birth with bilirubin levels higher than 10 mg/dL. All deficient individuals presented the G6PD A- variant at electrophoresis. Our findings confirmed the association between G6PD deficiency and neonatal jaundice. Hence, early diagnosis of the deficiency at birth is essential to control the appearance of jaundice and to prevent the exposure of these newborns to known hemolytic agents.A deficiência de glicose-6-fosfato desidrogenase (G6PD é a anormalidade enzimática hereditária mais frequente. É transmitida como caráter recessivo ligado ao cromossomo X e as principais manifestações clínicas são hemólise induzida por fármacos, icterícia neonatal e anemia hemolítica não esferocítica. O objetivo do estudo foi determinar a presença de icterícia neonatal em recém-nascidos do sexo masculino deficientes de glicose-6-fosfato desidrogenase. Foram analisadas 204 amostras de sangue umbilical de recém-nascidos do sexo

  11. Infleunce of pH on the partition of glucose-6-phosphate dehydrogenase and hexokinase in aqueous two-phase system Influência do pH na partição da glicose 6-fosfato desidrogenase e hexoquinase em sistema de duas fases aquosas

    Directory of Open Access Journals (Sweden)

    Daniel Pereira da Silva

    2002-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH and hexokinase (HK are important enzymes used in biochemical and medical studies and in several analytical methods. Aqueous two-phase system (ATPS formed by a polymer solution and an electrolyte solution provides a method for the separation and purification of enzymes with several advantages, including biocompatibility and easy scale up of the process. In this work, the effects of different pH values on the storage stability and partitioning behavior (K, partition coefficient of the enzymes G6PDH and HK from baker's yeast extract were investigated in ATPS. The results, obtained from the 17.5% PEG 400 : 15.0% phosphate system, showed that when the pH was increased from 5.0 to 8.8, the K HK increased 26-fold and the K G6PDH 2.2-fold. In the 20.0% PEG 1500 : 17.5% phosphate system, the K HK and K G6PDH increased 13 and 1.2-fold, when the pH value was increased from 3.8 to 8.8, respectively. This leads to the conclusion that the partition coefficient for both enzymes is favored by high pH values. A statistical analysis of the results was conducted to confirm this conclusion.Glicose-6-fosfato desidrogenase (G6PDH e hexoquinase (HK são importantes enzimas usadas em estudos bioquímicos e médicos e em diversos métodos analíticos. Sistema de duas fases aquosas (SDFA formado por uma solução polimérica e uma solução eletrolítica proporciona um método para separação e purificação de enzimas com diversas vantagens, incluindo biocompatibilidade, que pode ser facilmente escalonado para nível industrial. Neste trabalho, os efeitos de diferentes valores de pH na estabilidade e na partição (K, coeficiente de partição por SDFA das enzimas G6PDH e HK, obtidas através de levedura de panificação, foram investigados. Os resultados, obtidos do sistema constituído por 17,5% de PEG 400 e 15,0% de fosfato, mostraram que com a elevação do pH de 5,0 para 8,8, o K HK aumentou 26 vezes e o K G6PDH 2,2 vezes

  12. Anestesia em paciente portador de deficiência de glicose-6-fosfato-desidrogenase: relato de caso Anestesia en paciente portador de deficiencia de glicosa-6-fosfato-desidrogenasa: relato de caso Anesthesia in glucose 6-phosphate dehydrogenase-deficient patient: case report

    Directory of Open Access Journals (Sweden)

    Múcio Paranhos de Abreu

    2002-11-01

    caso relatado, la anestesia subaracnóidea con bupivacaína asociada a anestesia venosa total con propofol, mostró que es una técnica segura en pacientes portadores de deficiencia de G6PD.BACKGROUND AND OBJECTIVES: Glucose 6-phosphate dehydrogenase (G6PD deficiency is a relatively common enzymopathy, but there are few publications relating such condition to anesthesia. This report aimed at presenting a case of a G6PD-deficient patient, submitted to Achilles tendon tenotomy under intravenous anesthesia associated to spinal block. CASE REPORT: Male patient, 9 years old, 48 kg, with G6PD deficiency and peripheral polineuropathy, submitted to Achilles tendon tenotomy under general intravenous anesthesia with midazolam, propofol and fentanyl, associated to spinal block with 0.5% hyperbaric bupivacaine. At surgery completion patient awakened relaxed, without pain or other complaints, had a good evolution and was discharged without intercurrences. CONCLUSIONS: According to the evolution of this case, spinal anesthesia with bupivacaine associated to total intravenous anesthesia with propofol has shown to be a safe technique for G6PD-deficient patients.

  13. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    Science.gov (United States)

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Avaliação da incidência da deficiência de Glicose-6-Fosfato Desidrogenase (G6PD e perfil hematológico em indivíduos de uma região de Rondônia Incidence evaluation of Glucose-6-Phosphate Dehydrogenase and hematological profile in Rondonia

    Directory of Open Access Journals (Sweden)

    Tony H. Katsuragawa

    2004-12-01

    Full Text Available O estudo compreendeu a avaliação da deficiência de Glicose-6-Fosfato Desidrogenase (G6PD e perfil hematológico em 122 indivíduos (69 homens e 53 mulheres, com idade variando entre 3 a 84 anos, selecionados conforme a aceitação em participação no estudo, residentes na área urbana e rural do município de Porto Velho, Rondônia, Brasil, no período de julho de 2003 a agosto de 2004. A análise foi realizada utilizando-se o método da glicose NaNO2, e hemograma completo. Foram detectados quatro indivíduos do sexo masculino com deficiência da G6PD, sendo 5,8% entre os homens e 3,3% do total analisado. Dos indivíduos com deficiência da G6PD nenhum apresentava malária, através de diagnóstico realizado pela gota espessa corado pelo Giemsa. Entre os homens, 19 (27,5% apresentaram malária, sendo 15 por Plasmodium vivax e quatro por Plasmodium falciparum; 48 (69,5% apresentaram valores de hemoglobina abaixo de 14,0 g/dl, e 26 (37,6% apresentaram valores eritrocitários abaixo do 4,5 milhões/mm³. Entre as mulheres apenas duas (3,7% apresentaram malária por Plasmodium vivax; 24 (45,2% apresentaram valores de hemoglobina abaixo de 12,0 g/dl, e 12 (22,6% apresentaram massa eritrocitária abaixo de 4,0 milhões/mm³. A eosinofilia esteve presente em 47 (68,1% dos homens e em 34 (64,1% das mulheres. A incidência de deficiência da G6PD foi significativa na população masculina que procurou assistência médica devido a sintomas febris. Considerando que a primaquina é utilizada para o tratamento da malária vivax e falciparum, o risco de ocorrência de hemólise intravascular grave entre os indivíduos é significante. O teste utilizado é muito simples e de baixo custo e sugerimos a adoção desta metodologia na rotina dos laboratórios de atendimento público em áreas endêmicas de malária.This study consisted of evaluations of glucose-6-phosphate dehydrogenase (G6PD deficiency and the hematologic profile of 122 individuals (69 men

  15. High glucose concentrations partially release hexokinase from inhibition by glucose 6-phosphate.

    OpenAIRE

    Fujii, S; Beutler, E

    1985-01-01

    The phosphorylation of glucose by human erythrocyte hexokinase follows classical Michaelis-Menten kinetics; hexokinase manifests maximum activity at 5 mM glucose, and no further increase in activity can be measured at higher glucose concentrations. However, the erythrocytes of diabetics and normal erythrocytes incubated with high concentrations of glucose contain increased concentrations of glucose 6-phosphate. To elucidate the mechanism of accumulation of glucose 6-phosphate when erythrocyte...

  16. Fluorometric determination of free glucose and glucose 6-phosphate in cows' milk and other opaque matrices

    DEFF Research Database (Denmark)

    Larsen, Torben

    2015-01-01

    Analyses of free glucose and glucose 6-phosphate in milk have until now been dependent upon several time consuming and troublesome procedures. This has limited investigations in the area. The present article presents a new, reliable, analytical procedure, based on enzymatic degradation and fluoro......Analyses of free glucose and glucose 6-phosphate in milk have until now been dependent upon several time consuming and troublesome procedures. This has limited investigations in the area. The present article presents a new, reliable, analytical procedure, based on enzymatic degradation...... and fluorometric detection. Standards and control materials were based on milk that was stripped of intrinsic glucose and glucose 6-phosphate in order to obtain standards and samples based on the same matrix. The analysis works without pre-treatment of the samples, e.g. without centrifugation and precipitation...

  17. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides.

    Science.gov (United States)

    Yoon, Ran-Young; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2009-05-01

    We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.

  18. Final Report for research on The Glucose 6-Phosphate Shunt Around the Calvin-Benson Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D. [Michigan State Univ., East Lansing, MI (United States)

    2017-10-30

    In this research, photosynthetic carbon metabolism was studied to identify mechanisms by which plants store energy from sunlight as carbon compounds, especially sugars. Conditions were identified in which carbon appeared to flow backwards from outside the photosynthetic compartment (chloroplast) back into it. A specific gene product was manipulated to make the flow bigger or smaller. Preventing the flow (by eliminating the gene) had little effect on plant growth but increasing the flow, by overexpressing the gene, caused the plants to become extremely sensitive to changes in light. Plants with the gene overexpressed had high rates of cyclic electron flow, the photosynthetic electron transport pathway that occurs when plants need more of the energy molecule ATP. These and other observations led us to conclude that a metabolic pathway that is normally turned off because it is counter-productive during photosynthesis, in fact occurs at about 10% of the rate of normal photosynthesis. This creates an inefficiency but may stabilize photosynthesis allowing it to cope with the very large and rapid changes that leaves experience such as the hundred-fold changes in light intensity that can occur in seconds on a partly cloudy day. We also concluded that the back flow of carbon into chloroplasts could be important at high rates of photosynthesis allowing increased rates of starch synthesis. Starch synthesis allows plants to store sugars during the day for use at night. At high rates of photosynthesis starch synthesis becomes very important to protect against end-product inhibition of photosynthesis. This research identified two metabolic pathways that extend the primary carbon fixation pathway called the Calvin-Benson cycle. These pathway extensions are now called the cytosolic bypass and the glucose 6-phosphate shunt. This improvement in our understanding of carbon metabolism of photosynthesis will guide efforts to increase photosynthesis to increase production of food, fuel

  19. G6PD-MutDB: a mutation and phenotype database of glucose-6-phosphate (G6PD) deficiency.

    Science.gov (United States)

    Zhao, Xin; Li, Zuofeng; Zhang, Xiaoyan

    2010-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary enzymatic disorder of red blood cells in humans due to mutations in the G6PD gene. The G6PD enzyme catalyzes the first step in the pentose phosphate pathway to protect cells against oxidative stress. Mutations in the G6PD gene will cause functional variants with various biochemical and clinical phenotypes. So far, about 160 mutations along with more than 400 biochemical variants have been described. G6PD-MutDB is a disease-specific resource of G6PD deficiency, collecting and integrating G6PD mutations with biochemical and clinical phenotypes. Data of G6PD deficiency is manually extracted from published papers, focusing primarily on variants with identified mutation and well-described quantitative phenotypes. G6PD-MutDB implements an approach, CNSHA predictor, to help identify a potential chronic non-spherocytic hemolytic anemia (CNSHA) phenotype of an unknown mutation. G6PD-MutDB is believed to facilitate analysis of relationship between molecular mutation and functional phenotype of G6PD deficiency owing to convenient data resource and useful tools. This database is available from http://202.120.189.88/mutdb.

  20. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  1. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  2. Hyperbilirubinaemia and erythrocytic glucose 6 phosphate dehydrogenase deficiency in Malaysian children.

    Science.gov (United States)

    Hon, A T; Balakrishnan, S; Ahmad, Z

    1989-03-01

    Cord blood from 8,975 babies delivered in Hospital Sultanah Aminah Johor Bahru over a period of eight months (1st August 1985 to 31st March 1986) were screened for G6PD deficiency. The overall incidence was 4.5% in Chinese, 3.5% in Malays and 1.5% in Indian babies. One hundred of these babies were observed in the nursery for seven days and their daily serum bilirubin recorded. The serum bilirubin peaked at 96 hours to a value of 12mg%. None of the babies in the nursery developed a serum bilirubin level of more than 15mg%. Six of the babies with G6PD deficiency that were sent home were readmitted with hyperbilirubinaemia that needed exchange transfusion.

  3. Phylogeny and Origin of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency Mutations in Indonesia

    OpenAIRE

    Omega, Maria; Barnard, Ross T.

    2015-01-01

    The aim of this study is to analyze the relationship between the types of G6PD mutations found in Indonesia and the relationships of mutations found in Indonesia to those found in other countries. We summarize the distribution of G6PDs in West Indonesia and East Indonesia. Moreover, we use bioinformatics methods to construct phylogenetic trees and compare the sequences containing the regions amplifi ed by the commonly used PCR primer pairs. Previous work has shown that Mediterranean G6PD and ...

  4. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli

    DEFF Research Database (Denmark)

    Olavarria, K.; De Ingeniis, J.; Zielinski, D. C.

    2014-01-01

    In Escherichia coli, the oxidative branch of the pentose phosphate pathway (oxPPP) is one of the major sources of NADPH when glucose is the sole carbon nutrient. However, unbalanced NADPH production causes growth impairment as observed in a strain lacking phosphoglucoisomerase (Δpgi). In this work......PDH(R46E,Q47E). Through homologous recombination, the zwf loci (encoding G6PDH) in the chromosomes of WT and Δpgi E. coli strains were replaced by DNA encoding LmG6PDH(R46E,Q47E). Contrary to some predictions performed with flux balance analysis, the replacements caused a substantial effect...

  5. GLUCOSE -6- PHOSPHATE DEHYDROGENASE DEFICIENCY AND HAEMOGLOBINOPHATIES IN RESIDENT OF ARSO PIR, IRIAN JAYA

    Directory of Open Access Journals (Sweden)

    Trevor R. Jones

    2012-09-01

    Full Text Available Telah dilakukan penelitian tentang defisiensi glukose —6- fosfatase dehidrogenase G-6-PD dan haemoglobinopati dengan populasi 223 penduduk yang terdiri atas 102 suku Jawa dan 121 suku Irian Jaya. Enam orang dari Suku Irian Jaya, ditemukan dengan defisiensi tingkat G-6-PD. Tingkat G-6-PD pada orang-orang ini berkisar antara 4 sampai 50% dari nilai nominal minimum. Ditemukan pula 5 kasus haemoglobinopati. Pada satu orang dari suku Irian Jaya ditemukan haemoglobinopati yang konsisten dengan hemoblobin Lepore-Hollandia. Tiga orang dari suku Jawa menunjukkan suatu varian hemoglobin E dan seorang dari suku Jawa lainnya menunjukkan satu varian yang konsisten dengan hemoglobin fetal. Sementara penemuan ini menunjukkan adanya varian hematologi dalam populasi penelitian yang mungkin berperan dalam kerentanan terhadap malaria, tetapi persentase subyek dengan varian tidak cukup besar untuk mempengaruhi secara berarti angka transmisi malaria di dalam populasi.

  6. GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY IN IRAN AND ITS RELATION TO PHYSIO-PHATHOLOGICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Peter Beaconsfield

    1966-01-01

    Full Text Available A survey was set up to study the problem of G-6 _ PD deficiency in Iran. The deficient subjects underwent a detailed haematological investigation, and their geneological tree was drawn and studied. A registry has been started to enable a follow_up of the deficients revealed by the survey. It is proposed to increase the size and scope of the survey gradual stages so that a statistical analysis of the disease patterns of the deficient subjects can be made. A control group of subjects with normal G-6_PD levels will be studied in parallel

  7. Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes

    NARCIS (Netherlands)

    Peters, Anna L.; van Noorden, Cornelis J. F.

    2017-01-01

    Cytochemistry is the discipline that is applied to visualize specific molecules in individual cells and has become an essential tool in life sciences. Immunocytochemistry was developed in the sixties of last century and is the most frequently used cytochemical application. However, metabolic mapping

  8. Glucose-6-phosphate dehydrogenase (G6PD mutations and haemoglobinuria syndrome in the Vietnamese population

    Directory of Open Access Journals (Sweden)

    Day Nick

    2009-07-01

    Full Text Available Abstract Background In Vietnam the blackwater fever syndrome (BWF has been associated with malaria infection, quinine ingestion and G6PD deficiency. The G6PD variants within the Vietnamese Kinh contributing to the disease risk in this population, and more generally to haemoglobinuria, are currently unknown. Method Eighty-two haemoglobinuria patients and 524 healthy controls were screened for G6PD deficiency using either the methylene blue reduction test, the G-6-PDH kit or the micro-methaemoglobin reduction test. The G6PD gene variants were screened using SSCP combined with DNA sequencing in 82 patients with haemoglobinuria, and in 59 healthy controls found to be G6PD deficient. Results This study confirmed that G6PD deficiency is strongly associated with haemoglobinuria (OR = 15, 95% CI [7.7 to 28.9], P G6PD variants were identified in the Vietnamese population, of which two are novel (Vietnam1 [Glu3Lys] and Vietnam2 [Phe66Cys]. G6PD Viangchan [Val291Met], common throughout south-east Asia, accounted for 77% of the variants detected and was significantly associated with haemoglobinuria within G6PD-deficient ethnic Kinh Vietnamese (OR = 5.8 95% CI [114-55.4], P = 0.022. Conclusion The primary frequency of several G6PD mutations, including novel mutations, in the Vietnamese Kinh population are reported and the contribution of G6PD mutations to the development of haemoglobinuria are investigated.

