WorldWideScience

Sample records for glucose yeast extract

  1. Determination of Glucose Concentration in Yeast Culture Medium

    Science.gov (United States)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  2. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  3. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  4. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  5. Analysis of volatiles from irradiated yeast extract

    International Nuclear Information System (INIS)

    Liao Tao; Li Xin; Zu Xiaoyan; Chen Yuxia; Geng Shengrong

    2013-01-01

    The method for determination volatiles from irradiated yeast extract (YE) using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed in this paper. The extraction conditions were optimized with reference to the peak area and number of volatiles as aldehyde, ketone, alcohol, acid, ester and sulfur compounds. The optimized conditions of HS-SPME for volatiles in irradiated YE were: divinyl benzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber, extration time 40 min, extraction temperature 40℃. The volatiles from YE irradiated by 0-19.8 kGy were detected using HS-SPME coupled with GC-MS. The results showed that only 15 volatiles were detected from no irradiated YE and main compounds were acetic acid, 2, 3-butanediol and 1-hexanol, 2-ethyl-. There were 40 volatiles detected from irradiated YE and the main compounds were acetic acid, phenylethyl alcohol, heptanal and nonanal. Compare to no irradiated yeast extract, the aldehyde, ketone, alkene and disulfide, dimethyl were produced by irradiating process. (authors)

  6. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  7. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  8. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  9. Co-fermentation of glucose, xylose and/or cellobiose by yeast

    Science.gov (United States)

    Jeffries, Thomas W.; Willis, Laura B.; Long, Tanya M.; Su, Yi-Kai

    2013-09-10

    Provided herein are methods of using yeast cells to produce ethanol by contacting a mixture comprising xylose with a Spathaspora yeast cell under conditions suitable to allow the yeast to ferment at least a portion of the xylose to ethanol. The methods allow for efficient ethanol production from hydrolysates derived from lignocellulosic material and sugar mixtures including at least xylose and glucose or xylose, glucose and cellobiose.

  10. Production of yeast extract from whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Revillion Jean P. de Palma

    2003-01-01

    Full Text Available The yeast Kluyveromyces marxianus CBS 6556 was grown on whey to produce nucleotide-rich yeast extracts. Thermal treatments of cells at 35 or 50ºC for 15-30h resulted in yeast extracts containing about 20 g/L protein, with only the second treatment resulting in the presence of small amounts of RNA. In contrast, autolysis in buffered solution was the unique treatment that resulted in release of high amounts of intracellular RNA, being, therefore, the better procedure to produce 5'-nucletide rich extract with K. marxianus.

  11. A Hexose Transporter Homologue Controls Glucose Repression in the Methylotrophic Yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Stasyk, Oleh V.; Stasyk, Olena G.; Komduur, Janet; Veenhuis, Marten; Cregg, James M.; Sibirny, Andrei A.

    2004-01-01

    Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1

  12. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  13. Spent brewer's yeast extract as an ingredient in cooked hams.

    Science.gov (United States)

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of Selenium Yeast on Blood Glucose and Antioxidant ...

    African Journals Online (AJOL)

    olayemitoyin

    Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes. Mellitus in Wistar Rats. ... Keywords: Cholesterol diet; Diabetes Mellitus; Selenium yeast; SOD; CAT; GPx. ©Physiological ..... relationship with different diseases. Science Tot.

  15. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast.

    Directory of Open Access Journals (Sweden)

    Antoine E Roux

    2009-03-01

    Full Text Available Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Galpha subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Deltagit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.

  16. Optimized protein extraction for quantitative proteomics of yeasts.

    Directory of Open Access Journals (Sweden)

    Tobias von der Haar

    2007-10-01

    Full Text Available The absolute quantification of intracellular protein levels is technically demanding, but has recently become more prominent because novel approaches like systems biology and metabolic control analysis require knowledge of these parameters. Current protocols for the extraction of proteins from yeast cells are likely to introduce artifacts into quantification procedures because of incomplete or selective extraction.We have developed a novel procedure for protein extraction from S. cerevisiae based on chemical lysis and simultaneous solubilization in SDS and urea, which can extract the great majority of proteins to apparent completeness. The procedure can be used for different Saccharomyces yeast species and varying growth conditions, is suitable for high-throughput extraction in a 96-well format, and the resulting extracts can easily be post-processed for use in non-SDS compatible procedures like 2D gel electrophoresis.An improved method for quantitative protein extraction has been developed that removes some of the sources of artefacts in quantitative proteomics experiments, while at the same time allowing novel types of applications.

  17. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract.

    Science.gov (United States)

    Silva, S Q; Silva, D C; Lanna, M C S; Baeta, B E L; Aquino, S F

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal.

  18. Toxicology of the aqueous extract from the flowers of Butea monosperma Lam. and it's metabolomics in yeast cells.

    Science.gov (United States)

    Khan, Washim; Gupta, Shreesh; Ahmad, Sayeed

    2017-10-01

    Due to lack of scientific evidence for the safety of Butea monosperma (Fabaceae), our study aimed to carry out its toxicological profile and to identify its metabolic pattern in yeast cell. The effect of aqueous extract of B. monosperma flower on glucose uptake in yeast cell was evaluated through optimizing pH, temperature, incubation time, substrate concentration and kinetic parameters. Further, the metabolic pattern of extract as such and in yeast cell were analyzed by gas chromatography-mass spectrometry. Mice were administered aqueous extract up to 6000 and 4000 mg/kg for acute oral and intraperitoneal toxicity, respectively, while up to 4500 mg/kg for sub-acute oral toxicity (30 days). Elongation in the lag and log phase was observed in yeast cells supplemented with extract as compared to control. A maximum of 184.9% glucose uptake was observed whereas kinetic parameters (K m and V max ) were 1.38 and 41.91 mol/s, respectively. Out of 75 metabolites found in the extract, 14 and 18 metabolites were utilized by yeast cell after 15 and 30 min of incubation, respectively. The LD 50 of extract administered through intraperitoneal route was estimated to be 3500 mg/kg. The extract did not elicit any significant difference (P ≥ 0.05) in weight gain, food consumption, water intake, hematological, biochemical parameters and histological changes as compared to the normal control. Results ascertained the safety of B. monosperma flower extract which can be explored as potential candidates for the development of anti-diabetic phytopharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of Tannin Extract and Yeast Extract on Color Preservation and Anthocyanin Content of Mulberry Wine.

    Science.gov (United States)

    You, Yilin; Li, Na; Han, Xue; Guo, Jielong; Liu, Guojie; Huang, Weidong; Zhan, Jicheng

    2018-04-01

    The color of mulberry wine is extremely unstable in processing and aging. This paper investigates the effects of tannin extract and yeast extract on the color and color-preserving characteristics of mulberry wine made from the Dashi cultivar. The results showed that the maximum absorption wavelength in both tannin extract and yeast extract groups changed generating the red shift effect. The color of the tannin extract maintained a good gloss in the first 4 months, while the yeast extract group showed remarkable color preservation for the first 3 months. The total anthocyanin and cyanidin-3-rutinoside contents in both experiment groups were significantly higher than that of the control group, thus proving that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during its aging. Moreover, sensory analysis indicated that the quality of mulberry wine treated with tannin extract was significantly higher than that of the control. The distinct color of mulberry wine is one of the foremost qualities that imprints on consumers' senses, but it is extremely unstable in processing and aging. However, the color protection of mulberry wine was not studied previously. In this study, we found that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during aging. The study is of great significance as a guide to improving the color stability of mulberry wine, thereby also improving and promoting the development of the mulberry deep processing industry. © 2018 Institute of Food Technologists®.

  20. Teaching Microbial Physiology Using Glucose Repression Phenomenon in Baker's Yeast as an Example

    Science.gov (United States)

    Raghevendran, Vijayendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast "Saccharomyces cerevisiae" has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled "S. cerevisiae" to grow in fermentative mode on sugars by switching off the genes responsible for respiration…

  1. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2013-01-01

    the molecular mechanisms. In this study, adaptively evolved yeast mutants with improved galactose utilization ability showed impaired glucose utilization. The molecular genetic basis of this trade-off was investigated using a systems biology approach. Transcriptional and metabolic changes resulting from...... the improvement of galactose utilization were found maintained during growth on glucose. Moreover, glucose repression related genes showed conserved expression patterns during growth on both sugars. Mutations in the RAS2 gene that were identified as beneficial for galactose utilization in evolved mutants...

  2. Effect of brewer’s yeast supplementation on serum glucose and lipids in type II diabetic patients with dislipidemia

    OpenAIRE

    Sh. Ravanshad; H. Khosvani Borujeni; M. Soveid; B. Zeighami

    2005-01-01

    Background and purpose : Chromium deficiency leads to impaired glucose and lipid metabolism. Chromium supplementation in type II diabetic patients improves glucose and lipid profiles. Organic chromium, such as found in brewer’s yeast, is much better absorbed than inorganic chromium. In this study, the effect of chromium supplementation in the form of brewer’s yeast on glucose and lipid profile of diabetic patients were evaluated.Materials and methods : In a clinical trial study (before and af...

  3. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    Science.gov (United States)

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an examplele

    DEFF Research Database (Denmark)

    Vijayendran, Raghavendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars by switc......The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars...... by switching off the genes responsible for respiration even under aerobic conditions. This phenomenon is referred to as the Crabtree effect. The present review focuses on glucose repression in S. cerevisiae from a physiological perspective. Physiological studies presented involve batch and chemostat...

  5. Green Chemistry Glucose Biosensor Development using Etlingera elatior Extract

    Science.gov (United States)

    Fatoni, A.; Anggraeni, M. D.; Zusfahair; Iqlima, H.

    2018-01-01

    Glucose biosensor development is one of the important strategies for early detection of diabetes mellitus disease. This study was aimed to explore the flower extract of Etlingera elatior for a green-analysis method of glucose biosensor. Flowers were extracted using ethanol: HCl and tested its performances as an indicator of glucose biosensor using glucose oxidase enzyme. The glucose oxidase react with glucose resulted hydrogen peroxide that would change the color of the flower extract. Furthermore, the extract was also studied including their stability to pH, oxidizing and reducing, temperature, and storage. The results showed that the Etlingera elatior extract had high correlation between color change and glucose concentration with regression equation of y = -0.0005x + 0.4724 and R2 of 0.9965. The studied biosensor showed a wide linear range to detect glucose sample of 0 to 500 mM. The extract characterization showed a more stable in low pH (acid), reducing agent addition, heating treatment and storage.

  6. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    Science.gov (United States)

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  7. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    Science.gov (United States)

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  9. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  10. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  11. Electrochemical and Chemical Complications Resulting from Yeast Extract Addition to Stimulate Microbial Growth

    Science.gov (United States)

    2016-09-22

    including strains of Saccharomyces cerevisiae grown on molasses-based media, debittered brewers yeasts (strains of Saccharo- myces cerevisiae or...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Technical Note: Electrochemical and Chemical Complications Resulting from Yeast Extract...Addition to Stimulate Microbial Growth Jason S. Lee‡,* and Brenda J. Little* ABSTRACT Addition of 1 g/L yeast extract (YE) to sterile, aerobic

  12. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    Directory of Open Access Journals (Sweden)

    Cole Johnson

    2014-03-01

    Full Text Available The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  13. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Morgunov, Igor G

    2017-11-01

    Comparative study of 43 natural yeast strains belonging to 20 species for their capability for overproduction of citric acid (CA) from glucose under nitrogen limitation of cell growth was carried out. As a result, natural strain Yarrowia lipolytica VKM Y-2373 was selected. The effect of growth limitation by biogenic macroelements (nitrogen, phosphorus, or sulfur) on the CA production by the selected strain was studied. It was shown that yeasts Y. lipolytica grown under deficiency of nitrogen, phosphorus, or sulfur were able to excrete CA in industrially sufficient amounts (80-85g/L with the product yield (Y CA ) of 0.70-0.75g/g and the process selectivity of 92.5-95.3%). Based on the obtained data on activities of enzymes involved in the initial stages of glucose oxidation, the cycle of tricarboxylic acids, and the glyoxylate cycle, the conception of the mechanism responsible for the CA overproduction from glucose in Y. lipolytica was formulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.

    Science.gov (United States)

    Isom, Daniel G; Page, Stephani C; Collins, Leonard B; Kapolka, Nicholas J; Taghon, Geoffrey J; Dohlman, Henrik G

    2018-02-16

    The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  16. Selection of yeast able to produce ethanol from glucose at 40/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Hacking, A J; Taylor, I W.F.; Hanas, C M

    1984-05-01

    A total of 55 yeast strains selected from 7 genera known to ferment carbohydrates to ethanol were screened for their ability to ferment glucose to ethanol in shaken flask culture at 37/sup 0/, 40/sup 0/ and 45/sup 0/C. Yields of more than 50% of the theoretical maximum were obtained with 28 strains at 37/sup 0/C, but only 12 at 40/sup 0/C. Only 6 could grow at 45/sup 0/C, but they produced poor yields. In general Kluyveromyces strains were more thermotolerant than Saccharomyces and Candida strains, but Saccharomyces strains produced higher ethanol yields. The 8 strains with the highest yields at 40/sup 0/C were evaluated in batch fermentations. Three of these, two Saccharomyces and one Candida, were able to meet minimum commercial targets set at 8% (v/v) ethanol from 14% (w/v) glucose at 40/sup 0/C.

  17. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we...... developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions...

  18. Post-irradiation repairing processes of glucose-6-phosphate dehydrogenase and catalase from Hansenula Polymorpha yeast

    International Nuclear Information System (INIS)

    Postolache, Carmen; Postolache, Cristian; Dinu, Diana; Dinischiotu, Anca; Sahini, Victor Emanuel

    2002-01-01

    The post-irradiation repairing mechanisms of two Hansenula Polymorpha yeast enzymes, glucose-6-phosphate dehydrogenase and catalase, were studied. The kinetic parameters of the selected enzymes were investigated over one month since the moment of γ-irradiation with different doses in the presence of oxygen. Dose dependent decrease of initial reaction rates was noticed for both enzymes. Small variation of initial reaction rate was recorded for glucose-6-phosphate dehydrogenase over one month, with a decreasing tendency. No significant electrophoretic changes of molecular forms of this enzyme were observed after irradiation. Continuous strong decrease of catalase activity was evident for the first 20 days after irradiation. Partial recovery process of the catalytic activity was revealed by this study. (authors)

  19. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  20. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  1. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2017-01-01

    Full Text Available The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs, also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1. We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM PAC senescence and the development of reactive oxygen species (ROS in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  3. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  4. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Kinetics of the cooperative binding of glucose to dimeric yeast hexokinase P-I.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1995-01-15

    Kinetic studies of the cooperative binding of glucose to yeast hexokinase P-I at pH 6.5 have been carried out using the fluorescence temperature-jump technique. Three relaxation effects were observed: a fast low-amplitude effect which could only be resolved at low glucose concentrations (tau 1(-1) = 500-800 s-1), an intermediate effect (tau 2) which showed a linear dependence of reciprocal relaxation time on concentration, and a slow effect (tau 3) which showed a curved dependence on glucose concentration, increasing from approximately 28 s-1 at low concentrations to 250 s-1 at high levels. The findings are interpreted in terms of the concerted Monod-Wyman-Changeux mechanism, the two faster relaxations being assigned to binding to the R and T states, and the slow relaxation to isomerization between the states. Quantitative fitting of the kinetic data to the mechanism has been carried out using independent estimates of the equilibrium parameters of the model; these have been derived from equilibrium dialysis data and by determining the enhancement of the intrinsic ATPase activity of the enzyme by the non-phosphorylatable sugar lyxose, which switches the conformation of the enzyme to the active R state.

  6. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste.

    Science.gov (United States)

    Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar

    2018-02-08

    Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

  7. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    Science.gov (United States)

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  8. Microencapsulation of Baker’s Yeast in Gellan Gum Beads Used in Repeated Cycles of Glucose Fermentation

    Directory of Open Access Journals (Sweden)

    Camelia Elena Iurciuc (Tincu

    2017-01-01

    Full Text Available The purpose of this work is to prepare ionically cross-linked (with CaCl2 gellan particles with immobilized yeast cells for their use in repeated fermentation cycles of glucose. The study investigates the influence of ionic cross-linker concentration on the stability and physical properties of the particles obtained before extrusion and during time in the coagulation bath (the cross-linker solution with different CaCl2 concentrations. It was found that by increasing the amount of the cross-linker the degree of cross-linking in the spherical gellan matrix increases, having a direct influence on the particle morphology and swelling degree in water. These characteristics were found to be very important for diffusion of substrate, that is, the glucose, into the yeast immobilized cells and for the biocatalytic activity of the yeast immobilized cells in gellan particles. These results highlight the potential of these bioreactors to be used in repeated fermentation cycles (minimum 10 without reducing their biocatalytic activity and maintaining their productivity at similar parameters to those obtained in the free yeast fermentation. Encapsulation of Saccharomyces cerevisiae into the gellan gum beads plays a role in the effective application of immobilized yeast for the fermentation process.

  9. Use of non-conventional cell disruption method for extraction of proteins from black yeasts

    Directory of Open Access Journals (Sweden)

    Maja eLeitgeb

    2016-04-01

    Full Text Available The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2 by varying pressure at fixed temperature (35 °C. The black yeasts cell walls were disrupted and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2 treated cells. The advantages of the proposed method are in a simple use which is also possible for heat sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  10. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    Science.gov (United States)

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  11. Utilization of baker's yeast (Saccharomyces cerevisiae for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    Directory of Open Access Journals (Sweden)

    TATJANA VUKASINOVIC MILIC

    2007-05-01

    Full Text Available Yeast extract (YE was produced from commercial pressed baker's yeast (active and inactivated using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  12. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts

    DEFF Research Database (Denmark)

    Piddocke, Maya Petrova; kreisz, Stefan; Heldt-Hansen, Hans Peter

    2009-01-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence...... of high-gravity brewing on the fermentation performance of the brewer’s yeast under model brewing conditions. The lager brewer’s strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity...... resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer’s yeast metabolism and the influence of the type...

  13. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility.

    Science.gov (United States)

    Wiedmeier, R D; Arambel, M J; Walters, J L

    1987-10-01

    Four nonpregnant and nonlactating Holstein cows fitted with ruminal fistulas were assigned to each of four diets in a 4 X 4 Latin square design. Dietary treatments were 1) basal diet containing 50% concentrate; 2) basal diet plus 90 g/d yeast culture; 3) basal diet plus 2.63 g/d Aspergillus oryzae fermentation extract; 4) basal diet plus 90 g/d of A. oryzae fermentation extract and yeast culture. Cows were fed diets at a rate of 86 g DM/kg BW.75 for 14 d adaptation followed by an 8-d collection period. Digestibility of dry matter was increased by A. oryzae and A. oryzae and yeast culture combination treatments. Digestibility of CP was increased regardless of fungal culture addition. Hemicellulose digestibility, percent ruminal cellulolytic organisms, and acetate to propionate ratio were increased by the addition of fungal supplements.

  14. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  15. Radioprotective properties of the lipocarotenoid extract of the Rhodotorula glutinis yeast

    International Nuclear Information System (INIS)

    Zalashko, M.V.; Koroleva, I.F.; Salokhina, G.A.; Chirkin, A.A.

    1997-01-01

    Complex compounds of yeast (Rhodotorula glutinis) lipid nature were studied to determine their application possibility as a protection from various pathologies occurring in mice at the background of gamma-irradiation. A lipocarotinoid preparation extracted from Phodotorula glutinis yeast named lipoglutin is shown to be able to normalize a whole number of indices of blood serum lipid transport system broken at irradiation, among which one can name the content of total cholesterin, general lipids, primary and later products of lipid peroxide oxidation and to be characterized by a rather high antioxidant activity

  16. A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes.

    Science.gov (United States)

    Tapia-Tussell, Raul; Lappe, Patricia; Ulloa, Miguel; Quijano-Ramayo, Andrés; Cáceres-Farfán, Mirbella; Larqué-Saavedra, Alfonso; Perez-Brito, Daisy

    2006-05-01

    A simple and easy protocol for extracting high-quality DNA from different yeast and filamentous fungal species is described. This method involves two important steps: first, the disruption of cell walls by mechanical means and freezing; and second, the extraction, isolation, and precipitation of genomic DNA. The absorbance ratios (A(260)/A(280)) obtained ranged from 1.6 to 2.0. The main objective of this procedure is to extract pure DNA from yeast and filamentous fungi, including those with high contents of proteins, polysaccharides, and other complex compounds in their cell walls. The yield and quality of the DNAs obtained were suitable for micro/minisatellite primer-polymerase chain reaction (MSP-PCR) fingerprinting as well as for the sequence of the D1/D2 domain of the 26S rDNA.

  17. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    Science.gov (United States)

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  18. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    Science.gov (United States)

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij; Kotowska, Dorota Ewa; C. B. Olsen, Louise

    2014-01-01

    while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes...

  20. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4 , the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1 , which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.

    Science.gov (United States)

    Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli

    2007-05-01

    Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.

  2. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Jacobsen, Simo Abdessamad; Schneider, Konstantin

    2016-01-01

    performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase...... accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L−1 in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays...

  3. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    Science.gov (United States)

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  4. Production of alcohol and edible yeast with extract of carob fruit

    Energy Technology Data Exchange (ETDEWEB)

    Beundia, M; Arroyo, V; Inigo, B; Garrido, J M

    1961-01-01

    Media based on extraction from carob fruit (Ceratonia siliqua) have been used successfully in laboratory production of edible yeast and of alcohol. The fruit is a pod, 25 to 40 g, with sweet meaty flesh containing 34% sugar (dry weight), half sucrose and half invert sugar. Because of butyric acid and tannin, no antimicrobial need be added to the pulp prepared by adding H/sub 2/O (3 times weight) and autoclaving 1 hour in flowing stream. Of 3 yeast spp., Candida pulcherrima, Hansenula anomala, and Rhodotorula rubra, the latter (notable for carotenoid content) produced the most dry material in 48 hours at 32/sup 0/ on a reciprocating shaker with medium containing (NH/sub 4/)/sub 2/SO/sub 4/ 2.52 and extraction contributing 20 g reducing sugar/1. Alcohol fermentation, heretofore effected by natural microflora, was attempted with pure cultures of 4 yeast spp., Saccharomyces cerevisae (4 strains), S. oviformis (2 strains), S. beticus, and S. chevalieri. All were suitable except one strain of S. oviformis. The carob extraction had enough nitrogenous and growth substances so that no other medium ingredient was needed. With reducing sugar level t 23 g/100 mil, alcohol yield was close to the theoretical unitage (13.5) after 17-days growth. The range for the 7 isolates was 10.2 to 12.4. One strain of S. cereviseae reached its maximum, 11.8 in only 7 days.

  5. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  6. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  7. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Apweiler Eva

    2012-06-01

    Full Text Available Abstract Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.

  8. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    Science.gov (United States)

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  9. Investigation of repressive and enhancive effects of fruit extracts on the activity of glucose-6-phophatase.

    Science.gov (United States)

    Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira

    2016-11-01

    Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.

  10. Antifungal activity evaluation of Aloe arborescens dry extract against trichosporon genus yeasts

    Directory of Open Access Journals (Sweden)

    João Ricardo Bueno de Morais Borba

    2014-10-01

    Full Text Available The objective of this study was to investigate the antifungal activity of Aloe arborescens dry extract against Trichosporon genus yeast species. Extraction was carried out by means of a longitudinal incision in fresh leaves, which were collected on a vat, and the total volume was frozen and subsequently lyophilized. Then, 40 mg of the dry extract was dissolved in DMSO by gentle inversion in order to obtain a solution whose concentration was 4000 µg mL-1. This solution became limpid and slightly yellowish because the pigment of the latex was attenuated. It was performed serial dilutions from 2,000 to 15.625 µg mL-1 with RPMI-1640 broth. There was already no pigment in the first dilution of 2000 μg mL-1. It was analyzed fifteen strains of Trichosporon spp., and Candida albicans ATCC 10231 was used as control strain. We carried out the reading of microplates in the ELISA reader device at a wavelength of 530 nm, after incubation for 24 and 48 hours, and it was determinated the Minimum Inhibitory Concentration (MIC. The MIC50 value obtained for all Trichosporon species and for C. albicans was 500 µg mL-1. As a result, we concluded that Aloe arborescens dry extract has antifungal activity against Trichosporon yeasts.

  11. Isolation and Characterization of a Catabolite Repression-Insensitive Mutant of a Methanol Yeast, Candida boidinii A5, Producing Alcohol Oxidase in Glucose-Containing Medium

    OpenAIRE

    Sakai, Yasuyoshi; Sawai, Tohru; Tani, Yoshiki

    1987-01-01

    Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initia...

  12. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  13. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: a potential veterinary vaccine.

    Science.gov (United States)

    Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. When transcriptome meets metabolome : Fast cellular responses of yeast to sudden relief of glucose limitation

    NARCIS (Netherlands)

    Heijnen, J.J.; Daran, J.M.; Pronk, J.T.; Daran-Lapujade, P.; Knijnenburg, T.A.; Ras, C.; Ten Pierick, A.; Akmering, M.J.; Van Winden, W.A.; Kresnowati, M.T.

    2006-01-01

    Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at

  15. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    Science.gov (United States)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  16. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    Science.gov (United States)

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates. © 2015 American Institute of Chemical Engineers.

  17. Conditions of activation of yeast plasma membrane ATPase.

    Science.gov (United States)

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  18. Glucose-induced MDR pump resynthesis in respiring yeast cells depends on nutrient level

    Czech Academy of Sciences Publication Activity Database

    Maláč, J.; Sigler, Karel; Gášková, D.

    -, č. 337 (2005), s. 138-141 ISSN 0006-291X R&D Projects: GA ČR GD204/03/H066; GA ČR GP202/04/P110 Grant - others:GA FRVŠ FRVS 555/2005/G3 Institutional research plan: CEZ:AV0Z50200510 Keywords : MDR pumps * yeast * fluorimetric assay Subject RIV: EE - Microbiology, Virology Impact factor: 3.000, year: 2005

  19. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan

    OpenAIRE

    Mekoue Nguela, Julie; Poncet-Legrand, Celine; Sieczkowski, N.; Vernhet, Aude

    2016-01-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored b...

  20. Green tea extract does not affect exogenous glucose appearance but reduces insulinemia with glucose ingestion in exercise recovery.

    Science.gov (United States)

    Martin, Brian J; McGlory, Chris; MacInnis, Martin J; Allison, Mary K; Phillips, Stuart M; Gibala, Martin J

    2016-12-01

    We reported that supplementation with green tea extract (GTE) lowered the glycemic response to an oral glucose load following exercise, but via an unknown mechanism (Martin BJ, MacInnis MJ, Gillen JB, Skelly LE, Gibala MJ. Appl Physiol Nutr Metab 41: 1057-1063, 2016. Here we examined the effect of supplementation with GTE on plasma glucose kinetics on ingestion of a glucose beverage during exercise recovery. Eleven healthy, sedentary men (21 ± 2 yr old; body mass index = 23 ± 4 kg/m 2 , peak O 2 uptake = 38 ± 7 ml·kg -1 ·min -1 ; means ± SD) ingested GTE (350 mg) or placebo (PLA) thrice daily for 7 days in a double-blind, crossover design. In the fasted state, a primed constant infusion of [U- 13 C 6 ]glucose was started, and 1 h later, subjects performed a graded exercise test (25 W/3 min) on a cycle ergometer. Immediately postexercise, subjects ingested a 75-g glucose beverage containing 2 g of [6,6- 2 H 2 ]glucose, and blood samples were collected every 10 min for 3 h of recovery. The rate of carbohydrate oxidation was lower during exercise after GTE vs. PLA (1.26 ± 0.34 vs. 1.48 ± 0.51 g/min, P = 0.04). Glucose area under the curve (AUC) was not different between treatments after drink ingestion (GTE = 1,067 ± 133 vs. PLA = 1,052 ± 91 mM/180 min, P = 0.91). Insulin AUC was lower after GTE vs. PLA (5,673 ± 2,153 vs. 7,039 ± 2,588 µIU/180 min, P = 0.05), despite similar rates of glucose appearance (GTE = 0.42 ± 0.16 vs. PLA = 0.43 ± 0.13 g/min, P = 0.74) and disappearance (GTE = 0.43 ± 0.14 vs. PLA = 0.44 ± 0.14 g/min, P = 0.57). We conclude that short-term GTE supplementation did not affect glucose kinetics following ingestion of an oral glucose load postexercise; however, GTE was associated with attenuated insulinemia. These findings suggest GTE lowers the insulin required for a given glucose load during postexercise recovery, which warrants further mechanistic studies in humans. Copyright © 2016 the American Physiological Society.

  1. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  2. Yeast hexokinase: substrate-induced association--dissociation reactions in the binding of glucose to hexokinase P-II.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1976-06-15

    A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.

  3. Blood glucose lowering effect of aqueous extract of Graptophyllum ...

    African Journals Online (AJOL)

    ... 10 mg/kg body weight metformin, a well known hypoglycemic drug, while group 5 served as control and received the vehicle of administration (distilled water). The fasting blood glucose level (FBGL) of the rats was checked before commencement of treatment and weekly during the drug administration period using Roche ...

  4. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase

    International Nuclear Information System (INIS)

    Neeff, J.; Haegele, E.; Nauhaus, J.; Heer, U.; Mecke, D.

    1978-01-01

    The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radioimmunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggests a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used. (orig.) [de

  5. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... cultivated on liquid medium containing (per liter) 40 g glucose, 10 g yeast extract, 5 g ... extract or control, and sample blank, respectively. Superoxide ..... ease in neurons, hepatopathies, atherosclerosis, and even aging (Pryor ...

  6. [Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].

    Science.gov (United States)

    Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W

    2001-01-01

    Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed.

  7. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.