  9. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.

    Science.gov (United States)

    Kainulainen, Veera; Loimaranta, Vuokko; Pekkala, Anna; Edelman, Sanna; Antikainen, Jenni; Kylväjä, Riikka; Laaksonen, Maiju; Laakkonen, Liisa; Finne, Jukka; Korhonen, Timo K

    2012-05-01

    Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.

  10. Disrupting glucose-6-phosphate isomerase fully suppresses the "Warburg effect" and activates OXPHOS with minimal impact on tumor growth except in hypoxia.

    Science.gov (United States)

    de Padua, Monique Cunha; Delodi, Giulia; Vučetić, Milica; Durivault, Jérôme; Vial, Valérie; Bayer, Pascale; Noleto, Guilhermina Rodrigues; Mazure, Nathalie M; Ždralević, Maša; Pouysségur, Jacques

    2017-10-20

    As Otto Warburg first observed, cancer cells largely favor fermentative glycolysis for growth even under aerobic conditions. This energy paradox also extends to rapidly growing normal cells indicating that glycolysis is optimal for fast growth and biomass production. Here we further explored this concept by genetic ablation of fermentative glycolysis in two fast growing cancer cell lines: human colon adenocarcinoma LS174T and B16 mouse melanoma. We disrupted the upstream glycolytic enzyme, glucose-6-phosphate isomerase ( GPI ), to allow cells to re-route glucose-6-phosphate flux into the pentose-phosphate branch. Indeed, GPI -KO severely reduced glucose consumption and suppressed lactic acid secretion, which reprogrammed these cells to rely on oxidative phosphorylation and mitochondrial ATP production to maintain viability. In contrast to previous pharmacological inhibition of glycolysis that suppressed tumor growth, GPI -KO surprisingly demonstrated only a moderate impact on normoxic cell growth. However, hypoxic (1% O 2 ) cell growth was severely restricted. Despite in vitro growth restriction under hypoxia, tumor growth rates in vivo were reduced less than 2-fold for both GPI -KO cancer cell lines. Combined our results indicate that exclusive use of oxidative metabolism has the capacity to provide metabolic precursors for biomass synthesis and fast growth. This work and others clearly indicate that metabolic cancer cell plasticity poses a strong limitation to anticancer strategies.

  11. [Significance of glucose-6-phosphate isomerase assay in early diagnosis of rheumatoid arthritis].

    Science.gov (United States)

    Xu, J; Liu, J; Zhu, L; Zhang, X W; Li, Z G

    2016-12-18

    To explore the titer of glucose-6-phosphate isomerase (GPI) for early diagnosis of the outpatient with rheumatoid arthritis (RA) in real life, and to analyze its relationship with disease activity. In the study, 1 051 patients with arthritis were collected in the group who had joints tender and swelling, and 90 cases of healthy people as a control group. ELISA method was used to detect the serum level of GPI, and according to clinical features and laboratory test, all the patients including 525 RA patients, the other patients including osteoarthritis (OA), 134 cases of seronegative spine joint disease (SpA), 104 cases of systemic lupus erythematosus (SLE), 31 cases of primary Sjogren syndrome (pSS), 24 cases of gout arthritis (GA), 22 cases of other connective tissue diseases (including polymyalgia rheumatica, dermatomyositis, systemic sclerosis, adult Still disease) and 46 cases of other diseases (including 165 cases of osteoporosis, avascular necrosis of the femoral head, traumatic osteomyelitis, bone and joint disease, juvenile rheumatoid arthritis, tumor). The diagnostic values of GPI were assessed, and the differences between the GPI positive and negative groups of the RA patients in clinical characteristics, disease activity, severity and inflammatory index analyzed. The positive rate of serum GPI in the patients with RA was 55.4%, contrasting to other autoimmune diseases (14.3%) and healthy controls (7.78%)(P<0.001). Compared with the OA and SpA patients, the RA group was increased more significantly, and the difference was statistically significant (P<0.001). The diagnostic value of GPI alone for RA was 0.39 mg/L, the sensitivity was 54.2%, and specificity was 87.3%. The positive rate of GPI in RF negative patients was 36.1%; the positive rate of GPI in anti-CCP antibody negative patients was 34.2%; the positive rate of GPI in RF and anti-CCP antibody negative patients was 24.1%. The level of GPI had positive correlation (P<0.05) with ESR, RF, anti

  12. [Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis].

    Science.gov (United States)

    Wu, D; Sun, L; Li, C H; Yang, L; Zhao, J X; Liu, X Y

    2016-12-18

    To detect the anti-citrullinated glucose-6-phosphate isomerase (GPI) 70-88 peptide antibody (anti-C-GPI(70-88) antibody), anti-citrullinated GPI 435-453 peptide antibody (anti-C-GPI(435-453) antibody), anti-GPI 70-88 peptide antibody (anti-GPI(70-88) antibody) and anti-GPI 435-453 peptide antibody(anti-GPI(435-453) antibody) in the serum of rheumatoid arthritis (RA) patients, and examine the diagnostic values of the anti-C-GPI peptide antibodies in RA. The anti-C-GPI(70-88) antibody, anti-C-GPI(435-453) antibody, anti-GPI(70-88) antibody and anti-GPI(435-453) antibody were detected by enzyme-linked immunosorbent assay (ELISA) in 191 RA patients, 129 other rheumatic diseases and 74 healthy controls. The clinical and laboratory data of the patients with RA were collected, and the values of anti-C-GPI peptide antibodies in the diagnosis of RA and the relationships of anti-C-GPI peptide antibodies with the clinical and laboratory parameters analyzed. (1) The mean titers of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody in the RA patients (respectively, 68.71 ± 4.20 and 51.78 ± 3.13) were significantly higher than those with other rheumatic diseases and healthy individuals (P <0.05). However, the mean titers of the anti-GPI(70-88) antibody and anti-GPI(435-453) antibody in the RA patients were similar to those with other rheumatic diseases and healthy individuals. (2) The diagnostic sensitivity and specificity of the anti-C-GPI(70-88) antibody for RA were 41.88% and 84.50% respectively; and the diagnostic sensitivity and specificity of the anti-C-GPI(435-453) antibody for RA were 46.05% and 86.05% respectively. The sensitivity of combined detection of the two anti-C-GPI peptide antibodies was 50.79%, and the specificity was 81.40%. (3) The positive rates of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody were 35% and 45% respectively in those patients with negative anti-cyclic citrullinated peptide antibody, anti

  13. B cell depletion reduces the number of autoreactive T helper cells and prevents glucose-6-phosphate isomerase-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Oliver Frey

    Full Text Available The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI. The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells.

  14. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria: A meta-analysis and trial sequential analysis

    Science.gov (United States)

    Sun, Fengmei; Zhang, Juan; Pu, Yuepu

    2017-10-01

    This study is designed to perform a meta-analysis and trial sequential analysis (TSA) to investigate whether people with G6PD deficiency suffered less malarial infection. We searched from PubMed, Science Direct, Springer Link, CNKI, and Wan Fang databases for case-control study, cohort study or cross section study until April 2017. TSA was used to determine the state of evidence and calculate the required sample size. Eight case-control studies and five cross-sectional studies (30,683participants) were included in this meta-analysis. Compared with normal control group, we found significant protection from severe malaria (OR 0.644, 95% CI [0.493-0.842]; P=0.001) among people with decreasing G6PD activity. People with variations of G6PD gene at nucleotide 202(G6PD A-) were also found to be associated with resistance on severe malaria pooled (OR 0.851, 95% CI [0.779-0.930]; P =0.0001). Sex-stratified test suggested that protection of severe malaria is conferred to both G6PD A-males and heterozygous females (with a single copy of the variant). In conclusion, our study found a significant protection from severe malaria among G6PD deficient people compared to the

  15. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and senile cataract in a Sardinian male population, Italy.

    Science.gov (United States)

    Pinna, Antonio; Pes, Adele; Zinellu, Angelo; Carta, Arturo; Solinas, Giuliana

    2009-01-01

    There is still no general agreement on the role of G6PD deficiency in the pathogenesis of cataract. The purpose of this study was to determine the prevalence of G6PD deficiency in men with senile cataract from Northern Sardinia, Italy, and to compare it with the prevalence rate of G6PD deficiency in the general population of the same area. G6PD activity was determined by using a quantitative method. G6PD blood levels were measured in 1,620 men with cataract. The control group consisted of 1,646 apparently healthy male subjects from the same area. All patients were of Sardinian origin. The Z or Student's t test was used, when appropriate, to determine differences between groups. The odds ratio (OR) with 95% confidence interval was used to evaluate the association between age-related cataract and G6PD deficiency. G6PD deficiency was found in 133 (8.2%) out of 1,620 patients with cataract and in 120 (7%) out of 1,646 control subjects. Differences in G6PD prevalence between cataract patients and controls were not statistically significant (P=0.64). There was no age-related statistical difference between G6PD deficient and normal patients with cataract. No statistically significant association between age-related cataract and G6PD deficiency was found (OR=1.14; 95% confidence interval: 0.88-1.47). The results of this large study suggest that male patients with G6PD deficiency in the Sardinian population do not have a higher risk of developing presenile cataract. G6PD deficiency does not represent a pathogenetic factor for early cataract formation, at least not in the Northern part of Sardinia.

  16. Glucose-6-phosphate dehydrogenase, ribonucleases and esterases upon tobacco mosaic virus infection and benzothiodiazole treatment in tobacco

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Milada; Šindelář, Luděk; Burketová, Lenka

    2002-01-01

    Roč. 45, č. 3 (2002), s. 423-432 ISSN 0006-3134 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : chlorophyll * Nicotiana tabacum * PAGE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.583, year: 2002

  17. Prediction of oocyte developmental competence in ovine using glucose-6-phosphate dehydrogenase (G6PDH) activity determined at retrieval time.

    Science.gov (United States)

    Mohammadi-Sangcheshmeh, Abdollah; Soleimani, Masoud; Deldar, Hamid; Salehi, Mohammad; Soudi, Sara; Hashemi, Seyed Mahmoud; Schellander, Karl; Hoelker, Michael

    2012-02-01

    To determine whether G6PDH-activity measured by Brilliant Cresyl Blue known as BCB dye, predicts developmental competence within cohorts of ovine oocytes. Ovine oocytes were exposed to BCB staining and categorized into two groups: BCB+ (blue cytoplasm, low G6PDH-activity) and BCB- (colorless cytoplasm, high G6PDH-activity). After maturation in vitro, oocytes were subjected to fertilization followed by in vitro embryo culture. We observed a significant difference in oocyte diameter considering BCB+ and BCB- oocytes. BCB+ and Control groups showed significantly higher maturation rates compared to BCB- group. There were significantly more cleaved embryos in BCB+ and control groups than in BCB- group. Blastocyst rate was significantly higher for BCB+ group compared to control and BCB- groups with control group being significantly higher than BCB- group. G6PDH-activity is a strong predictive marker of oocyte competence and may be useful in identifying oocytes with a good prognosis for further develop.

  18. Mediterranean glucose-6-phosphate dehydrogenase (G6PDC563T) mutation among jordanian females with acute hemolytic crisis

    International Nuclear Information System (INIS)

    Jabbar, A.A.; Kanakiri, N.; Kamil, M.; Rimawi, H.S.A.

    2010-01-01

    To evaluate the G6PDC563T Mediterranean mutation among Jordanian females who were admitted to Princess Rahma Teaching Hospital (PRTH) with/or previous history of favism. Study Design: A descriptive study. Place and Duration of Study: Jordanian University of Science and Technology and PRTH, from October 2003 to October 2004. Methodology: After obtaining approval from the Ethics Committee of Jordanian University of Science and Technology, a total of 32 females were included in this study. Samples from 15 healthy individual females were used as a negative control. Blood samples from these patients were collected and analyzed by allele-specific polymerase chain reaction (AS-PCR) to determine the G6PDC563T mutation. Results: Twenty one out of 32 patients were found to be G6PDC563T Mediterranean mutation (65.6%) positive. Three out of 21 patients were homozygous and remaining 18 were heterozygous for G6PDC563T Mediterranean mutation. Eleven (34.4%) out of 32 patients were found to be negative for G6PDC563T mutation indicating the presence of other G6PD mutations in the study sample. Conclusion: G6PDC563T Mediterranean mutation accounted for 65.6% of the study sample with favism in the North of Jordan. There is likely to be another G6PD deficiency variant implicated in acute hemolytic crisis (favism). (author)

  19. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  20. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability.

    Science.gov (United States)

    Jiang, Xu-ping; Wang, Shang-qian; Wang, Wei; Xu, Yang; Xu, Zhen; Tang, Jing-yuan; Sun, Hong-yong; Wang, Zeng-jun; Zhang, Wei

    2015-08-01

    Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Previous researches have shown that enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are closely related to spermatozoa quality. We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results showed that normalized content of ENO1 (P<0.05) and GPI (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with postthaw sperm viability and motility was confirmed using Pearson's linear correlation. In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure. Copyright © 2015. Published by Elsevier Inc.

  1. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis.

    Science.gov (United States)

    Zong, Ming; Lu, Tianbao; Fan, Shasha; Zhang, Hui; Gong, Ruhan; Sun, Lishan; Fu, Zhiyan; Fan, Lieying

    2015-04-14

    Fibroblast-like synoviocytes (FLS) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to investigate the role of glucose 6-phosphate isomerase (GPI) in the proliferation of RA-FLS. The distribution of GPI in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical analysis. FLS were isolated and cultured, cellular GPI level was detected by real-time polymerase chain reaction (PCR) and Western blot analysis, and secreted GPI was detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Doxorubicin (Adriamycin, ADR) was used to induce apoptosis. Cell proliferation was determined by MTS assay. Flow cytometry was used to detect cell cycle and apoptosis. Secreted pro-inflammatory cytokines were measured by ELISA. GPI was abundant in RA-FLS and was an autocrine factor of FLS. The proliferation of both RA and OA FLS was increased after GPI overexpression, but was decreased after GPI knockdown. Meanwhile, exogenous GPI stimulated, while GPI antibody inhibited, FLS proliferation. GPI positively regulated its receptor glycoprotein 78 and promoted G1/S phase transition via extracellular regulated protein kinases activation and Cyclin D1 upregulation. GPI inhibited ADR-induced apoptosis accompanied by decreased Fas and increased Survivin in RA FLS. Furthermore, GPI increased the secretion of tumor necrosis factor-α and interleukin-1β by FLS. GPI plays a pathophysiologic role in RA by stimulating the proliferation, inhibiting the apoptosis, and increasing pro-inflammatory cytokine secretion of FLS.

  2. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model.

    Science.gov (United States)

    Seri, Yu; Shoda, Hirofumi; Suzuki, Akari; Matsumoto, Isao; Sumida, Takayuki; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-08-21

    Peptidyl arginine deiminase 4 (PAD4) is an enzyme that is involved in protein citrullination, and is a target for anti-citrullinated peptide antibodies (ACPAs) in rheumatoid arthritis (RA). Genetic polymorphisms in the PADI4 gene encoding PAD4 are associated with RA susceptibility. We herein analyzed the roles of PADI4 in inflammatory arthritis using a glucose-6-phosphate isomerase (GPI)-induced arthritis (GIA) model in Padi4 knockout (KO) mice. Arthritis severity, serum anti-GPI antibody titers, and IL-6 concentrations were significantly reduced in Padi4 KO mice. The frequency of Th17 cells was decreased in GPI-immunized Padi4 KO mice, whereas WT and Padi4-deficient naïve CD4(+) T cells displayed the same efficiencies for Th17 cell differentiation in vitro. In addition, the numbers of myeloid lineage cells were reduced with the increased expression of pro-apoptotic genes in GPI-immunized Padi4 KO mice. Furthermore, the survival of Padi4-deficient neutrophils was impaired in vitro. Our results suggest that PADI4 exacerbates arthritis with diverse immunological modifications.

  3. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  4. Proglycogen, macroglycogen, glucose, and glucose-6-phosphate concentrations in skeletal muscles of horses with polysaccharide storage myopathy performing light exercise.

    Science.gov (United States)

    Bröjer, Johan T; Essén-Gustavsson, Birgitta; Annandale, Erin J; Valberg, Stephanie J

    2006-09-01

    To determine concentrations of proglycogen (PG), macroglycogen (MG), glucose, and glucose-6-phosphate (G-6-P) in skeletal muscle of horses with polysaccharide storage myopathy (PSSM) before and after performing light submaximal exercise. 6 horses with PSSM and 4 control horses. Horses with PSSM completed repeated intervals of 2 minutes of walking followed by 2 minutes of trotting on a treadmill until muscle cramping developed. Four untrained control horses performed a similar exercise test for up to 20 minutes. Serum creatine kinase (CK) activity was measured before and 4 hours after exercise. Concentrations of total glycogen (G(t)), PG, MG, G-6-P, free glucose, and lactate were measured in biopsy specimens of gluteal muscle obtained before and after exercise. Mean serum CK activity was 26 times higher in PSSM horses than in control horses after exercise. Before exercise, muscle glycogen concentrations were 1.5, 2.2, and 1.7 times higher for PG, MG, and G(t), respectively, in PSSM horses, compared with concentrations in control horses. No significant changes in G(t), PG, MG, G-6-P, and lactate concentrations were detected after exercise. However, free glucose concentrations in skeletal muscle increased significantly in PSSM horses after exercise. Analysis of the results suggests that glucose uptake in skeletal muscle is augmented in horses with PSSM after light exercise. There is excessive storage of PG and MG in horses with PSSM, and high concentrations of the 2 glycogen fractions may affect functional interactions between glycogenolytic and glycogen synthetic enzymes and glycosomes.

  5. Activation of Invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Masanobu Horikoshi

    Full Text Available OBJECTIVE: Invariant natural killer T (iNKT cells regulate collagen-induced arthritis (CIA when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer. Glucose-6-phosphate isomerase (GPI-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339 can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. METHODS: Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. RESULTS: α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. CONCLUSION: α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.

  6. Identification of human basic fetoprotein as glucose-6-phosphate isomerase by using N- and C-terminal sequence tags and terminal tag database.

    Science.gov (United States)

    Kuyama, Hiroki; Yoshizawa, Akiyasu C; Nakajima, Chihiro; Hosako, Mutsumi; Tanaka, Koichi

    2015-08-10

    Human basic fetoprotein (BFP), found in fetal serum and tissue extracts as well as in extracts of various cancer tissues, has long been known as a marker protein for cancers; however, the primary sequence has not yet been reported. This paper describes the identification of BFP using the N- and C-terminal amino acid sequence tags (Ac-AALTRDPQFQ and QQREARVQ, respectively) clarified by mass spectrometry-based methods, and a terminal tag database (ProteinCarta). In this study, BFP was identified as glucose-6-phosphate isomerase (G6PI_HUMAN). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The evaluation of the activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase under different patho-physiological conditions : a combined enzyme histochemical and biochemical approach

    NARCIS (Netherlands)

    E.A. Elias (Ezzat); R.O. van der Heul

    1988-01-01

    textabstractThis thesis is based on a series of metabolic studies conducted on material obtained from human and experimental animal tissues and cells. The studies are essentially enzyme histochemical complemented when thought necessary with biochemical investigations performed on tissue

  8. Atividade da 6-fosfogliconato desidrogenase em deficientes de glicose-6-fosfato desidrogenase Activity of 6-phosphogluconate dehydrogenase in glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Daniela B. Nicolielo

    2006-06-01

    Full Text Available As enzimas G6PD e 6PGD são responsáveis pela geração do aporte de NADPH, necessário para a detoxificação dos agentes oxidantes produzidos pelo estresse oxidativo metabólico nos eritrócitos. Devido à alta prevalência de deficiência de G6PD na população mundial, principalmente de origem negróide africana, muitos estudos têm sido realizados na tentativa de conhecer melhor a atuação destas enzimas. O objetivo deste estudo foi avaliar a atividade enzimática da 6PGD, nos deficientes de G6PD, para verificar a existência de aumento da atividade desta enzima, correlacionando com um possível aumento do número de reticulócitos ou presença de alterações da série vermelha. A pesquisa em 2.657 indivíduos do sexo masculino resultou em 97 deficientes de G6PD, determinando uma prevalência de 3,65% para a região de Bauru (SP, com atividade enzimática média de G6PD de 1,74 UI.g Hb-1. min-1 a 37ºC, 14,4% da atividade da G6PD normal. A atividade enzimática média da 6PGD foi de 9,5 UI.g Hb-1. min-1 a 37ºC, estando aumentada em 47,4% dos deficientes de G6PD. Os resultados não confirmaram que a hipótese do aumento da atividade enzimática da 6PGD, em deficientes de G6PD, seja decorrente da presença de um número aumentado de reticulócitos na corrente circulatória, faixa etária ou alterações eritrocitométricas que denotem anemia. O mais provável é que a hemólise autolimitada, imposta pelos processos oxidativos, preserve os eritrócitos mais jovens, que possuem atividade enzimática mais elevada, uma vez que naturalmente ocorre diminuição da atividade destas enzimas com o envelhecimento celular.The G6PD and 6PGD enzymes are responsible for the generation of NADPH supply necessary for the detoxification of the oxidant agents produced during the oxidative metabolic stress on erythrocytes. Due to the high prevalence of the deficiency of G6PD on world population, especially on Afro descents, many studies have been done trying to know better the actuation of these enzymes. The goal of this study was to evaluate the 6PGD enzymatic activity on a population with G6PD deficiency, to verify if there is an elevation of the activity of this enzyme, and try to correlate to a possible increase on the number of reticulocytes or the presence of alterations on red series. The research with 2657 male individuals detected 97 deficient for G6PD, which determined a 3.65% prevalence for the Bauru (SP region, with mean enzymatic activity of 1.74 UI.g Hb-1. min-1 at 37ºC, 14,4% of the normal G6PD activity. Mean 6PGD enzymatic activity was 9.5 UI.g Hb-1. min-1 at 37ºC, and was elevated in 47.4% of the G6PD deficient individuals. The result obtained did not confirm the hypothesis that the elevation of the 6PGD enzymatic activity, in G6PD deficient individuals, was due to the presence of an increase of reticulocytes in blood stream, age or erythrocytometric alterations that could denote anemia. The most plausible theory is that the auto-limited hemolysis, imposed by oxidative processes, preserves young erythrocytes that have an elevated enzymatic activity, as naturally these enzymes lose activity with cellular aging.

  9. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  10. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    Science.gov (United States)

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI)

    DEFF Research Database (Denmark)

    Schaller, Monica; Stohl, William; Benoit, Vivian

    2006-01-01

    In K/BxN mice, anti-glucose-6-phosphate isomerase (G6PI) IgG antibodies (Abs) cause joint-specific inflammation and destruction. Anti-G6PI Abs are also present in humans with inflammatory arthritis, especially among patients with rheumatoid arthritis (RA). A contributing factor to the induction...... of such autoantibodies may be upregulated expression of the corresponding antigen G6PI in affected tissues and/or increased levels of G6PI in the circulation. To determine G6PI levels and the presence of free G6PI and/or G6PI-containing immune complexes in sera and synovial fluids (SF) of patients with different...

  12. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage.

    Science.gov (United States)

    Rolletschek, Hardy; Nguyen, Thuy H; Häusler, Rainer E; Rutten, Twan; Göbel, Cornelia; Feussner, Ivo; Radchuk, Ruslana; Tewes, Annegret; Claus, Bernhard; Klukas, Christian; Linemann, Ute; Weber, Hans; Wobus, Ulrich; Borisjuk, Ljudmilla

    2007-08-01

    The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.

  13. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures.

    Science.gov (United States)

    Krajnáková, Jana; Bertolini, Alberto; Zoratti, Laura; Gömöry, Dusan; Häggman, Hely; Vianello, Angelo

    2013-10-01

    The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.

  14. Efficacy of combination treatment with fingolimod (FTY720) plus pathogenic autoantigen in a glucose-6-phosphate isomerase peptide (GPI325-339)-induced arthritis mouse model.

    Science.gov (United States)

    Yoshida, Yuya; Tsuji, Takumi; Watanabe, Sayaka; Matsushima, Ayane; Matsushima, Yuki; Banno, Rie; Fujita, Tetsuro; Kohno, Takeyuki

    2013-01-01

    Fingolimod (FTY720) is known to have a significant therapeutic effect in various autoimmune disease models. Here, we examined FTY720 in a model of rheumatoid arthritis, induced by immunizing DBA/1 mice with a peptide consisting of residues 325 through 339 of glucose-6-phosphate isomerase (GPI325-339). The efficacy was evaluated in terms of macroscopic findings, inflammatory cell infiltration and autoantibody level. Prophylactic administration of FTY720 from the day of immunization significantly suppressed the development of paw swelling, but therapeutic administration of FTY720 from onset of symptoms on day 8-9 was less effective. Interestingly, however, combination treatment with FTY720 plus GPI325-339 for 5 d after onset of symptoms significantly reduced the severity of symptoms in all mice, and no relapse occurred after booster immunization. Taking into account the reported mechanism of action of FTY720, these results indicate that combination treatment with FTY720 plus pathogenic autoantigen might efficiently induce immune tolerance by sequestering circulating autoantigen-specific lymphocytes from blood and peripheral tissues to the secondary lymphoid tissues. Combination treatment with FTY720 plus pathogenic autoantigen may become a breakthrough treatment for remission-induction in patients with autoimmune diseases including rheumatoid arthritis.

  15. Hereditary nonspherocytic hemolytic anemia caused by red cell glucose-6-phosphate isomerase (GPI) deficiency in two Portuguese patients: Clinical features and molecular study.

    Science.gov (United States)

    Manco, Licínio; Bento, Celeste; Victor, Bruno L; Pereira, Janet; Relvas, Luís; Brito, Rui M; Seabra, Carlos; Maia, Tabita M; Ribeiro, M Letícia

    2016-09-01

    Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Functional and Biochemical Analysis of Glucose-6-Phosphate Dehydrogenase (G6PD Variants: Elucidating the Molecular Basis of G6PD Deficiency

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2017-05-01

    Full Text Available G6PD deficiency is the most common enzymopathy, leading to alterations in the first step of the pentose phosphate pathway, which interferes with the protection of the erythrocyte against oxidative stress and causes a wide range of clinical symptoms of which hemolysis is one of the most severe. The G6PD deficiency causes several abnormalities that range from asymptomatic individuals to more severe manifestations that can lead to death. Nowadays, only 9.2% of all recognized variants have been related to clinical manifestations. It is important to understand the molecular basis of G6PD deficiency to understand how gene mutations can impact structure, stability, and enzymatic function. In this work, we reviewed and compared the functional and structural data generated through the characterization of 20 G6PD variants using different approaches. These studies showed that severe clinical manifestations of G6PD deficiency were related to mutations that affected the catalytic and structural nicotinamide adenine dinucleotide phosphate (NADPH binding sites, and suggests that the misfolding or instability of the 3D structure of the protein could compromise the half-life of the protein in the erythrocyte and its activity.

  17. Prevalence and distribution of glucose-6-phosphate dehydrogenase (G6PD variants in Thai and Burmese populations in malaria endemic areas of Thailand

    Directory of Open Access Journals (Sweden)

    Phompradit Papichaya

    2011-12-01

    Full Text Available Abstract Background G6PD deficiency is common in malaria endemic regions and is estimated to affect more than 400 million people worldwide. Treatment of malaria patients with the anti-malarial drug primaquine or other 8-aminoquinolines may be associated with potential haemolytic anaemia. The aim of the present study was to investigate the prevalence of G6PD variants in Thai population who resided in malaria endemic areas (western, northern, north-eastern, southern, eastern and central regions of Thailand, as well as the Burmese population who resided in areas along the Thai-Myanmar border. Methods The ten common G6PD variants were investigated in dried blood spot samples collected from 317 Thai (84 males, 233 females and 183 Burmese (11 males, 172 females populations residing in malaria endemic areas of Thailand using PCR-RFLP method. Results Four and seven G6PD variants were observed in samples collected from Burmese and Thai population, with prevalence of 6.6% (21/317 and 14.2% (26/183, respectively. Almost all (96.2% of G6PD mutation samples collected from Burmese population carried G6PD Mahidol variant; only one sample (3.8% carried G6PD Kaiping variant. For the Thai population, G6PD Mahidol (8/21: 38.1% was the most common variant detected, followed by G6PD Viangchan (4/21: 19.0%, G6PD Chinese 4 (3/21: 14.3%, G6PD Canton (2/21: 9.5%, G6PD Union (2/21: 9.5%, G6PD Kaiping (1/21: 4.8%, and G6PD Gaohe (1/21: 4.8%. No G6PD Chinese 3, Chinese 5 and Coimbra variants were found. With this limited sample size, there appeared to be variation in G6PD mutation variants in samples obtained from Thai population in different regions particularly in the western region. Conclusions Results indicate difference in the prevalence and distribution of G6PD gene variants among the Thai and Burmese populations in different malaria endemic areas. Dosage regimen of primaquine for treatment of both Plasmodium falciparum and Plasmodium vivax malaria may need to be optimized, based on endemic areas with supporting data on G6PD variants. Larger sample size from different malaria endemic is required to obtain accurate genetic mapping of G6PD variants in Burmese and Thai population residing in malaria endemic areas of Thailand.

  18. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobin Drop after Sulphadoxine-Pyrimethamine Use for Intermittent Preventive Treatment of Malaria during Pregnancy in Ghana - A Cohort Study.

    Directory of Open Access Journals (Sweden)

    Ruth Owusu

    Full Text Available Sulphadoxine-Pyrimethamine (SP is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp.Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women.The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia.There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger study is required to confirm consistency of findings.

  19. Population study of 1311 C/T polymorphism of Glucose 6 Phosphate Dehydrogenase gene in Pakistan – an analysis of 715 X-chromosomes

    Directory of Open Access Journals (Sweden)

    Naqvi Zulfiqar

    2009-07-01

    Full Text Available Abstract Background Nucleotide 1311 polymorphism at exon 11 of G6PD gene is widely prevalent in various populations of the world. The aim of the study was to evaluate 1311 polymorphism in subjects carrying G6PD Mediterranean gene and in general population living in Pakistan. Results Patients already known to be G6PD deficient were tested for 563C-T (G6PD Mediterranean and 1311 C-T mutation through RFLP based PCR and gene sequencing. A control group not known to be G6PD deficient was tested for 1311C/T only. C-T transition at nt 1311 was detected in 60/234 X-chromosomes with 563 C-T mutation (gene frequency of 0.26 while in 130 of normal 402 X-chromosomes (gene frequency of 0.32. Conclusion We conclude that 1311 T is a frequent polymorphism both in general populations and in subjects with G6PD Mediterranean gene in Pakistan. The prevalence is higher compared to most of the populations of the world. The present study will help in understanding genetic basis of G6PD deficiency in Pakistani population and in developing ancestral links of its various ethnic groups.

  20. Excessive fluoride consumption increases haematological alteration in subjects with iron deficiency, thalassaemia, and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.

    Science.gov (United States)

    Pornprasert, Sakorn; Wanachantararak, Phenphichar; Kantawong, Fahsai; Chamnanprai, Supoj; Kongpan, Chatpat; Pienthai, Nattasit; Yanola, Jintana; Duangmano, Suwit; Prasannarong, Mujalin

    2017-08-01

    Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.

  1. Changes in glucose-6-phosphate dehydrogenase, ribonucleases, esterases and contents of viruses in potato virus Y infected tobacco superinfected with tobacco mosaic virus

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Milada; Šindelář, Luděk

    2003-01-01

    Roč. 47, č. 1 (2003), s. 99-104 ISSN 0006-3134 R&D Projects: GA ČR GA522/99/1264; GA ČR GA522/02/0708 Institutional research plan: CEZ:AV0Z5038910 Keywords : :Nicotiana tabacum * superinfection * virus Subject RIV: CE - Biochemistry Impact factor: 0.919, year: 2003

  2. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    Directory of Open Access Journals (Sweden)

    Desgagnés Julie

    2006-03-01

    Full Text Available Abstract Background Chlorogenic acid (CHL, the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT, is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P, a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL.

  3. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs.

    Science.gov (United States)

    Eltahan, Rana; Guo, Fengguang; Zhang, Haili; Xiang, Lixin; Zhu, Guan

    2018-01-25

    Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (K m  = 0.309 mM, V max  = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC 50  = 8.33 μM; K i  = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC 50  = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC 50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Sequence analysis and molecular characterization of Clonorchis sinensis hexokinase, an unusual trimeric 50-kDa glucose-6-phosphate-sensitive allosteric enzyme.

    Directory of Open Access Journals (Sweden)

    Tingjin Chen

    Full Text Available Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis, is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK, the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small

  5. Anti-citrullinated glucose-6-phosphate isomerase peptide antibodies in patients with rheumatoid arthritis are associated with HLA-DRB1 shared epitope alleles and disease activity.

    Science.gov (United States)

    Umeda, N; Matsumoto, I; Ito, I; Kawasaki, A; Tanaka, Y; Inoue, A; Tsuboi, H; Suzuki, T; Hayashi, T; Ito, S; Tsuchiya, N; Sumida, T

    2013-04-01

    To identify and characterize anti-citrullinated glucose-6-phosphate isomerase (GPI) peptide antibodies in patients with rheumatoid arthritis (RA). Nine GPI arginine-bearing peptides in human GPI protein were selected and cyclic citrullinated GPI peptides (CCG-1-9) were constructed. Samples were obtained from RA (n = 208), systemic lupus erythematosus (SLE) (n = 101), Sjögren's syndrome (SS; n = 101) and healthy controls (n = 174). Antibodies against CCG-1-9 were measured, and anti-citrullinated α-enolase-1 (CEP-1), -cyclic citrullinated peptides (CCP) and -GPI proteins antibodies were also examined. Patients with RA were genotyped for HLA-DRB1. The numbers of shared epitope (SE) alleles were counted and compared with those of the autoantibodies. Rabbit GPI was citrullinated with rabbit peptidylarginine deiminase and immunoblot analysis of RA sera performed. The levels of autoantibodies were compared before and after treatment with TNF antagonists in 58 RA patients. Anti-CCG-2, -4 and -7 antibodies were detected in 25·5, 33·2 and 37·0% patients with RA, respectively, and these antibodies were very specific for RA (specificity, 98·1-99·7%). Altogether, 44·2, 86·1 and 13·9% of RA sera were positive for anti-CEP-1, -CCP and -GPI protein antibodies, respectively. Anti-CCG-2, -4 and -7 antibodies were correlated with anti-CCP and anti-CEP-1 antibodies and with the presence of HLA-DRB1 SE alleles. Citrullinated GPI protein was detected using RA sera. Treatment with tumour necrosis factor antagonists reduced significantly the levels of anti-CCG-2 and -7 but not of anti-CEP-1 antibodies. This is the first report documenting the presence of anti-CCG antibodies in RA. Anti-CCG-2 and -7 antibodies could be considered as markers for the diagnosis of RA and its disease activity. © 2012 British Society for Immunology.