    Science.gov (United States)

    García-Salcedo, Raúl; Lubitz, Timo; Beltran, Gemma; Elbing, Karin; Tian, Ye; Frey, Simone; Wolkenhauer, Olaf; Krantz, Marcus; Klipp, Edda; Hohmann, Stefan

    2014-04-01

    The AMP-activated protein kinase, AMPK, controls energy homeostasis in eukaryotic cells but little is known about the mechanisms governing the dynamics of its activation/deactivation. The yeast AMPK, SNF1, is activated in response to glucose depletion and mediates glucose de-repression by inactivating the transcriptional repressor Mig1. Here we show that overexpression of the Snf1-activating kinase Sak1 results, in the presence of glucose, in constitutive Snf1 activation without alleviating glucose repression. Co-overexpression of the regulatory subunit Reg1 of the Glc-Reg1 phosphatase complex partly restores glucose regulation of Snf1. We generated a set of 24 kinetic mathematical models based on dynamic data of Snf1 pathway activation and deactivation. The models that reproduced our experimental observations best featured (a) glucose regulation of both Snf1 phosphorylation and dephosphorylation, (b) determination of the Mig1 phosphorylation status in the absence of glucose by Snf1 activity only and (c) a regulatory step directing active Snf1 to Mig1 under glucose limitation. Hence it appears that glucose de-repression via Snf1-Mig1 is regulated by glucose via at least two independent steps: the control of activation of the Snf1 kinase and directing active Snf1 to inactivating its target Mig1. © 2014 FEBS.

  8. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    Science.gov (United States)

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  9. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  10. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells.

    Directory of Open Access Journals (Sweden)

    Jakub Orzechowski Westholm

    Full Text Available Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.

  11. EFFECT OF SAPPAN WOOD (Caesalpinnia sappan L EXTRACT ON BLOOD GLUCOSE LEVEL IN WHITE RATS

    Directory of Open Access Journals (Sweden)

    Saefudin Saefudin

    2016-05-01

    Full Text Available Sappan wood or kayu secang (Caesalpinia sappan L. was reported of having medicinal properties, such as natural antioxidant, relieve vomiting of blood, and mix of ingredients for malaria drugs. The research was conducted to study the influence of ethanol extract from sappan wood on blood glucose level of white rats. The study of the blood glucose level in rats was carried out by using glucose tolerance method. It was measured by Refloluxs (Accutrend GC with Chloropropamide 50 mg/200 g BW (Body weight as positive control. The ethanol extracts were used in various concentrations 10, 20, 30, 40 and 50 mg/200 g BW per-oral and was observed every hour, beginning one hour before to 7 hours after the extract being administered. The results showed that treatment of ethanol extract of sappan wood by administer doses gave remarkable effect on the blood glucose level in white rat. It reduced the glucose level in the blood compared to the negative and positive control. Treatment of dose 30 mg/200 g BW gave similar effect to positive controls, while a dose of 50 mg/200 g BW gave lower blood glucose level (93 mg/dl than the positive controls.

  12. Effect of cinnamon extract on blood glucose level and lipid profile in alloxan induced diabetic rats

    International Nuclear Information System (INIS)

    Mahmood, S.; Khurshid, R.

    2011-01-01

    Background: Cinnamon has been shown to potentiate the hypoglycaemic effect of insulin through up regulation of the glucose uptake in cultured adipocytes of rats. This study tried to find out the effect of Cinnamon alone or in combination with Insulin in diabetic albino rats. Methods: Thirty rats were divided into three groups, A and B. Group A were given cinnamon extract 200 mg/Kg body weight daily orally and group B rats were given cinnamon extract 400 mg/Kg body weight daily. After six weeks blood glucose and lipid profile levels were evaluated in all the groups. Results: Group of rats given 200 mg cinnamon extract showed significant decrease of blood glucose concentration but there was slight or no change in the level of lipid parameters including serum cholesterol, triglyceride and lipoproteins (HDL, LDL-chol). On the other hand group of rats given 400 mg extract of cinnamon showed a better but non significant change in level of lipid related parameter while blood glucose level was significantly decreased. Conclusion: The cinnamon at a dose of 400 mg showed same effects on blood glucose level but better effects on lipid profiles especially of serum cholesterol level of group of rats compared to 200 mg of cinnamon extract. Cinnamon may be recommended as hypoglycaemic herb but not as hypolipidaemic herb. (author)

  13. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Rodrussamee, Nadchanok; Lertwattanasakul, Noppon; Hirata, Katsushi; Suprayogi; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru

    2011-05-01

    Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.

  14. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Rodrussamee, Nadchanok; Hirata, Katsushi; Suprayogi [Yamaguchi Univ., Ube (Japan). Graduate School of Medicine; Lertwattanasakul, Noppon; Kosaka, Tomoyuki [Yamaguchi Univ. (Japan). Faculty of Agriculture; Limtong, Savitree [Kasetsart Univ., Bangkok (Thailand). Faculty of Science; Yamada, Mamoru [Yamaguchi Univ., Ube (Japan). Graduate School of Medicine; Yamaguchi Univ. (Japan). Faculty of Agriculture

    2011-05-15

    Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40 C, a level of ethanol production similar to that at 30 C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose. (orig.)

  15. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Chuck, Christopher J.; Lou-Hing, Daniel; Dean, Rebecca; Sargeant, Lisa A.; Scott, Rod J.; Jenkins, Rhodri W.

    2014-01-01

    Microbial lipids have the potential to substantially reduce the use of liquid fossil fuels, though one obstacle is the energy costs associated with the extraction and subsequent conversion into a biofuel. Here we report a one-step method to produce FAME (fatty acid methyl esters) from Rhodotorula glutinis by combining lipid extraction in a microwave reactor with acid-catalysed transesterification. The microwave did not alter the FAME profile and over 99% of the lipid was esterified when using 25 wt% H 2 SO 4 over 20 min at 120 °C. On using higher loadings of catalyst, similar yields were achieved over 30 s. Equivalent amounts of FAME were recovered in 30 s using this method as with a 4 h Soxhlet extraction, run with the same solvent system. When water was present at less than a 1:1 ratio with methanol, the main product was FAME, above this the major products were FFA (free fatty acids). Under the best conditions, the energy required for the microwave was less than 20% of the energy content of the biodiesel produced. Increasing the temperature did not change the EROI (energy return on investment) substantially; however, longer reaction times used an equivalent amount of energy to the total energy content of the biodiesel. - Highlights: • The extraction and transesterification of yeast lipid were achieved using a microwave reactor. • The lipid was extracted from Rhodotorula glutinis within 30 s under all conditions. • Addition of 25 wt% H 2 SO 4 catalyst converted 95% glycerides to FAME over 5 min. • Water could be tolerated up to 25 wt% without high FFA production. • The temperature of the microwave had less impact on EROI than the length of extraction

  16. Effects of Selenium Yeast on Blood Glucose and Antioxidant Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes Mellitus in Wistar Rats.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Adam, A; Ejeh, L; Mohammed, A; Ayo, J O

    2017-03-06

    Selenium is an antioxidant that prevents oxygen radical from damaging cells from chronic diseases that can develop from cell injury and inflammation such as diabetes mellitus. The aim of the study is to investigate the possible protective effect of selenium yeast on cholesterol diet induced type-2 diabetes mellitus and oxidative stress in rats. Twenty male wistar rats were divided in to four groups of five animals each: Group 1: (Negative control) received standard animal feed only, Group 2:  received cholesterol diet (CD) only, Group 3: received CD and 0.1 mg/kg selenium yeast orally, Group 4: Received CD and 0.2 mg/kg selenium yeast orally for six weeks. At the end of the study period, the animals were sacrificed and the serum samples were collected and evaluated for estimation of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). The results showed a significant decrease in blood glucose level in the groups  co-administered CD and selenium yeast when compared to CD group only. Antioxidant enzymes status recorded significant decrease in SOD, CAT and GPx activities in CD and selenium yeast administered when compared to CD group only. In Conclusion, Selenium yeast administrations prevent free radical formations which are potent inducer of diabetes mellitus.

  17. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    Science.gov (United States)

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  18. [Effect of a dehydrated extract of nopal (Opuntia ficus indica Mill.) on blood glucose].

    Science.gov (United States)

    Frati-Munari, A C; de León, C; Ariza-Andraca, R; Bañales-Ham, M B; López-Ledesma, R; Lozoya, X

    1989-01-01

    To assess if a dehydrated extract of nopal stems retains the effect on glycemia of the entire nopal stems two experiments were performed. A. Six patients with type II diabetes mellitus in fasting condition received 30 capsules containing 10.1 +/- 0.3 g of the extract, and serum glucose levels were measured hourly from 0 to 180 minutes. B. Six healthy volunteers received 30 capsules with the extract followed by 74 g of dextrose orally. Serum glucose measurements were made in a similar fashion. In each experiment a control test with empty capsules was performed. Nopal extract did not reduce fasting glycemia in diabetic subjects. Nevertheless, the extract diminished the increase of serum glucose which followed a dextrose load. Peak serum glucose was 20.3 +/- 18.2 mg/dl (X +/- SD) lower in the test with nopal than in the control one (P less than 0.025). Dehydrated extract of nopal (Opuntia ficus-indica Mill) did not show acute hypoglycemic effect, although could attenuate postprandial hyperglycemia.

  19. Digestibilidade do extrato de leveduras em frangos de corte Yeast extract digestibility for broilers

    Directory of Open Access Journals (Sweden)

    Vanessa Karla Silva

    2009-10-01

    Full Text Available O objetivo neste trabalho foi determinar a composição química e de energia metabolizável e os coeficientes de digestibilidade da matéria seca, proteína bruta e dos aminoácidos contidos no extrato de leveduras fornecido para frangos de corte. Dois ensaios de metabolismo foram conduzidos: no primeiro ensaio, foram utilizados 200 frangos de corte machos Cobb-500® com 14 dias de idade alojados em baterias metálicas, distribuídos em delineamento inteiramente casualizado em grupos de 10 aves por unidade experimental. Utilizou-se o método de coleta total para determinar a energia metabolizável aparente (EMA e aparente corrigida pelo balanço de nitrogênio (EMAn e os coeficientes de digestibilidade aparente da matéria seca e da proteína bruta. No segundo ensaio, foi utilizado o método da alimentação forçada em oito galos cecectomizados para determinação do coeficiente de digestibilidade dos aminoácidos. O delineamento experimental foi em blocos casualizados repetidos no tempo, com um grupo de cinco aves recebendo o extrato de leveduras e outro com três aves mantidas em jejum para determinação das perdas endógenas de aminoácidos. Para avaliação da composição química do ingrediente, foram determinados os teores de bruta (PB, matéria seca (MS, energia bruta (EB e aminoácidos. O extrato de leveduras contém em média 92,49% de MS, 48,07% de PB, 4.883 kcal de EB/kg e 2.073 kcal de EMAn/kg e coeficientes de digestibilidade de 65,79% da matéria seca, 65,47% da proteína bruta e 99,42% dos aminoácidos em frangos de corte. Os aminoácidos em maior proporção no extrato de leveduras são ácido glutâmico, leucina, ácido aspártico, alanina, prolina, lisina, valina, serina, isoleucina, glicina e treonina.The objective of this study was to evaluate the chemical composition, metabolizable energy, the digestibility coefficients of dry matter, crude protein and the amino acids contained in yeast extract supplied to broiler

  20. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  1. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  3. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Uemura, Mei

    2017-01-01

    Background: Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting h...

  4. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Mei Uemura; Yutaka Yano; Toshinari Suzuki; Taro Yasuma; Toshiyuki Sato; Aya Morimoto; Samiko Hosoya; Chihiro Suminaka; Hiromu Nakajima; Esteban C. Gabazza; Yoshiyuki Takei

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hy...

  5. EXTRACTION-CHROMATOGRAPHIC DETERMINATION OF GLUCOSE AND FRUCTOSE IN THE PRESENCE OF AROMATIC AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of glucose and fructose from aqueous salt solutions containing aromatic amino acids (phenylalanine, tryptophan, tyrosine, hydrophilic solvents (aliphatic alcohols, alkyl acetates, ketones have been studied. The quantitative characteric of the process (the distribution coefficients, the degree of extraction, separation factors are calculeted. The dependence of distribution ratios of monosaccharides from the amino acid content in the solution has been established. A mobile phase for analysis of the concentrate by ascending thin layer chromatography have been developed.

  6. Effect of Andrographolide‭ Extract on Blood Glucose and Lipid Profile in Rats with Secondary Iron Overload

    Directory of Open Access Journals (Sweden)

    َArash Mehri Pirayvatlo

    2017-01-01

    Full Text Available Background & objectives: Iron overload is involved in the pathophysiology of many diseases including diabetes. In fact, the excess iron by creating free radicals makes damage to pancreas and leads to insulin resistance and diabetes. Andrographolide extract has hypoglycemic and antioxidant properties. This study has surveyed the effects of andrographolide on blood glucose and lipid profile in rats with secondary iron overload. Methods: In this experimental study, 36 male Wistar rats were randomly divided into 6 groups: the healthy control group, secondary iron overload group, secondary iron overload groups treated with a dose of 3.5 and 7 mg/kg of andrographolide extract, and andrographolide groups treated with a dose of 3.5 and 7 mg/kg of extract. Iron and extract were injected for 6 and 12 days, respectively. Blood samples were taken for measurement of blood glucose and lipid profiles. Data were analyzed using ANOVA test. Results: The pathological results of samples from liver of animals receiving iron showed that the iron was deposited in the liver tissues. Iron injection significantly increased blood glucose levels compared to healthy control group (p<0.05. In the iron overload group, andrographolide extract with a dose of 3.5 mg/kg or 7 mg/kg significantly decreased blood glucose levels (p<0.05. Iron injections did not increase the serum triglyceride and cholesterollevels. Injections of andrographolide extract with a dose of 3.5 mg/kg and 7 mg/kg, significantly decreased the cholesterol levels compared to iron receiving group (p<0.05. Conclusion: Results of this study showed that the andrographolide with different doses may be effective in the treatment of diabetes by reducing serum glucose and cholesterol levels.

  7. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2014-01-01

    Full Text Available Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA, higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR. In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.

  8. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Science.gov (United States)

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  9. Efficacy of Tribulus Terrestris Extract on the Serum Glucose and Lipids of Women with Diabetes Mellitus

    Science.gov (United States)

    Samani, Nasrin Babadai; Jokar, Azam; Soveid, Mahmood; Heydari, Mojtaba; Mosavat, Seyed Hamdollah

    2016-01-01

    Background: Considering folkloric use of Tribulus terrestris (T. terrestris) in diabetes and proven anti-hyperglycemic and anti-hyperlipidemic effects of T. terrestris in animal studies, we aimed to evaluate the efficacy of the hydro alcoholic extract of T. terrestris on the serum glucose and lipid profile of women with diabetes mellitus. Methods: Ninety-eight diabetic women were randomly allocated to receive the T. terrestris (1000 mg/day) or placebo for three months. The patients were evaluated in terms of the fasting blood glucose, 2-hour postprandial glucose, glycosylated hemoglobin and lipid profile. Results: T. terrestris showed a significant blood glucose lowering effect in diabetic women compared to placebo (Pterrestris group was significantly reduced compared with placebo, while no significant effect was observed in the triglyceride and high-density lipoprotein levels. Conclusion: This study showed preliminary promising hypoglycemic effect of T. terrestris in diabetic women. PMID:27840471

  10. Efficacy of Tribulus Terrestris Extract on the Serum Glucose and Lipids of Women with Diabetes Mellitus.

    Science.gov (United States)

    Samani, Nasrin Babadai; Jokar, Azam; Soveid, Mahmood; Heydari, Mojtaba; Mosavat, Seyed Hamdollah

    2016-05-01

    Considering folkloric use of Tribulus terrestris (T. terrestris) in diabetes and proven anti-hyperglycemic and anti-hyperlipidemic effects of T. terrestris in animal studies, we aimed to evaluate the efficacy of the hydro alcoholic extract of T. terrestris on the serum glucose and lipid profile of women with diabetes mellitus. Ninety-eight diabetic women were randomly allocated to receive the T. terrestris (1000 mg/day) or placebo for three months. The patients were evaluated in terms of the fasting blood glucose, 2-hour postprandial glucose, glycosylated hemoglobin and lipid profile. T. terrestris showed a significant blood glucose lowering effect in diabetic women compared to placebo (Pterrestris group was significantly reduced compared with placebo, while no significant effect was observed in the triglyceride and high-density lipoprotein levels. This study showed preliminary promising hypoglycemic effect of T. terrestris in diabetic women.

  11. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  12. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    Science.gov (United States)

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  13. Effects of Extraction Solvents on the Quantification of Free Amino Acids in Lyophilised Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Andreea STĂNILĂ

    2018-05-01

    Full Text Available The aim of this work was to test some solvents in order to improve the free amino acids extraction from lyophilised brewer’s yeast. The brewer’ yeast was treated with four types of extraction solvents: Solvent I – acetonitrile 25%/HCl 0.01M (ACN; Solvent II – ethanol 80%; solvent III – HCl 0.05M/deionized water (1/1 volume; Solvent IV – HCl 0.05M/ethanol 80% (1/1 volume. The supernatants were analysed by HPLC-DAD-ESI-MS method. Acetonitrile provided the less quantities and number of amino acids extracted due to its weaker polarity. Solvent II and IV (ethanol, respectively acidified ethanol, which have an increased polarity, extracted 15 amino acids due to the addition of HCl in solvent IV. Solvent III (acidified water proved to be the best extraction solvent for the amino acids from brewer’s yeast providing the separation of 17 compounds: GLN, ASN, SER, GLY, ALA, ORN, PRO, HIS, LYS, GLU, TRP, LEU, PHE, ILE, AAA, HPHE, TYR.

  14. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  15. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  16. Blood glucose lowering effect of ophiopogonis tuber extract and mechanism of anti-insulin-resistance

    Directory of Open Access Journals (Sweden)

    Meng NING

    2013-01-01

    Full Text Available Objective  To study the hypoglycemic effect and insulin sensitization mechanism of ophiopogonis tuber extracts on the 3T3-L1-induced adipocytes, and also in rats with reproduction of type 2 diabetes mellitus (T2DM. Methods  3T3-L1 cells were induced and differentiated into adipocytes. After the intervention with ophiopogonpolysaccharide (OPSR and ophiopogonin (OPG, glucose consuming rate was detected for screening the extracts which may have effective hypoglycemic effects. The insulin resistance (IR adipocyte model was established by dexamethasone induction, and then it was treated with OPSR. The protein expression levels of leptin, adiponectin and resistin were detected by Western blotting. The T2DM rat model was reproduced and then treated with OPSR for 4 weeks. Body weight (BW, triglyeride (TG, fasting blood glucose (FBG and fasting insulin (FINs of the rats were measured respectively. Results  OPSR in dosage of 0.5-50mg/L promoted glucose consumption of adipocytes in a dose-dependent manner, the glucose consumption ratios were 32.27%, 75.14% and 90.47% respectively. OPG of 50mg/L showed very weak activity with glucose consumption ratio of only 8.49%. OPSR could significantly promote the protein expression of leptin and adiponectin, and showed an inhibitory effect on the protein expression of resistin (P<0.05. After treatment with OPSR for 4 weeks, the BW of rats increased obviously, while TG, FBG and HOMA-IR decreased significantly (P<0.05 or P<0.01. Conclusions  OPSR may promote glucose transport and utilization of adipocytes, decrease the level of FBG and TG, and improve the condition of IR in T2DM rats. The mechanism of blood glucose lowering effect may be attributed to secretion of adipokines, such as leptin, adiponectin and resistin by IR adipocytes.

  17. Effects of Nitrogen Supplementation on Yeast (Candida utilis Biomass Production by Using Pineapple (Ananas comosus Waste Extracted Medium

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2007-01-01

    Full Text Available Pineapple waste medium was used to cultivate yeast, Candida utilis. It served as the sole carbon and energy source for the yeast growth. However, pineapple waste media contain very little nitrogen (0.003-0.015% w/v. Various nitrogen sources were incorporate and their effects on biomass, yield and productivity were studied. Significant (p<0.05 increment on biomass production was observed when nitrogen supplement (commercial yeast extract, peptone, ammonium dihydrogen phosphate, ammonium sulphate and potassium nitrate was added into fermentation medium. Commercial yeast extract, Maxarome® which increased 55.2% of biomass production at 0.09% (w/v nitrogen content, is the most suitable among the selected organic source. On the other hand, ammonium dihydrogen phosphate at 0.09% (w/v nitrogen content is comparable inorganic source which enhanced 53.7% of production. Total nitrogen content of each treatment at 0.05% (w/v showed that nitrogen supplied was not fully utilized as substrate limitation in the fermentation medium.

  18. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  19. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  20. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar: Increased Abundance and Expression of a Calreticulin-Like Protein.

    Directory of Open Access Journals (Sweden)

    Giulia Micallef

    Full Text Available In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  1. Effect of Cuscuta reflexa stem and Calotropis procera leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice.

    Science.gov (United States)

    Rahmatullah, Mohammed; Sultan, Shamsuddin; Toma, Tanzila Taher; Lucky, Sayeda-A-Safa; Chowdhury, Majeedul H; Haque, Wahid Mozammel; Annay, Eashmat Ara; Jahan, Rownak

    2009-12-30

    Cuscuta reflexa (whole plant) and Calotropis procera (leaves) are used in folk medicine of Bangladesh to control blood sugar in patients suffering from diabetes mellitus. The hypoglycemic effects of methanol and chloroform extracts of whole plants of Cuscuta reflexa, and methanol extract of leaves of Calotropis procera were investigated in oral glucose tolerance tests in Long Evans rats and Swiss albino mice, respectively. Both methanol and chloroform extracts of Cuscuta reflexa whole plant demonstrated significant oral hypoglycemic activity in glucose-loaded rats at doses of 50, 100 and 200 mg/kg body weight. The methanol extract of leaves of Calotropis procera, when tested at doses of 100 and 250 mg/kg body weight did not demonstrate any oral hypoglycemic effect when tested in glucose-loaded mice.

  2. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    Science.gov (United States)

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  3. Synergistic effect of sodium and yeast in improving the efficiency of DSSC sensitized with extract from petals of Kigelia Africana

    Science.gov (United States)

    Shalini, S.; Balasundaraprabhu, R.; Satish Kumar, T.; Sivakumaran, K.; Kannan, M. D.

    2018-05-01

    TiO2 nanostructures with two different dopants, sodium and yeast have been successfully synthesized by hydrothermal method. Doping sodium is found to extend the absorbance of TiO2 into the visible region as well as it acts as mordant in fixing and improving the absorption of dye. Yeast, as a dopant, can help in absorption of more anthocyanins from the natural dye extract by TiO2 and also aids in retaining the colour of the dye and increases the stability of the dye at varying pH. Anthocyanins are the major class of pigment present in the newly addressed maroon, velvety and trumpet shaped flower "Kigelia Africana". X-ray diffraction analysis revealed the formation of rutile phase for all the samples. Field Emission Scanning Electron microscopy images revealed the formation of nanorods and nanoflowers with change in dopant as well as their concentration. The photoelectric conversion efficiency of DSSC with undoped TiO2 photoelectrode is 0.87% and DSSC with 6% Na doped TiO2 photoelectrode is 1.56%. The efficiency of DSSC with 6% Na+6% yeast doped TiO2 photoelectrode is found to increase from 2.09% (DSSC with 6% Na+4% yeast doped TiO2 photoelectrode) to 2.31% on varying the dopant concentration. Doping is also found to increase the dye absorption and superior charge transport efficiency which in turn helps to improve the performance of DSSC.

  4. Effects of Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis extracts on in vitro α-glucosidase activity and glucose diffusion.

    Science.gov (United States)

    Schultz Moreira, Adriana R; Garcimartín, Alba; Bastida, Sara; Jiménez-Escrig, Antonio; Rupérez, Pilar; Green, Brian D; Rafferty, Eamon; Sánchez-Muniz, Francisco J; Benedí, Juana

    2014-06-01

    Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control. To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion. The in vitro effects Chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect. Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively). The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Comparative Fingerprint of Aromatic Herbs and Yeast Alcoholic Extracts used as Ingredients for Promen, a Prostate Preventive Nutraceutical

    Directory of Open Access Journals (Sweden)

    Florina Csernatoni

    2013-11-01

    Full Text Available The aim of this study was to characterize and identify different bioactive compounds in plant sources and yeast powders  to obtain an original nutraceutical (Promen which has beneficial effects in prostate disease prevention. Seven plant and fruit sources, namely nettle (Urtica dioica, green tea (Camellia sinensis, fluff with small flowers (Epilobium parviplorum, tomato (Solanum licopersicum,  sea buckthorn (Hippophae rhamnoides, pumpkin (Cucurbita maxima, sunflower (Helianthus annus and lyophilized beer yeast (Saccharomyces cerevisiae were investigated. Methanolic extracts were prepared using 15% plant concentration and the purified fractions were analyzed using high throughput techniques like UV-VIS spectroscopy, high performance liquid chromatography coupled with photodiode array detection (HPLC-DAD and mass spectrometry LC-QTOF -MS. The majority of the investigated plants were rich in phenolic derivatives, polyphenols (flavonoid glucosides, while yeast was rich in aminoacids, peptides and vitamins B. The major compounds identified were: Juglone, Resveratrol, Quercetin, Epigallocatechin, Gallocatechin, Biochanin A, Isorhamnetin 3-O-glucoside 7-O-rhamnoside, Quercetin 3-O-galactoside 7-O-rhamnoside, Kaempferol 3,7-O-diglucoside and p-Coumaroylquinic acid. The specific biomarkers were identified for both plant extracts used as ingredients to obtain an nutraceutical  Promen. Combined UV-Vis spectroscopy, HPLC-PDA chromatography and LC-MS spectrometry are recommended as accurate, sensible and reliable tools to investigate the plants and nutraceutical fingerprints and to predict the relation between ingredients composition and their health effects.

  6. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    Science.gov (United States)

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Anti-hyperglycemic effect and glucose tolerance of guajava (Psidium guajava L.) leaf ethanol extract in diabetic rats

    Science.gov (United States)

    Yanis Musdja, Muhammad; Mahendra, Feizar; Musir, Ahmad

    2017-12-01

    Traditionally guava (Psidium guajava L) leaf is used for treatment of various ailments like diarrhea, wounds, rheumatism, anti-allergy, ant-spasmodic, etc, as folk medicine. The aim of this research is to know the effect of hypoglycemia and glucose tolerance of ethanol extract of guava leaf against male white rat. The guajava leaf was obtained from Balitro Bogor. Preparation of guajava leaf extract was done by cold maceration extraction technique using ethanol 70%. Male albino rats were made into diabetics using the alloxan method. Rats were divided into 6 groups, as a comparative drug for anti-hyperglycemic used glibenclamid and as a comparative drug for glucose tolerance used acarbose. The result of blood glucometer test showed that ethanol extract 70% of guajava leaf had effect as anti-hyperglycemic and glucose tolerance with no significant difference with glibenclamid drug as anti-hyperglycemic and acarbose as glucose tolerance drug.

  8. Effects of Hibiscus sabdariffa Linn. fruit extracts on α-glucosidase enzyme, glucose diffusion and wound healing activities

    Directory of Open Access Journals (Sweden)

    Raheem Mohssin Shadhan

    2017-05-01

    Conclusions: It is established that methanolic extract and fractions from H. sabdariffa Linn. fruit can inhibit the α-glucosidase enzyme and glucose movement as well as influence the wound healing activity positively.

  9. Effect of Syzygium Aromaticum (CLOVE) Extract on Blood Glucose Level in Streptozotocin induced Diabetic Rats

    International Nuclear Information System (INIS)

    Chaudhry, Z. R.; Chaudhry, S. R.; Naseer, A.; Chaudhry, F. R.

    2013-01-01

    Objective: To evaluate the glucose lowering effect of 50% ethanol extract of Syzygium aromaticum in comparison with that of standard insulin in streptozotocin induced diabetic rats. Study Design: Randomized control trial. Place and Duration of Study: National Institute of Health Islamabad. Jul 2011- Dec 2011 Material and Methods: It was carried out on 48 adult rats of Sprague dawley specie. Rats were equally divided into 6 groups (I-VI). Group - I served as control. Diabetes was induced by giving single intraperitoneal injection of STZ in Group II to VI. Group-II served as diabetic control, while groups III, IV, V and VI served as experimental groups. Group III, IV and V rats received 50% ethanol extract of Syzygium aromaticum at a dose of 250, 500 and 750 mg/kg body weight respectively for sixty days. Group VI (standard) received humulin insulin 70/30 at dose of 0.6 units<-kg body weight subcutaneously bid for sixty days. Fasting blood samples were taken at zero day, 15 day, 30 day and 60 day after giving injection STZ. Although Syzygium aromaticum with the doses of 250, 500 and 750 mg/kg body weight and insulin reduced the level of glucose in rats but on comparison Syzygium aromaticum 750 mg=kg dose reduced glucose more effectively than 250 and 500 mg/kg dose. While in group III, IV subjects, blood glucose levels remained above normal level. In group VI receiving insulin the level of this parameter remained almost closer to group IV rats. On studying the weight of the animals after receiving STZ there was initial reduction in the weight of all the experimental groups but after receiving the extract of plant improvement was seen and the weight of group V getting 750 mg=kg/body weight of Syzygium aromaticum became almost closer to the weight of control group. Conclusion: Syzygium aromaticum extract has glucose lowering effect in STZ induced diabetic rats and this effect is dose related and the dose of 750 mg/kg body weight has produced maximum effect. (author)

  10. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    Science.gov (United States)

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  11. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.

    Science.gov (United States)

    de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I

    2013-12-11

    Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake.

  12. Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract

    Directory of Open Access Journals (Sweden)

    Phisit Seesuriyachan

    2011-08-01

    Full Text Available Coconut water (CW is a by-product of food industry and has little value in Thailand. It is usually discarded as a wasteinto the environment. Consequently, we developed a value added process of exopolysaccharide (EPS production usingLactobacillus confusus TISTR 1498 and coconut water. The effect of three expensive supplements (peptone, yeast extractand beef extract on EPS and biomass production was investigated at 35°C for 24 h. Using a mod-MRS-CW medium, preparedby replacing the de-ionized water with 100% CW and supplemented with 20 g/l crystalline sucrose and a reduced quantity(50% of the three expensive supplements (5 g/l of peptone, 2.5 g/l of yeast extract, and 2.5 g/l of beef extract gave thehighest yield of EPS (12.3 g/l. By optimizing the conditions for fermentation (pH 5.5, agitation speed at 50 rpm and initialsucrose concentration of 100 g/l, EPS yield increased up to 38.2 g/l. When compared with the modified MRS medium, themedium supplemented with CW was found to be suitable for the reduction of cost spent on the organic nitrogen and growthfactors (savings close to 50%.