  6. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    Science.gov (United States)

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients. 2011 Elsevier B.V. All rights reserved.

  7. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high...

  8. Glycogen storage disease type 1b: an early onset severe phenotype associated with a novel mutation (IVS4) in the glucose 6-phosphate translocase (SLC37A4) gene in a Turkish patient.

    Science.gov (United States)

    Oguz, M M; Aykan, E; Yilmaz, G; Aytekin, C; Karaer, K; Açoğlu, E A

    2014-01-01

    Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders that include types Ia and Ib. GSD-Ib is caused by a deficiency in the glucose-6-phosphate transporter (G6PT) caused by a mutation in the SLC37A4 gene coding for G6PT. Glycogen storage disease is characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver and chronic neutropenia. Herein we describe a 4-month-old Turkish patient with early onset and severe typical clinical features of GSD-1b in which a novel mutation in the SLC37A4 gene was detected. After the bone marrow examination parenteral antibiotic therapy and subcutaneous granulocyte colony-stimulating factor (G-CSF) were started. Due to the severe neutropenia the patient had developed nosocomial sepsis and the dose of G-CSF was increased. After 2 months later from the initial treatment of the G-CSF he developed splenomegaly and urinary complications. Despite maximal therapy he had an extremely poor quality of life and life-threatening complications due to impaired bone marrow function. As the patient required continual hospitalization he was schedule for bone marrow transplantation.

  9. Functional Mechanism(s) of the Inhibition of Disease Progression by Combination Treatment with Fingolimod Plus Pathogenic Antigen in a Glucose-6-phosphate Isomerase Peptide-Induced Arthritis Mouse Model.

    Science.gov (United States)

    Yoshida, Yuya; Mikami, Norihisa; Matsushima, Yuki; Otani, Fumiya; Miyawaki, Mai; Takatsuji, Miku; Banno, Rie; Tsuji, Takumi; Fujita, Tetsuro; Tsujikawa, Kazutake; Kohno, Takeyuki

    2015-01-01

    We previously reported that combination treatment with fingolimod (FTY720) plus antigenic peptide of glucose-6-phosphate isomerase (residues 325-339) (GPI325-339) from the onset of symptoms significantly inhibited disease progression in a mouse model of GPI325-339-induced arthritis. In this study, we investigated the mechanism(s) involved. The model mice were treated from arthritis onset with FTY720 alone, GPI325-339 alone, or the combination of FTY720 plus GPI325-339. At the end of treatment, inguinal lymph nodes (LNs) were excised and examined histologically and in flow cytometry. Levels of apoptotic cells, programmed death-1-expressing CD4(+)forkhead box P3(-) nonregulatory T cells (non-Tregs), and cytotoxic T-lymphocyte antigen 4-expressing non-Tregs in inguinal LNs were markedly increased in the combination treatment group mice. Regulatory T cells (Tregs) were also increased. These results indicate that combination treatment with FTY720 plus GPI325-339 inhibits the progression of arthritis by inducing clonal deletion and anergy of pathogenic T cells and also by immune suppression via Tregs.

  10. Two novel mutations (p.(Ser160Pro) and p.(Arg472Cys)) causing glucose-6-phosphate isomerase deficiency are associated with erythroid dysplasia and inappropriately suppressed hepcidin.

    Science.gov (United States)

    Mojzikova, Renata; Koralkova, Pavla; Holub, Dusan; Saxova, Zuzana; Pospisilova, Dagmar; Prochazkova, Daniela; Dzubak, Petr; Horvathova, Monika; Divoky, Vladimir

    2018-03-01

    Glucose-6-phosphate isomerase (GPI) deficiency, a genetic disorder responsible for chronic nonspherocytic hemolytic anemia, is the second most common red blood cell glycolytic enzymopathy. We report three patients from two unrelated families of Czech and Slovak origin with macrocytic hemolytic anemia due to GPI deficiency. The first patient had 15% of residual GPI activity resulting from two new heterozygous missense mutations c.478T>C and c.1414C>T leading to substitutions p.(Ser160Pro) and p.(Arg472Cys). Two other patients (siblings) inherited the same c.1414C>T p.(Arg472Cys) mutation in a homozygous constitution and lost approximately 89% of their GPI activity. Erythroid hyperplasia with dysplastic features was observed in the bone marrow of all three patients. Low hepcidin/ferritin ratio and elevated soluble transferrin receptor detected in our GPI-deficient patients suggest disturbed balance between erythropoiesis and iron metabolism contributing to iron overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    G6PD) variants and their associated enzyme deficiencies among different age groups of individuals in Abu Dhabi, United Arab Emirates (UAE). Methods: A total of 15,995 patients (6302 UAE nationals and 9693 non-UAE nationals) who ...

  13. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    G6PD) deficiency among staff and students of a university community in Malaysia as well as to identify molecular genetics by determination of G6PD mutations. Methods: Cross-sectional and experimental studies were carried out on the staff ...

  14. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    HP

    and the Mediterranean region. It affects about one-tenth of African-American males in the. United States. The worldwide distribution of this disorder is remarkably similar to that of malaria. [1]. G6PD enzyme protects RBCs from harmful by-products that are produced as a result of taking certain medications or when the body is.

  15. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    restriction fragment length polymorphism (PCR-RFLP), denaturing high performance liquid chromatography (DHPLC) and DNA sequencing were utilized to identify common mutations in individuals with G6PD deficiency. Results: The prevalence of G6PD deficiency among UAE nationals was 7.4% and non-UAE nationals.

  16. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  17. Risks of hemolysis in glucose-6-phosphate dehydrogenase deficient infants exposed to chlorproguanil-dapsone, mefloquine and sulfadoxine-pyrimethamine as part of intermittent presumptive treatment of malaria in infants

    DEFF Research Database (Denmark)

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus

    2015-01-01

    ) antimalarial regimens. We sought to examine the joint effects of G6PD status and IPTi antimalarial treatment on incidence of hemolysis in asymptomatic children treated with CD, sulfadoxine-pyrimethamine (SP), and mefloquine (MQ). METHODS: A secondary analysis of data from a double-blind, placebo...

  18. Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells.

    Science.gov (United States)

    Ko, Chun Hay; Li, Karen; Li, Chung Leung; Ng, Pak Cheung; Fung, Kwok Pui; James, Anthony Edward; Wong, Raymond Pui-On; Gu, Goldie Jia-Shi; Fok, Tai Fai

    2011-10-15

    Studies of hemolytic agents on G6PD-deficient subjects have been extensively performed on red blood cells obtained from donors, only using in vitro methods. However, there has been no adequate G6PD-deficient animal model for in vivo assessment of potentially hemolytic agents. The objective of this study is to establish a novel mouse model of severe G6PD-deficiency, with high susceptibility to hemolytic damage upon oxidative agents. To create this model, G6PD mutant Gpdx allele was introduced into the C57L/J mouse strain background by breeding program. The hemolytic toxicity of naphthalene and its metabolite α-naphthol on G6PD-deficient red blood cells was evaluated. Our data showed that the F2 homozygous Gpdx mutant with C57L/J background exhibiting the G6PD activity was 0.9±0.1 U/g Hb, level similar to those of G6PD deficiency in human. A significantly negative correlation was demonstrated between GSH percentage reduction and G6PD activity (r=-0.51, p<0.001) upon challenge of the red blood cells with alpha-naphthol in vitro. Similar correlation was also found between GSSG elevation and G6PD activity. Our in vivo studies showed that the administration of naphthalene at 250 mg/kg inflicted significant oxidative damage to the G6PD-deficient mice, as illustrated by the decrease of the GSH-to-GSSG ratio (by 34.2%, p=0.005) and the increase of the methemoglobin level (by 1.9 fold, p<0.001). Hemolytic anemia was also found in G6PD-deficient mice at this dosage of naphthalene. In summary, this novel mouse model could be utilized as a screening platform to more accurately determine the hemolytic toxicity of pharmacological agents on G6PD-deficient subjects. Copyright © 2011. Published by Elsevier Inc.

  19. The first evaluation of glucose-6-phosphate dehydrogenase deficiency (G6PD) gene mutation in malaria-endemic region at South Central Timor (SCT) district, Eastern Indonesia 2015-2016

    Science.gov (United States)

    Hutagalung, J.; Kusnanto, H.; Supargiyono; Sadewa, A. H.; Satyagraha, A. W.

    2018-03-01

    Primaquine (PQ) is the only licensed drug effective against P. vivax for specific hypnozoites and as a key drug in the malaria elimination stage. However, PQ can cause severe hemolysis in G6PD deficient individuals. Unfortunately, few epidemiological data of these disorders was in Indonesia. This study aimed to assesses the prevalence and genotyping variant of G6PDd among the people on malaria-endemic. Blood samples from 555 unrelated subjects in eastern Indonesia were for G6PDd by quantitative test and PCR-RFLP-DNA sequencing. All protocols followed by Promega, Madison, USA. The prevalence of malaria and anemia was 32.6% (181/555) and 16% (89/555) with P. vivaxdominant species 52.5% (95/181), respectively. Overall, 16.6% (92/555) subjects were G6PD deficient, including 58.7% (54/92) females and 41.3% (38/92). Among the 92 cases G6PD deficient molecularly studied, the genotype variant Vanua Lava (T10883C) were detected dominant and unknown G6PD deficient (T-13.154-C) in 3 cases. It was high G6PD deficient in eastern Indonesia indicate that diagnosis and management of G6PD deficient are necessary. Obligatory anti-malaria doses for G6PD deficient individuals, population screening, are needed on endemic malaria in eastern Indonesia.

  20. Dehydrogenases, Acid and Alkaline Phosphatases, and Esterases for Chemotaxonomy of Selected Meloidogyne, Ditylenchus, Heterodera and Aphelenchus spp.

    Science.gov (United States)

    Dickson, D W; Huisingh, D; Sasser, J N

    1971-01-01

    Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogynejavanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given.

  1. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase; Sintese e modificacoes de derivados heterociclicos de d-arabinose: potenciais inibidores de glicose-6-fosfato isomerase e de glicosamina-6-fosfato sintase

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos]. E-mail: ricardodylan@farmacia.ufmg.br

    2008-07-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  2. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  3. Influence of sickle heterozygous status and glucose-6-phosphate ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    immunity to malaria, genotype and pregnancy, and by the species, virulence, strain and perhaps the geographic origin of the parasite12. Anaemia in P. falciparum ..... Glucose Homeostasis in Children with falciparum Malaria: Precursor Supply. Limits Gluconeogenesis and Glucose. Production. J. Clin. Endocrinol Metab.

  4. Prevalence of sickle cell, malaria and glucose-6-phosphate ...

    African Journals Online (AJOL)

    PD) deficiency are relatively common genetic disorders in population exposed to malaria in sub-Saharan Africa. The prevalence of these two genetic disorders differs between different malaria transmission areas. Objectives: This cross ...

  5. The status of antioxidant defences in Glucose-6-phosphate ...

    African Journals Online (AJOL)

    The aim of this study was to clarify the role of G6PD in cellular antioxidant defense; the level of glutathione, catalase, NADPH and estimate the level of malondialdehyde which reflect the oxidative stress across the cell membrane. Also to study the effect of antioxidant treatment (vitamins C and E) to ameliorate high sensitivity ...

  6. Glucose-6-phosphate dehydro- genase deficiency; the single most ...

    African Journals Online (AJOL)

    2017-03-10

    Mar 10, 2017 ... Laboratory investigations on all the jaundiced neonates were as follows; Blood typing (ABO and Rhesus groups) for mothers and the babies, blood cultures when indicated. Total and direct reacting serum bilirubin (SB) using the modified method of Winsten and Cehelyk13. Using an auto analyzer (Express ...

  7. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high...... modulation of NBT3 associated to receptor saturation; 2) stimulation of cell growth; 3) contrary to the findings in rat hepatocytes no stimulation of ME, G6PD or 6PGD. Insulin enhanced ME and 6PGD....

  8. Metabolism of excised embryos of Lupinus luteus L. VI. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes

    Directory of Open Access Journals (Sweden)

    J. Czosnowski

    2015-01-01

    Full Text Available The electrophoretic patterns (disc electrophoresis of the studied dehydrogenases: glucose-6-phosphate - (A, malate - (B, glutamate - (C, alcohol - (D and lactate dehydrogenase (E, in the axial organs of isolated Lupinus luteus embryos and seedlings cultivated over 12 days are characterized by great similarities. With time, after the third day of cultivation the patterns begin to become less deyeloped. Analyses performed during the first 10 hours of imbibition of seed parts indicate that the maximal development of isozyme patterns occurs during the third hour after which the patterns become poorer. The most uniform type of pattern. and the lowest number of isozymes was shown by glutamate dehydrogenase, the richest pattern was shown by malate dehydrogenase. No band common for a 11 the 27 experimental elements was found.

  9. Incremento de la glucosa-6-fosfato-deshidrogenasa eritrocitaria en jóvenes con síndrome de Down tras un programa de actividad física de 12 semanas A 12-week physical activity program increases glucose-6-phosphate-dehydrogenase activity in Down syndrome adolescents

    OpenAIRE

    Francisco J. Ordóñez; Manuel Rosety-Rodríguez; Manuel Rosety

    2005-01-01

    Recientemente se ha publicado que las células trisómicas presentan una mayor sensibilidad al daño oxidativo, que podría justificar la frecuente asociación de síndrome de Down a aterosclerosis, envejecimiento precoz, etc. Para conocer el posible papel de la actividad física moderada en la mejora de la capacidad antioxidante se estudió el comportamiento de la enzima glucosa-6-fosfato-deshidrogenasa (G6PDH) eritrocitaria en 31 adolescentes varones (16.3 ± 1.1 años) tras desarrollar un programa d...

  10. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  11. Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration

    Directory of Open Access Journals (Sweden)

    Wang Yiran

    2009-06-01

    Full Text Available Abstract Background Thermostable enzymes from thermophilic microorganisms are playing more and more important roles in molecular biology R&D and industrial applications. However, over-production of recombinant soluble proteins from thermophilic microorganisms in mesophilic hosts (e.g. E. coli remains challenging sometimes. Results An open reading frame TM0438 from a hyperthermophilic bacterium Thermotoga maritima putatively encoding 6-phosphogluconate dehydrogenase (6PGDH was cloned and expressed in E. coli. The purified protein was confirmed to have 6PGDH activity with a molecular mass of 53 kDa. The kcat of this enzyme was 325 s-1 and the Km values for 6-phosphogluconate, NADP+, and NAD+ were 11, 10 and 380 μM, respectively, at 80°C. This enzyme had half-life times of 48 and 140 h at 90 and 80°C, respectively. Through numerous approaches including expression vectors, hosts, cultivation conditions, inducers, and codon-optimization of the 6pgdh gene, the soluble 6PGDH expression levels were enhanced to ~250 mg per liter of culture by more than 500-fold. The recombinant 6PGDH accounted for >30% of total E. coli cellular proteins when lactose was used as a low-cost inducer. In addition, this enzyme coupled with glucose-6-phosphate dehydrogenase for the first time was demonstrated to generate two moles of NADPH per mole of glucose-6-phosphate. Conclusion We have achieved a more than 500-fold improvement in the expression of soluble T. maritima 6PGDH in E. coli, characterized its basic biochemical properties, and demonstrated its applicability for NADPH regeneration by a new enzyme cocktail. The methodology for over-expression and simple purification of this thermostable protein would be useful for the production of other thermostable proteins in E. coli.

  12. NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions

    Directory of Open Access Journals (Sweden)

    Francisco Javier Corpas

    2014-12-01

    Full Text Available NADPH is an essential reductive coenzyme in biosynthetic processes such as cell growth, proliferation and detoxification in eukaryotic cells. It is required by antioxidative systems such as the ascorbate-glutathione cycle and is also necessary for the generation of superoxide radicals by plant NADPH oxidases and for the generation of nitric oxide (NO by L-arginine-dependent nitric oxide syntase. This coenzyme is principally re-generated by a group of NADP-dehydrogenases enzymes including glucose-6-phosphate dehydrogenase (G6PDH and 6-phosphogluconate dehydrogenase (6PGDH, both belonging to the pentose phosphate pathway, the NADP-malic enzyme (NADP-ME and NADP-isocitrate dehydrogenase (NADP-ICDH. In this study, current perspectives on these enzymes in higher plants under different stress situations are reviewed and it is also pointed out that this group of NADPH-generating dehydrogenases is a key element in supporting the mechanism of response to nitro-oxidative stress situations.