  13. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    Science.gov (United States)

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  14. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    Science.gov (United States)

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  15. Optimization of culture medium for heavy-ion irradiation bread yeast design

    International Nuclear Information System (INIS)

    Ma Liang; Wang Jufang; Lu Dong; Li Wenjian; Xiao Guoqing

    2013-01-01

    A mutant bread yeast strain with high protein content of 55% was gained by use of "1"2C"6"+ ions. The MINITAB 16.0 software, Plackett-Burman experimental design and response surface methodology were applied to optimize the culture medium for the irradiated yeast. The most important three factors which influenced the culture results were identified as glucose, magnesium sulphate and yeast extract. The path of the steepest ascent was undertaken to approach the optimal region of the three significant factors. Box-Behnken design and response surface methodology were used for the regression analysis. Finally, the optimal fermentation conditions were identified as glucose 11.03 g/L, yeast extract 6.53 g/L and magnesium sulphate 5.59 g/L by the regression analysis. It was found that the biomass of the bread yeasts reached 4.84 g/L and increased by 15% compared to original conditions. (authors)

  16. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  17. Metabolic network analysis on Phaffia rhodozyma yeast using C-13-labeled glucose and gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Cannizzaro, C.; Christensen, B.; Nielsen, Jens

    2004-01-01

    Carotenoid production by micro organisms, as opposed to chemical synthesis, could fulfill an ever-increasing demand for 'all natural' products. The yeast Phaffia rhodozyma has received considerable attention because it produces the red pigment astaxanthin, commonly used as an animal feed suppleme...

  18. Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost

    Science.gov (United States)

    Irtiza, Ayesha; Shatunova, Svetlana; Glukhareva, Tatiana; Kovaleva, Elena

    2017-09-01

    Dietary nutrients such as amino acids, vitamins, minerals and antioxidants can play a significant role in determining meat quality and also the growth rate of poultry or animal. Phaffia rhodozyma was grown on waste from brewery industry to produce astaxanthin rich feed supplements at a very low cost. Phaffia rhodozyma is yeast specie that has ability to produce carotenoids and approximately 80% of its total carotenoid content is astaxanthin, which is highly valuable carotenoid for food, feed and aquaculture industry. This study was carried out to test yeast extract of spent yeast from brewing industry waste (residual yeast) as potential nitrogen source for growth of Phaffia rhodozyma. Cultivation was carried out in liquid media prepared by yeast extracts and other components (glucose and peptone). Carotenoids from the biomass were released into biomass by suspending cells in DMSO for destruction of cells followed by extraction with petroleum ether. The extracted carotenoids were studied by spectrophotometry to identify and quantify astaxanthin and other carotenoids produced.

  19. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    Science.gov (United States)

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  20. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  1. Enhanced Glucose Uptake in Human Liver Cells and Inhibition of Carbohydrate Hydrolyzing Enzymes by Nordic Berry Extracts

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-10-01

    Full Text Available A Western lifestyle with low physical activity and a diet rich in sugar, fat and processed food contribute to higher incidences of diabetes and obesity. Enhanced glucose uptake in human liver cells was observed after treatment with phenolic extracts from different Nordic berries. All berry extracts showed higher inhibition against α-amylase and α-glucosidase than the anti-diabetic agent acarbose. Total phenolic content and phenolic profiles in addition to antioxidant activities, were also investigated. The berries were extracted with 80% methanol on an accelerated solvent extraction system (ASE and then purified by C-18 solid phase extraction (SPE. Among the ASE methanol extracts, black chokeberry, crowberry and elderberry extracts showed high stimulation of glucose uptake in HepG2 cells and also considerable inhibitory effect towards carbohydrate hydrolyzing enzymes. SPE extracts with higher concentrations of phenolics, resulted in increased glucose uptake and enhanced inhibition of α-amylase and α-glucosidase compared to the ASE extracts. Crowberry and cloudberry were the most potent 15-lipoxygenase inhibitors, while bog whortleberry and lingonberry were the most active xanthine oxidase inhibitors. These results increase the value of these berries as a component of a healthy Nordic diet and have a potential benefit against diabetes.

  2. Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    M.S. Hassaan

    2014-01-01

    Full Text Available Twelve practical diets were formulated to contain four levels of Bacillus licheniformis (0.0, 0.24 × 106, 0.48 × 106 and 0.96 × 106 CFU g−1, respectively, with three yeast extract levels (0%, 0.5% and 1%, respectively. Each diet was randomly assigned to duplicate groups of 50 Nile tilapia (Oreochromis niloticus (5.99 ± 0.03 g in 24 concrete ponds (0.5 m3 and 1.25 m depth for 12 weeks. Increasing dietary B. licheniformis levels in O. niloticus and yeast extract levels significantly (P < 0.01 improved growth performance and nutrient utilization. Supplementation of the experimental diets with, 0.48 × 106 CFU/g−1 and 1.0% yeast extract showed the best nutrient utilization compared to other treatments. All probiotic levels significantly (P < 0.01 increased chemical composition (P < 0.05 compared to the control group, while increasing yeast extract did not significantly alter chemical composition. Hematological indices, total protein and albumin of O. niloticus significantly increased while aspartate aminotransferase and alanine aminotransferase significantly (P < 0.01 decreased with an increase in B. licheniformis level up to 0.48 × 106 CFU g−1. Increasing levels of yeast extract had no effect on hematological parameters and the diets supplemented with 0.48 × 106 CFU g−1 and 0.5% yeast extract showed the highest hematological values.

  3. effects of caffeine and ethanolic extract of kolanut on glucose uptake

    African Journals Online (AJOL)

    Daniel Owu

    calculated as the product of (A-V) glucose and blood flow. ... Key words: Caffeine, kolanut, dog, glucose uptake, hindlimb ...... free fatty acids, and amino acids. ... involved in glucose homeostasis. ... independent of obesity and type 2 diabetes.

  4. Effect of glucose and insulin infusion on the myocardial extraction of a radioiodinated methyl-substituted fatty acid

    International Nuclear Information System (INIS)

    Bianco, J.A.; Elmaleh, D.R.; Leppo, J.A.; King, M.A.; Moring, A.; Livni, E.; Espinoza, E.; Alpert, J.S.; Strauss, H.W.; Massachusetts General Hospital, Boston

    1986-01-01

    We investigated the one-way. An extraction of 14-iodophenyl-tetradecanoic acid (BMTDA) in the canine heart under fasting conditions and during infusion of glucose plus insulin in eight an esthetized greyhound dogs. Myocardial extraction measurements were made with dual tracer approach, using Tc-99m albumin as reference tracer. Prior to, and during, infusion of 10% glucose and 25 units of regular insulin, heart rate, blood pressure, plasma glucose, insulin and free fatty acid levels were measured. Myocardial blood flow was determined using Sn-113 and Ru-103 radioactive microspheres. The mean extraction fraction of BMTDA was 0.38+-SEM 0.06 at baseline and increased to 0.44+-0.06 during hyperglycemia plus insulin (P<0.025). Plasma glucose and insulin were higher during the infusion (P<0.01) while plasma free fatty acids significantly declined (P<0.01). There were no changes in hemodynamics or myocardial blood flow during the infusion. We conclude that glucose and insulin infusion result in increased first-pass extraction fraction of radioiodinated BMTDA unaccompanied by changes in coronary flow or hemodynamics, implying an insulin-mediated augmented transport of BMTDA. (orig.)

  5. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes.

    Science.gov (United States)

    Cao, Heping; Graves, Donald J; Anderson, Richard A

    2010-11-01

    Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.

  6. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)

    2002-09-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  7. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    International Nuclear Information System (INIS)

    Griffiths, M.R.; Miles, K.A.; Keith, C.J.

    2002-01-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  8. Ethanol fermentation by the thermotolerant yeast, Kluyveromyces marxianus TISTR5925, of extracted sap from old oil palm trunk

    Directory of Open Access Journals (Sweden)

    Yoshinori Murata

    2015-05-01

    Full Text Available Palm sap extracted from old oil palm trunks was previously found to contain sugar and nutrients (amino acids and vitamins. Some palm saps contain a low content of sugar due to differences in species or in plant physiology. Here we condensed palm sap with a low content of sugar using flat membrane filtration, then fermented the condensed palm sap at high temperature using the thermotolerant, high ethanol-producing yeast, Kluyveromyces marxianus. Ethanol production under non-optimum conditions was evaluated. Furthermore, the energy required to concentrate the palm sap, and the amount of energy that could be generated from the ethanol, was calculated. The condensation of sugar in sap from palm trunk required for economically viable ethanol production was evaluated.

  9. The Effects of Capparis Spinosa Hydroalcoholic Extract on Blood Glucose and Lipids Serum in Diabetic and Normal Male Rats

    Directory of Open Access Journals (Sweden)

    M Negahdarizadeh

    2011-06-01

    Full Text Available Introduction & Objective: Diabetes mellitus is one of the most common endocrine disorders in the world which affects glucose metabolism in the body. Diabetes mellitus is due to lack of insulin secretion and/or failure in insulin action. Researches conducted in the last few decades on plants have reported anti-diabetic properties for some herbs and their traditional use for diabetes treatment. Capparis spinosa is one of these herbs which are used as an anti-diabetic treatment in tribal medicine. The objective of the present study was to examine the anti-diabetic effects of Capparis spinosa on blood glucose and serum lipids in streptozotocin induced diabetes in male rats. Materials & Methods: In this experimental study conducted at Yasouj University of Medical Sciences in 2010, five groups of animals were selected. Three groups out of five were administered with intraperitoneal injection of streptozotocin to become diabetic. Group I were fed normal diet. Group II of animals received 20 mg/kg/day Capparis spinosa extract. Group III received no treatment (diabetic control and animals of groups IV and V were treated with capparis spinosa fruit extract 20 and 30 mg/kg body weight respectively for three weeks. Blood glucose, triglycerides, total cholesterol, LDL, HDL and body weight were measured in all animals. The collected data was analyzed by the SPSS software using one-way ANOVA. Results: Treatment with the 30 mg/kg/body weight of capparis spinosa fruit extract showed a significant decrease in blood glucose, triglycerides, total cholesterol and LDL, and a significant increase in HDL level. In addition, administration of 20 mg/kg/body weight of capparis spinosa extract decreased blood glucose and lipid levels in diabetic rats. Conclusion: It can be concluded that the oral administration of capparis spinosa extract at the dose of 30 mg/kg/body weight has glucose and lipids lowering activity in diabetic rats.

  10. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance.

    Directory of Open Access Journals (Sweden)

    Lisa R Hoving

    Full Text Available The indigestible mannan oligosaccharides (MOS derived from the outer cell wall of yeast Saccharomyces cerevisiae have shown potential to reduce inflammation. Since inflammation is one of the underlying mechanisms involved in the development of obesity-associated metabolic dysfunctions, we aimed to determine the effect of dietary supplementation with MOS on inflammation and metabolic homeostasis in lean and diet-induced obese mice. Male C57BL/6 mice were fed either a low fat diet (LFD or a high fat diet (HFD with, respectively, 10% or 45% energy derived from lard fat, with or without 1% MOS for 17 weeks. Body weight and composition were measured throughout the study. After 12 weeks of intervention, whole-body glucose tolerance was assessed and in week 17 immune cell composition was determined in mesenteric white adipose tissue (mWAT and liver by flow cytometry and RT-qPCR. In LFD-fed mice, MOS supplementation induced a significant increase in the abundance of macrophages and eosinophils in mWAT. A similar trend was observed in hepatic macrophages. Although HFD feeding induced a classical shift from the anti-inflammatory M2-like macrophages towards the pro-inflammatory M1-like macrophages in both mWAT and liver from control mice, MOS supplementation had no effect on this obesity-driven immune response. Finally, MOS supplementation did not improve whole-body glucose homeostasis in both lean and obese mice.Altogether, our data showed that MOS had extra-intestinal immune modulatory properties in mWAT and liver. However these effects were not substantial enough to significantly ameliorate HFD-induced glucose intolerance or inflammation.

  11. Comparison of DNA Extraction Methods in Terms of Yield, Purity, Long-Term Storage, and Downstream Manipulation with Brewer's Yeast Chromosomal DNA

    Czech Academy of Sciences Publication Activity Database

    Kopecká, J.; Matoulková, D.; Němec, M.; Jelínková, Markéta; Felsberg, Jürgen

    2014-01-01

    Roč. 72, č. 1 (2014), s. 1-5 ISSN 0361-0470 Institutional support: RVO:61388971 Keywords : Brewer's yeast * Isolation of DNA * Phenol/chloroform extraction Subject RIV: EE - Microbiology, Virology Impact factor: 0.886, year: 2014

  12. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  13. Effect of Arctium Lappa Root Extract on Glucose Levels and Insulin Resistance in Rats with High Sucrose Diet

    Directory of Open Access Journals (Sweden)

    A Ahangarpour

    2013-06-01

    Full Text Available Introduction: Diabetes Mellitus is a growing health problem in all over the world. Arctium Lappa has been used therapeutically in Europe, North America and Asia. Antioxidants and antidiabetic compounds have been found in the root of Arctium Lappa. This study intends to investigate the effects of Arctium Lappa root aqueous extract on glucose, insulin levels and Fasting Insulin Resistance Index in female rats with high sucrose diet. Methods: 40 female Wistar rats weighting 150-250(g were applied. After having a diet induced by sucrose 50% in drinking water for 5 weeks, the animals were randomly divided into two groups of control, sucrose induced, and three groups of sucrose induced along with Arctium Lappa root aqueous extract (50,100,200 mg/Kg (8 rats in each group. Treatment by extracts was used during 2 weeks (i.p. and 24 hours after the last treatment, heart blood samples were gathered. After Blood samples were centrifuged, fasting plasma glucose (12 h was determined by kit and fasting insulin concentration was assayed by Enzyme-linked immunosorbent assay (Elisa methods. Result: Glucose levels, insulin and FIRI in sucrose group significantly increased in comparison with control group. Glucose levels in aqueous extract groups; 50 mg/kg (116.14±16.64mg/dl and 200 mg/kg (90.66±22.58 mg/dl in comparison with sucrose group (140.5±18.73 mg/dl significantly decreased. Insulin level and FIRI in all of aqueous extract groups were significantly decreased (P<0.001 in comparison with sucrose group. Conclusions: Arctium Lappa root aqueous extracts in animal model has revealed significant decrease in blood glucose and insulin levels.

  14. Anti-diabetic effects of rice hull smoke extract on glucose-regulating mechanism in type 2 diabetic mice

    Science.gov (United States)

    The aim of this study is to determine the protective effect of a liquid rice hull smoke extract (RHSE) against type 2 diabetes induced by a high fat diet administered to mice. Dietary administration of 0.5% or 1% RHSE for 7 weeks results in significantly reduced blood glucose and triglyceride and to...

  15. The effects of aqueous extract of water cress on the glucose and lipid plasma in the streptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Shahrokhi, N.; Hadad, K.

    2009-01-01

    For treating diabetic patients, different nutrients are being used in some areas of Kennan province, Nasturtium offsinallis (NF) is one of them. In current research work, effects of NF on plasma lipid and glucose levels have been assessed in diabetic rats. In this study, 60 male rats were used. All rats randomly divided into six groups, consisting of one intact non-diabetic group, and remaining 5 groups were injected subcutaneousloy of 55 mg/kg of streptozotocin to make them experimentally diabetic. Three groups of diabetic animals were eaten orally (via gavage) of low (25 mg/kg), and high (75 mg/kg) doses of aqueous extract of NF in a volume of 1.5 ml for short period (4 weeks)and long period (8-weeks) respectively. One group of diabetic animals was given 2-4U of NPH insulin intraperitoneally (IP). The last remaining group of five diabetics was given nothing at the end of each Experiment in all groups' blood glucose and lipid levels were measured. There was significant reduction of plasma glucose in treatment groups compared to diabetic group. The greatest decrease(9 6%) was observed by the high dose long term group for NF extract) that was significantly greater than the insulin group (49%) (p<0.001). There wasn't any change in diabetic animals' total cholesterol, and triglyceride levels of plasma. Both low and high doses of extracts increased LDL-cholesterol levels in diabetic animals (p<0.00 I). In diabetic animals, plasma H DL- cholesterol levels (33+-2.2) decreased by long term dose of extract. Both doses decreased plasma glucose in diabetic animal, whereas, it have not effect on plasma lipids or have negative effect, there fore this research suggested that NF extract is useful for control of blood glucose. (author)

  16. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong

    2017-01-01

    BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment. PMID:28584574

  17. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.

    Science.gov (United States)

    Ye, Tian; Elbing, Karin; Hohmann, Stefan

    2008-09-01

    It recently became apparent that the highly conserved Snf1p protein kinase plays roles in controlling different cellular processes in the yeast Saccharomyces cerevisiae, in addition to its well-known function in glucose repression/derepression. We have previously reported that Snf1p together with Gis4p controls ion homeostasis by regulating expression of ENA1, which encodes the Ena1p Na(+) extrusion system. In this study we found that Snf1p is rapidly phosphorylated when cells are exposed to NaCl and this phosphorylation is required for the role of Snf1p in Na(+) tolerance. In contrast to activation by low glucose levels, the salt-induced phosphorylation of Snf1p promoted neither phosphorylation nor nuclear export of the Mig1p repressor. The mechanism that prevents Mig1p phosphorylation by active Snf1p under salt stress does not involve either hexokinase PII or the Gis4p regulator. Instead, Snf1p may mediate upregulation of ENA1 expression via the repressor Nrg1p. Activation of Snf1p in response to glucose depletion requires any of the three upstream protein kinases Sak1p, Tos3p and Elm1p, with Sak1p playing the most prominent role. The same upstream kinases were required for salt-induced Snf1p phosphorylation, and also under these conditions Sak1p played the most prominent role. Unexpectedly, however, it appears that Elm1p plays a dual role in acquisition of salt tolerance by activating Snf1p and in a presently unknown parallel pathway. Together, these results indicate that under salt stress Snf1p takes part in a different pathway from that during glucose depletion and this role is performed together as well as in parallel with its upstream kinase Elm1p. Snf1p appears to be part of a wider functional network than previously anticipated and the full complexity of this network remains to be elucidated.

  18. Antitumor and radiation protection effects of β-1,3-D-glucan extracted from yeast (saccharomyces cerevisiae)

    International Nuclear Information System (INIS)

    Yoshimura, Akinobu; Hasegawa, Takeo; Monzen, Hajime; Takahashi, Tohru

    2003-01-01

    Various natural extracts are manufactured and on sale as health food products, which are raising popular consciousness of being fit, because they are considered effective or suppressible for cancer. In the current experiment, we measured the immunological activity, antitumor effects, and radioprotective effects of β-1,3-D-glucan (Macroglucan) extracted from bread yeast. Macroglucan of 0, 200, 400, and 800 mg/kg were administered intraperitoneally to C3H/HeJ mice, respectively. The antitumor effects of Macroglucan were examined by measuring natural killer (NK) and lymphokine activated killer (LAK) cell activity and tumor volume. Change in weight, survival, and microscopic manifestation of the intestine were evaluated in the C3H/HeJ mice received total body irradiation to measure radioprotective effect of Macroglucan. According to measurements of cellular cytotoxicity, levels of NK and LAK cell activity were significantly higher in the group administered Macroglucan than in the control group. Macroglucan's role in immunological activity was suggested by the observed suppression of tumor growth in the Macroglucan-administered group. That group also experienced suppression of weight loss after irradiation in the experiment for radioprotection, and a consequent increase in the survival rate compared with the control group. Protective effects appeared in photomicrographs of the intestinal cells. These results confirmed Macroglucan's radioprotective effects. These effects may be related to the suppression of infection accompanying immunological activation due to Macroglucan administration, antioxidant activity, and radical scavenging capacity. (author)

  19. The Aqueous Extract of Gynura divaricata (L. DC. Improves Glucose and Lipid Metabolism and Ameliorates Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jinnan Li

    2018-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia and dyslipidemia caused by impaired insulin secretion and resistance of the peripheral tissues. A major pathogenesis of T2DM is obesity-associated insulin resistance. Gynura divaricata (L. DC. (GD is a natural plant and has been reported to have numerous health-promoting effects on both animals and humans. In this study, we aimed to elucidate the regulatory mechanism of GD improving glucose and lipid metabolism in an obesity animal model induced by high-fat and high-sugar diet in combination with low dose of streptozocin and an insulin-resistant HepG2 cell model induced by dexamethasone. The study showed that the water extract of GD (GD extract A could significantly reduce fasting serum glucose, reverse dyslipidemia and pancreatic damage, and regulate the body weight of mice. We also found that GD extract A had low toxicity in vivo and in vitro. Furthermore, GD extract A may increase glucose consumption in insulin-resistant HepG2 cells, markedly inhibit NF-κB activation, and decrease the impairment in signaling molecules of insulin pathway, such as IRS-1, AKT, and GLUT1. Overall, the results indicate that GD extract A is a promising candidate for the prevention and treatment of T2DM.

  20. Morphological identification of Candida species on glucose agar, rice extract agar and corn meal agar with and without Tween-80.

    Science.gov (United States)

    Joshi, K R; Solanki, A; Prakash, P

    1993-01-01

    A comparative study for the identification of 32 known strains of Candida species on the basis of morphology on glucose agar, rice extract agar and corn meal agar with and without Tween 80 revealed that when Tween 80 is incorporated in the media identification is possible for 96.8% of the species within 48 hours on rice extract agar and for 96.8% of the species within 48 hours on rice extract agar and for 90.6% of the species on glucose agar. The germ tubes and chlamydospores were also produced more on rice extract agar than on 0.1% glucose agar. Rice extract agar with Tween 80 can be used as single medium for morphologic identification of Candida species. The inoculated medium is first incubated at 37 degrees C for 3 hours and examined for germ tube formation and then incubated at 25 degrees C for 24 to 72 hours and examined for appearance of chlamydospores and mycelial morphology.

  1. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    Science.gov (United States)

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  2. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes.

    Science.gov (United States)

    Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen

    2017-12-01

    Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Automated Extraction of Genomic DNA from Medically Important Yeast Species and Filamentous Fungi by Using the MagNA Pure LC System

    OpenAIRE

    Loeffler, Juergen; Schmidt, Kathrin; Hebart, Holger; Schumacher, Ulrike; Einsele, Hermann

    2002-01-01

    A fully automated assay was established for the extraction of DNA from clinically important fungi by using the MagNA Pure LC instrument. The test was evaluated by DNA isolation from 23 species of yeast and filamentous fungi and by extractions (n = 28) of serially diluted Aspergillus fumigatus conidia (105 to 0 CFU/ml). Additionally, DNA from 67 clinical specimens was extracted and compared to the manual protocol. The detection limit of the MagNA Pure LC assay of 10 CFU corresponded to the sen...

  4. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1984-01-01

    Cell-free extracts from wild-type yeast (RAD + ) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD 37 (about 10 4 PD per haploid genome). (Auth.)

  5. The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.

    Directory of Open Access Journals (Sweden)

    Tobias Wilms

    2017-06-01

    Full Text Available The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.

  6. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast.

    Science.gov (United States)

    Lin, Kang-Wei; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2016-01-01

    In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF.

  7. Improvement of growth, fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract.

    Science.gov (United States)

    Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus

    2010-01-30

    The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.

  8. Prunus mume leaf extract lowers blood glucose level in diabetic mice.

    Science.gov (United States)

    Lee, Min Woo; Kwon, Jung Eun; Lee, Young-Jong; Jeong, Yong Joon; Kim, Inhye; Cho, Young Mi; Kim, Yong-Min; Kang, Se Chan

    2016-10-01

    Context Diabetes is a common metabolic disease with long-term complications. Prunus mume Sieb. et Zucc. (Rosaceae) fruits have shown to ameliorate glucose intolerance. However, the antidiabetic effects of P. mume leaves have not been investigated. Objective This study evaluated the effects of P. mume leaf 70% ethanol extract (PMLE) on alleviating diabetes in vivo and in vitro. Materials and methods PMLE was fractionated into n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water. Polyphenol and flavonoid contents in PMLE fractions were determined using Folin-Ciocalteu reagent and the aluminium chloride colorimetric method, respectively. We evaluated α-glucosidase inhibition using a microplate reader at 400 nm. Adipocyte differentiation by lipid accumulation was measured using Nile Red staining. Male imprinting control region (ICR) mice were injected with streptozotocin (STZ, 100 mg/kg, i.p.). High-fat diets were provided for three weeks prior to PMLE treatments to induce type 2 diabetes. PMLE (0, 5, 25 or 50 mg/kg) was administrated for four weeks with high-fat diets. Results The EtOAc fraction of PMLE inhibited α-glucosidase activity (IC50 = 68.2 μg/mL) and contained 883.5 ± 14.9 mg/g of polyphenols and 820.1 ± 7.7 mg/g of flavonoids. The 50 mg/kg PMLE supplement reduced 40% of blood glucose level compared to obese/diabetes mice. Obese/diabetic mice treated with 50 mg/kg PMLE showed a lower level of triacylglycerol (320.7 ± 20.73 mg/dL) compared to obese/diabetes mice (494.9 ± 14.80 mg/dL). Conclusion The data demonstrate that P. mume leaves exert antidiabetic effects that may be attributable to high concentrations of polyphenols and flavonoids.

  9. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice

    Directory of Open Access Journals (Sweden)

    Ortsäter Henrik

    2012-02-01

    Full Text Available Abstract Background Green tea was suggested as a therapeutic agent for the treatment of diabetes more than 70 years ago, but the mechanisms behind its antidiabetic effect remains elusive. In this work, we address this issue by feeding a green tea extract (TEAVIGO™ with a high content of epigallocatechin gallate (EGCG or the thiazolidinedione PPAR-γ agonist rosiglitazone, as positive control, to db/db mice, an animal model for diabetes. Methods Young (7 week-old db/db mice were randomized and assigned to receive diets supplemented with or without EGCG or rosiglitazone for 10 weeks. Fasting blood glucose, body weight and food intake was measured along the treatment. Glucose and insulin levels were determined during an oral glucose tolerance test after 10 weeks of treatment. Pancreata were sampled at the end of the study for blinded histomorphometric analysis. Islets were isolated and their mRNA expression analyzed by quantitative RT-PCR. Results The results show that, in db/db mice, EGCG improves glucose tolerance and increases glucose-stimulated insulin secretion. EGCG supplementation reduces the number of pathologically changed islets of Langerhans, increases the number and the size of islets, and heightens pancreatic endocrine area. These effects occurred in parallel with a reduction in islet endoplasmic reticulum stress markers, possibly linked to the antioxidative capacity of EGCG. Conclusions This study shows that the green tea extract EGCG markedly preserves islet structure and enhances glucose tolerance in genetically diabetic mice. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes.

  10. Optimization of Baker's Yeast Production on Date Extract Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-08-07

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R² = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model ( R² = 0.981). The values of kinetic parameters ( Ks , X m , μ m , p and q ) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (-9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data.

  11. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  12. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  13. Optimization of Baker’s Yeast Production on Date Extract Using Response Surface Methodology (RSM)

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-01-01

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R2 = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R2 = 0.981). The values of kinetic parameters (Ks, Xm, μm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (−9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data. PMID:28783118

  14. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  15. Modulation of adipogenesis and glucose uptake by Curcuma longa extract in 3T3L1 and L6 cell lines - An in vitro study

    Directory of Open Access Journals (Sweden)

    A. Prathapan

    2012-05-01

    Full Text Available Objective: To evaluate the effects of ethyl acetate extract of Curcuma longa against modulation of glucose uptake and adipogenesis in cell line models. Methods: We used 3T3L1 and L6 cells to investigate cytotoxicity, glucose uptake with 2-NBDG as probe and adipogenesis. All the analysis was done with flowcytometry. Results: The results showed that the extract did not possess any significant glucose uptake activity but it exhibited significant adipocyte differentiation potential. Conclusions: Ethyl acetate extract of Curcuma longa exhibits significant antiadipogenesis and can be used as an effective drug for the treatment of obesity and other associated complications.

  16. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed E.; Yakout, Amr A.; Osman, Maher M.

    2009-01-01

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g -1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  17. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    Science.gov (United States)

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Effect of a combination of Phaseolus vulgaris L. extract and acarbose on postprandial glucose level after cooked rice intake in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Robby Zulkarnain

    2009-03-01

    Full Text Available Aim This study was aimed to measure the effects of combination Phaseolus vulgaris extract and acarbose compared to acarbose alone on postprandial glucose concentration in healthy volunteers after cooked rice intake.Methods Blood sample were obtained at several time points up to three hours after cooked rice intake. The parameter for postprandial glucose concentration is the area under the curve (AUC of glucose concentration vs.time for three hours after cooked rice intake.Results After taking this combination, postprandial glucose concentration was reduced by 21.6%, while the reduction by acarbose alone was 22.9%.Conclusions The reduction of postprandial glucose concentration after administration of this combination was not significantly different compared to that after administration of acarbose alone. (Med J Indones 2009; 18: 25-30Keywords: Phaseolus vulgaris extract, acarbose, postprandial glucose concentration

  19. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  20. Effect of Extracts of Khat ( Catha edulis F.) on Glucose Handling in ...

    African Journals Online (AJOL)

    Blood was then taken from the tail vein at 0, 1, 2, 3 and 4 h to determine blood glucose level using commercial one touch glucometer. The flavonoid fraction at 200 and 400 mg/kg (p < 0.001) as well as the alkaloid fraction (p < 0.05) and glibenclamide (p < 0.05) produced a significant reduction in blood glucose level in ...

  1. Beneficial Effect of Brewers' Yeast Extract on Daily Activity in a Murine Model of Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Takashi Takahashi

    2006-01-01

    Full Text Available The aim of this study was to assess the effect of Brewers' yeast extract (BYE on daily activity in a mouse model of chronic fatigue syndrome (CFS. CFS was induced by repeated injection of Brucella abortus (BA antigen every 2 weeks. BYE was orally administered to mice in a dose of 2 g per kg per day for 2 weeks before injecting BA and for 4 weeks thereafter. We evaluated daily running activity in mice receiving BYE as compared with that in untreated mice. Weekly variation of body weight (BW and survival in both groups was monitored during the observation period. Spleen weight (SW, SW/BW ratio, percent splenic follicular area and expression levels of interferon-γ (IFN-γ and interleukin-10 (IL-10 mRNA in spleen were determined in both groups at the time of sacrifice. The daily activity during 2 weeks after the second BA injection was significantly higher in the treated group than in the control. There was no difference in BW between both groups through the experimental course. Two mice in the control died 2 and 7 days after the second injection, whereas no mice in the treated group died. Significantly decreased SW and SW/BW ratio were observed in the treated mice together with elevation of splenic follicular area. There were suppressed IFN-γ and IL-10 mRNA levels in spleens from the treated mice. Our results suggest that BYE might have a protective effect on the marked reduction in activity following repeated BA injection via normalization of host immune responses.

  2. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Ji-Young Yoon

    2017-04-01

    Full Text Available Phloroglucinol is a phenolic compound that is one of the major compounds in Ecklonia cava (brown alga. It has many pharmacological activities, but its anti-diabetic effect is not yet fully explored. In this study, we investigated the effect of phloroglucinol on the control of blood glucose levels and the regulation of hepatic glucose production. Phloroglucinol significantly improved glucose tolerance in male C57BL/6J mice fed a high fat diet (HFD and inhibited glucose production in mouse primary hepatocytes. The expression of phosphoenol pyruvate carboxykinase (PEPCK and glucose-6-phosphatase mRNA and protein (G6Pase, enzymes involved in gluconeogenesis, were inhibited in liver tissue from phloroglucinol-treated mice and in phloroglucinol-treated HepG2 cells. In addition, phloroglucinol treatment increased phosphorylated AMP-activated protein kinase (AMPKα in HepG2 cells. Treatment with compound C, an AMPKα inhibitor, inhibited the increase of phosphorylated AMPKα and the decrease of PEPCK and G6Pase expression caused by phloroglucinol treatment. We conclude that phloroglucinol may inhibit hepatic gluconeogenesis via modulating the AMPKα signaling pathway, and thus lower blood glucose levels.

  3. Effect of lawsonia innermis (linn) leaves ethanolic extract on blood glucose and malondialdehyde level in alloxan-induced diabetic rats

    Science.gov (United States)

    Indah Sari, Mutiara; Ilyas, Syafruddin; Widyawati, Tri; Anjelir Antika, Maya

    2018-03-01

    The case of diabetes mellitus (DM) tends to increase worldwide. DM triggers the oxidative stress condition that caused by the increasing of free radical. The present study was conducted to evaluate the effect of giving ethanolic extract of Lawsonia inermis (Linn) leaves to the glucose and malondialdehyde (MDA) level in alloxan-induced diabetic Wistar male rats. The powder of dry leaves of L.inermis was macerated in ethanol 96% to obtain ethanolic extract (LLEE).Thirty five of rats were divided into five groups, ie. K (normal and given 0.9% NaCl solution ), P1-P4 were induced using alloxan (120 mg/kg) intraperitoneally to get diabetic condition. Diabetic rats then were treated as follows: P1 (given 0.9% NaCl solution) P2 (LLEE (200 mg/kg BW), P3 (LLEE (400 mg/kg BW)), P4 ( LLEE (600 mg/kg BW)). All groups were treated for 28 days. The fasting blood glucose levels were measured at day 1, 7, 14, 21, 28 whereas MDA levels were measured at the end of treatment. The result showed that LLEE improved blood glucose level (BGLs) of alloxan-induced diabetic rats significantly (p 0.5). The study concluded that LLEE have antihyperglycemic properties.

  4. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    Science.gov (United States)

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  5. Effect of aqueous extracts of alligator pear seed (Persea americana mill) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats.

    Science.gov (United States)

    Edem, Do; Ekanem, Is; Ebong, Pe

    2009-07-01

    Effects of aqueous extract of alligator pear seed on normal and alloxan-induced diabetic rats were investigated in 6 groups of rats (5 rats per group). Test groups were made diabetic with intra-peritoneal injection of alloxan and treated with 300 mg and 600 mg/kg body weight of alligator pear seed extract. Two non-diabetic groups were also administered with 300 mg and 600 mg/kg body weight extract. The levels of blood glucose were examined in all 6 experimental groups. In diabetic rats, blood glucose levels were significantly reduced (pblood glucose levels were significantly reduced (palligator pear seed may contribute significantly to the reduction of blood glucose levels and can be useful in the treatment of diabetes.

  6. THE EFFECTIVENES OF ETANOL EXTRACT, PARTITION N-HEKSANA, AND CROMATHOGRAPHY FRACTION OF MOMORDICA CHARANTIA L. TO LOWER BLOOD GLUCOSE LEVEL

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Kusuma Clara Dewinda

    2017-08-01

    Full Text Available This study aims to determine the effectiveness of the ethanol extract, partition n-hexane, and chromatography fractions Momordica charantia L. in lowering blood glucose levels in experimental diabetic male rats.  This study used 25 male rats were divided into five treatment groups P0 (negative control, P1 (positive control, P2 (ethanol extract, P3 (partition n-hexane, and P4 (chromatographic fraction the variable observed glucose levels blood for 21 days. Blood glucose levels were analyzed on days -1, 0, 4, 11, 18. The bill, which is used in the form of a completely randomized design (CRD. The data obtained and analyzed by using Split in Time. The results showed of giving chromatographic fractions bitter melon 50 mg / kg body weight can reduce blood glucose levels in hyperglycemic rats better than the ethanol extract 200 mg / kg body weight and partition n-hexane 50 mg / kg body weight.

  7. A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes.

    Science.gov (United States)

    Sakaguchi, Kazuhiko; Hirota, Yushi; Hashimoto, Naoko; Ogawa, Wataru; Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Maekawa, Yasunori; Nakajima, Hiromu

    2012-06-01

    Recent studies have highlighted the importance of managing postprandial hyperglycemia, but adequate monitoring of postprandial glucose remains difficult because of wide variations in levels. We have therefore developed a minimally invasive system to monitor postprandial glucose area under the curve (AUC). This system involves no blood sampling and uses interstitial fluid glucose (IG) AUC (IG-AUC) as a surrogate marker of postprandial glucose. This study aimed to evaluate the usefulness of this system by comparing data with the findings of oral glucose tolerance tests (OGTTs) in subjects with and without diabetes. The glucose AUC monitoring system was validated by OGTTs in 37 subjects with and 10 subjects without diabetes. A plastic microneedle array was stamped on the forearm to extract IG. A hydrogel patch was then placed on the pretreated area to accumulate IG. Glucose and sodium ion concentrations in the hydrogel were measured to calculate IG-AUC at 2-h postload glucose. Plasma glucose (PG) levels were measured every 30 min to calculate reference PG-AUC. IG-AUC correlated strongly with reference PG-AUC (r=0.93) over a wide range. The level of correlation between IG-AUC and maximum PG level was also high (r=0.86). The painless nature of the technique was confirmed by the response of patients to questionnaires. The glucose AUC monitoring system using IG provided good estimates of reference PG-AUC and maximum PG level during OGTTs in subjects with and without diabetes. This system provides easy-to-use monitoring of glucose AUC, which is a good indicator of postprandial glucose.

  8. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Direct measurement of glucose profiles in immobilized yeast gels with a pH-insensitive micro-electrode under anaerobic conditions

    NARCIS (Netherlands)

    Cronenberg, C.C.H.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    A 10 µm glucose sensor was developed based on a glucose oxidase coated Pt-electrode inserted in a capillary shaft. The internal buffer medium effected in a glucose response that was insensitive for the external pH. The sensor was successfully utilized at pH 4 under anaerobic conditions in gel

  10. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  11. Effect of repeated administration of cinnamon aqueous extract on body weight, glucose levels and lipid profile on over weight rats

    International Nuclear Information System (INIS)

    Bano, F.; Akhtar, N.

    2012-01-01

    Plants are the source of both traditional and medicinal plant for curing and treatment of diseases in recent year. Plant extracts containing several active constituents which often work together synergistically. The study was designed to investigate the effect CNAE on lipid profile and glucose level in overweight albino wistar rats. Animal were divided into two group 1 receive CNAE and 2 receive equal volume of tap water. Extract were given daily once a day at the dose of 2ml/animal. After the 17 % of reduction of weight treatment were terminated and blood sample were collected for biochemical estimation. The result show significant decrease in body weight total Cholesterol, Triglycerides, Low density lipoprotein cholesterol and significant increase in high y density lipoprotein while non-significant effect were observed in electrolyte levels. The data of present research demonstrated that CNAE not only possess hypoglycemic and hypolipidemic properties as well as it could be used for reduction body weight. (author)

  12. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  13. Trichosanthes cucumerina extracts enhance glucose uptake and regulate adiponectin and leptin concentrations in 3T3-L1 adipocytes model

    Directory of Open Access Journals (Sweden)

    Sassi, A.,

    2017-10-01

    Full Text Available Trichosanthes cucumerina (Cucurbitaceae commonly known as Snake gourd or Labu Ular is considered the largest genre in the Cucurbitaceae family and is mainly found in the southeast areas of Asia. It has been used in Ayurvedic medicine as a treatment for certain diseases such as Diabetes mellitus, but these acclaims lack scientific-based evidence. In this study, water and ethanol extracts of three parts of Trichosanthes cucumerina namely; whole vegetable, peels, and seeds, were assessed for toxicity through a cell viability assay using 3T3-L1 pre-adipocytes model which revealed a maximum toleration concentration of 0.063 mg/mL. The extracts were further tested on adipocytes’ differentiation and positively showed a stimulation of lipid droplets formation during adipogenesis and significantly (p<0.001 increased glycerol release levels (75.34±3.69 μg/ml during adipolysis. The extracts also significantly (p<0.001 promoted the uptake of glucose into the cells (2636.22±91.33 Bq in an action similar to that of insulin. Similar results were observed during ELISA assay with a significant increase (p<0.001 in adiponectin concentrations (3593.1±225.25 ng/mL and a decrease in leptin concentrations (23870±5066.07 pg/mL. The present study results indicate a beneficial effect of Trichosanthes cucumerina extracts on adipogenesis, adipolysis and glucose uptake, in addition to a regulation of adiponectin and leptin concentrations in 3T3-L1 adipocytes which can be of clinical importance in energy regulation which is a key factor in treating diabetes, obesity, and metabolic syndrome.

  14. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy

    DEFF Research Database (Denmark)

    Østergaard, Leif; Finnerup, Nanna B.; Terkelsen, Astrid J.

    2015-01-01

    Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the dev...... inflammation and glucose clearance from blood. We discuss the implications of these predictions in relation to the prevention and management of diabetic complications in type 1 and type 2 diabetes, and suggest ways of testing these hypotheses in experimental and clinical settings....

  15. Chiral speciation and determination of selenomethionine enantiomers in selenized yeast by ligand-exchange micellar electrokinetic capillary chromatography after solid phase extraction.

    Science.gov (United States)

    Duan, Jiankun; He, Man; Hu, Bin

    2012-12-14

    A new phenylalanine derivative (L-N-(2-hydroxy-propyl)-phenylalanine, L-HP-Phe) was synthesized and its chelate with Cu(II) (Cu(II)-(L-HP-Phe)(2)) was used as the chiral selector for the ligand-exchange (LE) chiral separation of D,L-selenomethionine (SeMet) in selenized yeast samples by micelle electrokinetic capillary chromatography (MEKC). In order to improve the sensitivity of MEKC-UV, two-step preconcentration strategy was employed, off-line solid phase extraction (SPE) and on-line large volume sample stacking (LVSS). D,L-SeMet was first retained on the Cu(II) loaded mesoporous TiO(2), then eluted by 0.1 mL of 5 mol L(-1) ammonia, and finally introduced for MEKC-UV analysis by LVSS injection after evaporation of NH(3). With the enrichment factors of 1400 and 1378, the LODs of 0.44 and 0.60 ng mL(-1) for L-SeMet and D-SeMet was obtained, respectively. The developed method was applied to the analysis of D,L-SeMet in a certified reference material of SELM-1 and a commercial nutrition yeast, and the results showed that most of SeMet in the SELM-1 selenized yeast was l isomer and the recovery for L and D isomers in the spiked commercial nutrition yeast was 96.3% and 103%, respectively. This method is featured with low running cost, high sensitivity and selectivity, and exhibits application potential in chiral analysis of seleno amino acids in real world samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  17. Antifungal activity of the extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, against yeasts of the genus Candida isolated from the oral cavity of patients infected with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Cristiane S. Shinobu-Mesquita

    2011-02-01

    Full Text Available Oropharyngeal candidiasis is the most common fungal infection among patients infected with the human immunodeficiency virus (HIV, and is treated empirically with topical or systemic antifungals. The objective of the present study was to investigate the possible antifungal action of the hydroalcoholic extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, on yeasts in this population. Samples were collected from HIV-positive patients who attended the Laboratory for Teaching and Research in Clinical Analysis at the Universidade Estadual de Maringá for routine exams. The isolated yeasts were identified at the genus and species levels through classical methodology. Next, tests of microdilution in broth were carried out to determine the profile of susceptibility of these yeasts towards the hydroalcoholic extract of C. zedoaria, following methodology standardised by the CLSI (2002. A total of 53 yeasts were identified, 49 of them C. albicans, two C. tropicalis and two C. glabrata. These yeasts were inhibited by low concentrations of the extract of C. zedoaria (between 1.95 and 15.63 μg/mL. In addition, 7.82 μg/mL inhibited 90% of the yeasts. Our results indicate a potent antifungal action for C. zedoaria and suggest more detailed studies with a view towards the practical application of this phytomedicine in topical pharmaceutical forms for the treatment of oral candidosis or candidiasis.

  18. THE EFFECT OF PARSLEY LEAVES AND SEED EXTRACTS ON BLOOD GLUCOSE LEVELS IN RABBITS

    OpenAIRE

    Ö.ÖZSOY, R. YANARDAĞ

    2015-01-01

    Parsley (petroselinum crispum) is one of the plants used in Turkey and World folkmedicine for the treatment of diabetes mellitus. In this study, oral administration of parsley leaves and seed aqueous extracts (2g/kg) and methanolic extracts (200mgkg and 400mg/kg), to normal rabbits produced significant hypoglycemic activity, which was consistent and time-dependent.Key words: Parsley, Petroselinum crispum, Diabetes mellitus, Antidiabeticeffect.

  19. Effect of chicory seed extract on glucose tolerance test (GTT and metabolic profile in early and late stage diabetic rats

    Directory of Open Access Journals (Sweden)

    Ali Ahadi

    2012-10-01

    Full Text Available Background and purpose of the study The goal was to evaluate and compare the effects of aqueous extract of the seeds of chicory, Cichorium intybus L., on glucose tolerance test (GTT and blood biochemical indices of experimentally-induced hyperglycemic rats.MethodsLate stage and early stage of Type 2 diabetes mellitus (T2DM were induced in rats by streptozotocin (STZ and a combination of STZ and niacinamide (NIA/STZ, respectively. Within each group, one subgroup received daily i. p. injections of chicory extract (125 mg/kg body weight, for 28 days. Body weight and fasting blood sugar (FBS were measured weekly. Blood was analyzed for glycosylated hemoglobin (HbA1c and sera for alanine aminotransferase (ALT, aspartate aminotransferase (AST, nitric oxide (NO, triacylglycerol (TG, total cholesterol (TC, total protein, and insulin on days 10 and 28 after treatment. Intraperitoneal glucose tolerance test (IPGTT along with insulin determination was performed on a different set of rats in which the chicory-treated groups received the extract for 10 days.ResultsDuring 4 weeks of treatment, chicory prevented body-weight loss and decreased FBS. ALT activities and levels of TG, TC and HbA1c decreased, and concentration of NO increased in the chicory treated groups (p < 0.05. Unlike late-stage diabetes, fasting serum insulin concentrations were higher and GTT pattern approximated to normal in chicory-treated earlystage diabetic rats.ConclusionsChicory appeared to have short-term (about 2 hours, as far as GTT is concerned and longterm (28 days, in this study effects on diabetes. Chicory may be useful as a natural dietary supplement for slowing down the pace of diabetes progress, and delaying the development of its complications.

  20. Effect of chicory seed extract on glucose tolerance test (GTT and metabolic profile in early and late stage diabetic rats

    Directory of Open Access Journals (Sweden)

    Ghamarian Abdolreza

    2012-10-01

    Full Text Available Abstract Background and purpose of the study The goal was to evaluate and compare the effects of aqueous extract of the seeds of chicory, Cichorium intybus L., on glucose tolerance test (GTT and blood biochemical indices of experimentally-induced hyperglycemic rats. Methods Late stage and early stage of Type 2 diabetes mellitus (T2DM were induced in rats by streptozotocin (STZ and a combination of STZ and niacinamide (NIA/STZ, respectively. Within each group, one subgroup received daily i. p. injections of chicory extract (125 mg/kg body weight, for 28 days. Body weight and fasting blood sugar (FBS were measured weekly. Blood was analyzed for glycosylated hemoglobin (HbA1c and sera for alanine aminotransferase (ALT, aspartate aminotransferase (AST, nitric oxide (NO, triacylglycerol (TG, total cholesterol (TC, total protein, and insulin on days 10 and 28 after treatment. Intraperitoneal glucose tolerance test (IPGTT along with insulin determination was performed on a different set of rats in which the chicory-treated groups received the extract for 10 days. Results During 4 weeks of treatment, chicory prevented body-weight loss and decreased FBS. ALT activities and levels of TG, TC and HbA1c decreased, and concentration of NO increased in the chicory treated groups (p Conclusions Chicory appeared to have short-term (about 2 hours, as far as GTT is concerned and long-term (28 days, in this study effects on diabetes. Chicory may be useful as a natural dietary supplement for slowing down the pace of diabetes progress, and delaying the development of its complications.

  1. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death.

    Science.gov (United States)

    Mousavi, S H; Tayarani-Najaran, Z; Asghari, M; Sadeghnia, H R

    2010-05-01

    The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 microg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62-250 microg/ml) and TQ (1.17-150 microM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62-250 microg/ml) and TQ (1.17-37.5 microM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 microg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 microM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.

  2. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    Science.gov (United States)

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  3. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  4. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  5. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...n synthase, similar to Gsy1p; expression induced by glucose limitation, nitrogen ...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio...ogen synthase, similar to Gsy1p; expression induced by glucose limitation, nitrogen starvation, heat shock,

  6. Automated extraction of genomic DNA from medically important yeast species and filamentous fungi by using the MagNA Pure LC system.

    Science.gov (United States)

    Loeffler, Juergen; Schmidt, Kathrin; Hebart, Holger; Schumacher, Ulrike; Einsele, Hermann

    2002-06-01

    A fully automated assay was established for the extraction of DNA from clinically important fungi by using the MagNA Pure LC instrument. The test was evaluated by DNA isolation from 23 species of yeast and filamentous fungi and by extractions (n = 28) of serially diluted Aspergillus fumigatus conidia (10(5) to 0 CFU/ml). Additionally, DNA from 67 clinical specimens was extracted and compared to the manual protocol. The detection limit of the MagNA Pure LC assay of 10 CFU corresponded to the sensitivity when DNA was extracted manually; in 9 of 28 runs, we could achieve a higher sensitivity of 1 CFU/ml blood, which was found to be significant (p DNA from all fungal species analyzed could be extracted and amplified by real-time PCR. Negative controls from all MagNA Pure isolations remained negative. Sixty-three clinical samples showed identical results by both methods, whereas in 4 of 67 samples, discordant results were obtained. Thus, the MagNA Pure LC technique offers a fast protocol for automated DNA isolation from numerous fungi, revealing high sensitivity and purity.

  7. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.

    2008-01-01

    The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging but viable systems-level approach for studying cellular function. This study presents a large-scale comparative analysis of protein abundances from yeast protein lysates derived from both wild......-type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  8. The Effect of Methanolic Extract of Otostegia persica on Serum Glucose Level and Renal Function Indicators in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahdiye Hedayati

    2012-05-01

    Full Text Available Background: Regarding the antioxidant property of Otostegia persica extract and the role of antioxidants in Diabetes mellitus treatment, in this study the effect of extract on serum glucose level and renal function indicators was determined in diabetic male rats. Materials and Methods: Diabetes mellitus (type I was inducted in male rats using intraperitoneal injection of streptozotocin (STZ (65 mg/kg. To determine blood glucose, urea, and creatinine serum levels; fasting blood samples were collected twice (before STZ injection and 5 days later. The rats with their serum glucose level exceeding 250 mg/dl were considered diabetic and divided into 10 groups separately received Otostegia persica alcoholic extract (100, 200, and 300 mg/kg/day doses, glibenclamide with 600 µg/kg dose and 0.5 ml distilled water for 3 and 6 days using gavage. After 3 and 6 days, blood samples were collected again and glucose, urea, and creatinine serum levels were assessed using spectrophotometry technique by respective kits.Results: Treating diabetic rats by Otostegia persica extract (100, 200, and 300 mg/kg/day doses for 6 days results in a significant decrease of glucose and creatinine, yet an increase of serum urea with 200 mg/kg dose. Also, administration of the extract for 3 days (300 mg/kg reduced glucose, and (in various doses urea and creatinine serum levels. Conclusion: Otostegia persica extract has hypoglycemic effect and administering it in diabetes mellitus not only had no undesirable renal side effects, but also improved renal function to some extent.

  9. Experimental study on effect of hydroalcoholic extract of Emblica officinalis fruits on glucose homeostasis and metabolic parameters

    Science.gov (United States)

    Patel, Snehal S.; Goyal, Ramesh K.; Shah, Rajendra S.; Tirgar, Pravin R.; Jadav, Pinakin D.

    2013-01-01

    Polyphenols from natural source are potential therapeutics that act alone or supplement anti-diabetic drugs in the prevention and treatment of diabetes. The present investigation was undertaken to study the effect of hydroalcoholic extract (HE) of fruits of Emblica officinalis on type 1 diabetic rats. Diabetes was induced by streptozotocin (STZ) (45 mg/kg i.v.). HE (100 mg/kg, p.o.) was administered for 4 weeks and at the end of treatment, blood samples were collected and analyzed for various biochemical parameters. STZ produced a diabetic state exhibiting all the cardinal symptoms such as loss of body weight, polydipsia, polyuria, glucosuria, polyphagia, hypoinsulinemia, and hyperglycemia associated with hypercholesterolemia and hypertriglyceridemia. Treatment with HE prevented cardinal symptoms and caused significant decrease in fasting serum glucose, AUCglucose, cholesterol, triglyceride, low-density lipoprotein (LDL) and very LDL in diabetic rats. However, insulin, AUCinsulin, and serum high-density lipoprotein level were not significantly altered by treatment. Treatment also reduced lipid peroxidation and increased anti-oxidant parameters in the liver homogenates of diabetic rats. Polyphenol enriched fraction of HE significantly improved disarranged carbohydrate and lipid metabolism of chemically induced diabetes in rats. The mechanism of its anti-diabetic activity appears to be either improvement in peripheral glucose utilization, increased insulin sensitivity, or anti-oxidant property. PMID:24696584

  10. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  11. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  12. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].

    Science.gov (United States)

    Zhang, Meng-xiang; Xia, Dan; Shi, Gao-xiang; Shao, Jing; Wang, Tian-ming; Tang, Chuan-chao; Wang, Chang-zhong

    2015-02-01

    To investigate the effects of butyl alcohol extract of Baitouweng decoction ( BAEB) on yeast-to-hyphae transition of Candida albicans isolates from vulvovaginal candidiasis (VVC) in alkaline pH. Serial 2-fold dilution assay was used to determine the minimal inhibitory concentrations (MICs) of Baitouweng decoction extracts against C. albicans isolates from VVC, XTT assay was applied to determine the metabolic activity of C. albicans hypha treated by BAEB for 6 h. The morphological change of C. albicans treated by BAEB was inspected at different pH by inverted microscope, fluorescence microscope, scanning electron microscopy (SEM). Solid agar plate and semi-solid agar were utilized to evaluate colony morphology and invasive growth of C. albicans, respectively. Quantitative Real-time PCR (qRT-PCR) was adopted to observe the expressions of hyphae-specific genes including HWP1, ALS3, CSH1, SUN41 and CaPDE2. The MIC of BAEB against C. albicans is less than that of other extracts; hyphae grow best at pH 8. 0; 512 mg · L(-1) and 1,024 mg · L(-1) BAEB could inhibit formation of hyphae and influence colony morphology. When treated by 512 mg · L(-1) and 1,024 mg · L(-1) BAEB, the colonies became smooth; while by 0 and 256 mg · L(-1) BAEB, the colonies became wrinkled. In semi-solid agar, the length of hyphae decreased steadily as the concentration of BAEB lowered. The expression of HWP1, ALS3, CSHl, SUN41 were downregulated by 5.12, 4.26, 3.2 and 2.74 folds, and CaPDE2 was upregulated by 2.38 fold. BAEB could inhibit yeast-to-hyphae transition of C. albicans isolates from VVC in alkaline pH.

  13. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  14. Gentamicin-Containing Peptone-Yeast Extract Medium for Cocultivation of Hartmannella vermiformis ATCC 50256 and Virulent Strains of Legionella pneumophila.

    Science.gov (United States)

    Wadowsky, R M; Wang, L; Laus, S; Dowling, J N; Kuchta, J M; States, S J; Yee, R B

    1995-12-01

    We evaluated the use of peptone-yeast extract (PY) medium, different strains of Hartmannella vermiformis, and gentamicin in a coculture system to improve the discrimination of virulent and avirulent strains of Legionella pneumophila. H. vermiformis ATCC 50256 was unique among four strains of H. vermiformis, in that it multiplied equally well in Medium 1034 and PY medium (Medium 1034 without fetal calf serum, folic acid, hemin, and yeast nucleic acid and with a 50% reduction of peptone). However, both a virulent strain of L. pneumophila and its avirulent derivative strain multiplied in cocultures when PY medium was used. The multiplication of this avirulent strain was greatly reduced by incorporating gentamicin (1 (mu)g/ml) into the cocultivation system. Five virulent-avirulent sets of L. pneumophila strains were then tested for multiplication in cocultures with H. vermiformis ATCC 50256 and the gentamicin-containing PY medium. Only the virulent strains multiplied. The modified cocultivation system can discriminate between virulent and avirulent strains of L. pneumophila.

  15. A Soxhlet Extract of Gongronema latifolium Retains Moderate Blood Glucose Lowering Effect and Produces Structural Recovery in the Pancreas of STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bassel Al-Hindi

    2016-04-01

    Full Text Available Background: Gongronema latifolium Benth. (GL possesses considerable glucose lowering effects able to be utilized on a large-scale. This paper investigates the effects of a Soxhlet extract on hyperglycemia, Langerhans islets and glucose uptake by abdominal muscles. Methods: Ethanol and a Soxhlet apparatus were used to obtain GL ethanolic Soxhlet extract (GLES. It was then administered to randomly-segregated male Sprague-Dawley, normal and STZ-induced diabetic rats, using oral gavage to evaluate blood glucose levels (BGLs, serum lipid profile, insulin levels and the pancreas post-treatment. Results: GLES significantly (p < 0.05 decreased BGLs of normal rats in glucose tolerance testing at a dose of 2 g/kg b.w. but failed to do so in diabetic rats undergoing acute 7-h treatment. Given twice-daily, 1 g/kg b.w. of GLES moderately controlled diabetic BGLs starting from day 10. After 14 days of treatment, 1 g/kg and 0.5 g/kg b.w. of GLES caused 44% and 50% respective increases in the average area of Langerhans islets compared to DC. Using isolated rat abdominal muscle, GLES was found to be a mild insulin-sensitizer. GC-MS analysis revealed the presence of the known glucose-lowering phytosterol, Sitostenone. Conclusion: Despite retaining moderate antidiabetic activity, Soxhlet extraction of Gongronema latifolium probably leads to the destruction of active heat-liable compounds.

  16. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    Science.gov (United States)

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Effect Of Keren Fruit Extract (Muntingia calabura On Blood Glucose Levels Of Rats (Rattus novergicus Which Induced By Streptozotocin (STZ

    Directory of Open Access Journals (Sweden)

    Vembriarto Jati Pramono

    2015-06-01

    control, group II (positive control, group III, IV, and V were given kersen fruit extract 100 mg/kg BW, 200 mg/kg BW, and 400 mg/kg BW respectively. Rats of groups I-V were induced with streptozotocin (STZ. Blood sugar values were analyzed using Analysis of Variance Repeated method (Repated ANOVA. The results showed blood glucose levels before treatment, week-0, and week-2 in the group I (133 mg/dL, 164 mg/dL, 105 mg/dL, group II (136 mg/dL, 362 mg/dL, 431 mg/dL, group III (133 mg/dL, 513 mg/dL, 109 mg/dL, group IV (100 mg/dL, 376 mg/dL, 153 mg/dL, and group V (83 mg/dL, 225 mg/dL, 169 mg/dL. Respectively based on statistical analysis showed a significant decreasies of blood sugar levels of the group III so that kersen extract with the dose of 100 mg / kg has the potential to antidiabetic.