  13. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...

  14. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    Science.gov (United States)

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  15. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  16. The glucose 6-phosphate shunt around the Calvin-Benson cycle.

    Science.gov (United States)

    Sharkey, Thomas D; Weise, Sean E

    2016-07-01

    It is just over 60 years since a cycle for the regeneration of the CO2-acceptor used in photosynthesis was proposed. In this opinion paper, we revisit the origins of the Calvin-Benson cycle that occurred at the time that the hexose monophosphate shunt, now called the pentose phosphate pathway, was being worked out. Eventually the pentose phosphate pathway was separated into two branches, an oxidative branch and a non-oxidative branch. It is generally thought that the Calvin-Benson cycle is the reverse of the non-oxidative branch of the pentose phosphate pathway but we describe crucial differences and also propose that some carbon routinely passes through the oxidative branch of the pentose phosphate pathway. This creates a futile cycle but may help to stabilize photosynthesis. If it occurs it could explain a number of enigmas including the lack of complete labelling of the Calvin-Benson cycle intermediates when carbon isotopes are fed to photosynthesizing leaves. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Labelling of the pineal gland with 99mTc-glucose-6-phosphate

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Santos, A.C.; De Lima, J.J.P.

    1998-01-01

    Lately, the pineal body has been the subject of a large variety of studies. Only recently it has been understood the role played by this endocrine gland to maintain the balance of the human body and also in animal models. Although small in dimensions, the pineal body is a very active organ, able to transmit precise temporal information. It probably participates in the synchronization of several organic functions. The present work aims to study a possible use of 99m Tc-glucose-6-P as a tracer for the pineal gland. Histoautoradiographic studies have been performed in Wistar rats. Tomoscintigraphic studies were acquired in patients and in albine rabbits (oryctolagus cuniculus hyplus). The labelling efficiency and the radiochemical purity of the labelled products have always been tested. Animal and human SPECT exams, show an activity focus projected over the area corresponding to the pineal body localization. Autoradiographic studies using [1- 14 C]-glucose-6-P did not reveal a more relevant activity at the pineal level, probably due to its hepatic conversion to 14 C-glucose. (author)

  18. Genetic variants in glucose-6-phosphate isomerase gene as prognosis predictors in hepatocellular carcinoma.

    Science.gov (United States)

    Lyu, Zhuomin; Chen, Yibing; Guo, Xu; Zhou, Feng; Yan, Zhaoyong; Xing, Jinliang; An, Jiaze; Zhang, Hongxin

    2016-12-01

    Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression of enzymes in glucose metabolism. Previous studies have demonstrated the critical role of glucise-6-phosphate isomerase (GPI) in cancer initiation, metastasis and progression. However, the significance of single nucleotide polymorphisms (SNPs) in GPI gene has not been investigated in hepatocellular carcinoma (HCC). In this study, a total of 3 functional SNPs in GPI gene were genotyped in 492 HCC patients with surgical treatment. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the analysis of overall survival (OS) and recurrence-free survival (RFS). The homozygous variant genotypes of rs7248411 in mRNA splice sites of GPI gene were significantly associated with an increased risk of death in the multivariate analysis (Hazard ratio [HR], 2.07; 95% confidence interval [95% CI]: 1.16-3.68 in a recessive model). In stratified analysis, the association remained significant in patients with high α-fetal protein (AFP) level (HR=2.37, 95% CI 1.25-4.49). Moreover, we identified the interaction between rs7248411 and AFP level in predicting the prognosis of HCC patients (P for interaction<0.001). Our data suggest that GPI gene polymorphism may serve as potential biomarkers to predict the OS of HCC. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Juan, E-mail: juanricardorodrigues@gmail.com [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, Central University of Venezuela (Venezuela, Bolivarian Republic of); Branco, Vasco [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Lu, Jun; Holmgren, Arne [Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet (Sweden); Carvalho, Cristina, E-mail: cristina.carvalho@ff.ulisboa.pt [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal)

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates

  20. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP+-dependent dehydrogenases of the pentose phosphate pathway

    International Nuclear Information System (INIS)

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-01-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP + -dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI 50 : 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg 2+ > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates the

  1. Glucose 6 phosphatase dehydrogenase (G6PD and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Manju Tiwari

    2017-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD is a key and rate limiting enzyme in the pentose phosphate pathway (PPP. The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH. There are preponderance research findings that demonstrate the enzyme (G6PD role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  3. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  4. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  5. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  6. Three new mutations account for the prevalence of glucose 6 phosphate deshydrogenase (G6PD) deficiency in Tunisia.

    Science.gov (United States)

    Bendaoud, B; Hosni, I; Mosbahi, I; Hafsia, R; Prehu, C; Abbes, S

    2013-04-01

    A previous study on G6PD deficiency carried out on Tunisian population, led to the finding of seven different mutations with the prevalence of G6PD A- variant. This present study reports 23 new unrelated deficient subjects studied at the molecular level to determine the mutation that causes G6PD deficiency. Using PCR-SSCP of coding regions followed by direct sequencing of abnormal pattern, three new mutations were detected. Two of them are polymorphic intronic mutations. The first is IVS-V 655C-->C/T, found in four female subjects with mild deficiency of class III variant. The second is IVS-VIII 43 G-->A, found in three male subjects with mild deficiency of class III variant. The third mutation is in the exon region so that it changes the primary structure of the molecule. It is cited for the first time and named G6PD Tunisia. This variant affects the exon 7 of the gene at genomic position 15435 G→T. Its cDNA position is 93 G→G/T, it changes arg 246 to leu. This mutation was found in one heterozygote female with deficiency of class II who have had hemolytic anemia due to ingestion of fava beans. Finally, G6PD Med variant, reported before in three cases, was also found in five other cases (four heterozygote females and one male hemizygote). These findings first enlarge the spectre of mutations to be ten variant mutations, characterizing the Tunisian population and also contribute with hemoglobin gene research in our laboratory to trace the whole genetic map of Tunisian population. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid ...

  8. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.

  9. Pegloticase Injection

    Science.gov (United States)

    ... doctor if you have glucose-6-phosphate dehydrogenase (G6PD) deficiency (an inherited blood disease). Your doctor may test you for G6PD deficiency before you start to receive pegloticase injection. If ...

  10. Differences in associations between markers of antioxidative defense and asthma are sex specific

    DEFF Research Database (Denmark)

    Malling, Tine Halsen; Sigsgaard, Torben; Andersen, Helle R

    2010-01-01

    on a screening questionnaire, random sampling, or both. Serum selenium concentrations and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase [GPX], glutathione reductase [GR], and glucose-6-phosphate dehydrogenase [G6PD]) in erythrocytes were measured. Asthma was defined as either...

  11. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a

  12. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Visser, J.

    1969-01-01

    Gel-filtration, ultracentrifugation and sucrose density gradient centrifugation demonstrated differences in physico-chemical properties of holoenzyme and apoenzyme of lipoamide dehydrogenase. The native apoenzyme has a mol.wt. of approx. 52,000 which is half that of the native holoenzyme. The

  13. Effects of short and extended fasting periods and cattle breed on ...

    African Journals Online (AJOL)

    Glycogen, glucose-6-phosphate and creatine phosphate concentration were determined at each time interval as glycosyl units after hydrolysis. Samples to determine sarcomere length were removed at one and three days post mortem. Homogenates of the samples were placed under a 31,000 magnification microscope ...

  14. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians].

    Science.gov (United States)

    Vykhrestiuk, N P; Burenina, E A; Iarygina, G V

    1986-01-01

    Studies have been made on the activity and properties of malate and lactate dehydrogenases from the cattle rumen trematodes Eurytrema pancreaticum, Calicophoron ijimai and the turbellarian Phagocata sibirica which has a common free-living ancestor with the trematodes. All the species studied have a highly active malate dehydrogenase, its activity in the reaction of reducing oxaloacetate being 6-14 times higher than in the reaction of malate oxidation. The affinity of malate dehydrogenase to oxaloacetate was found to be higher than that to malate. The activity of lactate dehydrogenase (reducing the pyruvate) was lower than the activity of malate dehydrogenase, the difference being 50 times for C. ijimai, 4 times for E. pancreaticum and 10 times for P. sibirica.

  15. Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice

    NARCIS (Netherlands)

    Bandsma, RHJ; Grefhorst, A; van Dijk, TH; van der Sluijs, FH; Hammer, A; Reijngoud, DJ; Kuipers, F

    2004-01-01

    Aims/hypothesis. Leptin-deficient ob/ob mice are hyperinsulinaemic and hyperglycaemic; however, the cause of hyperglycaemia remains largely unknown. Methods. Glucose metabolism in vivo in 9-h fasted ob/ob mice and lean littermates was studied by infusing [U-C-13]-glucose, [2-C-13]-glycerol,

  16. Next-generation sequencing unravels homozygous mutation in glucose-6-phosphate isomerase, GPIc.1040G>A (p.Arg347His) causing hemolysis in an Indian infant.

    Science.gov (United States)

    Jamwal, Manu; Aggarwal, Anu; Das, Anirban; Maitra, Arindam; Sharma, Prashant; Krishnan, Shekhar; Arora, Neeraj; Bansal, Deepak; Das, Reena

    2017-05-01

    Inherited anemias diagnostic workup requires a step-wise algorithm. Causal genes implicated in congenital hemolytic anemia are numerous, making a gene-by-gene approach by Sanger sequencing time consuming, expensive and labour intensive. Targeted resequencing can be of great use in explaining these cases. Six months female presented with neonatal jaundice and negative family history. Clinical and laboratory evidences were suggestive of hemolytic anemia. G6PD deficiency, thalassemias, hemoglobinopathies, autoimmune hemolytic anemia, hereditary spherocytosis and pyruvate kinase deficiency were excluded. Targeted resequencing on Illumina MiSeq using TruSight One sequencing panel was performed to identify the causative mutations. 35-40% of RBCs were acanthocytes and echinocytes. A missense homozygous mutation was found inglucose-6-phosphate isomerase, GPI [c.1040G>A (p.Arg347His), rs137853583] which results in nonspherocytic hemolytic anemia. This study describes GPI p.Arg347His mutation for the first time from India and is the first report of red cell GPI deficiency diagnosed using NGS-based resequencing and highlights the potential of this technique in clinical practice. Copyright © 2017. Published by Elsevier B.V.

  17. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  18. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... this condition: lactate dehydrogenase-A deficiency (sometimes called glycogen storage disease XI) and lactate dehydrogenase-B deficiency. People with ... Resources Genetic Testing (2 links) Genetic Testing Registry: Glycogen storage disease XI Genetic Testing Registry: Lactate dehydrogenase B deficiency ...

  19. The effects of storage on the retention of enzyme activity in cryostat sections. A quantitative histochemical study on rat liver

    NARCIS (Netherlands)

    Frederiks, W. M.; Ouwerkerk, I. J.; Bosch, K. S.; Marx, F.; Kooij, A.; van Noorden, C. J.

    1993-01-01

    The effect of storage of unfixed cryostat sections from rat liver for 4 h, 24 h, 3 days and 7 days at -25 degrees C was studied on the activities of lactate dehydrogenase, glucose-6-phosphate dehydrogenase, xanthine oxidoreductase, glutamate dehydrogenase, succinate dehydrogenase (all demonstrated

  20. Avicennia marina

    African Journals Online (AJOL)

    SAM

    2014-04-23

    Apr 23, 2014 ... glucose-6-phosphate dehydrogenase (G6PDH) and. NADH dehydrogenase of NADH-ubiquinone (coenzyme. Q) reductase (complex I) were .... phate isomerase, 1 U ml-1 glycerophosphate de-hydrogenase and. 0.2 mM NADH in Tris (pH 7.6) buffer. Activity was monitored by measuring the formation of ...

  1. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  2. Extended Emotions

    DEFF Research Database (Denmark)

    Krueger, Joel; Szanto, Thomas

    2016-01-01

    Until recently, philosophers and psychologists conceived of emotions as brain- and body-bound affairs. But researchers have started to challenge this internalist and individualist orthodoxy. A rapidly growing body of work suggests that some emotions incorporate external resources and thus extend...... beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences....... First, we outline the background of the debate and discuss different argumentative strategies for ExE. In particular, we distinguish ExE from cognate but more moderate claims about the embodied and situated nature of cognition and emotion (Section 1). We then dwell upon two dimensions of ExE: emotions...

  3. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  4. Extended ERP

    OpenAIRE

    Müssigmann, Nikolaus

    2005-01-01

    Extended ERP : dynamic strategic supply network development / A. Albani, N. Müssigmann, K. Turowski. - In: ICESAcc 2005 - Second International Conference on Enterprise Systems and Accounting / C. J. Stefanou. - Thessaloniki : Labor. of Enterprise Resources Dep. of Accounting, 2005. - 1 CD-ROM

  5. Competitive inhibition of glutamate dehydrogenase reaction.

    Science.gov (United States)

    Choudhury, Rajarshi; Punekar, Narayan S

    2007-06-12

    Irrespective of their pyridine nucleotide specificity, all glutamate dehydrogenases share a common chemical mechanism that involves an enzyme bound 'iminoglutarate' intermediate. Three compounds, structurally related to this intermediate, were tested for the inhibition of purified NADP-glutamate dehydrogenases from two Aspergilli, as also the bovine liver NAD(P)-glutamate dehydrogenase. 2-Methyleneglutarate, closely resembling iminoglutarate, was a potent competitive inhibitor of the glutamate dehydrogenase reaction. This is the first report of a non-aromatic structure with a better glutamate dehydrogenase inhibitory potency than aryl carboxylic acids such as isophthalate. A suitably located 2-methylene group to mimic the iminium ion could be exploited to design inhibitors of other amino acid dehydrogenases.

  6. Development of an Isoelectric Focusing Technique for ...

    African Journals Online (AJOL)

    In this study, 18 enzyme systems namely adenylate kinase (AK); alkaline phosphatase (ALK-P) and acid phosphatase (ACID-P); -amylase ( -AMY); esterase's (EST); glucose-6-phosphate dehydrogenase (G-6-P-DeH); glutamate oxaloacetate transaminase (GOT); -glycerophosphate dehydrogenase ( -GPD); hexokinase ...

  7. LDH and G-6PDH activities in the ovaries of adult female Wistar rats ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the effects of aqueous extracts of neem (Azadirachta Indica) leaves (which have been documented for its antifertility effect on experimental animals) on glucose-6-phosphate dehydrogenase (G-6PDH) and lactate dehydrogenase (LDH) levels in the ovaries of adult female wistar ...

  8. Studies on carbohydrate metabolism in Bacillus sphaericus 1593 ...

    African Journals Online (AJOL)

    Bacillus sphaericus 1593 was found to grow poorly on glucose when provided as sole carbon source. However, growth was significantly much higher when acetate was provided as the carbon source, as compared to glucose. The activities of aconitase, isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and ...

  9. Characterization of retinaldehyde dehydrogenase 3

    OpenAIRE

    Graham, Caroline E.; Brocklehurst, Keith; Pickersgill, Richard W.; Warren, Martin J.

    2006-01-01

    RALDH3 (retinal dehydrogenase 3) was characterized by kinetic and binding studies, protein engineering, homology modelling, ligand docking and electrostatic-potential calculations. The major recognition determinant of an RALDH3 substrate was shown to be an eight-carbon chain bonded to the aldehyde group whose kinetic influence (kcat/Km at pH 8.5) decreases when shortened or lengthened. Surprisingly, the β-ionone ring of all-trans-retinal is not a major recognition site. The dissociation const...

  10. Extending Puppet

    CERN Document Server

    Franceschi, Alessandro

    2014-01-01

    This book is a clear, detailed and practical guide to learn about designing and deploying you puppet architecture, with informative examples to highlight and explain concepts in a focused manner. This book is designed for users who already have good experience with Puppet, and will surprise experienced users with innovative topics that explore how to design, implement, adapt, and deploy a Puppet architecture. The key to extending Puppet is the development of types and providers, for which you must be familiar with Ruby.

  11. Consciousness extended

    DEFF Research Database (Denmark)

    Carrara-Augustenborg, Claudia

    2012-01-01

    There is no consensus yet regarding a conceptualization of consciousness able to accommodate all the features of such complex phenomenon. Different theoretical and empirical models lend strength to both the occurrence of a non-accessible informational broadcast, and to the mobilization of specific...... brain areas responsible for the emergence of the individual´s explicit and variable access to given segments of such broadcast. Rather than advocating one model over others, this chapter proposes to broaden the conceptualization of consciousness by letting it embrace both mechanisms. Within...... such extended framework, I propose conceptual and functional distinctions between consciousness (global broadcast of information), awareness (individual´s ability to access the content of such broadcast) and unconsciousness (focally isolated neural activations). My hypothesis is that a demarcation in terms...

  12. Extending Experiences

    DEFF Research Database (Denmark)

    A computer game's player is experiencing not only the game as a designer-made artefact, but also a multitude of social and cultural practices and contexts of both computer game play and everyday life. As a truly multidisciplinary anthology, Extending Experiences sheds new light on the mesh...... of possibilities and influences the player engages with. Part one, Experiential Structures of Play, considers some of the key concepts commonly used to address the experience of a computer game player. The second part, Bordering Play, discusses conceptual and practical overlaps of games and everyday life...... and the impacts of setting up, crossing and breaking the boundaries of game and non-game. Part three, Interfaces of Play, looks at games as technological and historical artefacts and commodities. The fourth part, Beyond Design, introduces new models for the practical and theoretical dimensions of game design....