  18. Performance of mycological media in enumerating desiccated food spoilage yeasts: an interlaboratory study.

    Science.gov (United States)

    Beuchat, L R; Frandberg, E; Deak, T; Alzamora, S M; Chen, J; Guerrero, A S; López-Malo, A; Ohlsson, I; Olsen, M; Peinado, J M; Schnurer, J; de Siloniz, M I; Tornai-Lehoczki, J

    2001-10-22

    Dichloran 18% glycerol agar (DG18) was originally formulated to enumerate nonfastidious xerophilic moulds in foods containing rapidly growing Eurotium species. Some laboratories are now using DG18 as a general purpose medium for enumerating yeasts and moulds, although its performance in recovering yeasts from dry foods has not been evaluated. An interlaboratory study compared DG18 with dichloran rose bengal chloramphenicol agar (DRBC), plate count agar supplemented with chloramphenicol (PCAC), tryptone glucose yeast extract chloramphenicol agar (TGYC), acidified potato dextrose agar (APDA), and orange serum agar (OSA) for their suitability to enumerate 14 species of lyophilized yeasts. The coefficient of variation for among-laboratories repeatability within yeast was 1.39% and reproducibility of counts among laboratories was 7.1%. The order of performance of media for recovering yeasts was TGYC > PCAC = OSA > APDA > DRBC > DG 18. A second study was done to determine the combined effects of storage time and temperature on viability of yeasts and suitability of media for recovery. Higher viability was retained at -18 degrees C than at 5 degrees C or 25 degrees C for up to 42 weeks, although the difference in mean counts of yeasts stored at -18 degrees C and 25 degrees C was only 0.78 log10 cfu/ml of rehydrated suspension. TGYC was equal to PCAC and superior to the other four media in recovering yeasts stored at -18 degrees C, 5 degrees C, or 25 degrees C for up to 42 weeks. Results from both the interlaboratory study and the storage study support the use of TGYC for enumerating desiccated yeasts. DG18 is not recommended as a general purpose medium for recovering yeasts from a desiccated condition.

  19. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  20. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  1. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    Science.gov (United States)

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. © The Author(s) 2016.

  2. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  3. Acacia nilotica leave extract and glyburide: comparison of fasting flood glucose, serum insulin, b-thromboglubulin levels and platelet aggregation in treptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Asad, M.; Munir, T.A.; Afzal, N.

    2011-01-01

    Objectives: To evaluate the hypoglycaemic and anti-platelet aggregation effect of aqueous methanol extract of Acacia Nilotica (AN) leaves compared with glyburide on streptozotocin induced diabetic rats. Methods: Diabetes mellitus was induced in 90 out of 120 albino rats by administering 50 mg/kg body weight (b.w) streptozotocin and was confirmed by measuring fasting blood glucose level >200 mg/dL on fourth post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetic rats treated with AN extract) and group D (diabetic rats treated with glyburide). The rats of group C and D were given 300 mg/kg b.w AN extract and 900 mu gm/kg b.w glyburide respectively for 3 weeks. Blood glucose was measured by gluco meter, platelet aggregation by Dia-Med method and insulin and b-thrombo globulin by ELISA technique. Results: A significant increase (p<0.05) in fasting blood glucose, b-thrombo globulin and platelet aggregation and a significant decrease (p<0.05) in insulin levels was observed in streptozotocin induced diabetic rats than the normal controls. The rats treated with AN extract and glyburide showed a significant decrease (p<0.05) in fasting blood glucose and increase (p<0.05) in insulin levels than the diabetic control rats. However, the levels in both the treatment groups remained significantly different than the normal controls. A significant decrease (p<0.05) in b-thrombo globulin levels was seen in diabetic rats treated with glyburide than the diabetic control rats and diabetic rats treated with AN extract. Conclusions: AN leaves extract result into hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide. (author)

  4. Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots

    Directory of Open Access Journals (Sweden)

    María Alicia Martos

    2013-06-01

    Full Text Available The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.

  5. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes

    Directory of Open Access Journals (Sweden)

    M. Latha

    2004-04-01

    Full Text Available The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6 presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx, glutathione-S-transferase (GST and reduced glutathione (GSH compared to normal rats (N = 6. Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1 and glibenclamide (600 µg kg-1 day-1, a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.

  6. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes.

    Science.gov (United States)

    Latha, M; Pari, L

    2004-04-01

    The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 microg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.

  7. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  8. An economic approach to efficient isotope labeling in insect cells using homemade {sup 15}N-, {sup 13}C- and {sup 2}H-labeled yeast extracts

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan, E-mail: Stephan.Grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2015-07-15

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein {sup 15}N and {sup 13}C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  9. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts

    International Nuclear Information System (INIS)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-01-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein 15 N and 13 C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor

  10. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study.

    Directory of Open Access Journals (Sweden)

    Mark Lown

    Full Text Available High sugar and refined carbohydrate intake is associated with weight gain, increased incidence of diabetes and is linked with increased cardiovascular mortality. Reducing the health impact of poor quality carbohydrate intake is a public health priority. Reducose, a proprietary mulberry leaf extract (ME, may reduce blood glucose responses following dietary carbohydrate intake by reducing absorption of glucose from the gut.A double-blind, randomised, repeat measure, phase 2 crossover design was used to study the glycaemic and insulinaemic response to one reference product and three test products at the Functional Food Centre, Oxford Brooks University, UK. Participants; 37 adults aged 19-59 years with a BMI ≥ 20kg/m2 and ≤ 30kg/m2. The objective was to determine the effect of three doses of mulberry-extract (Reducose versus placebo on blood glucose and insulin responses when co-administered with 50g maltodextrin in normoglycaemic healthy adults. We also report the gastrointestinal tolerability of the mulberry extract.Thirty-seven participants completed the study: The difference in the positive Incremental Area Under the Curve (pIAUC (glucose (mmol / L x h for half, normal and double dose ME compared with placebo was -6.1% (-18.2%, 5.9%; p = 0.316, -14.0% (-26.0%, -2.0%; p = 0.022 and -22.0% (-33.9%, -10.0%; p<0.001 respectively. The difference in the pIAUC (insulin (mIU / L x h for half, normal and double dose ME compared with placebo was -9.7% (-25.8%, 6.3%; p = 0.234, -23.8% (-39.9%, -7.8%; p = 0.004 and -24.7% (-40.8%, -8.6%; p = 0.003 respectively. There were no statistically significant differences between any of the 4 groups in the odds of experiencing one or more gastrointestinal symptoms (nausea, abdominal cramping, distension or flatulence.Mulberry leaf extract significantly reduces total blood glucose rise after ingestion of maltodextrin over 120 minutes. The pattern of effect demonstrates a classical dose response curve with

  11. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  12. Effects of Fruit of Rosa Canina L.Extract on the Level of Plasma Glucose in Male Diabet-Induced Rats

    Directory of Open Access Journals (Sweden)

    A Mohammad Eini

    2016-03-01

    Full Text Available Introduction: Diabetes mellitus is one of the most prevalent chronic and complex metabolic diseases of human , which hyperglycemia can be mentioned as its prominent characteristic. Therefore, this study aimed to evaluate the hypoglycemic effects of fruit of Rosa canina (R.c. extract in healthy and diabetic rats. Method: A total of 72 Wistar male rats were divided into six group: control,  STZ (diabetic control,  R.c. control (50 mg/kg, R.c. control (100 mg/kg and two experimental groups with 50, and 100 mg/kg of extract dose. Diabetes was induced using streptozotocine (60 mg/kg; IP, and blood collection was carried out on 0, 2 and 4 hours after the oral administration of the extracts. Results: The levels of plasma glucose were determined by spectrophotometric method. In order to statistically analyze the study data, ANOVA test was performed. There was a significant difference between groups concerning the plasma glucose concentration (P<0.0001, which the lowest concentration between diabetes groups was observed in the two experimental groups. Moreover, R.c. had a marked hypoglycemic effect on diabetes mellitus. Conclusion: R.c. extract in hyperglycemic status demands to be further studied in order to control and prevent its complications.

  13. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    Science.gov (United States)

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (ptea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Basic hydrolysis of 1, 3, 4, 6-tetra-O-acetyl-2-[18F] fluoro-D-glucose on solid phase extraction

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; He Yijie; Huan Dingcai; Liu Boli

    2003-01-01

    A new base hydrolysis method are used for 1, 3, 4, 6-tetra-O-acetyl-2-[ 18 F] fluoro-D-glucose on solid phase extraction. The labeled intermediate is trapped on an active C-18 solid phase extraction cartridge, and hydrolyzed in cartridge with 1 mL 2 mol/L NaOH at room temperature. The results show that there are over 99% of the labeled intermediate being turned into 18 F-FDG within 2 min. It is easy to get 18 F-FDG after neutralized with phosphate buffer, purified by C-18 and Alumina cartridge. The basic hydrolysis on solid extraction is a simple method for preparation of 18 F-FDG

  15. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast.

    Science.gov (United States)

    Lowman, Douglas W; Greene, Rachel R; Bearden, Daniel W; Kruppa, Michael D; Pottier, Max; Monteiro, Mario A; Soldatov, Dmitriy V; Ensley, Harry E; Cheng, Shih-Chin; Netea, Mihai G; Williams, David L

    2014-02-07

    The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. (1)H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or "closed chain" structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.

  16. Hydroethanolic extract of the inner stem bark of Cedrela odorata has low toxicity and reduces hyperglycemia induced by an overload of sucrose and glucose.

    Science.gov (United States)

    Giordani, Morenna Alana; Collicchio, Thiago Carvalho Mamede; Ascêncio, Sergio Donizeti; Martins, Domingos Tabajara de Oliveira; Balogun, Sikiru Olaitan; Bieski, Isanete Geraldini Costa; da Silva, Leilane Aparecida; Colodel, Edson Moleta; de Souza, Roberto Lopes; de Souza, Damiana Luiza Pereira; de França, Suélem Aparecida; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda

    2015-03-13

    Cedrela odorata L. (Meliaceae) is a native plant of the Amazon region and its inner stem bark is used in the treatment of diabetes in the form of maceration in Brazilian popular medicine. Until now, there is no scientific study on this activity. The present study was aimed at evaluating the anti-hyperglycemic activity, anti-diabetic, toxicity, antioxidant and potential mechanism of action of hydroethanolic extract of the inner stem bark of Cedrela odorata. The inner stem bark extract of Cedrela odorata was prepared by maceration in 70% ethanol for 7 days to obtain hydroethanolic extract of Cedrela odorata (HeECo). The preliminary phytochemical analysis was performed according to procedures described in the literature. Selected secondary metabolites detected were quantified by high performance liquid chromatography (HPLC). Acute toxicity of HeECo was investigated in male and female mice with oral administration of graded doses of HeECo from 10 to 5000 mg/kg. Subchronic oral toxicity study was done by oral administration of HeECo (500 mg/kg) and vehicle for 30 days to both sexes of Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Anti-hiperglycemic and antidiabetic effects were evaluated in streptozotocin-induced diabetic rats. In acute evaluation, the animals received pretreatment with 250 and 500 mg/kg of HeECo, before carbohydrate overload. For subchronic effect, the antidiabetic activity of HeECo was evaluated using the same doses for 21 days. At the end of the treatments, the levels of triacylglycerols, malondialdehyde, total antioxidant status, superoxide dismutase and glutathione peroxidase activities were evaluated in the plasma. The extract showed low acute toxicity. HeECo exhibited inhibitory activity against α-glucosidase and caused a lowering in the peak levels of blood glucose in

  17. Green tea extract with polyethylene glycol-3350 reduces body weight and improves glucose tolerance in db/db and high-fat diet mice.

    Science.gov (United States)

    Park, Jae-Hyung; Choi, Yoon Jung; Kim, Yong Woon; Kim, Sang Pyo; Cho, Ho-Chan; Ahn, Shinbyoung; Bae, Ki-Cheor; Im, Seung-Soon; Bae, Jae-Hoon; Song, Dae-Kyu

    2013-08-01

    Green tea extract (GTE) is regarded to be effective against obesity and type 2 diabetes, but definitive evidences have not been proven. Based on the assumption that the gallated catechins (GCs) in GTE attenuate intestinal glucose and lipid absorption, while enhancing insulin resistance when GCs are present in the circulation through inhibiting cellular glucose uptake in various tissues, this study attempted to block the intestinal absorption of GCs and prolong their residence time in the lumen. We then observed whether GTE containing the nonabsorbable GCs could ameliorate body weight (BW) gain and glucose intolerance in db/db and high-fat diet mice. Inhibition of the intestinal absorption of GCs was accomplished by co-administering the nontoxic polymer polyethylene glycol-3350 (PEG). C57BLKS/J db/db and high-fat diet C57BL/6 mice were treated for 4 weeks with drugs as follows: GTE, PEG, GTE+PEG, voglibose, or pioglitazone. GTE mixed with meals did not have any ameliorating effects on BW gain and glucose intolerance. However, the administration of GTE plus PEG significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite. The effect was comparable to the effects of an α-glucosidase inhibitor and a peroxisome proliferator-activated receptor-γ/α agonist. These results indicate that prolonging the action of GCs of GTE in the intestinal lumen and blocking their entry into the circulation may allow GTE to be used as a prevention and treatment for both obesity and obesity-induced type 2 diabetes.

  18. Intensification of conversion of glucose to lactic acid : equilibria and kinetics for back extraction of lactic acid using trimethylamine

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

    2004-01-01

    Alamine 336 is an effective extractant for the recovery of lactic acid from aqueous solutions. An approach for regeneration and product recovery from such extracts is to back extract lactic acid with a water soluble, volatile tertiary amine such as trimethyl amine. Equilibrium data are presented

  19. Intensification of conversion of glucose to lactic acid: equilibria and kinetics for back extraction of lactic acid using trimethylamine

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, Albertus B.M.; Versteeg, Geert; Pangarkar, Vishwas G.

    2004-01-01

    Alamine 336 is an effective extractant for the recovery of lactic acid from aqueous solutions. An approach for regeneration and product recovery from such extracts is to back extract lactic acid with a water soluble, volatile tertiary amine such as trimethyl amine. Equilibrium data are presented

  20. Extraction of fumonisins B1 and B2 from white rice flour and their stability in white rice flour, cornstarch, cornmeal, and glucose.

    Science.gov (United States)

    Kim, Eun-Kyung; Scott, Peter M; Lau, Ben P-Y; Lewis, David A

    2002-06-05

    To extract fumonisin B1 (FB1) and fumonisin B2 (FB2) from Thai white rice flour, different solvent mixtures, temperatures, pH values, and addition of enzymes or ethylenediaminetetraacetic acid disodium salt (Na2EDTA) were examined. Three extractions with 0.1 M Na2EDTA achieved the highest recoveries. Initial recoveries of fumonisins added to white rice flour, cornstarch, cornmeal, and glucose varied with commodity. Fumonisins disappeared in Thai white rice flour after 12 h, but 55% remained in another white rice flour. With cornstarch 20-30% fumonisins remained after 24 h; only 43% of 14C-labeled FB1 materials extracted from cornstarch was eluted with methanol from an immunoaffinity column. Fumonisins were stable in cornmeal for 24 h but only approximately 50% remained after 30 days. With glucose, 25% of FB1 and FB2 remained 24 h after addition; N-(1-deoxy-D-fructos-1-yl)FB(1) andN-(carboxymethyl)FB(1) were detected in lower amounts than residual FB(1) after 3 months.

  1. Pyrene degradation by yeasts and filamentous fungi.

    Science.gov (United States)

    Romero, M Cristina; Salvioli, Mónica L; Cazau, M Cecilia; Arambarri, A M

    2002-01-01

    The saprotrophic soil fungi Fusarium solani (Mart.) Sacc., Cylindrocarpon didymum (Hartig) Wollenw, Penicillium variabile Sopp. and the yeasts Rhodotorula glutinis (Fresenius) Harrison and Rhodotorula minuta (Saito) Harrison were cultured in mineral medium with pyrene. The remaining pyrene concentrations were periodically determined during 20 incubation days, using HPLC. To assess the metabolism of pyrene degradation we added 0.1 microCi of [4,5,9,10] 14C-pyrene to each fungi culture and measured the radioactivity in the volatile organic substances, extractable, aqueous phase, biomass and 14CO2 fractions. The assays demonstrated that F. solani and R. glutinis metabolized pyrene as a sole source of carbon. Differences in their activities at the beginning of the cultures disappeared by the end of the experiment, when 32 and 37% of the original pyrene concentration was detected, for the soil fungi and yeasts, respectively. Among the filamentous fungi, F. solani was highly active and oxidized pyrene; moreover, small but significant degradation rates were observed in C. didymum and P. variahile cultures. An increase in the 14CO2 evolution was observed at the 17th day with cosubstrate. R. glutinis and R. minuta cultures showed similar ability to biotransform pyrene, and that 35% of the initial concentration was consumed at the end of the assay. The same results were obtained in the experiments with or without glucose as cosubstrate.

  2. Alterations in Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-Induced Diabetic Rats: Effects of Trigonella foenum-graecum Extract and Swimming Training.

    Science.gov (United States)

    Haghani, Karimeh; Bakhtiyari, Salar; Doost Mohammadpour, Jafar

    2016-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by chronic hyperglycemia. Trigonella foenum-graecum (fenugreek) and swimming training have previously been reported to have hypoglycemic and antioxidant effects. We aimed to evaluate the effects of swimming training and fenugreek aqueous extract, alone and in combination, on plasma glucose and cardiac antioxidant enzymes activity of streptozotocin-induced diabetes in rats. We divided 70 male Wistar rats equally into 7 groups: diabetic control (DC), healthy control (HC), swimming (S), fenugreek seed extract (1.74 g/kg) (F1), fenugreek seed extract (0.87 g/kg) (F2), swimming + fenugreek seed extract (1.74 g/kg) (SF1), and swimming + fenugreek seed extract (0.87 g/kg) (SF2). We used streptozotocin for the induction of diabetes. Statistical analyses were performed using the statistical program SPSS. We did not detect any significant differences in body weight in the F1, F2, S, SF1 and SF2 groups compared with the DC group (p>0.05). The results also revealed that the hypoglycemic effect of combined swimming and fenugreek was significantly stronger (pswimming could be useful for the treatment of hyperglycemia and cardiac oxidative stress induced by type 1 diabetes mellitus. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-D-Glucose and Tannic acid)

    International Nuclear Information System (INIS)

    Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J.

    2009-01-01

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, α-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > α-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  4. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, {alpha}-D-Glucose and Tannic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, A. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)], E-mail: A.Ostovari@gmail.com; Hoseinieh, S.M.; Peikari, M. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Shadizadeh, S.R. [Petroleum Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Hashemi, S.J. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)

    2009-09-15

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, {alpha}-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > {alpha}-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  5. Effect of Petiveria alliacea Leaves Extract in Decreasing Serum Level of Blood Glucose Level Through Activation of AMPK-α1 in Diabetes Mellitus Rat Models

    Directory of Open Access Journals (Sweden)

    Arifa Mustika

    2017-03-01

    Full Text Available Singawalang (Petiveria alliaceae is a medicinal herb that is used traditionally as folk medicine for various diseases. The plant has been used as an antidiabetic agent in Indonesian society. Until now, the effect and mechanism of action of Petiveria alliaceae as antidiabetic agent is not clear. The aim of the study was to determine the effect of Petiveria alliaceae to blood glucose level and to identify expression of AMPK-α1 in rat liver. The research was experimental study with randomized and was conducted at Laboratory Pharmacology and Therapy, and Laboratory Patology Anatomy, Faculty of Medicine, Universitas Airlangga, on April until August 2015. Twenty five male rats were injected by Streptozotocin to create diabetic rat models and randomly divided into 5 groups. The group 1, 2 and 3 are treatment groups that were given the ethanol extract of Petiveria alliaceae at dose 90 mg/kgbw, 180 mg/kgbw, and 360 mg/kgbw, orally, once daily for fourteen days. The fourth group is a negative control who were given distilled water and the fifth group is a positive control who were given metformin at dose 150 mg/kgbw. On the 15th day, blood glucose level were measured by glucometer and the rats were sacrificed to collect the liver. Expression of AMPK-α1 were assessed by immunohistochemistry. Data were analyzed by ANAVA and Wilcoxon (α=0,05. The results have been showed that there were significant differences in glucose blood level between negative control with the group were given the extract at dose 90 mg/kgbw, 360 mg/kgbw and positive control, between dose 180 mg/kgbw with dose 360 mg/kgbw and positive control. A significant differences of expression of AMPK-α1 showed between dose 180 mg/kgbw with dose 360 mg/kgbw and positive control. The conclusion of this study was the extract ethanol of Singawalang leaves reduce blood glucose level in diabetes mellitus rat models through increase in the expression of AMPK-α1.

  6. Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Lee, Sun Youb; Lim, Soon Sung

    2016-06-01

    Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.

  7. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects

    Directory of Open Access Journals (Sweden)

    Oku Tsuneyuki

    2009-07-01

    Full Text Available Abstract Background The first aim of this study was to clarify the effective ratio of extractive from leaves of Morus Alba (ELM to sucrose so as to apply this knowledge to the preparation of confections that could effectively suppress the elevation of postprandial blood glucose and insulin. The second aim was to identify the efficacy of confections prepared with the optimally effective ratio determined from the first study, using healthy human subjects. Methods Ten healthy females (22.3 years, BMI 21.4 kg/m2 participated in this within-subject, repeated measures study. For the first aim of this study, the test solutions containing 30 g of sucrose and 1.2 or 3.0 g of ELM were repeatedly and randomly given to each subject. To identify the practically suppressive effects on postprandial blood glucose and insulin, some confections with added ELM were prepared as follows: Mizu-yokan, 30 g of sucrose with the addition of 1.5 or 3.0 g ELM; Daifuku-mochi, 9.0 g of starch in addition to 30 g of sucrose and 1.5 or 3.0 g ELM; Chiffon-cake, 24 g of sucrose, starch, and 3.0 or 6.0 g of ELM, and were ingested by each subject. Blood and end-expiration were collected at selected periods after test food ingestion. Results When 30 g of sucrose with 1.2 or 3.0 g of ELM were ingested by subjects, the elevations of postprandial blood glucose and insulin were effectively suppressed (p p Conclusion ELM-containing confections for which the ratio of ELM and sucrose is one-tenth effectively suppress the postprandial blood glucose and insulin by inhibiting the intestinal sucrase, thus creating a prebiotic effect. The development of confections with ELM can therefore contribute to the prevention and the quality of life for prediabetic and diabetic patients.

  8. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    Science.gov (United States)

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2  = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    Science.gov (United States)

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  10. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  11. Effect of an aqueous Russian tarragon extract on glucose tolerance in response to an oral dextrose load in non-diabetic men

    Directory of Open Access Journals (Sweden)

    Richard J Bloomer

    2011-03-01

    Full Text Available Richard J Bloomer1, Robert E Canale1, Ivo Pischel21Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, TN, USA; 2PhytoLab GmbH & Co. KG, Vestenbergsgreuth, GermanyBackground: Russian tarragon extracts have been reported to have anti-diabetic activity in animals. This pilot study aimed to investigate the acute effects of an aqueous extract of Russian tarragon (RT on serum glucose and insulin in response to an oral glucose tolerance test (OGTT.Methods: Using a randomized, double-blind, cross-over design, 12 non-diabetic men reported to the lab on 2 different mornings separated by 1 to 2 weeks, and ingested 75 g of dextrose in solution. Fifteen minutes before ingestion, subjects ingested either 2 g of RT or a placebo. Blood samples were collected before ingestion of the RT and placebo, and at 15, 30, 45, 60, and 75 minutes post ingestion of the dextrose load. Samples were assayed for serum glucose and insulin.Results: For serum glucose, no condition (P = 0.19 or condition × time (P = 0.99 effect was noted. A time effect was noted (P < 0.0001, with values at 15 and 30 minutes higher than pre-ingestion (P < 0.05. No area under the curve (AUC effect (P = 0.54 was noted, although a 4.5% reduction in AUC was observed for RT (569 ± 92 mg · dL−1 · 75 min−1 vs placebo (596 ± 123 mg · dL−1 · 75 min−1. Similar findings were noted for serum insulin, with no condition (P = 0.24 or condition × time (P = 0.98 effect noted. A time effect was noted (P < 0.0001, with values at 15, 30, and 45 minutes higher than pre-ingestion (P < 0.05. No AUC effect (P = 0.53 was noted, although a 17.4% reduction in AUC was observed for RT (114 ± 22 µIU · mL−1 · 75 min−1 vs placebo (138 ± 30 µIU · mL−1 · 75 min−1. Approximately two-thirds of subjects ingesting the RT experienced attenuation in both the glucose and insulin response to the OGTT.Conclusion: These data indicate that acute ingestion of RT results in a slight

  12. Neuroprotective effects of Rhodiola rosea extracts against excitotoxicity and oxygen-glucose deprivation in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Sindberg, J.; Lundberg, L.

    .g. salidroside) and phenylpropanoid glycosides (e.g. rosavin). Many of these compounds are considered potent antioxidants, but the significance of the various substances for the beneficial effects of roseroot is still largely unknown. Here we tested the neuroprotective effects of crude methanolic extracts of R...... and quantified by propidium iodide uptake and immunohistochemical staining for MAP2 as a neuronal marker. Significant and dose-dependent protection against NMDA and OGD-induced CA1 pyramidal cell death was obtained by crude extracts using 250 µg/ml (33-50% protection) or 500 µg/ml (45-65% protection). A number...... of chemical fractions of methanolic Rhodiola extracts, as well as the purified constituents salidrosid and rosavin were tested, but - so far - none of the tested fractions or single constituents showed protection against NMDA or OGD. To study the mechanisms of action of R. rosea extracts, we are currently...

  13. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  14. Metabolic regulation of yeast

    Science.gov (United States)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  15. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects

    Science.gov (United States)

    Nakamura, Mariko; Nakamura, Sadako; Oku, Tsuneyuki

    2009-01-01

    Background The first aim of this study was to clarify the effective ratio of extractive from leaves of Morus Alba (ELM) to sucrose so as to apply this knowledge to the preparation of confections that could effectively suppress the elevation of postprandial blood glucose and insulin. The second aim was to identify the efficacy of confections prepared with the optimally effective ratio determined from the first study, using healthy human subjects. Methods Ten healthy females (22.3 years, BMI 21.4 kg/m2) participated in this within-subject, repeated measures study. For the first aim of this study, the test solutions containing 30 g of sucrose and 1.2 or 3.0 g of ELM were repeatedly and randomly given to each subject. To identify the practically suppressive effects on postprandial blood glucose and insulin, some confections with added ELM were prepared as follows: Mizu-yokan, 30 g of sucrose with the addition of 1.5 or 3.0 g ELM; Daifuku-mochi, 9.0 g of starch in addition to 30 g of sucrose and 1.5 or 3.0 g ELM; Chiffon-cake, 24 g of sucrose, starch, and 3.0 or 6.0 g of ELM, and were ingested by each subject. Blood and end-expiration were collected at selected periods after test food ingestion. Results When 30 g of sucrose with 1.2 or 3.0 g of ELM were ingested by subjects, the elevations of postprandial blood glucose and insulin were effectively suppressed (p < 0.01), and the most effective ratio of ELM to sucrose was evaluated to be 1:10. AUC (area under the curve) of breath hydrogen excretion for 6 h after the ingestion of an added 3 g of ELM significantly increased (p < 0.01). When AUCs-3h of incremental blood glucose of confections without ELM was 100, that of Mizu-yokan and Daifuku-mochi with the ratio (1:10) of ELM to sucrose was decreased to 53.4 and 58.2, respectively. Chiffon-cake added one-fourth ELM was 29.0. Conclusion ELM-containing confections for which the ratio of ELM and sucrose is one-tenth effectively suppress the postprandial blood glucose and

  16. Oenothera paradoxa defatted seeds extract and its bioactive component penta-O-galloyl-β-D-glucose decreased production of reactive oxygen species and inhibited release of leukotriene B4, interleukin-8, elastase, and myeloperoxidase in human neutrophils.

    Science.gov (United States)

    Kiss, Anna K; Filipek, Agnieszka; Czerwińska, Monika; Naruszewicz, Marek

    2010-09-22

    In this study, we analyzed ex vivo the effect of an aqueous extract of Oenothera paradoxa defatted seeds on the formation of neutrophil-derived oxidants. For defining active compounds, we also tested lypophilic extract constituents such as gallic acid, (+)-catechin, ellagic acid, and penta-O-galloyl-β-D-glucose and a hydrophilic fraction containing polymeric procyanidins. The anti-inflammatory potential of the extract and compounds was tested by determining the release from activated neutrophils of elastase, myeloperoxidase, interleukin-8 (IL-8), and leukotriene B4 (LTB4), which are considered relevant for the pathogenesis of cardiovascular diseases. The extract of O. paradoxa defatted seeds displays potent antioxidant effects against both 4β-phorbol-12β-myristate-α13-acetate- and formyl-met-leu-phenylalanine-induced reactive oxygen species production in neutrophils with IC50 values around 0.2 μg/mL. All types of polyphenolics present in the extract contributed to the extract antioxidant activity. According to their IC50 values, penta-O-galloyl-β-D-glucose was the more potent constituent of the extract. In cell-free assays, we demonstrated that this effect is partially due to the scavenging of O2- and H2O2 oxygen species. The extract and especially penta-O-galloyl-β-D-glucose significantly inhibit elastase, myeloperoxidase IL-8, and LTB4 release with an IC50 for penta-O-galloyl-β-D-glucose of 17±1, 15±1, 6.5±2.5, and around 20 μM, respectively. The inhibition of penta-O-galloyl-β-D-glucose on reactive oxygen species and especially on O2- production, myeloperoxidase, and chemoattractant release may reduce the interaction of polymorphonuclear leukocyte with the vascular endothelium and by that potentially diminish the risk of progression of atherosclerosis development.

  17. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  18. Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity.

    Science.gov (United States)

    Kubow, Stan; Hobson, Luc; Iskandar, Michèle M; Sabally, Kebba; Donnelly, Danielle J; Agellon, Luis B

    2014-11-01

    Both sexes of mice were fed a high fat diet (HFD) for 10 weeks without and with polyphenolic-rich potato extracts (PRPE) of cultivars Onaway and Russet Burbank. PRPE attenuated weight gain in male and female mice by as much as 63.2%, which was associated mostly with a reduction in adiposity. Mice receiving PRPE showed enhanced capacity for blood glucose clearance. Sex differences regarding the impact of HFD and PRPE on plasma levels of insulin, ghrelin, leptin, gastric inhibitory peptide, and resistin were noted. PRPE may serve as part of a preventative dietary strategy against the development of obesity and type 2 diabetes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Meta-analysis of the application effects of a biostimulant based on extracts of yeast and amino acids on off-season corn yield

    Directory of Open Access Journals (Sweden)

    André Luis da Silva

    2017-08-01

    Full Text Available The tests were performed with a biostimulant (GAAP containing yeast extract and amino acids. The yield data of the off-season corn for meta-analysis were collected from 41 trials conducted in the states of Paraná, São Paulo, Mato Grosso, Minas Gerais, and Goiás during the 2013/2014 crop season. The tests consisted of eight treatments, with four replicates per treatment, and were conducted on 3.6 × 6.0 m plots. The treatments consisted of application of biostimulant at 2.0 L ha-1 at different times and the control (no biostimulant. The time of application corresponded to the growth stages, V8, VT, R1, (V8 + VT, (V8 + R1, (VT + R1, and (V8 + VT + R1. The influence of biostimulant application was quantified as the difference in yield, expressed as kilogram per hectare (kg ha-1, between treatments and the control (effect measurements. Meta-analysis was used to study the effects of the treatments and to calculate the probability of yield increase with product use. The meta-analysis was performed using the software R. The random effects model was used for meta-analysis because of the high heterogeneity among the studies. Next, the mixed effect model was applied to explain the high heterogeneity, considering the following subgroups: the number of applications, the timing of applications, the presence of water stress, and the region where the tests were conducted. The probability of yield increase was calculated at the levels of 2, 5, and 10 bags, each of 60 kg ha-1. The meta-analysis results for the variable "General" and the subgroups were significantly positive (p < 0.0001, with a meta-analytic estimate of 342.1 kg ha-1 and the confidence interval for 95% probability ranging between 301.2 kg ha-1 and 383.0 kg ha-1. The probability for yield greater than zero or equal to 2, 5, and 10 bags of 60 kg ha-1 in subgroup "three applications" was 91.7%, 85.4%, 71.0%, and 38.9%, respectively. These same values were estimated at 91.7%, 85.4%, 71.0%, and 39

  20. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions.

    Directory of Open Access Journals (Sweden)

    Samir Jawhara

    Full Text Available Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4, as well as mannoprotein (MP and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the

  1. Beyond bread and beer: whole cell protein extracts from baker's yeast as a bulk source for 3D cell culture matrices.

    Science.gov (United States)

    Bodenberger, Nicholas; Kubiczek, Dennis; Paul, Patrick; Preising, Nico; Weber, Lukas; Bosch, Ramona; Hausmann, Rudolf; Gottschalk, Kay-Eberhard; Rosenau, Frank

    2017-03-01

    Here, we present a novel approach to form hydrogels from yeast whole cell protein. Countless hydrogels are available for sophisticated research, but their fabrication is often difficult to reproduce, with the gels being complicated to handle or simply too expensive. The yeast hydrogels presented here are polymerized using a four-armed, amine reactive crosslinker and show a high chemical and thermal resistance. The free water content was determined by measuring swelling ratios for different protein concentrations, and in a freeze-drying approach, pore sizes of up to 100 μm in the gel could be created without destabilizing the 3D network. Elasticity was proofed to be adjustable with the help of atomic force microscopy by merely changing the amount of used protein. Furthermore, the material was tested for possible cell culture applications; diffusion rates in the network are high enough for sufficient supply of human breast cancer cells and adenocarcinomic human alveolar basal epithelial cells with nutrition, and cells showed high viabilities when tested for compatibility with the material. Furthermore, hydrogels could be functionalized with RGD peptide and the optimal concentration for sufficient cell adhesion was determined to be 150 μM. Given that yeast protein is one of the cheapest and easiest available protein sources and that hydrogels are extremely easy to handle, the developed material has highly promising potential for both sophisticated cell culture techniques as well as for larger scale industrial applications.

  2. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  3. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  4. Efficacy of the Hydroalcoholic Extract of Tribulus terrestris on the Serum Glucose and Lipid Profile of Women With Diabetes Mellitus: A Double-Blind Randomized Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Samani, Nasrin Babadaei; Jokar, Azam; Soveid, Mahmood; Heydari, Mojtaba; Mosavat, Seyed Hamdollah

    2016-10-01

    Considering traditional use of Tribulus terrestris in diabetes and proven antihyperglycemic and antihyperlipidemic effects of T terrestris in animal studies, we aimed to evaluate the efficacy of the hydroalcoholic extract of T terrestris on the serum glucose and lipid profile of women with non-insulin-dependent diabetes mellitus. Ninety-eight women with diabetes mellitus type 2 were randomly allocated to receive the T terrestris (1000 mg/d) or placebo for 3 months. The patients were evaluated in terms of the fasting blood glucose, 2-hour postprandial glucose, glycosylated hemoglobin, and lipid profile. Tribulus terrestris showed a significant blood glucose-lowering effect in diabetic women compared to placebo (P terrestris group was significantly reduced compared with placebo, while no significant effect was observed in the triglyceride and high-density lipoprotein levels. The study showed preliminary promising hypoglycemic effect of T terrestris in women with diabetes mellitus type 2. © The Author(s) 2016.

  5. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

    Science.gov (United States)

    Teh, Kwee-Yan; Lutz, Andrew E

    2010-05-17

    Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.

  6. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  7. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to olive leaf (Olea europaea L.) water extract and increase in glucose tolerance pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    substantiation of a health claim related to olive (Olea europaea L.) leaf water extract and increase in glucose tolerance. The food that is the subject of the health claim, olive leaf water extract standardised by its content of oleuropein, is sufficiently characterised. The claimed effect, an increase...... is insufficient to establish a cause and effect relationship between the consumption of olive leaf water extract and an increase in glucose tolerance....... in glucose tolerance, is a beneficial physiological effect as long as serum insulin concentrations are not disproportionately increased. One human intervention study showed an increase in glucose tolerance without disproportionate increase in insulin concentrations after daily consumption of the olive leaf...

  8. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  9. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species

    OpenAIRE

    Marol Serhat; Yücesoy Mine

    2003-01-01

    Abstract Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 ...

  10. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    Science.gov (United States)

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-05-26

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  11. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  12. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  13. Optimization of lactic acid production from glucose using geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, Balakrishnan; Naresh, Sandrasekaran; Safie, Mohammad Farhan Mohd

    2017-09-01

    This study investigated the conversion efficiency of glucose to lactic acid by Geobacillus stearothermophilus strain 15. Six parameters (temperature, pH, incubation time, agitation speed, carbon and nitrogen concentrations) were screened to identify the most significant factors in affecting lactic acid production using glucose. Three most significant factors (temperature, pH and incubation time) were further optimized in this experiment to determine the optimal production of lactic acid. Numerical optimization gave the point prediction of lactic acid concentration produced at 9.95 g/L with the desirability of 0.979 at 40°C, pH 8.5, 24 h, 100 rpm with 5% glucose and 3% yeast extract.

  14. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  15. Effects of Ginkgo biloba extract on the apoptosis of oxygen and glucose-deprived SH-SY5Y cells and its mechanism.

    Science.gov (United States)

    Ba, Xiao-Hong; Min, Lian-Qiu

    2015-01-01

    The aim was to observe the effects of the extract of Ginkgo biloba (EGb761) on the apoptosis of oxygen and glucose-deprived (OGD) human neuroblastoma cells (SH-SY5Y) cells and explore its mechanism. SH-SY5Y cells were divided into normal control group, OGD group, OGD for 4 h and EGb761-pretreated groups including very low-concentration (20 μg/ml), low-concentration group (25 μg/ml), moderate-concentration group (50 μg/ml) and high-concentration group (100 μg/ml). Twenty four hours after reoxygenation, cell viability was determined with 3-[4, 5-dimehyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide assay, apoptosis rate was detected with annexin V-fluorescein isothiocyanate/propidium iodide double staining flow cytometry and the protein level of apoptosis-inducing factor (AIF) was observed with immunofluorescence technique in each group. Cell viability was significantly lower in OGD group than in EGb761-pretreated groups, especially in moderate-concentration group (50 μg/ml) (P cells probably through inhibiting AIF nuclear translocation. This study provides a theoretical basis for the application of EGb761 in clinical practice.

  16. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  17. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    Science.gov (United States)

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  18. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  19. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  20. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  1. Optimization of protein extraction from the yeast Saccharomyces cerevisiae/ Otimização da extração de proteínas da levedura Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Raul Jorge Hernan C. Gómez

    2005-06-01

    Full Text Available This work aimed to determine the optimum temperature, pH and sodium chloride sodium concentration for protein extraction of yeast cells during autolysis process. The cellular extract was obtained using commercial compressed baker’s yeast Saccharomyces cerevisiae and for statistical analysis and definition of the variation levels of temperature (32,0 to 52,0°C, pH (1,32 to 7,00 and NaCl (2,0 to 75% the Response Surface Analysis Methodology was used. The result obtained showed that the best extraction conditions were: temperature between 49,0 and 51,0°C combined with pH values between 3,8 and 5,0 and sodium chloride concentration between 10,0 and 12,0% (w/v, however, sodium chloride concentration higher than 12% was not recommended.Este trabalho objetivou determinar os melhores níveis de temperatura, pH e concentração de cloreto de sódio para a extração de proteínas de células de levedura pelo processo de autólise. O extrato celular foi obtido a partir da levedura comercial prensada Saccharomyces cerevisiae e para análise estatística e definição dos níveis das variáveis temperatura (32,0 a 52,0°C, pH (1,32 a 7,00 e NaCl (2,0 a 75,0% utilizou-se a metodologia da Análise de Superfície de Resposta. Os resultados obtidos por meio desta metodologia mostraram como melhores condições: temperaturas entre 49,0 e 51,0°C combinadas com valores de pH entre 3,8 e 5,0 e concentrações de cloreto de sódio entre 10,0 e 12,0% (p/v, entretanto, concentrações de NaCl superiores a 12,0% não se mostraram favoráveis.

  2. The study on application of radiation for preparation of oligo-β-glucan extracted from brewer yeast cell and for gold and silver nano particles

    International Nuclear Information System (INIS)

    Le Quang Luan; Nguyen Huynh Phuong Uyen; Nguyen Thanh Vu; Nguyen Quoc Hien; Dang Van Phu; Vo Thi Thu Ha; To Van Loi; Le Dinh Don; Truong Phuoc Thien Hoang; Do Thi Phuong Linh

    2015-01-01

    The process for production of insoluble β-glucan product from brewer’s yeast cell wall collected from the discard waste of beer production was successfully established. Radiation was improved as a useful tool for preparation of low Mw β-glucan. The water soluble oligo-β-glucans with Mw ~ 18 - 25 kDa were found to have novel features for application as plant growth promoter, growth and immune stimulator additive for animals and functional food for prevention and therapy of diabetic, dyslipidemia, cancer, etc. The processes for large scale production of oligo-β-glucan as plant growth promoter. chicken additive and functional food by gamma Co-60 irradiation method have been set up for application. In addition, gold nanoparticles (AuNPs) with size of 10 - 50 nm stabilized in sericin and water soluble chitosan and silver nanoparticles (AgNPs) with size of 5-20 nm stabilized PVA, PVP, sericin and alginate were also successfully synthesized by gamma Co-60 irradiation method. While AuNPs product was found to be not toxic and can be used for bio-medicine and cosmetics, AgNPs exhibited highly antimicrobial activity for potentially use as new and safety antimicrobial agent. The processes for large scale production of AuNPs, AgNPs, cream/AgNPs and hand-wash solution/AgNPs products were also successfully developed within this project. (author)

  3. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  4. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  5. Evaluation of a Standardized Extract from Morus alba against α-Glucosidase Inhibitory Effect and Postprandial Antihyperglycemic in Patients with Impaired Glucose Tolerance: A Randomized Double-Blind Clinical Trial

    Science.gov (United States)

    Hwang, Seung Hwan; Li, Hong Mei; Wang, Zhiqiang

    2016-01-01

    To evaluate the antihyperglycemic effect of a standardized extract of the leaves of Morus alba (SEMA), the present study was designed to investigate the α-glucosidase inhibitory effect and acute single oral toxicity as well as evaluate blood glucose reduction in animals and in patients with impaired glucose tolerance in a randomized double-blind clinical trial. SEMA was found to inhibit α-glucosidase at a fourfold higher level than the positive control (acarbose), in a concentration-dependent manner. Moreover, blood glucose concentration was suppressed by SEMA in vivo. Clinical signs and weight changes were observed when conducting an evaluation of the acute toxicity of SEMA through a single-time administration, with clinical observation conducted more than once each day. After administration of the SEMA, observation was for 14 days; all of the animals did not die and did not show any abnormal symptoms. In addition, the inhibitory effects of rice coated with SEMA were evaluated in a group of impaired glucose tolerance patients on postprandial glucose and a group of normal persons, and results showed that SEMA had a clear inhibitory effect on postprandial hyperglycemia in both groups. Overall, SEMA showed excellent potential in the present study as a material for improving postprandial hyperglycemia. PMID:27974904

  6. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    Science.gov (United States)

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  7. Hypoglycemic Potential of Aqueous Extract of Moringa oleifera Leaf and In Vivo GC-MS Metabolomics

    Directory of Open Access Journals (Sweden)

    Washim Khan

    2017-09-01

    Full Text Available Moringa oleifera Lam. (family; Moringaceae, commonly known as drumstick, have been used for centuries as a part of the Ayurvedic system for several diseases without having any scientific data. Demineralized water was used to prepare aqueous extract by maceration for 24 h and complete metabolic profiling was performed using GC-MS and HPLC. Hypoglycemic properties of extract have been tested on carbohydrate digesting enzyme activity, yeast cell uptake, muscle glucose uptake, and intestinal glucose absorption. Type 2 diabetes was induced by feeding high-fat diet (HFD for 8 weeks and a single injection of streptozotocin (STZ, 45 mg/kg body weight, intraperitoneally was used for the induction of type 1 diabetes. Aqueous extract of M. oleifera leaf was given orally at a dose of 100 mg/kg to STZ-induced rats and 200 mg/kg in HFD mice for 3 weeks after diabetes induction. Aqueous extract remarkably inhibited the activity of α-amylase and α-glucosidase and it displayed improved antioxidant capacity, glucose tolerance and rate of glucose uptake in yeast cell. In STZ-induced diabetic rats, it produces a maximum fall up to 47.86% in acute effect whereas, in chronic effect, it was 44.5% as compared to control. The fasting blood glucose, lipid profile, liver marker enzyme level were significantly (p < 0.05 restored in both HFD and STZ experimental model. Multivariate principal component analysis on polar and lipophilic metabolites revealed clear distinctions in the metabolite pattern in extract and in blood after its oral administration. Thus, the aqueous extract can be used as phytopharmaceuticals for the management of diabetes by using as adjuvants or alone.

  8. EFEITO DA SUPLEMENTAÇÃO DO EXTRATO DE LEVEDURA NA DIETA DE POEDEIRAS COMERCIAIS. 1 - DESEMPENHO PRODUTIVO EFFECT OF SUPPLEMENTATION OF AN YEAST EXTRACT PRODUCT IN COMMERCIAL LAYER DIETS. 1- PRODUCTIVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Anciuti

    2008-07-01

    Full Text Available

    Este experimento foi desenvolvido para avaliar o efeito de níveis crescentes (0%, 1%, 2% e 3% do extrato de levedura (NuPro® sobre o desempenho produtivo de poedeiras alimentadas com dietas à base de milho e farelo de soja. Um total de 240 poedeiras Hy Line W36, no período de 47 a 75 semanas de idade, foi distribuído em sessenta gaiolas, sendo quatro aves por gaiola, e divididas em quinze repetições por tratamento. As características avaliadas foram consumo de ração, peso corporal, produção de ovos, peso do ovo, massa de ovo e conversões alimentares por dúzia e por massa de ovo. Não houve efeito (P>0,05 dos tratamentos sobre o desempenho produtivo das aves. Pode-se concluir que a inclusão do extrato de levedura não melhorou o desempenho produtivo das poedeiras.

    PALAVRAS-CHAVES: Aditivos, aves de postura, produção de ovos.

    This study was run to evaluate the effect of increasing levels (0%, 1%, 2% and 3% of yeast extract (NuPro® on productive performance of laying hens fed corn-soybean meal diet. A total of 240 Hy Line W36 layers (47 to 75 weeks of age were allocated in 60 cages (4 birds per cage and divided into 15 cages per treatment. Feed consumption, body weight, egg production, egg weight, egg mass and feed conversion (per dozen or per mass were evaluated. There was no effect (P>0.05 of the treatments on the productive performance of the birds. It was concluded that the yeast extract inclusion did not improve the productive performance of the layers.

     

    KEY WORDS: Additives, egg production, laying hens.

  9. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  10. Conversion of defective molasses into alcohol and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Luchev, S.

    1966-01-01

    The addition of small quantities (0.05 to 0.75%) of dried malt roots, green malt roots, green malt, yeast hydrolyzate, corn extraction, and tomato juice improved the quality and accelerated the brewing process in defective molasses. Dried malt roots and yeast hydrolyzate were the least expensive preparations.

  11. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  12. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Ethanol fermentation with a flocculating yeast

    Energy Technology Data Exchange (ETDEWEB)

    Admassu, W; Korus, R A; Heimsch, R C

    1985-08-01

    A 100 cm x 5.7 cm internal diameter tower fermentor was fabricated and operated continuously for 11 months using the floc-forming yeast, Saccharomyces cerevisiae (American Type Culture Collection 4097). Steady state operation of the system was characterized at 32/sup 0/C and pH 4.0 for glucose concentrations ranging from 105 to 215 g l/sup -1/. The height of the yeast bed in the tower was maintained at 80 cm. The high yeast density, ethanol concentration and low pH prevented bacterial contamination in the reactor. The concentration profiles of glucose and ethanol within the bed were described by a dispersion model. Modeling parameters were determined for the yeast by batch kinetics and tracer experiments. The kinetic model included ethanol inhibition and substrate limitation. A tracer study with step input of D-xylose (a non-metabolizable sugar for S. cerevisiae) determined the dispersion number (D/uL=0.16) and liquid voidage (epsilonsub(L)=0.25). Measurements taken after 6 months of continuous operation indicated that there was no significant change in fermentor performance.

  14. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  15. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  16. Cross-flow filtration of yeast extract with multi-tubular membrane module and rotating-disk membrane module; Makukaitengata heibanmaku module to tankanjomaku module ni yoru kobo hasaieki no cross flow roka

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, K.; Shimizu, Y.; Watanabe, a. [Toto Ltd., Kitakyushu (Japan)

    1994-09-15

    A membrane separation experiment was made with multi-tubular membrane module and rotating-disk membrane module to study the cross-flow filtration of yeast extract. The membrane was an alumina precision filtration membrane with 0.15 micron m diameter pores. A multi-tubular membrane which was 19 in number of channels and 0.113{sup 2} in effective membrane area was fitted to the multi-tubular membrane module. A rotating-disk membrane which was 0.071m{sup 2} in effective membrane area was fitted to the rotating-disk membrane module. Judging from the concentration speed and factor, the rotating-disk type is more advantageous in concentrating the suspension than the multi-tubular type. The soluble high-molecular component was more easily filtrated through the rotating-disk type, which is judged attributable to its possible operation at a high flow rate on the membrane surface without necessitating a high-flow rate circulation pump. As compared with the conventional cross-filtration type, the rotating-disk type gives a high permeate flux even at a high concentration factor. 11 refs., 5 figs.

  17. A comparison between a yeast cell wall extract (Bio-Mos® and palm kernel expeller as mannan-oligosaccharides sources on the performance and ileal microbial population of broiler chickens

    Directory of Open Access Journals (Sweden)

    Bahman Navidshad

    2015-02-01

    Full Text Available The present study was conducted to determine the effect of a yeast cell wall extract (Bio- Mos and palm kernel expeller (PKE on the performance, nutrient digestibility, and ileal bacteria population of broiler chickens. A total of 60 1-d-old male broiler chicks (Cobb 500 were fed one of the 3 isonitrogenous and isocaloric diet including a control diet, or a control diet supplemented with 2 g/kg Bio-Mos (1-42 d, and for the third group, the control diet at 1-28 d following a diet containing 200 g/kg of an enzymatically-treated PKE at 29-42 d. The weight gains of birds fed the PKE containing diet (96.17 g/d were less than other groups (109.10 and 104.42 g/d for the Bio-Mos and control diet, respectively (P0.05, but the birds fed PKE or Bio-Mos containing diets had a lower population of Escherichia coli than the control group (P<0.05. The results showed that PKE potentially has a prebiotic property for chicken; however, a 200 g/kg dietary inclusion rate of PKE is not commercially recommendable because of its negative effects on the nutrients digestibility.

  18. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7.

    Science.gov (United States)

    Chaud, Luciana C S; Lario, Luciana D; Bonugli-Santos, Rafaella C; Sette, Lara D; Pessoa Junior, Adalberto; Felipe, Maria das Graças de A

    2016-12-25

    Microorganisms from extreme and restrictive eco systems, such as the Antarctic continent, are of great interest due to their ability to synthesize products of commercial value. Among these, enzymes from psychrotolerant and psychrophilic microorganisms offer potential economical benefits due to their high activity at low and moderate temperatures. The cold adapted yeast Rhodotorula mucilaginosa L7 was selected out of 97 yeasts isolated from Antarctica as having the highest extracellular proteolytic activity in preliminary tests. The present study was aimed at evaluating the effects of nutrient composition (peptone, rice bran extract, ammonium sulfate, sodium chloride) and physicochemical parameters (temperature and pH) on its proteolytic activity. A 2 6-2 fractional factorial design experiment followed by a central composite design (CCD 2 3 ) was performed to optimize the culture conditions and improve the extracellular proteolytic activity. The results indicated that the presence of peptone in the medium was the most influential factor in protease production. Enzymatic activity was enhanced by the interaction between low glucose and peptone concentrations. The optimization of culture conditions with the aid of mathematical modeling enabled a c. 45% increase in proteolytic activity and at the same time reduced the amount of glucose and peptone required for the culture. Thus culture conditions established in this work may be employed in the biotechnological production of this protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Yeast hexokinase. A fluorescence temperature-jump study of the kinetics of the binding of glucose to the monomer forms of hexokinases P-I and P-II.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1976-09-15

    The binding of glucose to the monomeric forms of hexokinases P-I and P-II in Tris and phosphate buffers at pH 8.0 in the presence of 1 mol l-1 KCl has been studied using the fluorescence temperature-jump technique. For both isozymes only one relaxation time was observed; values of tau-1 increased linearly with increasing concentration of free reacting partners. The apparent second-order rate constant for association was about 2 X 10(6) 1 mol-1 s-1 for both isozymes; the differences in the stabilities of the complexes with P-I and P-II are entirely attributable to the fact that glucose dissociates more slowly from its complex with P-I than P-II (approximately 300 s-1 and 1100 s-1 respectively). Although the kinetic data are compatible with a single-step mechanism for glucose binding the association rate constant was much lower than that expected for a diffusion-limited rate of encounter. Other mechanisms for describing an induced-fit are discussed. It is shown that the data are incompatible with a slow 'prior-isomerization' pathway of substrate binding, but are consistent with a 'substrate-guided' pathway involving isomerization of the enzyme-substrate complex.

  20. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  1. Novel Pathway for Alcoholic Fermentation of 8-Gluconolactone in the Yeast Saccharomyces bulderi

    NARCIS (Netherlands)

    Dijken, van J.P.; Tuijl, van A.; Luttik, M.A.H.; Middelhoven, W.J.; Pronk, J.T.

    2002-01-01

    Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent

  2. Effects of Persea americana Mill (Lauraceae) ["Avocado"] ethanolic leaf extract on blood glucose and kidney function in streptozotocin-induced diabetic rats and on kidney cell lines of the proximal (LLCPK1) and distal tubules (MDBK).

    Science.gov (United States)

    Gondwe, M; Kamadyaapa, D R; Tufts, M A; Chuturgoon, A A; Ojewole, J A O; Musabayane, C T

    2008-01-01

    Extracts of Persea americana Mill (Lauraceae) ("Avocado") have been traditionally used to treat hypertension and diabetes mellitus. Accordingly, we studied the hypoglycaemic and renal function effects of P. americana leaf ethanolic extracts (PAE) in STZ-induced diabetic rats. Oral glucose tolerance responses to various doses of PAE were monitored in fasted rats following a glucose load. Rats treated with deionized water or standard hypoglycaemic drugs acted as untreated and treated positive controls, respectively. Acute renal effects of PAE were investigated in anesthetized rats challenged with 0.077 M NaCl after a 3.5-h equilibration for 4 h comprising 1 h control, 1.5 h treatment and 1.5 h recovery periods. PAE was added to the infusate during the treatment period. Hepatic glycogen concentration was measured after 6 weeks of daily treatment with PAE. PAE induced dose-dependent hypoglycaemic responses in STZ-induced diabetic rats while subchronic PAE treatment additionally increased hepatic glycogen concentrations. Acute PAE infusion decreased urine flow and electrolyte excretion rates, whilst subchronic treatment reduced plasma creatinine and urea concentrations. These results indicate not only the basis of the ethnomedicinal use of P. americana leaf extract in diabetes management, but also of need for further studies to identify and evaluate the safety of PAE's bioactive compounds. (c) 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  3. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  4. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  5. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdouse

    2018-05-01

    Full Text Available In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  6. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    Science.gov (United States)

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  7. Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L. on blood glucose and β-cells of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Somaye Javidanpour

    2012-12-01

    Full Text Available There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intra peritoneally. Thirty male Wistar rats divided into five groups, to evaluate the hypoglycemic and pancreas β-cells regenerative effects of oral methanolic extracts of leaf and fruit peel of walnut. Rats were made diabetic by intravenous (IV injection of 50 mg kg-1 streptozotocin (STZ. Negative control group did not get STZ and any treatment. Positive control, leaf extract, peel extract and insulin groups were treated orally by extract solvent, 200 mg kg-1 leaf extract, 200 mg kg-1 peel extract and 5 IU kg-1 of subcutaneous neutral protamine Hagedorn (NPH insulin, respectively. Four weeks later, blood was collected for biochemical analysis and pancreases were removed for β-cells counts in histological sections. Diabetes leads to increase of fast blood sugar (FBS and HbA1c, and decrease of β-cell number and insulin. FBS decreased only in leaf extract group. HbA1c decreased in leaf extract and insulin groups. The β-cells number increased in leaf and peel extract groups. Insulin increased moderately in all treatment groups. We showed the proliferative properties of leaves and peel of Juglans regia L. methanolic extract in STZ- induced diabetic rats, which was accompanied by hypoglycemic effect of leaf extract.

  8. EFECTO DE LA CONCENTRACIÓN DEL METIL PARATIÓN Y EL EXTRACTO DE LEVADURA COMO FACTORES DE SELECCIÓN DE MICROORGANISMOS DEGRADADORES DEL PESTICIDA A PARTIR DE SUELOS CONTAMINADOS Effect of Methyl Parathion Concentration and Yeast Extract as Factors for Selecting Pesticide Degrading Microorganisms from Polluted Soils

    Directory of Open Access Journals (Sweden)

    L. R. Botero

    2011-12-01

    Full Text Available El aislamiento y cultivo de microorganismos con capacidades para degradar los contaminantes ambientales es importante para implementar planes de biorremediación. En este estudio se evaluó el efecto del extracto de levadura tanto en la capacidad de asimilación microbiana del pesticida organofosforado metil paratión, como en los procesos de aislamiento de microorganismos útiles para de degradar este pesticida. Los microorganismos evaluados fueron obtenidos de suelo fresco fumigado históricamente con este pesticida. Los ensayos se efectuaron con medios sólidos definidos enriquecidos con metil paratión (0-60 mg L-1 y extracto de levadura (0-0.5 g L -1. Se encontró que los microorganismos fueron capaces de asimilar hasta 5 mg L -1 del metil paratión en ausencia de extracto de levadura sin evidenciar efectos tóxicos. La capacidad de asimilación aumentó a 10 mg L-1 en los cultivos enriquecidos con 0.5 g L-1 de extracto de levadura. El extracto de levadura en las dosis usadas no afectó el aislamiento de microorganismos. Sin embargo, el aislamiento por siembra directa en medios enriquecidos con metil paratión como única fuente de carbono se dificultó por el aporte de la materia orgánica del suelo que permitió el crecimiento de cepas tolerantes sin capacidad para degradar el pesticida.Isolation and culture of microorganisms with capacity to degrade environmental pollutants are important for implementing bioremediation plans. This study is an evaluation of the yeast extract effect on both the microbial capacity to assimilate the organo-phosphorous pesticide methyl parathion and the isolation processes of microorganisms useful for degrading this pesticide. Microorganisms evaluated were obtained from fresh soil historically fumigate with this pesticide. Trials were conducted with defined solid means enriched with methyl parathion (0-60 mg L-1 and yeast extract (0-0.5 g L-1. It was found that microorganisms were able to assimilate up to 5

  9. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik

    2009-01-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and...

  10. Glucose and triglyceride lowering activity of Pterocarpus ...

    African Journals Online (AJOL)

    The leaf extracts of P. santalinoides possess triglyceride and glucose lowering properties in dexamethasone induced hyperlipidemia and insulin resistance and could be of therapeutic value in the management of metabolic syndrome. Key words: Pterocarpus santalinoides, leaf extracts, glucose tolerance, hyperlipidemia, ...

  11. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Guo

    Full Text Available Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya. However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  12. The yeast osmostress response is carbon source dependent

    DEFF Research Database (Denmark)

    Babazadeh, Roja; Lahtvee, Petri-Jaan; Adiels, Caroline B.

    2017-01-01

    . Remarkably, yeast cells do not accumulate glycerol under these conditions and it appears that trehalose may partly take over the role as compatible solute. The HOG pathway is activated in very much the same way as during growth on glucose and is also required for osmotic adaptation. Slower volume recovery...

  13. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  14. Xylitol production from colombian native yeast strains

    Directory of Open Access Journals (Sweden)

    Isleny Andrea Vanegas Córdoba

    2004-07-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.

  15. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... that the stable isotope labeling approach is highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found, the major reason behind the discrepancy was the lack...

  16. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, ... Key words: medicinal plants, antifungal activity, methanol extracts, yeast, mould, Saussurea lappa. ... Caesalpinia pulcherrima.