  13. Histochemical and ultrastructural study of adult human tendon.

    Science.gov (United States)

    Józsa, L; Bálint, J B; Réffy, A; Demel, Z

    1979-01-01

    The authors have studied the enzymhistochemical and ultrastructural pictures of tenocytes of adult human tendons. High succinate dehydrogenase, cytochrome oxidase, TPN-diaphorase, lactate dehydrogenase and glucose-6-phosphate dehydrogenase activity were found, as indicated both oxidativ, anaerobic and pentose-phosphate shung activity. Phosphorylase and glutamate dehydrogenase activity was medial, lipase and alcaline phosphatase activity was slight. In tenocytes well developed rough endoplasmic reticulum and GOLGI apparatus, large amount of free ribosomes were found.

  14. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.1500 Malic dehydrogenase test system. (a) Identification. A malic dehydrogenase test system is a device that is intended to measure the activity of the enzyme malic dehydrogenase in serum and... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Malic dehydrogenase test system. 862.1500 Section...

  15. Genetics Home Reference: dihydrolipoamide dehydrogenase deficiency

    Science.gov (United States)

    ... Lacaille F, de Keyzer Y, Di Martino V, de Lonlay P. Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Genet Metab. 2013 May;109(1):28- ...

  16. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  17. Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli.

    Science.gov (United States)

    Caballero, E; Baldomá, L; Ros, J; Boronat, A; Aguilar, J

    1983-06-25

    Lactaldehyde dehydrogenase is an enzyme involved in the aerobic metabolism of fucose in wild type Escherichia coli, and glycolaldehyde dehydrogenase is an enzyme involved in the metabolism of ethylene glycol in mutant cells able to utilize this glycol. Both enzyme sources display oxidative activity on either substrate with a constant ratio between these activities. We have found that both enzymatic activities present the same electrophoretic mobility when crude extracts were electrophoresed in polyacrylamide gels and the gels stained for enzyme activities. Furthermore, both enzymatic activities co-chromatograph in a DEAE-Sephadex column. If lactaldehyde dehydrogenase of wild type cells is purified near homogeneity and the purification procedure is screened for both aldehydes as substrates, only one enzyme is apparent, giving again a constant ratio between lactaldehyde and glycolaldehyde dehydrogenase activities. Genetic evidence of the fact that both activities are functions of the same protein is provided by the observation that mutation to thermosensitivity for the production of lactaldehyde dehydrogenase affected in the same way the production of glycolaldehyde dehydrogenase. Glycolaldehyde dehydrogenase from mutant cells is purified in a procedure coincident with the lactaldehyde dehydrogenase purification, yielding a single enzyme electrophoretically indistinguishable from the purified lactaldehyde dehydrogenase. Peptide mapping of the purified preparation after digestion with chymotrypsin or Staphylococcus aureus protease V8 gives an indistinguishable band pattern between both enzymes.

  18. Isocitrate dehydrogenase mutations in gliomas

    Science.gov (United States)

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  19. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    OpenAIRE

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subjec...

  20. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    Science.gov (United States)

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression. PMID:6118356

  1. Biological responses of isolated macrophages to cobalt metal and tungsten carbide-cobalt powders.

    Science.gov (United States)

    Lison, D; Lauwerys, R

    1991-10-01

    A previous study from this laboratory, using morphological and biochemical (LDH release) parameters, has shown that tungsten carbide-cobalt dust exhibits a greater cytotoxicity toward isolated macrophages than cobalt metal powder alone. The present study extends this comparison by examining additional biological parameters. Glucose uptake and superoxide anion production by isolated macrophages were significantly more depressed by the tungsten carbide-cobalt mixture (WC-Co) than by cobalt alone (Co) while pure tungsten carbide (WC) had no effect or even stimulated the cells. For glucose-6-phosphate dehydrogenase and cell-associated plasminogen activator (PA) activities, no difference between Co and WC-Co dusts was observed. These observations add further evidence to our previous findings regarding the different biological reactivity of cobalt metal alone or mixed with tungsten carbide.

  2. Lactogenesis in the rat. Metabolism of uridine diphosphate galactose by mammary gland

    Science.gov (United States)

    Kuhn, N. J.

    1968-01-01

    1. Lactose synthetase activity in the rat mammary gland increases during the last day of pregnancy from an essentially zero value. There is a parallel increase of tissue lactose and of glucose 6-phosphate dehydrogenase activity. 2. Mammary-gland homogenates prepared both before and after parturition hydrolyse the lactose precursors glucose 6-phosphate, glucose 1-phosphate, UDP-glucose, UDP-galactose and also maltose, but not lactose. 3. A role of lactose synthetase as the rate-limiting enzyme for lactose biosynthesis and the possible significance of the hydrolytic activities are discussed with respect to lactogenesis. PMID:5639929

  3. Genetic characteristics of the HeLa cell.

    Science.gov (United States)

    Hsu, S H; Schacter, B Z; Delaney, N L; Miller, T B; McKusick, V A; Kennett, R H; Bodmer, J G; Young, D; Bodmer, W F

    1976-01-30

    The genotype of the patient Henrietta Lacks from whose cervical carcinoma the HeLa cell was derived was deduced from the phenotypes of her husband and children, and from studies of the HeLa cell. Hemizygous expression of glucose-6-phosphate dehydrogenase in HeLa, together with the deduced heterozygosity of Mrs. Lacks, is consistent with clonal origin of her neoplasm.

  4. LDH and G-6PDH activities in the ovaries of adult female Wistar rats ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... determination of hydrolysed phenol with amino-antipyrine. J. Clin. Pathol. 7: 322. King J, Jagatheeson KA (1959). A method for the determination of tartrate-labile, prostatic acid phosphatase in serum. J. Clin. Path. 12: 85. Kletzien RF, Harris PK, Foellmi LA (1994). Glucose-6-phosphate dehydrogenase: a ...

  5. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Jaouani Mouna

    2015-09-26

    Sep 26, 2015 ... binopathies (alpha and beta thalassemia, sickle cell disease) was made using an HPLC analyzer D10 Hemoglobin testing system (BioRad Laboratories, Hercules, CA, USA). A purified RBC (without leukocytes and platelets) was pre- pared for PK and glucose-6-phosphate dehydrogenase (G6PD) assays ...

  6. Antioxidant and G-6-PD level: A differential means of stress ...

    African Journals Online (AJOL)

    An attempt has been made to correlate the antioxidant vitamin mixture supplementation, endurance capacity, allied physiological parameters and blood glucose-6-phosphate dehydrogenase (G-6-PD) level as a crucial marker of performance related oxidative stress management in professional female load bearers.

  7. (G6PD) in stored blood

    African Journals Online (AJOL)

    Red blood cell viability in stored blood determines successful transfusion. Glucose-6-phosphate dehydrogenase (G6PD) activity has been shown to maintain red blood cell membrane integrity. This study was, therefore, aimed at estimating the G6PD activity in stored blood bags at the blood bank of the University of Nigeria ...

  8. Reduced prevalence of Plasmodium falciparum infection and of concomitant anaemia in pregnant women with heterozygous G6PD deficiency

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Mandelkow, Jantina; Till, Holger; Ehrhardt, Stephan; Eggelte, Teunis A.; Bienzle, Ulrich

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency confers protection against malaria in children, yet its role in malaria in pregnancy is unknown. In a cross-sectional study among 529 pregnant Ghanaian women, Plasmodium falciparum infection, anaemia and G6PD genotypes were assessed. Of these,

  9. Nonimmune hydrops fetalis caused by G6PD deficiency hemolytic crisis and congenital dyserythropoietic anemia.

    Science.gov (United States)

    Molad, M; Waisman, D; Rotschild, A; Auslander, R; Kessel, I; Soloviechick, M; Goldberg, Y; Shabad, E

    2013-06-01

    We present a case of a female neonate who had a nonimmune hydrops fetalis and severe hemolytic anemia due to a rare combination of glucose-6-phosphate dehydrogenase (G6PD) deficiency and congenital dyserythropoietic anemia. We conclude that in severe cases with persistent anemia one should search after delivery for a second reason other than G6PD deficiency alone.

  10. G6PD Deficiency

    Science.gov (United States)

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic disorder that is most common in males. About 1 in 10 African American males in the United States has it. G6PD deficiency mainly affects red blood cells, which carry oxygen ...

  11. Prevalence Of Sickle Haemoglobin And Glucose–6–Phosphate ...

    African Journals Online (AJOL)

    Hereditary disorders of erythrocytes are common in many areas of the world, including Cameroon Limited knowledge on the consequences of high incidences of sickle haemoglobin (HbS) and glucose-6-phosphate dehydrogenase (G6PD) deficiency genes in the Cameroons might have been responsible for the ...

  12. Molecular Identification of G6PD Chatham (G1003A) in Khuzestan ...

    Indian Academy of Sciences (India)

    Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in pentose phosphate pathway and the main intracel- lular source of NADPH. Since G6PD is the only source of. NADPH in red blood cells, defense against oxidative damage strongly depends on its activity (Mehta et al. 2000). Defi- ciency of G6PD enzyme in ...

  13. Methemoglobinemia hemotoxicity of some antimalarial 8-aminoquinoline analogues and their hydroxylated derivatives: density functional theory computation of ionization potentials

    Science.gov (United States)

    The administration of primaquine (PQ), an essential drug for treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose...

  14. Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel

    NARCIS (Netherlands)

    Wolach, Baruch; Ashkenazi, Meir; Grossmann, Rami; Gavrieli, Ronit; Friedman, Ziva; Bashan, Nava; Roos, Dirk

    2004-01-01

    Acute hemolytic anemia associated with red blood cell (RBC) glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly encountered in the Mediterranean basin. Nevertheless, concomitant clinical evidence of white blood cell G6PD deficiency is extremely rare in Israel. This study sought to assess

  15. The histochemical G6PDH reaction but not the LDH reaction with neotetrazolium is suitable for the oxygen sensitivity test to detect cancer cells

    NARCIS (Netherlands)

    Griffini, P.; Vigorelli, E.; Jonges, G. N.; van Noorden, C. J.

    1994-01-01

    We used the oxygen sensitivity of the histochemical reaction to detect glucose-6-phosphate dehydrogenase (G6PDH) activity based on neotetrazolium (NT) reduction to discriminate cancer cells from normal cells. Formazan generation was strongly reduced in normal but not in malignant cells when the

  16. Haemolytic toxicity due to domestic naphthalene ball exposure in a ...

    African Journals Online (AJOL)

    His Glucose 6 phosphate dehydrogenase (G6PD) activity (1.5 IU/gm Hb) was found to be below normal and was diagnosed as G6PD deficiency disorder. The patient was treated with bed rest, with adequate rehydration with intravenous fluid 3L/day, Antibiotics (Cefuroxime), Folic acid and fesolate and vitamin C and the ...

  17. Beta thalassaemiatriat in western Nigeria | Kotila | African Health ...

    African Journals Online (AJOL)

    Background: Genes for thalassaemia, haemoglobin S, Glucose-6-phosphate dehydrogenase which confer resistance to malaria are found in high frequencies in Nigeria, 25% of the population being carriers of the sickle cell trait while another 25% are hemizygous for the G6PD gene. The frequency of alpha thalassaemia is ...

  18. Reduced risk of uncomplicated malaria episodes in children with a+-thalassemia in northeastern Tanzania

    DEFF Research Database (Denmark)

    Enevold, Anders; Lusingu, John P; Mmbando, Bruno

    2008-01-01

    the susceptibility to uncomplicated malaria. We compared the risk of suffering from febrile, uncomplicated malaria between individuals carrying three common RBC polymorphisms (sickle cell trait, alpha(+)-thalassemia, and glucose-6-phosphate-dehydrogenase deficiency) and controls. The study was performed in an area...

  19. Problemer med primakin-recidivprofylakse hos malariapatienter

    DEFF Research Database (Denmark)

    Rønn, A M; Bygbjerg, Ib Christian

    1993-01-01

    -resistant malaria have been observed. The side effects of primaquine are mainly gastrointestinal. Primaquine may also cause serious toxic side effects, including methaemoglobin formation and haemolytic anaemia, especially in individuals with erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. We...

  20. Glucose-6-fosfaatdehydrogenasedeficiëntie: klinische presentatie en uitlokkende factoren

    NARCIS (Netherlands)

    Dors, N.; Rodrigues Pereira, R.; van Zwieten, R.; Fijnvandraat, K.; Peters, M.

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a hereditary X-linked disorder, is the most common enzymatic disorder of red blood cells in humans, affecting more than 200 million people worldwide. The prevalence is increasing in the Netherlands due to immigration of people from the Middle East

  1. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study

    NARCIS (Netherlands)

    Gallo, Valentina; Schwarzer, Evelin; Rahlfs, Stefan; Schirmer, R. Heiner; van Zwieten, Rob; Roos, Dirk; Arese, Paolo; Becker, Katja

    2009-01-01

    In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions

  2. Recovery of active pathogenesis-related enzymes from the apoplast ...

    African Journals Online (AJOL)

    Overall protease activity intensity was higher in the symplast. Maximum symplast contamination of the apoplast was 2% as estimated by glucose 6-phosphate dehydrogenase activity, a biochemical marker for symplast. Accumulation of pathogenesis-related enzymatic activities in the apoplast of M. acuminata leaf tissue was ...

  3. Anabolic Action Of Bovine Parathyroid Hormone In Male Rats ...

    African Journals Online (AJOL)

    The parameters used to monitor the anabolic actions of bPTH have been included: determination of hepatic total proteins, total lipids, DNA, RNA and activities of some lipogenic enzymes such as ATP-citrate lyase, malic enzyme and Glucose-6-phosphate dehydrogenase (G6PDH). Whereas, total proteins, albumin, globulin, ...

  4. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  5. Aldehyde dehydrogenases and cell proliferation.

    Science.gov (United States)

    Muzio, G; Maggiora, M; Paiuzzi, E; Oraldi, M; Canuto, R A

    2012-02-15

    Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of

  6. Coenzyme and effector binding to glutamate dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt

    1979-01-01

    Glutamaat-dehydrogenase is een enzym dat de reactie katalyseert van 2-oxoglutaraat (substraat), NAD(P)H (co-enzym) en ammonia naar L-glutaminezuur en NAD(P)+. Het enzym is opgebouwd uit 6 identieke subeenheden. Dit proefschrift beschrijft de bestudering van twee aspecten van dit enzym, nl. 1. de

  7. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  8. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  9. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  10. Extended Enterprise performance Management

    NARCIS (Netherlands)

    Bobbink, Maria Lammerdina; Hartmann, Andreas

    2014-01-01

    The allegiance of partnering organisations and their employees to an Extended Enterprise performance is its proverbial sword of Damocles. Literature on Extended Enterprises focuses on collaboration, inter-organizational integration and learning to avoid diminishing or missing allegiance becoming an

  11. Efeito da amputação unilateral do incisivo inferior sobre o metabolismo da glicose em glândulas submandibulares de ratos submetidas a desnervação simpática e parassimpática

    OpenAIRE

    ALMEIDA-DE-FARIA, Marinez; BAUER, Jarbas A.; NICOLAU, Jose

    2000-01-01

    The autonomic nervous system is of major importance in the regulation of physiological functions of the salivary glands, including the sialadenotrophic process. It is well known that the secretory function as well as other functions in the salivary glands depend upon the energy produced in the gland. The acini volume density, some enzymes of the glucose metabolism, such as hexokinase, phosphofructokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase were evalua...

  12. Syndrome of extended shadow

    International Nuclear Information System (INIS)

    Ginzburg, M.A.

    1987-01-01

    Syndrome of extended shadow is characterized by large (more than one lobe) or total shadow of the lung area. A detailed roentgenological characteristic and intrasyndrome differential diagnosis of extended shadows is given. Ethiology, pathogenesis and pathomorphology as well as clinical picture and methods of investigation of extended shadows are discussed

  13. Perspectives on extended Deterrence

    International Nuclear Information System (INIS)

    Tertrais, Bruno; Yost, David S.; Bunn, Elaine; Lee, Seok-soo; Levite, Ariel e.; Russell, James A.; Hokayem, Emile; Kibaroglu, Mustafa; Schulte, Paul; Thraenert, Oliver; Kulesa, Lukasz

    2010-05-01

    In November 2009, the Foundation for Strategic Research (Fondation pour la recherche strategique, FRS) convened a workshop on 'The Future of extended Deterrence', which included the participation of some of the best experts of this topic, from the United States, Europe, the Middle East and East Asia, as well as French and NATO officials. This document brings together the papers prepared for this seminar. Several of them were updated after the publication in April 2010 of the US Nuclear Posture Review. The seminar was organized with the support of the French Atomic energy Commission (Commissariat a l'energie atomique - CEA). Content: 1 - The future of extended deterrence: a brainstorming paper (Bruno Tertrais); 2 - US extended deterrence in NATO and North-East Asia (David S. Yost); 3 - The future of US extended deterrence (Elaine Bunn); 4 - The future of extended deterrence: a South Korean perspective (Seok-soo Lee); 5 - Reflections on extended deterrence in the Middle East (Ariel e. Levite); 6 - extended deterrence, security guarantees and nuclear weapons: US strategic and policy conundrums in the Gulf (James A. Russell); 7 - extended deterrence in the Gulf: a bridge too far? (Emile Hokayem); 8 - The future of extended deterrence: the case of Turkey (Mustafa Kibaroglu); 9 - The future of extended deterrence: a UK view (Paul Schulte); 10 - NATO and extended deterrence (Oliver Thraenert); 11 - extended deterrence and assurance in Central Europe (Lukasz Kulesa)

  14. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  15. Aldehyde dehydrogenase protein superfamily in maize.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.

  16. ATOMIC-STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE-DEHYDROGENASE MULTIENZYME COMPLEX

    NARCIS (Netherlands)

    MATTEVI, A; OBMOLOVA, G; SCHULZE, E; KALK, KH; WESTPHAL, AH; DEKOK, A; HOL, WGJ

    1992-01-01

    The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal

  17. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  18. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  19. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  20. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  1. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  2. Extending Database Integration Technology

    National Research Council Canada - National Science Library

    Buneman, Peter

    1999-01-01

    Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...

  3. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  4. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  5. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  6. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    military vehicles. Newer vehicles come factory- filled with ELC, while the Army continues to use traditional supplemental coolant additives (SCA)-based...UNCLASSIFIED TABLE OF CONTENTS EXTENDED LIFE COOLANT TESTING INTERIM REPORT TFLRF No. 478 by Gregory A. T. Hansen Edwin A...longer needed. Do not return it to the originator. UNCLASSIFIED UNCLASSIFIED EXTENDED LIFE COOLANT TESTING INTERIM REPORT TFLRF No

  7. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Science.gov (United States)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  8. Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti.

    Science.gov (United States)

    Inoue, T; Sunagawa, M; Mori, A; Imai, C; Fukuda, M; Takagi, M; Yano, K

    1989-06-01

    A genomic library of Acetobacter aceti DNA was constructed by using a broad-host-range cosmid vector. Complementation of a spontaneous alcohol dehydrogenase-deficient mutant resulted in the isolation of a plasmid designated pAA701. Subcloning and deletion analysis of pAA701 limited the region that complemented the deficiency in alcohol dehydrogenase activity of the mutant. The nucleotide sequence of this region was determined and showed that this region contained the full structural gene for the 72-kilodalton dehydrogenase subunit of the alcohol dehydrogenase enzyme complex. The predicted amino acid sequence of the gene showed homology with sequences of methanol dehydrogenase structural genes of Paracoccus denitrificans and Methylobacterium organophilum.

  9. Extended Theories of Gravitation

    Directory of Open Access Journals (Sweden)

    Fatibene Lorenzo

    2013-09-01

    Full Text Available Extended theories of gravitation are naturally singled out by an analysis inspired by the Ehelers-Pirani-Schild framework. In this framework the structure of spacetime is described by a Weyl geometry which is enforced by dynamics. Standard General Relativity is just one possible theory within the class of extended theories of gravitation. Also all Palatini f(R theories are shown to be extended theories of gravitation. This more general setting allows a more general interpretation scheme and more general possible couplings between gravity and matter. The definitions and constructions of extended theories will be reviewed. A general interpretation scheme will be considered for extended theories and some examples will be considered.

  10. Extended family medicine training

    Science.gov (United States)

    Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.

    2016-01-01

    Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of

  11. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. The Extended Enterprise concept

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara

    1999-01-01

    This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....

  13. Building Extended Families

    Science.gov (United States)

    McKain, Barbara; McKain, Michael

    1970-01-01

    Discusses need for dissolution of the couple" relationship with substitution of the extended family which would permit each member to maintain individuality and to function on own merit. Suggests group living as preferable alternative. (CJ)

  14. Extending mine life

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining

  15. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  16. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Science.gov (United States)

    2010-04-01

    ... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I (general...

  17. Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210.

    Science.gov (United States)

    Barbirato, F; Larguier, A; Conte, T; Astruc, S; Bories, A

    1997-08-01

    Because of its key role in the metabolism of glycerol during fermentation, 1,3-propanediol dehydrogenase (EC 1.1.1.202) of Enterobacter agglomerans CNCM 1210 was purified to homogeneity and studied with respect to its sensitivity to pH and to nucleotide and 1,3-propanediol concentrations. Enzyme activity was optimal at pH 7.8. The enzyme was competitively inhibited by NAD+ (Ki of 0.29 mM), and 1,3-propanediol exerted a strong inhibitory effect according to a mixed-type inhibition with a Ki of 13.7 mM and an a-factor of 9.0. It is proposed that these dehydrogenase properties be extended to the dehydrogenases of Citrobacter freundii and Klebsiella pneumoniae, which exhibited numerous similar physical properties.

  18. Targeting isocitrate dehydrogenase (IDH) in cancer.

    Science.gov (United States)

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas.

  19. Novel Inhibitors Complexed with Glutamate Dehydrogenase

    Science.gov (United States)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-01-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)+ as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH. PMID:19531491

  20. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  1. Temperature-sensitive glutamate dehydrogenase mutants of Salmonella typhimurium.

    OpenAIRE

    Dendinger, S M; Brenchley, J E

    1980-01-01

    Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrog...

  2. Catalytic activity of bovine glutamate dehydrogenase requires a hexamer structure.

    OpenAIRE

    Bell, E T; Bell, J E

    1984-01-01

    Previous workers have shown that the hexamers of glutamate dehydrogenase are dissociated first into trimers and subsequently into monomers by increasing guanidinium chloride concentrations. In renaturation experiments it is shown that trimers of glutamate dehydrogenase can be reassociated to give the hexamer form of the enzyme, with full regain of activity. Monomeric subunits produced at high guanidinium chloride concentrations cannot be renatured. The trimer form of the enzyme is shown to ha...

  3. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  4. Extending quantum mechanics entails extending special relativity

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R

    2016-01-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure. (paper)

  5. Electrophoretic analysis of gene-enzyme systems in Chabertia ovina.

    Science.gov (United States)

    Ortega, J E; Sanchez-Moreno, M; Fatou, A; Valero, A

    1990-01-01

    In Chaberia ovina species an electrophoretic study of 15 loci of the following enzymes has been conducted: glucose phosphate isomerase, mannose phosphate isomerase, glucose-6-phosphate dehydrogenase, glutamate-oxaloacetate transaminase, superoxide dismutase, isocitrate dehydrogenase, hexokinase, adenylate kinase, malate dehydrogenase, malic enzyme, carbonic anhydrase and 6-phosphogluconate dehydrogenase. The genetic variability has been relatively high, with 40% polymorphism values noted, an 0.10 mean heterozygosity observed and an 0.17 mean heterozygosity expected. The greater part of the allele frequencies were not in Hardy-Weinberg equilibrium.

  6. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens.

    Science.gov (United States)

    Cozier, G E; Giles, I G; Anthony, C

    1995-06-01

    The 1.94 A structure of methanol dehydrogenase has been used to provide a model structure for part of a membrane quinohaemoprotein alcohol dehydrogenase. The basic superbarrel structure and the active-site region are retained, indicating essentially similar mechanisms of action, but there are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site.

  7. Radioprotective effects of ocimum flavonoids on leukocyte oxidants and antioxidants in oral cancer

    International Nuclear Information System (INIS)

    Reshma, K.; Rao, A.V.; Dinesh, M.; Vasudevan, D.M.

    2008-01-01

    Oxidants (NADPH oxidase and myeloperoxidase) and antioxidants (GSH, GSH peroxidase, SOD and glucose 6 phosphate dehydrogenase, that provides NADPH for antioxidants) were assayed in the neutrophils from oral cancer patients, in three stages viz, baseline samples, 15 days after radiation and 30 days following radiation. These samples were obtained from 2 groups of patients. Group A that received radiation alone and Group B that received radiation and ocimum flavonoids, a radioprotector. The results showed a significant fall in the SOD levels in the second follow up of group B. Glucose 6 phosphate dehydrogenase showed significant increase only in the first follow up of patients who received Ocimum flavonoids. Except for these findings all other parameters remained statistically nonsignificant. (author)

  8. Studies concerning the effect of X-rays on electrolytic shifts and on the metabolism of the myocardium. Pt. 5

    International Nuclear Information System (INIS)

    Prignitz, R.; Hoffmeister, N.; Hoffmeister, G.

    1975-01-01

    The behavior of enzyme activities, substrates and metabolites of glycosis as well as of the pentose phosphate shunt following local irradiation (250 to 6,000 R surface dose) is biochemically investigated in the guinea-pig's myocardium. During irradiation, an activation of phosphorylase-a is going on while the total phosphorylase content remains unchanged. Enzyme activities of hexokinase and phosphofructokinase are increased in dependence on dosage as well as time. The glycogen content is being reduced; tissular concentration of the metabolites glucose-1-phosphate, glucose-6-phosphate, glyceraldehyde-3-phosphate, glycerol-3-phosphate, and pyruvate increases following irradiation; the content of fructose-1,6-diphosphate, dihydroxyacetone-phosphate, and lactate is decreased. The activity of glucose-6-phosphate-dehydrogenase is slightly inhibited, whereas 6-phosphogluconate-dehydrogenase remains unaffected. (orig.) [de

  9. Effects of acupuncture on glycometabolic enzymes in multi-infarct dementia rats.

    Science.gov (United States)

    Zhao, Lan; Shen, Peng; Han, Yingying; Zhang, Xuezhu; Nie, Kun; Cheng, Haiyan; Kan, Bohong; Li, Guomin; Yu, Jianchun; Han, Jingxian

    2011-05-01

    Acupuncture has exhibited therapeutic effects on vascular dementia in our previous research. The mechanism of its anti-dementia effects involves energy metabolism. For brain cells, glucose metabolism is almost the only source of energy, and glucose metabolism disorders are early signs of dementia. In addition, glucose metabolism associates closely with glycometabolic enzymes, thereby maintains normal energy supply in brains and neurological and mental activities. In order to investigate its anti-dementia mechanism, we studied the effects of acupuncture on behavior of multi-infarct dementia (MID) rats and glycometabolic enzymes protein expression and activities in their brains. Results showed acupuncture improved the cognitive disorder, and increased the activities of hexokinase, pyruvate kinase, and glucose 6 phosphate dehydrogenase. Accordingly, it suggests that the anti-dementia effects of acupuncture may be mediated by up regulation of hexokinase, pyruvate kinase, and glucose 6 phosphate dehydrogenase activities, influencing energy metabolic system and thus overcoming the dysfunctional cognition of MID.

  10. The effect of an anionic detergent on complex carbohydrates and enzyme activities in the epidermis of the catfish Heteropneustes fossilis (Bloch).

    Science.gov (United States)

    Zaccone, G; Lo Cascio, P; Fasulo, S; Licata, A

    1985-04-01

    The histochemistry of various oxidative enzymes and complex carbohydrates in the epidermis of the catfish Heteropneustes fossils was investigated after exposure to sublethal concentrations of the detergent sodium alkylbenzenesulphonate. It was found that the detergent treatment was accompanied by a marked increase in the number of mucous cells which produce histochemically detectable amounts of acidic glycoproteins with a shift towards the production of O-acetylated sialic acids. The activities of mitochondrial enzymes were lost in the superficial cell layers. In contrast the activities of glucose-6-phosphate and lactate dehydrogenase increased considerably. The rise in glucose-6-phosphate dehydrogenase was correlated with the metabolic requirements for the enhanced production of mucus under stress. The changes in both enzyme activities and in the chemical composition of mucus may provide a suitable experimental model for histochemical investigations of the effects of stress induced by pollutants on aquatic organisms.

  11. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  12. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  13. An Extended Duopoly Game.

    Science.gov (United States)

    Eckalbar, John C.

    2002-01-01

    Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…

  14. Extending Critical Performativity

    DEFF Research Database (Denmark)

    Spicer, André; Alvesson, Mats; Kärreman, Dan

    2016-01-01

    from an undue focus on intra-academic debates; engage in author-itarian theoretical policing; feign relevance through symbolic radicalism; and repackage common sense. We take these critiques as an opportunity to offer an extended model of critical performativity that involves focusing on issues...

  15. Parameterization of extended systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    The YJBK parameterization (of all stabilizing controllers) is extended to handle systems with additional sensors and/or actuators. It is shown that the closed loop transfer function is still an affine function in the YJBK parameters in the nominal case. Further, some closed-loop stability results...

  16. Poster Session- Extended Abstracts

    Science.gov (United States)

    Jack D. Alexander III; Jean Findley; Brenda K. Kury; Jan L. Beyers; Douglas S. Cram; Terrell T. Baker; Jon C. Boren; Carl Edminster; Sue A. Ferguson; Steven McKay; David Nagel; Trent Piepho; Miriam Rorig; Casey Anderson; Jeanne Hoadley; Paulette L. Ford; Mark C. Andersen; Ed L. Fredrickson; Joe Truett; Gary W. Roemer; Brenda K. Kury; Jennifer Vollmer; Christine L. May; Danny C. Lee; James P. Menakis; Robert E. Keane; Zhi-Liang Zhu; Carol Miller; Brett Davis; Katharine Gray; Ken Mix; William P. Kuvlesky Jr.; D. Lynn Drawe; Marcia G. Narog; Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Timothy E. Paysen; Burton K. Pendleton; Rosemary L. Pendleton; Carleton S. White; John Rogan; Doug Stow; Janet Franklin; Jennifer Miller; Lisa Levien; Chris Fischer; Emma Underwood; Robert Klinger; Peggy Moore; Clinton S. Wright

    2008-01-01

    Titles found within Poster Session-Extended Abstracts include:Assessment of emergency fire rehabilitation of four fires from the 2000 fire season on the Vale, Oregon, BLM district: review of the density sampling materials and methods: p. 329 Growth of regreen, seeded for erosion control, in the...

  17. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  18. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    International Nuclear Information System (INIS)

    Tan, Xiangping; Wang, Ziquan; Lu, Guannan; He, Wenxiang; Wei, Gehong; Huang, Feng; Xu, Xinlan; Shen, Weijun

    2017-01-01

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V max , and K m variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K m and V max values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h −1 in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K i ) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K i were between 0.7–4.2 mM. Soil total organic carbon and K i were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V max and K m , which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  19. In Vitro Endocrine Disruption Screening of 3-nitro-1,2,4-triazol-5-one (NTO)

    Science.gov (United States)

    2012-09-25

    report; Appendix B. 6.3 Aromatase Assay The CYP19/Methoxy-4-trifluoromethyl- coumarin (MFC) High throughput Inhibition Screening Kit (Cat... coumarin (fluorescent substrate), glucose 6-phosphate dehydrogenase, cofactors, CYP19 enzyme, phosphate buffer- pH 7.4, positive control inhibitor...ketoconazole), and metabolite standard (7- hydroxy-4-trifluormethyl coumarin ). Briefly, on the day of the assay, reagents were removed from storage (-80 O

  20. Molecular Characterization of G6PD Deficient Variants in Nineveh Province, Northwestern Iraq

    OpenAIRE

    Kashmoola, Muna A.; Eissa, Adil A.; Al-Takay, Dahlia T.; Al-Allawi, Nasir A. S.

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency considered to be the commonest inherited enzymopathies disorders worldwide including Iraq. Studies have addressed its prevalence and molecular characterization in several parts of the country, but no data were available from Nineveh province, northwestern-Iraq regarding molecular basis of this inherited enzymopathy. To determine the molecular basis of G6PD deficient variants in Nineveh province. A total of 61 G6PD deficient male individuals ...

  1. Inhibitory potential of rambutan seeds extract and fractions on adipogenesis in 3T3-L1 cell line

    OpenAIRE

    Sylvia Soeng; Endang Evacuasiany; Wahyu Widowati; Nurul Fauziah; Visi Tinta Manik; Maesaroh Maesaroh

    2015-01-01

    Objective: Type 2 diabetes is a global health problem with increasing prevalence related to several conditions; one of these is due to obesity. Rambutan (Nephelium lappaceum L) seeds contain various phenolic compounds. The present study was designed to evaluate the phytochemical content and the inhibitory potential of rambutan seeds extract and fractions on glucose-6-phosphate dehydrogenase (G6PDH), and #945;-glucosidase, and triglyceride activities ex vivo in 3T3-L1 cell line (pre-adipocyte...

  2. p73 regulates basal and starvation-induced liver metabolism in vivo

    OpenAIRE

    He, Zhaoyue; Agostini, Massimiliano; Liu, He; Melino, Gerry; Simon, Hans-Uwe

    2015-01-01

    As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate th...

  3. Caracterização genética de uma população de bovinos brangus-ibagé –polimorfismos bioquímicos e eficiência reprodutiva

    OpenAIRE

    Henkes, Luiz Ernani; Papadopolis, Lídia Gonzalez; Steigleder, Clara Sabina; Moraes, José Carlos Ferrugem de; Weimer, Tania de Azevedo

    2000-01-01

    Biochemical techniques were used to investigate the genetic variability in a Brangus-Ibage population by determining allele frequencies of 18 blood protein systems: Hemogloin beta-Chain (Hb), Albumin (Alb), Amylase (Am), Transferrin (Tf), Carbonic Anhydrase (CA), Ceruloplasmin (Cp), Malic Enzyme (ME), Diaphorase I and II (Dia I and Dia II), Slow Alpha 2 Macroglobulin (Ap), Acid Phosphatase (ACP), Esterase B and D (EstB and EstD), Phosphogluconate Dehydrogenase (PGD), Glucose-6-Phosphate Dehyd...