  17. Pentose utilization in yeasts: Physiology and biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, H.

    1996-04-01

    The fermentive performance of bacteria, yeasts, and filamentous fungi was investigated in a pentose (xylose)-rich lignocellulosic hydrolyzate. The filamentous fungus Fusarium oxysporum and the xylose-fermenting yeast Pichia stipitis were found to be very sensitive to the inhibiting hydrolyzate. Recombinant xylose-utilizing Saccharomyces cerevisiae showed very poor ethanol formation from xylose; xylitol being the major product formed. The highest ethanol yields were obtained with recombinant Escherichia coli KO11, however, for maximal ethanol yield detoxification of the hydrolyzate was required. The influence of oxygen on the regulation of carbohydrate metabolism in the xylose-fermenting yeast P. stipitis CBS 6054 was investigated. A low and well-controlled level of oxygenation has been found to be required for efficient ethanol formation from xylose by the xylose-fermenting yeasts. The requirement of oxygen is frequently ascribed to the apparent redox imbalance which develops under anaerobic conditions due to the difference in co-factor utilization of the two first enzymes in the xylose metabolism, further reflected in xylitol excretion. However, a low and well controlled level of oxygenation for maximal ethanol production from glucose was also demonstrated, suggesting that the oxygen requirement is not only due to the dual co-factor utilization, but also serves other purposes. Cyanide-insensitive and salicyl hydroxamic acid-sensitive respiration (CIR) was found in P. stipitis. CIR is suggested to act as a redox sink preventing xylitol formation in P. stipitis under oxygen-limited xylose fermentations. Xylitol metabolism by P. stipitis CBS 6054 was strictly respiratory and ethanol was not formed under any conditions. The absence of ethanol formation was not due to a lack of fermentative enzymes, since the addition of glucose to xylitol-pregrown cells resulted in ethanol formation. 277 refs, 5 figs, 7 tabs

  18. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  19. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method.

    Science.gov (United States)

    Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo

    2011-08-01

    Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

  20. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  1. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    Science.gov (United States)

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  2. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  3. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate

  4. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  5. Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ji-Fei; Ren, Nan-Qi; Wang, Ai-Jie; Qiu, Jie; Zhao, Qing-Liang; Feng, Yu-Jie; Liu, Bing-Feng [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    A novel mesophilic hydrogen-producing bacterium was isolated from cow dung compost and designated as Clostridium sp. HR-1 by 16S rRNA gene sequence. The optimum condition for hydrogen production by strain HR-1 was pH of 6.5, temperature of 37 C and yeast extract as nitrogen sources. The strain HR-1 has the ability to utilize kinds of hexose and pentose as carbon sources for growth and H{sub 2} production. Cell growth and hydrogen productivity were investigated for batch fermentation on media containing different ratios of xylose and glucose. Glucose was the preferred substrate in the glucose and xylose mixtures. The high glucose fraction had higher cell biomass production rate. The rate of glucose consumption was higher than xylose consumption, and remained essentially constant independent of xylose content of the mixture. The rate of xylose utilization was decreased with increasing of the glucose fraction. The average H{sub 2} yield and specific H{sub 2} production rates with xylose and glucose are 1.63 mol-H{sub 2}/mol xylose and 11.14-H{sub 2} mmol/h g-cdw, and 2.02 mol-H{sub 2}/mol-glucose and 9.37 mmol-H{sub 2}/h g-cdw, respectively. Using the same initial substrate concentration, the maximum average H{sub 2} yield and specific H{sub 2} production rates with the mixtures of 9 g/l xylose and 3 g/l glucose was 2.01 mol-H{sub 2}/mol-mixed sugar and 12.56 mmol-H{sub 2}/h g-cdw, respectively. During the fermentation, the main soluble microbial products were ethanol and acetate which showed trends with the different ratios of xylose and glucose. (author)

  6. Utilization of raw materials from agroindustry – sugar cane juice and yeast extract – for asparaginase production by Zymomonas mobilis CP4/ Uso de matérias primas da agroindústria – garapa e extrato de levedura – na produção de asparaginase por Zymomonas mobilis CP4

    Directory of Open Access Journals (Sweden)

    Maria Antonia Pedrine Colabone Celligoi

    2007-08-01

    Full Text Available Sugar cane juice and yeast extract have been used for asparaginase production by Z. mobilis CP4. A complete factorial design of two variables (yeast extract and asparagin at three levels (1.0; 5.5 and 10.0 g/L with one replication at the central point was used. Batch fermentation utilised sugar cane juice diluted at 8 % (W/V of Total Sugars and an inoculum of 2 mg of cells/mL. After fermentation time of 18 hours, the highest production of asparaginase was 9.75 U/L using both yeast extract (5.5 g/L and asparagin (1.0 g/l.Garapa e extrato de levedura foram usados na produção de asparaginase por Zymomonas mobilis CP4. Na otimização utilizou metodologia de superfície de resposta com 2 variáveis (extrato de levedura e asparagina em 3 níveis (1,0; 5,5 e 10,0 g/L e uma repetição do ponto central. A fermentação em batelada utilizou garapa diluída a 8 % (P/V de Açúcares Totais e inóculo de Zymomonas mobilis CP4 na concentração de 2 mg/mL. Após a fermentação de 18 horas, a maior produção obtida de asparaginase foi de 9,75 U/L em extrato de levedura em 5,5 g/L e asparagina em 1,0 g/L.

  7. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  8. [sup 123]I-iodobenzoylglucosamines: glucose analogues for heart imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, T [British Columbia Univ., Vancouver, BC (Canada). Dept. of Pharmaceutical Sciences; Dougan, H [TRIUMF, Vancouver, BC (Canada); Rihela, T; Vo, C V [Vancouver General Hospital (Canada). Div. of Nuclear Medicine; Lyster, D M [British Columbia Univ., Vancouver, BC (Canada). Dept. of Pharmaceutical Sciences Vancouver General Hospital (Canada). Div. of Nuclear Medicine

    1993-01-01

    The ortho-, meta- and para-[[sup 123]I]-2-deoxy-2-N-(iodobenzoyl)-D-glucosamine (BGA) derivatives were investigated to determine the effect of iodine position and lipophilicity on tissue distribution. There was no correlation between tissue uptake and lipophilicity. Maximum uptake was observed for o-BGA displaying a heart:blood ratio of 36.0 at 18 hours post injection. Yeast hexokinase phosphorylation studies in vitro and an in vivo insulin experiment were carried out on o-BGA. No phosphorylation was detected, but the insulin study indicated that o-BGA uses the glucose transporter. o-BGA showed maximum tissue uptake in mice at an optimal specific activity of 0.004mg/[mu]Ci. Mouse biodistribution studies of o-[[sup 123]I]-iodobenzamide(o-[sup 123]IBA) indicated that the glucose moiety of o-BGA may be involved in the heart accumulation process in mice. Heart tissue extraction studies showed unmetabolized o-[[sup 123]I]BGA was the predominant species. A rabbit image of o-[[sup 123]I]BGA, recorded at 14 hours post injection, showed significant heart uptake. (author).

  9. Effect of Papaya Seed Extract (Carica papaya Linn. on Glucose Transporter 4 (GLUT 4 Expression of Skeletal Muscle Tissue in Diabetic Mice Induced by High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Devyani Diah Wulansari

    2017-08-01

    Full Text Available Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05 in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05, meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.

  10. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L. from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Nathalia F. F. de Sales

    2018-03-01

    Full Text Available Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  11. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells.

    Science.gov (United States)

    de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana

    2018-03-08

    Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  12. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  13. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    Science.gov (United States)

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  15. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    François, J; Parrou, J L

    2001-01-01

    Glycogen and trehalose are the two glucose stores of yeast cells. The large variations in the cell content of these two compounds in response to different environmental changes indicate that their metabolism is controlled by complex regulatory systems. In this review we present information on the regulation of the activity of the enzymes implicated in the pathways of synthesis and degradation of glycogen and trehalose as well as on the transcriptional control of the genes encoding them. cAMP and the protein kinases Snf1 and Pho85 appear as major actors in this regulation. From a metabolic point of view, glucose-6-phosphate seems the major effector in the net synthesis of glycogen and trehalose. We discuss also the implication of the recently elucidated TOR-dependent nutrient signalling pathway in the control of the yeast glucose stores and its integration in growth and cell division. The unexpected roles of glycogen and trehalose found in the control of glycolytic flux, stress responses and energy stores for the budding process, demonstrate that their presence confers survival and reproductive advantages to the cell. The findings discussed provide for the first time a teleonomic value for the presence of two different glucose stores in the yeast cell.

  16. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  17. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  18. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets

    Directory of Open Access Journals (Sweden)

    Lei Long

    2015-12-01

    Full Text Available The object of this study was to explore the regulatory mechanism of octacosanol to the body of animals and the effects of octacosanol on blood hormone levels and gene expressions of glucose transporter protein (GLUT-4 and adenosine monophosphate protein kinase (AMPK in liver and muscle tissue of weaning piglets. A total of 105 crossbred piglets ([Yorkshire × Landrace] × Duroc with an initial BW of 5.70 ± 1.41 kg (21 d of age were used in a 6-wk trial to evaluate the effects of octacosanol and tiamulin supplementation on contents of triiodothyronine (T3, thyroxine (T4, growth hormone (GH, glucagon (GU and adrenaline (AD in blood and gene expressions of GLUT-4 and AMPK in liver and muscle. Piglets were randomly distributed into 3 dietary treatments on the basis of BW and sex. Each treatment had 7 replicate pens with 5 piglets per pen. Treatments were as followed: control group, tiamulin group and octacosanol group. The results showed that compared with control group and tiamulin group, octacosanol greatly promoted the secretion of T3, GH, GU and AD (P  0.05. Results of the present study has confirmed that octacosanol affects energy metabolism of body by regulating secretion of blood hormones and related gene expression in tissue of weaning piglets, which can reduce stress response and has an impact on performance.

  19. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  20. The Effect of Hydroalcoholic Extract of Glycyrrhizaglabra L. (licorice Root on Serum Level of Glucose, Triglyceride and Cholesterol in Polycystic Ovary Syndrome Induced by Letrozole in Rats

    Directory of Open Access Journals (Sweden)

    F Barazesh

    2016-05-01

    Full Text Available Background & aim: Polycystic ovary syndrome (PCOS is the most common endocrine disorder which effects 15.6 %  of women in Iran. Licorice (Glycyrrhizaglabra L. has phytoestrogenic and anti-diabetic effects. The aim of this study was to investigate the effects of hydro-alcoholic Licorice root extract on blood sugar, triglycerides and cholesterol in the rats with PCOS. Methods: In the present experimental study, 50 female puber Sprague dawley (180±20 gr rats with regular sexual cycle were entered in the study.  Studied groups included: first, the Normal group, receiving carrier (normal saline (2 ml/kg daily orally for 21 days. Then, the letrozole group which received letrozole (1 mg/kg dissolved in normal saline (2 ml/kg for 21 days and then normal saline (2 ml/kg daily orally for 30 days. The last groups, Treatment groups 1 and 2, which received letrozole (1 mg/kg dissolved in normal saline (2 ml/kg for 21 days then hydroalcoholic extract of Licorice root (200 and 400 mg/kg dissolved in normal saline (2 ml/kg daily, orally for 30 days respectively. To conclude, blood samples were collected from the heart and also the serum level of blood sugar, triglyceride and cholesterol was measured. The data were analyzed using one-way ANOVA (p< 0.05. Results: The mean serum level of blood sugar increased in the Letrozole group compared to the normal group and decreased in the treatment groups compared to Letrozole group (p< 0.05. No statistically significant differences were seen in mean of serum level of triglyceride and cholesterol between all groups. Conclusion: The licoricecan extract improved the adverse side-effects caused by diabetese in polycystic ovary syndrome However, its effect on dyslipidemia in patients requiring further investigations.

  1. Neuroscience of glucose homeostasis

    NARCIS (Netherlands)

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose

  2. Yeast Infection during Pregnancy

    Science.gov (United States)

    ... disrupt the pH balance of the vagina. Common yeast infection symptoms include vaginal itching and a white, thick discharge that looks ... and Prevention. http://www.cdc.gov/std/tg2015/candidiasis.htm. Accessed Aug. 27, ... Vagina, Cervix, Toxic Shock Syndrome, Endometritis, and Salpingitis. In: ...

  3. Polysome Profile Analysis - Yeast

    Czech Academy of Sciences Publication Activity Database

    Pospíšek, M.; Valášek, Leoš Shivaya

    2013-01-01

    Roč. 530, č. 2013 (2013), s. 173-181 ISSN 0076-6879 Institutional support: RVO:61388971 Keywords : grow yeast cultures * polysome profile analysis * sucrose density gradient centrifugation Subject RIV: CE - Biochemistry Impact factor: 2.194, year: 2013

  4. A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts.

    Science.gov (United States)

    Palma, Margarida; Goffeau, André; Spencer-Martins, Isabel; Baret, Philippe V

    2007-01-01

    A total of 214 members of the sugar porter (SP) family (TC 2.A.1.1) from eight hemiascomycetous yeasts: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Ashbya (Eremothecium) gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Candida albicans and Pichia stipitis, were identified. The yeast SPs were classified in 13 different phylogenetic clusters. Specific sugar substrates could be allocated to nine phylogenetic clusters, including two novel TC clusters that are specific to fungi, i.e. the glycerol:H(+) symporter (2.A.1.1.38) and the high-affinity glucose transporter (2.A.1.1.39). Four phylogenetic clusters are identified by the preliminary fifth number Z23, Z24, Z25 and Z26 and the substrates of their members remain undetermined. The amplification of the SP clusters across the Hemiascomycetes reflects adaptation to specific carbon and energy sources available in the habitat of each yeast species. (c) 2007 S. Karger AG, Basel.

  5. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  6. Performance of dairy goats fed diets with dry yeast from sugar cane as protein source

    Directory of Open Access Journals (Sweden)

    Luciano Soares de Lima

    2012-01-01

    Full Text Available The effects of inactive dry yeast (Saccharomyces cerevisiae from sugar cane were studied in 18 primiparus Saanen dairy goats (51.07±1.43 on dry matter intake and digestibility, milk production and quality. Animals were distributed in a completely randomized design during 90 days (from day 60 of milking. Diets were composed of soybean meal; soybean meal + dry yeast; or dry yeast, as protein sources, and ground corn, mineral supplement and corn silage (40%. Animals fed the dry yeast diet showed lower intake of dry matter (DM, organic matter (OM, crude protein, ether extract and neutral detergent fiber. Diets did not influence milk yield; however the milk production efficiency (kg of milk produced/kg of crude protein ingested was better in goats fed the dry yeast diet. Acidity, somatic cell counts and milk urea nitrogen values were not affected by treatments. Animals fed the soybean + dry yeast diet had higher fat and total solids than those fed the dry yeast diet. The digestibility of DM, OM and total carbohydrate was lower for soybean only and soybean + dry yeast diets. Total digestible nutrients were higher for dry yeast and soy bean diets than soybean + dry yeast diet. Dry yeast from sugar cane is a good alternative protein source for feeding lactating dairy goats and can be recommended because it maintains the production performance.

  7. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  8. Trehalose-6-phosphate synthase and stabilization of yeast glycolysis

    DEFF Research Database (Denmark)

    Fraenkel, Dan; Nielsen, Jens

    2016-01-01

    ‘Lost in transition: Startup of glycolysis yields subpopulations of nongrowing cells…’ (‘LIT’, van Heerden et al. 2014) is a massive paper from groups in Amsterdam and Delft, which deals with broad issues in metabolism and cell heterogeneity, as addressed for the predominant metabolic pathway......, glycolysis, in the context of a long studied but incompletely understood yeast mutant which is impaired in use of glucose without evident direct defects in the pathway. The primary approach is the quite original one of predicting, for the mutant, the dynamics of metabolism upon glucose addition, based...

  9. Metabolism of 2-deoxyglyconic acid in plants and bakers yeast

    International Nuclear Information System (INIS)

    Gakhokidze, R.A.; Beriashvili, L.T.; Chigvinadze, T.D.

    1996-01-01

    During photosynthesis in Phaseolus vulgaris haricot bean and Zea mays leaves, assimilated carbon 14 CO 2 is rapidly incorporated into aldonic acids including 2-deoxygluconic acid whose radioactivity was relatively high. In these plants, radioactive carbon of 2-deoxy-D-gluconic acid prepared from 1-6 14 C-D-glucose is actively involved in the formation of sugars, organic acids, and amino acids. In baking yeast Saccharomyces cerevisiae, the rate of respiration-dependent oxidation of 2-deoxy-D-gluconic acid differs versus the rate of D-glucose oxidation [ru

  10. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    Science.gov (United States)

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  11. Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    OpenAIRE

    Araújo, Cecília Alves; Pacheco, A.; Almeida, M. J.; Martins, I. Spencer; Leão, Cecília; Sousa, M. J.

    2007-01-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields...

  12. ATP regeneration with enzymes of the alcohol fermentation pathway and kinases of yeast and its computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Asada, M; Shirai, Y; Nakanishi, K; Matsuno, R; Kimura, A; Kamikubo, T

    1981-08-01

    Enzymes of the alcohol fermentation pathway, adenosine kinase and adenylate kinase were extracted by incubating acetone-dried yeast cells with a simple reaction medium containing glucose, and subjected to gel filtration to remove the intermediates of alcohol fermentation formed during incubation. By using the enzyme systems as catalysts and glucose as an energy source, ATP was regenerated from adenosine. A minimum concentration of fructose 1,6-bisphosphate (FBP) of 7 mM or of ATP of 10 mM was necessary to initiate the alcohol fermentation; and concentrations of nucleotides changed abruptly with reaction time. These nonlinear phenomena might be due to action of FBPase and/or ATPase as well as the complex multienzyme systems. To understand the experimentally observed phenomena, a mathematical model of the reaction system was proposed which takes into account ATP regeneration. The calculated time-dependent concentrations of glucose, FBP, adenosine and nucleotides were in agreement with experimental values qualitatively as well as quantitatively. Moreover, the nonlinear phenomena, that is, the existence of threshold concentrations of FBP and ATP below which the reaction can not proceed and the steep changes of nucleotide concentrations were also accounted for. These results indicate that the model was quite suitable for this reaction system and useful for predicting the experimental results.

  13. Compounds from Terminalia mantaly L. (Combretaceae Stem Bark Exhibit Potent Inhibition against Some Pathogenic Yeasts and Enzymes of Metabolic Significance

    Directory of Open Access Journals (Sweden)

    Marthe Aimée Tchuente Tchuenmogne

    2017-01-01

    Full Text Available Background: Pathogenic yeasts resistance to current drugs emphasizes the need for new, safe, and cost-effective drugs. Also, new inhibitors are needed to control the effects of enzymes that are implicated in metabolic dysfunctions such as cancer, obesity, and epilepsy. Methods: The anti-yeast extract from Terminalia mantaly (Combretaceae was fractionated and the structures of the isolated compounds established by means of spectroscopic analysis and comparison with literature data. Activity was assessed against Candida albicans, C. parapsilosis and C. krusei using the microdilution method, and against four enzymes of metabolic significance: glucose-6-phosphate dehydrogenase, human erythrocyte carbonic anhydrase I and II, and glutathione S-transferase. Results: Seven compounds, 3,3′-di-O-methylellagic acid 4′-O-α-rhamnopyranoside; 3-O-methylellagic acid; arjungenin or 2,3,19,23-tetrahydroxyolean-12-en-28-oïc acid; arjunglucoside or 2,3,19,23-tetrahydroxyolean-12-en-28-oïc acid glucopyranoside; 2α,3α,24-trihydroxyolean-11,13(18-dien-28-oïc acid; stigmasterol; and stigmasterol 3-O-β-d-glucopyranoside were isolated from the extract. Among those, 3,3′-di-O-methylellagic acid 4′-O-α-rhamnopyranoside, 3-O-methylellagic acid, and arjunglucoside showed anti-yeast activity comparable to that of reference fluconazole with minimal inhibitory concentrations (MIC below 32 µg/mL. Besides, Arjunglucoside potently inhibited the tested enzymes with 50% inhibitory concentrations (IC50 below 4 µM and inhibitory constant (Ki <3 µM. Conclusions: The results achieved indicate that further SAR studies will likely identify potent hit derivatives that should subsequently enter the drug development pipeline.

  14. Evaluation of sugar yeast consumption by measuring electrical medium resistance

    Directory of Open Access Journals (Sweden)

    Martin Lucas Zamora

    2013-12-01

    Full Text Available The real-time monitoring of alcoholic fermentation (sugar consumption is very important in industrial processes. Several techniques (i.e., using a biosensor have been proposed to realize this goal. In this work, we propose a new method to follow sugar yeast consumption. This novel method is based on the changes in the medium resistance (Rm that are induced by the CO2 bubbles produced during a fermentative process. We applied a 50-mV and 700-Hz signal to 75 ml of a yeast suspension in a tripolar cell. A gold electrode was used as the working electrode, whereas an Ag/AgCl electrode and a stainless-steel electrode served as the reference and counter electrodes, respectively. We then added glucose to the yeast suspension and obtained a 700% increase in the Rm after 8 minutes. The addition of sucrose instead of glucose as the carbon source resulted in a 1200% increase in the Rm. To confirm that these changes are the result of CO2 bubbles in the fermentation medium, we designed a tetrapolar cell in which CO2 gas was insufflated at the bottom of the cell and concluded that the changes were due to CO2 bubbles produced during the fermentation. Consequently, this new method is a low-cost and rapid technology to follow the sugar consumption in yeast.

  15. Improved vanillin production in baker's yeast through in silico design

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Matos, Cláudia; Møller, Birger L.

    2010-01-01

    Background: Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has...... recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results: Expression of a glycosyltransferase from Arabidopsis...

  16. Influence of intracellular adenosine-triphosphate concentration of yeast cells on survival following X-irradiation

    International Nuclear Information System (INIS)

    Reinhard, R.D.; Pohlit, W.

    1975-01-01

    The effect of D-glucose, 2-deoxy-D-glucose and starvation in buffer on the ATP-concentration of yeast cells has been studied. In both the wild-type and a respiratory-deficient mutant strain 2-deoxy-D-glucose decreases the value for ATP, while it is enhanced by glucose only in the mutant strain. Populations with different ATP-concentrations have been irradiated. The results suggest that ATP may be an essential factor in the system that determines the length of the shoulder of the dose effect curves. (orig.) [de

  17. Atividade in vitro de extratos brutos de duas espécies vegetais do cerrado sobre leveduras do gênero Candida In vitro activity of crude extracts of two plant species in the Cerrado on yeast of the Candida SPP variety

    Directory of Open Access Journals (Sweden)

    Sônia Maria Ferreira Queiroz e Silva

    2012-06-01

    Full Text Available Objetivou-se conhecer a atividade de Lafoensia pacari e a de Brossimum gaudichaudii, sobre leveduras do gênero Candida isoladas da mucosa vaginal. As leveduras foram isoladas a partir de esfregaço de mucosa vaginal de mulheres com ou sem sintomatologia. Realizou-se os testes de susceptibilidade em duplicata para 34 linhagens de Candida frente aos extratos brutos das espécies vegetais, nas concentrações de 50, 100 e 200 mg.mL-1. Consideraram-se como ativos os extratos que produziram halos de inibição com média a partir de 10 mm. Evidenciou-se atividade antifúngica de B. gaudichaudii na concentração de 200 mg.mL-1, enquanto que a de L. pacari mostrou-se ativo a 50 mg.mL-1. A atividade dos extratos vegetais estudados destacou-se em relação à Nistatina creme (100.000UI/4g utilizada como controle.This work aims to evaluate the activity of Lafoensia Pacari and Brossimum gaudichaudii on yeast of the Candida variety isolated from vaginal mucus. The yeasts were obtained from swabs of women with or without symptoms. Susceptibility testing in duplicate was carried out for 34 strains of Candida compared to crude extracts of plant species at concentrations of 50, 100 and 200 mg.mL-1. Extracts that produced inhibition zones with an average of over 10 mm were considered to be active. Antifungal activity of B. gaudichaudii at a concentration of 200-mg.mL-1 was proven, while that of L. pacari was found to be active at 50 mg.mL-1. The activity of plant extracts was revealed compared to Nystatin cream (100.000UI/4g used for control purposes.

  18. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Nwe Nwe Soe Hlaing; Swe Zin Yu; San San Yu

    2011-12-01

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  19. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  20. An original method for producing acetaldehyde and diacetyl by yeast fermentation

    Directory of Open Access Journals (Sweden)

    Irina Rosca

    Full Text Available Abstract In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color and diacetyl with Brady's reagent (yellow precipitate. The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5 °SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05 mg L-1 acetaldehyde while a total titratable acidity value of 7 °SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58 mg L-1 diacetyl. Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  1. Yeast glycolipid biosurfactants.

    Science.gov (United States)

    Jezierska, Sylwia; Claus, Silke; Van Bogaert, Inge

    2017-10-25

    Various yeasts, both conventional and exotic ones, are known to produce compounds useful to mankind. Ethanol is the most known of these compounds, but more complex molecules such as amphiphilic biosurfactants can also be derived from eukaryotic microorganisms at an industrially and commercially relevant scale. Among them, glycolipids are the most promising, due to their attractive properties and high product titers. Many of these compounds can be considered as secondary metabolites with a specific function for the host. Hence, a dedicated biosynthetic process enables regulation and combines pathways delivering the lipidic moiety and the hydrophilic carbohydrate part of the glycolipid. In this Review, we will discuss the biosynthetic and regulatory aspects of the yeast-derived sophorolipids, mannosylerythritol lipids, and cellobiose lipids, with special emphasis on the relation between glycolipid synthesis and the general lipid metabolism. © 2017 Federation of European Biochemical Societies.

  2. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  3. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    International Nuclear Information System (INIS)

    Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz

    2005-01-01

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP

  4. Single sample extraction and HPLC processing for quantification of NAD and NADH levels in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Sporty, J; Kabir, M M; Turteltaub, K; Ognibene, T; Lin, S; Bench, G

    2008-01-10

    A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, approximately 10{sup 8} yeast cells were harvested by centrifugation and then lysed under non-oxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50-mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH{sub 3}CN + 50-mM ammonium acetate (3:1; v:v) was added to the cell lysates. After sample centrifugation to pellet precipitated proteins, organic solvent removal was performed on supernatants by chloroform extraction. The remaining aqueous phase was dried and resuspended in 50-mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-VIS absorbance detection. Applicability of this procedure for quantifying NAD and NADH levels was evaluated by culturing yeast under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. NAD and NADH contents are similar to previously reported levels in yeast obtained using enzymatic assays performed separately on acid (for NAD) and alkali (for NADH) extracts. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (1) applicable to quantification of these metabolites in mammalian and bacterial cell cultures; and (2) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.

  5. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Science.gov (United States)

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  6. Tapping into yeast diversity.

    Science.gov (United States)

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  7. The Role of PAS Kinase in PASsing the Glucose Signal

    Directory of Open Access Journals (Sweden)

    Julianne H. Grose

    2010-06-01

    Full Text Available PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

  8. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    Ding Wenjun; Qian Qinfang; Hou Xiaolin; Feng Weiyue; Chai Zhifang

    2000-01-01

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  9. Glucose and cardiovascular risk

    NARCIS (Netherlands)

    Fuchs, M.; Hoekstra, J. B. L.; Mudde, A. H.

    2002-01-01

    The American Diabetes Association and the World Health Organisation have recently redefined the spectrum of abnormal glucose tolerance. The criteria for diabetes mellitus were sharpened and impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were classified as intermediate stages

  10. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  11. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  12. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  13. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  14. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    Garcia Pineda, M.D.; Suarez Contreras, C.; Rodrigo Gonzalez, M.E.

    1978-01-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO 2 produced from 14 C -barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  15. Entropy analysis in yeast DNA

    International Nuclear Information System (INIS)

    Kim, Jongkwang; Kim, Sowun; Lee, Kunsang; Kwon, Younghun

    2009-01-01

    In this article, we investigate the language structure in yeast 16 chromosomes. In order to find it, we use the entropy analysis for codons (or amino acids) of yeast 16 chromosomes, developed in analysis of natural language by Montemurro et al. From the analysis, we can see that there exists a language structure in codons (or amino acids) of yeast 16 chromosomes. Also we find that the grammar structure of amino acids of yeast 16 chromosomes has a deep relationship with secondary structure of protein.

  16. Simultaneous measurement of glucose transport and utilization in the human brain

    OpenAIRE

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose tra...

  17. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Science.gov (United States)

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  18. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Directory of Open Access Journals (Sweden)

    Arne Hagman

    Full Text Available Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that

  19. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode

    Energy Technology Data Exchange (ETDEWEB)

    Verduyn, C.; Zomerdijk, T.P.L.; Dijken, J.P. van; Scheffers, W.A.

    1984-03-01

    An alcohol electrode was constructed which consisted of an oxygen probe onto which alcohol oxidase was immobilized. This enzyme electrode was used, in combination with a reference oxygen electrode, to study the short-term kinetics of alcoholic fermentation by aerobic yeast suspensions after pulsing with glucose. The results demonstrate that this device is an excellent tool in obtaining quantitative data on the short-term expression of the Crabtree effect in yeasts. Samples from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae not producing ethanol, immediately (within 2 min) exhibited aerobic alcohol fermentation after being pulsed with excess glucose. With chemostat-grown Candida utilis, however, ethanol production was not detactable even at high sugar concentrations. The Crabtree effect in S. cerevisiae was studied in more detail with commercial baker's yeast. Ethanol formation occurred only at initial glucose concentrations exceeding 150 mgx1/sup -1/, and the rate of alcoholic fermentation increased with increasing glucose concentrations up to 1,000 mgx1/sup -1/ glucose. Similar experiments with batch cultures of certain ''non-fermentative'' yeasts revealed that these organisms are capable of alcoholic fermentation. Thus, even under fully aerobic conditions, Hansenula nonfermentans and Candida buffonii produced ethanol after being pulsed with glucose. In C. buffonii ethanol formation was already apparent at very low glucose concentrations (10 mgx1/sup -1/) and alcoholic fermentation even proceeded at a higher rate than in S. cerevisiae. With Rhodotorula rubra, however, the rate of ethanol formation was below the detection limit, i.e., less than 0.1 mmolxg cells/sup -1/xh/sup -1/.