  4. G6PD Deficiency with Arnold-Chiari Malformation.

    Science.gov (United States)

    Verma, Shilpi; Bhatia, Pradeep Kumar; Sharma, Vandana; Sethi, Priyanka; Singh, Yogendra Raj

    2016-11-01

    A neonate with glucose-6-phosphate dehydrogenase (G6PD) deficiency and Arnold-Chiari Malformation (ACM) type 2 underwent lumbar meningomyelocele (MMC) repair. Patients with G6PD deficiency are prone to develop haemolysis following any kind of oxidative stress and in ACM, there is a disturbed cranio-spinal pressure relationship. The neonate was managed under general anaesthesia with propofol for induction as well as for maintenance along with fentanyl and oxygen-nitrous mixture.

  5. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  6. The dialogically extended mind

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Gangopadhyay, Nivedita; Tylén, Kristian

    2014-01-01

    , we argue that language enhances our cognitive capabilities in a much more radical way: The skilful engagement of public material symbols facilitates evolutionarily unprecedented modes of collective perception, action and reasoning (interpersonal synergies) creating dialogically extended minds. We...... relate our approach to other ideas about collective minds and review a number of empirical studies to identify the mechanisms enabling the constitution of interpersonal cognitive systems....

  7. Extended quantum mechanics

    International Nuclear Information System (INIS)

    Pavel Bona

    2000-01-01

    The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded

  8. Dehydrogenase activity of forest soils depends on the assay used

    Science.gov (United States)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  9. A reduction in age-enhanced gluconeogenesis extends lifespan.

    Directory of Open Access Journals (Sweden)

    Mayumi Hachinohe

    Full Text Available The regulation of energy metabolism, such as calorie restriction (CR, is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  10. A reduction in age-enhanced gluconeogenesis extends lifespan.

    Science.gov (United States)

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  11. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  12. [Informatics analysis of malate dehydrogenase from Taenia saginata asiatica].

    Science.gov (United States)

    Huang, Jiang; Hu, Xu-Chu; Huang, Yan; Yu, Xin-Bing; Bao, Huai-En; Lang, Shu-Yuan; Liao, Xing-Jiang

    2008-06-30

    Tools from bioinformatics websites such as NCBI, ExPaSy were used for the analysis. The malate dehydrogenase full-length gene from Taenia saginata asiatica was 1 212 bp in length, with a coding region of 30-1 028 bp and coding 332 amino acids. It was a complete and full-length gene compared with the homologues in GenBank. The protein showed no transmembrane region, with stable physical-chemical characteristics. Three major linear epitopes located aa95-aa100, aa322-aa327 and aa117-aa122, with certain distance from each other on the surface of spatial structure of malate dehydrogenase (MDH). The last one was the linear epitope of Taenia. This cytosolic malate dehydrogenase gene is a potential antigen for diagnosis.

  13. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  14. Extended Testability Analysis Tool

    Science.gov (United States)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  15. Classical extended superconformal symmetries

    International Nuclear Information System (INIS)

    Viswanathan, R.R.

    1990-10-01

    Super-covariant differential operators are defined in two dimensions which map supersymmetry doublets to other doublets. The possibility of constructing a closed algebra among the fields appearing in such operators is explored. Such an algebra exists for Grassmann-odd differential operators. A representation for these operators in terms of free-field doublets is constructed. An explicit closed algebra involving fields of spin 2 and 5/2, in addition to the stress tensor and the supersymmetry generator, is constructed from such a free-field representation as an example of a non-linear extended superconformal algebra. (author). 9 refs

  16. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  17. Durable cofactor immobilization in sol-gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases.

    Science.gov (United States)

    Wang, Zhijie; Etienne, Mathieu; Quilès, Fabienne; Kohring, Gert-Wieland; Walcarius, Alain

    2012-02-15

    A new strategy directed to the durable immobilization of NAD(+)/NADH cofactors has been tested, along with a suitable redox mediator (ferrocene), in biocompatible sol-gel matrices encapsulating a bi-enzymatic system (a dehydrogenase and a diaphorase, this latter being useful to the safe regeneration of the cofactor), which were deposited as thin films onto glassy carbon electrode surfaces. It involves the chemical attachment of NAD(+) to the silica matrix using glycidoxypropylsilane in the course of the sol-gel process (in smooth chemical conditions). This approach based on chemical bonding of the cofactor (which was checked by infrared spectroscopy) led to good performances in terms of long-term stability of the electrochemical response. The possibility to integrate all components (proteins, cofactor, mediator) in the sol-gel layer in an active and durable form gave rise to reagentless devices with extended operational stability (i.e. high amperometric response maintained for more than 12h of continuous use under constant potential, whereas the signal completely vanished within the first few minutes of working with non-covalently bonded NAD(+)). To confirm the wide applicability of the proposed approach, the same strategy has been applied to the elaboration of biosensors for D-sorbitol, D-glucose and L-lactate with using D-sorbitol dehydrogenase, D-glucose dehydrogenase and L-lactate dehydrogenase respectively. The analytical characteristics of the glucose sensors are given and compared to previous approaches described in the literature for the elaboration of reagentless biosensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Lunar Prospector Extended Mission

    Science.gov (United States)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  19. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  20. Extending rational maps

    Science.gov (United States)

    Martin, Gaven J.

    We investigate when a rational endomorphism of the Riemann sphere overline{C} extends to a mapping of the upper half-space {H3 which is rational with respect to some measurable conformal structure. Such an extension has the property that it and all its iterates have uniformly bounded distortion. Such maps are called uniformly quasiregular. We show that, in the space of rational mappings of degree d , such an extension is possible in the structurally stable component where there is a single (attracting) component of the Fatou set and the Julia set is a Cantor set. We show that generally outside of this set no such extension is possible. In particular, polynomials can never admit such an extension.

  1. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  2. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  3. Extending over time

    DEFF Research Database (Denmark)

    Christensen, Tanya Karoli; Jensen, Torben Juel; Christensen, Marie Herget

    Studies of general extenders (GEs), such as Eng. and stuff like that, or something, typically find that it is a feature of youth speech, sometimes correlated with sex and class (e.g. Dubois 1992, Stubbe and Holmes 1995, Cheshire 2007, Tagliamonte and Denis 2010, Pichler and Levey 2011), but only...... including pronoun headed phrases, e.g. og (alt) det der ‘and (all) that there’, and clausal variants, e.g. og jeg ved ikke hvad ‘and I don’t know what’. The results indicate that Danish GEs in general are already gram-maticalized to a large extent. Regarding social factors, our data support the general...... finding that GEs are more frequent in youth speech. Adolescents have the highest relative frequency of GEs, and speakers tend to decrease their GE use during their life span, whilst participating in community changes regarding the use of the different GE types. Furthermore, the results suggest...

  4. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  5. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  6. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  7. New enzymatic assay, parasite lactate dehydrogenase in diagnosis ...

    African Journals Online (AJOL)

    Background: The unique ability of plasmodial lactate dehydrogenase p(LDH) to utilise 3-acetyl pyridine dinucleotide (APAD) in lieu of NAD as a coenzyme in the conversion of pyruvate to lactate, led to the development of a biochemical assay for the detection of plasmodial parasitaemia. Researchers have reported that ...

  8. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Czech Academy of Sciences Publication Activity Database

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480 ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 0.647, year: 2015

  9. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  10. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462 ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  11. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.

    In chapter 2 a survey is given of the recent literature on

  12. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  13. Perioperative care of an infant with pyruvate dehydrogenase ...

    African Journals Online (AJOL)

    The authors present the anaesthetic management of two infants with pyruvate dehydrogenase complex deficiency (PDCD), a rare genetic disorder of carbohydrate metabolism leading to lactic acidosis and neurological impairment. In the first case, a seven-month-old infant, undergoing closed reduction of a dislocated hip, ...

  14. Substrate Specificity via Ternary Complex Formation with Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Koekoek, Henk; Robillard, George T.

    1977-01-01

    Very little discrimination is observed in the binary binding of dicarboxylic acid substrate analogues to glutamate dehydrogenase as monitored by proton nuclear magnetic resonance. Variation in length, charge, bulkiness and conformational rigidity resulted in only a factor of five variation in KD and

  15. Isolation and characterization of the rat gene encoding glutamate dehydrogenase

    NARCIS (Netherlands)

    Das, A. T.; Arnberg, A. C.; Malingré, H.; Moerer, P.; Charles, R.; Moorman, A. F.; Lamers, W. H.

    1993-01-01

    The concentration of glutamate dehydrogenase (GDH) varies strongly between different organs and between different regions within organs. To permit further studies on the regulation of GDH expression, we isolated and characterized the rat gene encoding the GDH protein. This gene contains 13 exons and

  16. Overexpression of 11β-hydroxysteroid dehydrogenase 1 in visceral ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-02-23

    Feb 23, 2018 ... Alterations in this enzyme are related to the development of metabolic syndrome, obesity and hyperadrenocorticism. (HAC). ..... 11β-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue and portal hypercortisolism in non-alcoholic fatty liver disease. Liver Int. 32(3), 392-399. Carroll, B.J., Cassidy ...

  17. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  18. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  19. Properties of glucoside 3-dehydrogenase and its potential applications

    African Journals Online (AJOL)

    These 3-ketoglucosides are useful as building blocks for chemicals such as detergents and polymers. The versatile glucoside 3-dehydrogenase has potential applications in different fields including sugar industry, clinical diagnosis and pharmaceutical intermediates synthesis. This review attempts to describe the glucoside ...

  20. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    Indian Academy of Sciences (India)

    Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key ...

  1. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  2. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  3. Detection of aldehyde dehydrogenase activity in human corneal extracts

    NARCIS (Netherlands)

    Gondhowiardjo, T. D.; van Haeringen, N. J.; Hoekzema, R.; Pels, L.; Kijlstra, A.

    1991-01-01

    The major soluble protein in bovine corneal epithelial extracts is a 54 kD protein (BCP 54) which has recently been identified as the corneal aldehyde dehydrogenase. Although ALDH activity has been reported in human corneal extracts it was not yet clear whether this was identical with the 54 kD

  4. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    NARCIS (Netherlands)

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  5. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    P = 0.002). Conclusion: The significant elevation in serum CK and LDH activities indicates that these can be used as parameters for screening hypothyroid patients but not hyperthyroid patients. Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase. Date of Acceptance: 28-Aug-2011.

  6. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... 1992; Kim et al. 2004), the relationship between CAD genes and their functions was of great impor- tance. Since the important role in regulation of lignin con- tent and composition, more and more CAD genes and their. Keywords. lignin biosynthesis; cinnamyl alcohol dehydrogenase; clone; in silico analysis ...

  7. Pyranose dehydrogenases: biochemical features and perspectives of technological applications

    Czech Academy of Sciences Publication Activity Database

    Peterbauer, C.; Volc, Jindřich

    2010-01-01

    Roč. 85, č. 4 (2010), s. 837-848 ISSN 0175-7598 Institutional research plan: CEZ:AV0Z50200510 Keywords : Pyranose dehydrogenase * Sugar oxidoreductase * Regioselectivity Subject RIV: EE - Microbiology, Virology Impact factor: 3.280, year: 2010

  8. Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumors

    NARCIS (Netherlands)

    Ahmed, F. Y.; Johnston, S. J.; Cassidy, J.; O'Kelly, T.; Binnie, N.; Murray, G. I.; van Gennip, A. H.; Abeling, N. G.; Knight, S.; McLeod, H. L.

    1999-01-01

    To determine the effect of eniluracil on colorectal tumor dihydropyrimidine dehydrogenase (DPD) activity. Patients who were to undergo primary colorectal tumor resection received oral eniluracil 10 mg/m(2) twice daily for 3 days before surgery. Mononuclear cells were obtained before the start of

  9. X-irradiation effects on the activity of dehydrogenases in the cockroach, Periplaneta Americana L

    Energy Technology Data Exchange (ETDEWEB)

    Vijayalakshmi, S. (Sri Sathya Sai Inst. of Higher Learning, Anantpur (India))

    1984-05-01

    Sublethal dose of X-irradiation caused an early increase and subsequent normalization in succinate and lactate dehydrogenases of the cockroach, while lethal dose produced an irreversible fall in succinate dehydrogenase and a gradual elevation in lactate dehydrogenase at all post-irradiation periods studied, suggesting dose dependent impairment of aerobic and anaerobic pathways.

  10. Extended lactation in dairy cows

    DEFF Research Database (Denmark)

    Sorensen, Annette; Muir, D. Donald; Knight, Christopher Harold

    2008-01-01

    Twelve spring-calving and twelve winter-calving cows were managed for extended lactation cycles of 18-months duration, with the former group then completing a second extended lactation. Half of the cows were fed according to standard management practice for the herd; the other half received suppl...... interventions, the results lend support to the economic arguments in favour of extended lactation cycles. The likely welfare benefits of extended lactation are also discussed....

  11. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    52,779.30 9 8 7 2A Fumarylacetoacetase 45,958.30 5 3 2 2A Isoform M1 of Pyruvate kinase isozymes M1/M2 57,958.70 13 4 6 2A Glucose -6-phosphate isomerase ...10 4A Acyl-CoA synthetase family member 2, mitochondria 67,869.60 3 6 8 4A Glucose -6-phosphate isomerase 62,811.30 3 7 9 4B Peptidyl-prolyl cis...trans isomerase A 17,856.80 - - 2 4B Adenylate kinase isoenzyme 1 21,566.40 - - 5 5B L-lactate dehydrogenase A chain 36,432.80 35 k Da 16 12 5 5B Ester

  12. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  13. Methanol dehydrogenase biofuel cells and enzyme-based electrodes

    OpenAIRE

    Aston, W. J.

    1984-01-01

    This thesis describes the linking of enzymes to electrodes and their application in biofuel cells and as analytical devices. Methanol dehydrogenase, an NAD independent enzyme was purified by two phase aqueous partition. The enzyme incorporated into a biofuel cell was capable of producing a current in the presence of either a soluble or insoluble mediator. Optimisation of the current was carried out and a variety of alternative membranes, mediators and electrodes were investigated for possi...

  14. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  15. [Studies On Lactic Dehydrogenase Activity In Parasitic Helminths

    Science.gov (United States)

    Lee, Soon Hyung

    1967-06-01

    A series of experiments was performed to determine the lactic dehydrogenase activity of various parasitic helminths. The enzyme activity was determined by the modified method of Wroblewshi and LaDue (1955) using tissue homogenate of 16 kinds of worm parasites. The worms were mostly collected alive from local abattoir and removed from the organ or tissues of the naturally infected animal host and some materials were also obtained from the human host. They were thoroughly washed and homogenized in chilled glass tissue grinder, and then centrifuged. The supernatants were designated as enzyme preparations, and their enzyme activity was measured by spectrophotometry at the wave length of 340 millimicron. In order to know the effects of temperature and substrate concentration on the enzyme activity, the extinction of reduced Coenzyme I(NADH) was measured at the various conditions of incubation temperature and substrate concentration. The results of this experiments were as follows: 1. The lactic dehydrogenase activity occurred over all kinds of parasites used in this study. 2. Most worms of nematodes and trematodes displayed their maximum activity in the range of pH 2.7~3.5, and cestodes revealed their maximum activity in the ranges of both pH 2.7~3.5 and pH 7.4. 3. In nematodes and trematodes, the lactic dehydrogenase activity increased slowly as incubation temperature increases except in the case of Eurytrema pancreaticum, while the activity in cestodes decreased inversely. 4. The lactic dehydrogenase activity increased in proportion to the increase of substrate concentration in most of worm parasites.

  16. Structural and mechanistic aspects of alcohol dehydrogenase function

    OpenAIRE

    Svensson, Stefan

    1999-01-01

    Vertebrates possess a complex alcohol dehydrogenase (ADH) system composed of multiple molecular forms, which are currently classified into seven classes according to their structural properties. ADHs are dimeric zinc metalloenzymes that catalyze the reversible oxidation of alcohols to aldehydes/ketones using NAD+/NADH as electron acceptor and donor, respectively. The classes have broad but only partially overlapping substrate repertoires. This thesis mainly deals with mechan...

  17. Influence of thorax irradiation on lactic dehydrogenase isoenzyme activity

    International Nuclear Information System (INIS)

    Valle, C.; Munnich, A.; Pasquier, C.

    The right hemi-thorax of rats was irradiated with 1200 and 3000 rads ( 60 Co) and blood samples were taken sequentially. The five lactic dehydrogenase (LDH) isoenzymes which have proved to be useful as biochemical indicators of acute pulmonary injury in other experimental animals (dogs), were assayed, after irradiation, as a function of time and as a functon of dose. There was no significant change in LDH isoenzyme activities after lung irradiation in rats [fr

  18. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    OpenAIRE

    Ma, Yu-mei; Zhao, Shan

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addi...

  19. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  20. Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

    Science.gov (United States)

    Greenfield, Seymour; Claus, G. W.

    1969-01-01

    Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate. Images PMID:5361215