  20. Kalopanacis Cortex extract-capped gold nanoparticles activate NRF2 signaling and ameliorate damage in human neuronal SH-SY5Y cells exposed to oxygen–glucose deprivation and reoxygenation

    Directory of Open Access Journals (Sweden)

    Park SY

    2017-06-01

    Full Text Available Sun Young Park,1 Seon Yeong Chae,1,2 Jin Oh Park,2 Kyu Jin Lee,2 Geuntae Park1,2 1Bio-IT Fusion Technology Research Institute, 2Department of Nanofusion Technology, Graduate School, Pusan National University, Busan, Republic of Korea Abstract: Recently, environment-friendly synthesis of gold nanoparticles (GNPs has been extensively explored by biologists and chemists. However, significant research is still required to determine whether “eco-friendly” GNPs are beneficial to human health and to elucidate the molecular mechanisms of their effects on human cells. We used human neuronal SH-SY5Y cells to show that treatment with Kalopanacis Cortex extract-capped GNPs (KC-GNs, prepared via an eco-friendly, fast, one-pot synthetic route, protected neuronal cells against oxygen–glucose deprivation/reoxygenation (OGD/R-induced damage. To prepare GNPs, Kalopanacis Cortex was used without any chemical reducing and stabilizing agents. Ultraviolet–visible spectroscopy showed maximum absorbance at 526 nm owing to KC-GN surface plasmon resonance. Hydrodynamic size (54.02±2.19 nm and zeta potential (-20.3±0.04 mV were determined by dynamic light scattering. The average diameter (41.07±3.05 nm was determined by high-resolution transmission electron microscopy. Energy-dispersive X-ray diffraction spectroscopy and X-ray diffraction confirmed the presence of assembled GNPs. Fourier transform infrared analysis suggested that functional groups such as O–H, C–C, and C–N participated in KC-GN formation. Cell viability assays indicated that KC-GNs restored the viability of OGD/R-treated SH-SY5Y cells. Flow cytometry demonstrated that KC-GNs inhibited the OGD/R-induced reactive oxygen species production and mitochondrial membrane potential disruption. KC-GNs also inhibited the apoptosis of OGD/R-exposed cells. Western blot analysis indicated that the OGD/R-induced cellular apoptosis and simultaneous increases in the expression of cleaved caspase-3, p

  1. Genomics and the making of yeast biodiversity

    NARCIS (Netherlands)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-01-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces

  2. Current awareness on yeast.

    Science.gov (United States)

    2002-02-01

    In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (3 weeks journals - search completed 5th. Dec. 2001)

  3. Combined enzyme hydrolysis of cellulose and yeast fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Savarese, J J; Young, S D

    1978-08-01

    The conversion of cellulose, especially waste cellulosics, into utilizable materials, especially liquid fuel, is a most valuable outcome of cellulase technology pioneered at the US Army Laboratories, Natick, Mass. A process design has been proposed by Wilke for the conversion of cellulosic materials to ethanol and single-cell protein (SCP). The estimated ethanol production cost by this process is at the moment slightly more expensive than ethanol derived from petroleum. This paper deals with a process design improvement which will lower production cost for ethanol obtained via a Wilke or similar type system. We report a process by which the cellulase-catalyzed hydrolysis of cellulose to glucose is coupled with the yeast fermentation of the glucose produced to ethanol and SCP. Both processes take place in the same fermentor thus eliminating the need for the separation of glucose and a second reactor.

  4. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  5. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1980-01-01

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  6. Therapeutic role of glucogalactan polysaccharide extracted from ...

    African Journals Online (AJOL)

    RACHEL

    2015-06-17

    Jun 17, 2015 ... The comet assay for DNA revealed that, TMT induced statistically significant .... seed medium containing (g/L) sucrose, 20; yeast extract, 2; ... UV–vis spectroscopy analyses were conducted on ultraviolet– ..... mutations.

  7. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  8. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  9. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk.

    Science.gov (United States)

    Sudun; Wulijideligen; Arakawa, Kensuke; Miyamoto, Mari; Miyamoto, Taku

    2013-01-01

    The interaction between nine lactic acid bacteria (LAB) and five yeast strains isolated from airag of Inner Mongolia Autonomic Region, China was investigated. Three representative LAB and two yeasts showed symbioses were selected and incubated in 10% (w/v) reconstituted skim milk as single and mixed cultures to measure viable count, titratable acidity, ethanol and sugar content every 24 h for 1 week. LAB and yeasts showed high viable counts in the mixed cultures compared to the single cultures. Titratable acidity of the mixed cultures was obviously enhanced compared with that of the single cultures, except for the combinations of Lactobacillus reuteri 940B3 with Saccharomyces cerevisiae 4C and Lactobacillus helveticus 130B4 with Candida kefyr 2Y305. C. kefyr 2Y305 produced large amounts of ethanol (maximum 1.35 g/L), whereas non-lactose-fermenting S. cerevisiae 4C produced large amounts of ethanol only in the mixed cultures. Total glucose and galactose content increased while lactose content decreased in the single cultures of Leuconostoc mesenteroides 6B2081 and Lb. helveticus 130B4. However, both glucose and galactose were completely consumed and lactose was markedly reduced in the mixed cultures with yeasts. The result suggests that yeasts utilize glucose and galactose produced by LAB lactase to promote cell growth. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  10. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  11. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  12. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    1987-01-01

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  13. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  14. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  16. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in saccharomyces pastorianus lager brewing yeast

    NARCIS (Netherlands)

    Brickwedde, A.; van den Broek, M.A.; Geertman, Jan Maarten A.; Magalhães, Frederico; Kuijpers, Niels G.A.; Gibson, Brian; Pronk, J.T.; Daran, J.G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S.

  17. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Alves-Araújo, C; Pacheco, A; Almeida, M J; Spencer-Martins, I; Leão, C; Sousa, M J

    2007-03-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T. delbrueckii PYCC 5321, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T. delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO(2) production and O(2) consumption showed a significantly higher contribution of respiration to the overall metabolism in T. delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T. delbrueckii by the baking industry.

  18. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  19. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Impact of the reg1 mutation glycocen accumulation and glucose consumption rates in Saccharomyces cerevisiae cells based on a macrokinetic model

    Directory of Open Access Journals (Sweden)

    Rocha-Leão M.H.M.

    2003-01-01

    Full Text Available In S. cerevisiae, catabolite repression controls glycogen accumulation and glucose consumption. Glycogen is responsible for stress resistance, and its accumulation in derepression conditions results in a yeast with good quality. In yeast cells, catabolite repression also named glucose effect takes place at the transcriptional levels, decreasing enzyme respiration and causing the cells to enter a fermentative metabolism, low cell mass yield and yeast with poor quality. Since glucose is always present in molasses the glucose effect occurs in industrial media. A quantitative characterization of cell growth, substrate consumption and glycogen formation was undertaken based on an unstructured macrokinetic model for a reg1/hex2 mutant, capable of the respiration while growing on glucose, and its isogenic repressible strain (REG1/HEX2. The results show that the estimated value to maximum specific glycogen accumulation rate (muG,MAX is eight times greater in the reg1/hex2 mutant than its isogenic strain, and the glucose affinity constant (K SS is fifth times greater in reg1/hex2 mutant than in its isogenic strain with less glucose uptake by the former channeling glucose into cell mass growth and glycogen accumulation simultaneously. This approach may be one more tool to improve the glucose removal in yeast production. Thus, disruption of the REG1/HEX2 gene may constitute an important strategy for producing commercial yeast.

  1. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  2. Initiation of proteolysis of yeast fructose-1,6-bisphosphatase by pH-control of adenylate cyclase

    International Nuclear Information System (INIS)

    Holzer, H.; Purwin, C.; Pohlig, G.; Scheffers, W.A.; Nicolay, K.

    1986-01-01

    Addition of fermentable sugars or uncouplers such as CCCP to resting yeast cells grown on glucose initiates phosphorylation of fructose-1,6-bisphosphatase (FBPase). There is good evidence that phosphorylation marks FBPase for proteolytic degradation. 31 P-NMR measurements of the cytosolic pH of yeast cells demonstrated a decrease of the cytosolic pH from 7.0 to 6.5 after addition of glucose or CCCP to starved yeast. Activity of adenylate cyclase in permeabilized yeast cells increases 2-3-fold when the pH is lowered from 7.0 to 6.5. It is concluded that pH controlled activation of adenylate cyclase causes the previously described increase in cyclic AMP which leads to phosphorylation of FBPase and finally to proteolysis of FBPase

  3. Brewer's Yeast Improves Glycemic Indices in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Hosseinzadeh, Payam; Javanbakht, Mohammad Hassan; Mostafavi, Seyed-Ali; Djalali, Mahmoud; Derakhshanian, Hoda; Hajianfar, Hossein; Bahonar, Ahmad; Djazayery, Abolghassem

    2013-10-01

    Brewer's yeast may have beneficial effects on insulin receptors because of itsglucose tolerance factor in diabetic patients. This study was conducted to investigate the effects of brewer's yeast supplementation on glycemic indices in patients with type 2 diabetes mellitus. In a randomized double-blind controlled clinical trial, 84 adults (21 men and 63 women) aged 46.3 ± 6.1 years old with type 2 diabetes mellitus were recruited and divided randomly into two groups: Supplement group receiving brewer's yeast (six 300mg tablets/day, total 1800 mg) and control group receiving placebo (six 300mg tablets/day) for 12 weeks. Body weight, height, body mass index, food consumption (based on 24h food record), fasting blood sugar (FBS), glycosylated hemoglobin, insulin sensitivity, and insulin resistance were measured before and after the intervention. Data analysis was performed using the Statistical Package for Social Sciences (version 18.0). The changes in FBS, glycosylated hemoglobin, and insulin sensitivity were significantly different between the two groups during the study (respectively P brewer›s yeast besides the usual treatment of diabetes can ameliorate blood glucose variables in type 2 diabetes mellitus.

  4. Genetic study on yeast

    International Nuclear Information System (INIS)

    Mortimer, R.K.

    1981-01-01

    Research during the past year has moved ahead on several fronts. A major compilation of all the genetic mapping data for the yeast Saccharomyces cerevisiae has been completed. The map describes the location of over 300 genes on 17 chromosomes. A report on this work will appear in Microbiological Reviews in December 1980. Recombinant DNA procedures have been introduced into the experiments and RAD52 (one of the genes involved in recombination and repair damage), has been successfully cloned. This clone will be used to determine the gene product. Diploid cells homozygous for RAD52 have exceptionally high frequencies of mitotic loss of chromosomes. This loss is stimulated by ionizing radiation. This effect is a very significant finding. The effect has also been seen with certain other RAD mutants

  5. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  6. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  7. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  8. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Yao, Shuo

    2012-01-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...... the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UVinduced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more...

  9. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  10. Glucose recovery after intranasal glucagon during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Djurup, R; Hilsted, J

    1994-01-01

    to exceed 3 mmol.l-1 was significantly shorter for i.m. glucagon. The mean plasma glucagon level increased faster after i.m. glucagon than after intranasal glucagon, and the levels remained higher throughout the study period. We conclude that glucose recovery was significantly better after i...... endogenous glucose counterregulation, and glucose turnover was estimated by a 3-[3H]-glucose infusion. When hypoglycaemia was reached, the subjects received either i.m. glucagon of pancreatic extraction (1 mg) or intranasal genetically engineered glucagon (2 mg). The incremental values for plasma glucose...... concentrations 15 min after intranasal and i.m. administration of glucagon differed marginally. However, after 5 min the glucose appearance rate, as well as the incremental values for plasma glucose, were significantly higher for the i.m. glucagon treatment. The mean time taken for incremental plasma glucose...

  11. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Yeasts preservation: alternatives for lyophilisation

    OpenAIRE

    Nyanga, Loveness K.; Nout, Martinus J. R.; Smid, Eddy J.; Boekhout, Teun; Zwietering, Marcel H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cak...

  13. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  14. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified

  15. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  17. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes involved

  18. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  19. Yeast Carbon Catabolite Repression†

    Science.gov (United States)

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  20. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Understanding start-up problems in yeast glycolysis.

    Science.gov (United States)

    Overal, Gosse B; Teusink, Bas; Bruggeman, Frank J; Hulshof, Josephus; Planqué, Robert

    2018-05-01

    Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient concentration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance. We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis is parameter-free, i.e., without assigning a numerical value to any of the parameters. The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states, but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the

  2. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  3. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  4. Structural investigations of yeast mannans

    International Nuclear Information System (INIS)

    Rademacher, K.H.

    1983-01-01

    Cell wall mannans were isolated from 8 different Candida species and separated in oligosaccharides by partial acetolysis. After gel chromatography specific acetolysis patterns were obtained. The 13 C NMR spectra of mannans and oligosaccharides were recorded. Signals at delta = 93.1 - 105.4 were assigned to certain chemical structures. Both the spectral patterns and the acetolysis patterns of the yeast mannans can be used for the discrimination of related yeasts. (author)

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose High levels of sugar in the urine Frequent urination Increased thirst Part of managing your ... glucose is above 240 mg/dl, check your urine for ketones. If you have ketones, do not ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... can often lower your blood glucose level by exercising. However, if your blood glucose is above 240 ... ketones. If you have ketones, do not exercise. Exercising when ketones are present may make your blood ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  12. Oral yeast colonization throughout pregnancy.

    Science.gov (United States)

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  13. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  14. [Blood glucose self monitoring].

    Science.gov (United States)

    Wascher, Thomas C; Stechemesser, Lars

    2016-04-01

    Self monitoring of blood glucose contributes to the integrated management of diabetes mellitus. It, thus, should be available for all patients with diabetes mellitus type-1 and type-2. Self monitoring of blood glucose improves patients safety, quality of life and glucose control. The current article represents the recommendations of the Austrian Diabetes Association for the use of blood glucose self monitoring according to current scientific evidence.

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Carbohydrate Counting Make Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type ... Checking Your Blood Glucose A1C and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... how often you should check and what your blood glucose levels should be. Checking your blood and then treating ... I Treat Hyperglycemia? You can often lower your blood glucose level by exercising. However, if your blood glucose is ...

  17. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  18. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  19. β-glucan extract from oat bran and its industrial importance

    Science.gov (United States)

    Ibrahim, M. N. G.; Selezneva, I. S.

    2017-09-01

    The β-Glucan exhibits a broad spectrum of biological activity, for example it is highly active against many chronic diseases such as diabetes millets, cancer and improper digestion. The β-Glucan is a polysaccharide of D-glucose. It has many different sources of extraction such as yeasts, cereals, fungus and some bacteria. The extraction of the β-Glucan has become so important in our days, because the β-Glucan is a natural substance which can be used in pharmaceutical products for prevention and treatment of many chronic diseases. As well, many food producers have interest to introduce the β-Glucan in many food products, like dairy, meat and bakery products. Taking into consideration the foregoing, we tried to isolate the β-Glucan from oat bran using the acid method of extraction. Some modifications were offered to increase the β-Glucan concentration in the final extract and increase the total extract yield. As a result, the extracts with two different concentrations 72 % and 90 % were obtained with the yields 3.14 % and 4.4 % respectively. It should be noted that the β-Glucan addition into food products can improve their quality and physical properties. Thus, the β-Glucan is now of great importance for maintaining the consumers health by functional food products.

  20. The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose

    Science.gov (United States)

    Funk, Alexander M.; Anderson, Brian L.; Wen, Xiaodong; Hever, Thomas; Khemtong, Chalermchai; Kovacs, Zoltan; Sherry, A. Dean; Malloy, Craig R.

    2017-11-01

    This study was designed to determine whether perdeuterated glucose experiences a kinetic isotope effect (KIE) as glucose passes through glycolysis and is further oxidized in the tricarboxylic acid (TCA) cycle. Metabolism of deuterated glucose was investigated in two groups of perfused rat hearts. The control group was supplied with a 1:1 mixture of [U-13C6]glucose and [1,6-13C2]glucose, while the experimental group received [U-13C6,U-2H7]glucose and [1,6-13C2]glucose. Tissue extracts were analyzed by 1H, 2H and proton-decoupled 13C NMR spectroscopy. Extensive 2H-13C scalar coupling plus chemical shift isotope effects were observed in the proton-decoupled 13C NMR spectra of lactate, alanine and glutamate. A small but measureable (∼8%) difference in the rate of conversion of [U-13C6]glucose vs. [1,6-13C2]glucose to lactate, likely reflecting rates of Csbnd C bond breakage in the aldolase reaction, but conversion of [U-13C6]glucose versus [U-13C6,U-2H7]glucose to lactate did not differ. This shows that the presence of deuterium in glucose does not alter glycolytic flux. However, there were two distinct effects of deuteration on metabolism of glucose to alanine and oxidation of glucose in the TCA. First, alanine undergoes extensive exchange of methyl deuterons with solvent protons in the alanine amino transferase reaction. Second, there is a substantial kinetic isotope effect in metabolism of [U-13C6,U-2H7]glucose to alanine and glutamate. In the presence of [U-13C6,U-2H7]glucose, alanine and lactate are not in rapid exchange with the same pool of pyruvate. These studies indicate that the appearance of hyperpolarized 13C-lactate from hyperpolarized [U-13C6,U-2H7]glucose is not substantially influenced by a deuterium kinetic isotope effect.

  1. Strategy for Adapting Wine Yeasts for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Kevin R. Lankford

    2009-01-01

    Full Text Available The Saccharomyces cerevisiae wine yeast strains 71B-1122 and K1-V1116 were used to derive strains that could tolerate and produce higher ethanol yields. Respiratory-deficient mutants resistant to 500 mg/mL lycorine were isolated. Two mutants, 71B-1122 YEBr L3 and K1-V1116 YEBr L4, were shown to achieve about 10% and 18% improvement in their glucose-to-ethanol conversion efficiency compared to their respective parent strains. The K1-V1116 YEBr L4 in particular can tolerate an ethanol yield of 18.8 ± 0.8% at 3.5 weeks of fermentation and continued to consume most of the sugar until less than 1% glucose was left.

  2. Influence of cyanide on diauxic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Smrcinova, Miroslava; Sørensen, Preben Graae

    2012-01-01

    Coherent glycolytic oscillations in Saccharomyces cerevisiae are a multicellular property induced by addition of glucose to a starved cell population of sufficient density. However, initiation of oscillations requires an additional perturbation, usually addition of cyanide. The fate of cyanide...... during glycolytic oscillations has not previously been studied, and is the subject of the present paper. Using a cyanide electrode, a substantial decrease in cyanide concentration was observed. In the pH range 6-7, we found experimentally that the electrode behaves reasonably well, provided changes in p......H are taken into account. To our knowledge, use of a cyanide electrode to study cyanide dynamics in living biological systems is new. Cyanide was found to enter starving yeast cells in only negligible amounts, and did not react significantly with glucose. Thus, cyanide consumption must be explained...

  3. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F.

    2000-01-01

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  4. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System

    OpenAIRE

    Kuranuki, Sachi; Sato, Toshiyuki; Okada, Seiki; Hosoya, Samiko; Seko, Akinobu; Sugihara, Kaya; Nakamura, Teiji

    2013-01-01

    Objective: To develop a minimally invasive interstitial fluid extraction technology (MIET) to monitor postprandial glucose area under the curve (AUC) without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Methods: Interstitial fluid glucose AUC (IG-AUC) following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the are...

  5. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  6. Preparation of Total RNA from Fission Yeast.

    Science.gov (United States)

    Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Treatment with hot phenol breaks open fission yeast cells and begins to strip away bound proteins from RNA. Deproteinization is completed by multiple extractions with chloroform/isoamyl alcohol and separation of the aqueous and organic phases using MaXtract gel, an inert material that acts as a physical barrier between the phases. The final step is concentration of the RNA by ethanol precipitation. The protocol can be used to prepare RNA from several cultures grown in parallel, but it is important not to process too many samples at once because delays can be detrimental to RNA quality. A reasonable number of samples to process at once would be three to four for microarray or RNA sequencing analyses and six for preliminary investigations of mutants implicated in RNA metabolism. © 2017 Cold Spring Harbor Laboratory Press.

  7. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  8. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.

    Science.gov (United States)

    Aris, John P; Alvers, Ashley L; Ferraiuolo, Roy A; Fishwick, Laura K; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T; Losin, Kyle J; Marraffini, Michelle; Seo, Arnold Y; Swanberg, Veronica; Westcott, Jennifer L; Wood, Michael S; Leeuwenburgh, Christiaan; Dunn, William A

    2013-10-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. S-adenosylmethionine decarboxylase from baker's yeast.

    Science.gov (United States)

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  10. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Science.gov (United States)

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  11. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  12. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  13. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Löbs

    2017-09-01

    Full Text Available Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  14. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  15. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  16. [Yeast species in vulvovaginitis candidosa].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  17. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  18. Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF).

    Science.gov (United States)

    Nagano, Yuriko; Millar, B Cherie; Goldsmith, Colin E; Walker, James M; Elborn, J Stuart; Rendall, Jackie; Moore, John E

    2008-11-01

    Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B(+) were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B(+) allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B(+) to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B(+) had a

  19. Screening studies of yeasts capable of utilizing petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    El-Masry, H.G.; Foda, M.S.

    1979-01-01

    In these studies 23 yeasts cultures belonging to 10 genera of ascosporogenous, ballistosporogenous, and asporogenous yeasts, were screened with respect to their abilities of hydrocarbon utilization in synthetic media. Thus, kerosene, n-hexadecane, and wax distillate were compared as sole carbon sources in 2% final concentration. Kerosene exhibited marked inhibition on the growth of the majority of the strains, whereas active growth was observed with Debaryomyces vanrijii and many species of the genus Candida in media with n-hexadecane or wax distillate as sole source of carbon. In addition, some cultures belonging to the genera Sporobolomyces, Hansenula, Cryptococcus, and Trigonopsis could utilize some of these substrates, but to a lesser extent. Highest yield of cells and protein was obtained with Candida lipolytica NRRL 1094 in n-hexadecane medium, supplied with 0.03% yeast extract and trace element solutions. The results are discussed with respect to the possibilities of using new yeast genera, with special reference to the genus Debaryomyces, in microbial protein production.

  20. Maintaining a Physiological Blood Glucose Level with ‘Glucolevel’, a Combination of Four Anti-Diabetes Plants Used in the Traditional Arab Herbal Medicine

    Directory of Open Access Journals (Sweden)

    Omar Said

    2008-01-01

    Full Text Available Safety and anti-diabetic effects of Glucolevel, a mixture of dry extract of leaves of the Juglans regia L, Olea europea L, Urtica dioica L and Atriplex halimus L were evaluated using in vivo and in vitro test systems. No sign of toxic effects (using LDH assay were seen in cultured human fibroblasts treated with increasing concentrations of Glucolevel. Similar observations were seen in vivo studies using rats (LD50: 25 g/kg. Anti-diabetic effects were evidenced by the augmentation of glucose uptake by yeast cells (2-folds higher and by inhibition of glucose intestinal absorption (∼49% in a rat gut-segment. Furthermore, treatment with Glucolevel of Streptozotocin-induced diabetic rats for 2–3 weeks showed a significant reduction in glucose levels [above 400 ± 50 mg/dl to 210 ± 22 mg/dl (P < 0.001] and significantly improved sugar uptake during the glucose tolerance test, compared with positive control. In addition, glucose levels were tested in sixteen human volunteers, with the recent onset of type 2 diabetes mellitus, who received Glucolevel tablets 1 × 3 daily for a period of 4 weeks. Within the first week of Glucolevel consumption, baseline glucose levels were significantly reduced from 290 ± 40 to 210 ± 20 mg/dl. At baseline, a subgroup of eleven of these subjects had glucose levels below 300 mg% and the other subgroup had levels ≥ 300 mg%. Clinically acceptable glucose levels were achieved during the 2–3 weeks of therapy in the former subgroup and during the 4th week of therapy in the latter subgroup. No side effect was reported. In addition, a significant reduction in hemoglobin A1C values (8.2 ± 1.03 to 6.9 ± 0.94 was found in six patients treated with Glucolevel. Results demonstrate safety, tolerability and efficacy of herbal combinations of four plants that seem to act differently but synergistically to regulate glucose-homeostasis.

  1. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  2. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  3. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  5. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  6. Degradation and Turnover of Peroxisomes in the Yeast Hansenula polymorpha Induced by Selective Inactivation of Peroxisomal Enzymes

    NARCIS (Netherlands)

    Veenhuis, Marten; Douma, Anneke; Harder, Willem; Osumi, Masako

    1983-01-01

    Inactivation of peroxisomal enzymes in the yeast Hansenula polymorpha was studied following transfer of cells into cultivation media in which their activity was no longer required for growth. After transfer of methanol-grown cells into media containing glucose - a substrate that fully represses

  7. Alcoholic glucose and xylose fermentations by the coculture process: Compatability and typing of associated strains

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, J.M.; Delgenes, J.P.; Moletta, R. (Institut national de la recherche agronomique, Narbonne (France)); Navarro, J.M. (Universite de Montpellier (France))

    1992-01-01

    As part of the simulaneous fermentation of both glucose and xylose to ethanol by a coculture process, compatibilities between xylose-fermenting yeasts and glucose-fermenting species were investigated. Among the Saccharomyces species tested, none inhibited growth of the xylose-fermenting yeasts. By contrast, many xylose-fermenting yeasts, among the 11 tested, exerted an inhibitory effect on growth of the selected Saccharomyces species. Killer character was demonstrated in three strains of Pichia stipitis. Such strains, despite their high fermentative performances, cannot be used to ferment D-xylose in association with the selected Saccharomyces species. From compatibility tests between xylose-fermenting yeasts and Saccharomyces species, pairs of microorganisms suitable for simultaneous xylose and glucose fermentations by coculture are proposed. Strains associated in the coculture process are distinguished by their resistance to mitochondrial inhibitors. The xylose-fermenting yeasts are able to grow on media containing erythromycin (1 g/l) or diuron (50 mg/l), whereas, the Saccharomyces species are inhibited by these mitochondrial inhibitors. 15 refs., 2 figs., 3 tabs.

  8. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.

    Science.gov (United States)

    Costa, Carlos E; Romaní, Aloia; Cunha, Joana T; Johansson, Björn; Domingues, Lucília

    2017-03-01

    In this work, four robust yeast chassis isolated from industrial environments were engineered with the same xylose metabolic pathway. The recombinant strains were physiologically characterized in synthetic xylose and xylose-glucose medium, on non-detoxified hemicellulosic hydrolysates of fast-growing hardwoods (Eucalyptus and Paulownia) and agricultural residues (corn cob and wheat straw) and on Eucalyptus hydrolysate at different temperatures. Results show that the co-consumption of xylose-glucose was dependent on the yeast background. Moreover, heterogeneous results were obtained among different hydrolysates and temperatures for each individual strain pointing to the importance of designing from the very beginning a tailor-made yeast considering the specific raw material and process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  10. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  11. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  12. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.

    Science.gov (United States)

    Coi, A L; Bigey, F; Mallet, S; Marsit, S; Zara, G; Gladieux, P; Galeote, V; Budroni, M; Dequin, S; Legras, J L

    2017-04-01

    The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence. © 2017 John Wiley & Sons Ltd.

  13. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    Science.gov (United States)

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  15. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  17. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  18. Yeast genomics on food flavours

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung Ah

    2005-01-01

    The appearance and concentration of the fusel alcohol 3-methyl-1-butanol is important for the flavour of fermented foods. 3-Methyl-1-butanol is formed by yeast during the conversion of L-leucine. Identification of the enzymes and genes involved in the formation of 3-methyl-1-butanol is a major

  19. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Science.gov (United States)

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  20. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Directory of Open Access Journals (Sweden)

    De Lucia Marzia

    2010-09-01

    Full Text Available Abstract Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1, lipid/biomass (68% and lipid/glucose yields (16%. Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils.

  1. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.

    Science.gov (United States)

    Liepins, Janis; Kovačova, Elena; Shvirksts, Karlis; Grube, Mara; Rapoport, Alexander; Kogan, Grigorij

    2015-07-20

    Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  3. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations

    DEFF Research Database (Denmark)

    Møller, Kasper; Sharif, M.Z.; Olsson, Lisbeth

    2004-01-01

    Heterologous protein production by the yeast Saccharomyces kluyveri was investigated under aerobic glucose-limited conditions. alpha-Amylase from Aspergillus oryzae was used as model protein and the gene was expressed from a S. cerevisiae 2 mu plasmid. For comparison, strains of both S. kluyveri ...

  4. Effects of yeast stress and pH on 3-monochloropropanediol (3-MCPD)-producing reactions in model dough systems.

    Science.gov (United States)

    Hamlet, C G; Sadd, P A

    2005-07-01

    A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.

  5. Over-expressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters.

    Science.gov (United States)

    Vidgren, Virve; Londesborough, John

    2018-05-31

    Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were over-expressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and over-expressed transporters for access to the plasma membrane. This article is protected by copyright. All rights reserved.

  6. Yeast effects on Pinot noir wine phenolics, color, and tannin composition.

    Science.gov (United States)

    Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G

    2013-10-16

    Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics.

  7. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Campbell, S.L.; Jones, K.A.; Schulman, R.G.

    1985-01-01

    31 P saturation transfer techniques have been used to measure phosphate kinetics in the yeast Saccharomyces cerevisiae. The phosphate comsumption rate observed in acetate grown mid-log cells was combined with measurements of O 2 consumption to yield P/O ratios of 2.2 and 2.9, for cells respiring on glucose and ethanol, respectively. However, no phosphate consumption activity was observed in saturation transfer experiments on anaerobic glucose fed cells. The phosphate consumption rates measured by saturation transfer in cells respiring on glucose and ethanol was attributed to the unidirectional rates of mitochondrial ATP synthesis. (Auth.)

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page ... and-how-tos, . In this section Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood ...

  9. Blood Glucose Determination

    DEFF Research Database (Denmark)

    Lippi, Giuseppe; Nybo, Mads; Cadamuro, Janne

    2018-01-01

    The measurement of fasting plasma glucose may be biased by a time-dependent decrease of glucose in blood tubes, mainly attributable to blood cell metabolism when glycolysis is not rapidly inhibited or blood cells cannot be rapidly separated from plasma. Although glycolysis inhibitors such as sodium...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for ... is checking your blood glucose often. Ask your doctor how often you should ... associated with hyperglycemia. How Do I Treat Hyperglycemia? ...

  11. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  12. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  13. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    Science.gov (United States)

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  14. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  15. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with