WorldWideScience

Sample records for glucose uptake activity

  1. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  2. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C-glucose

  3. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  4. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  5. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  6. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  7. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  8. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    Science.gov (United States)

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Study on kinetics of glucose uptake by some species of plankton

    Science.gov (United States)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  10. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P

    1995-01-01

    fraction of the activation-induced excess glucose uptake. These data confirm earlier reports that brain activation can induce resetting of the cerebral oxygen/glucose consumption ratio, and indicate that the resetting persists for a long period after cerebral activation has been terminated and physiologic......Global cerebral blood flow (CBF), global cerebral metabolic rates for oxygen (CMRO2), and for glucose (CMRglc), and lactate efflux were measured during rest and during cerebral activation induced by the Wisconsin card sorting test. Measurements were performed in healthy volunteers using the Kety......-Schmidt technique. Global CMRO2 was unchanged during cerebral activation, whereas global CBF and global CMRglc both increased by 12%, reducing the molar ratio of oxygen to glucose consumption from 6.0 during baseline conditions to 5.4 during activation. Data obtained in the period following cerebral activation...

  11. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  12. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  13. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  14. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    Science.gov (United States)

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  15. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...... of glucose. At maximal insulin concentrations, the enhancing effect of exercise on glucose uptake may involve enhancement of glucose disposal, an effect that is probably less in muscle from diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)......It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise...

  16. effect of adrenaline on glucose uptake by the canine large bowel

    African Journals Online (AJOL)

    lower metabolic activity in the colon. From the results we concluded that the colon is involved in glucose homeostasis and that the colonic increase in glucose uptake in response to adrenaline is mediated by alpha and beta adrenergic receptors. KEYWORDS: :Adrenaline, glucose uptake, colon, dog, adrenergic receptors.

  17. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    Science.gov (United States)

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  18. Rac1--a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2014-12-01

    Muscle contraction stimulates muscle glucose uptake by facilitating translocation of glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibres. The intracellular mechanisms regulating this process are not well understood. The GTPase Rac1 has, until recently, been investigated only with regard to its involvement in insulin-stimulated glucose uptake. However, we recently found that Rac1 is activated during muscle contraction and exercise in mice and humans. Remarkably, Rac1 seems to be necessary for exercise and contraction-stimulated glucose uptake in skeletal muscle, because muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake. The molecular mechanism by which Rac1 regulates glucose uptake is presently unknown. However, recent studies link Rac1 to the actin cytoskeleton, the small GTPase RalA and/or free radical production, which have previously been shown to be regulators of glucose uptake in muscle. We propose a model in which Rac1 is activated by contraction- and exercise-induced mechanical stress signals and that Rac1 in conjunction with other signalling regulates glucose uptake during muscle contraction and exercise. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  19. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  20. Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Sylow, Lykke; Jensen, Thomas E.; Kleinert, Maximilian; Mouatt, Joshua R.; Maarbjerg, Stine J.; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T.; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A.

    2013-01-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (∼60–100%) and humans (∼40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20–58% in extensor digitorum longus (EDL; P Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake. PMID:23274900

  1. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  2. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    Science.gov (United States)

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Beta2- and beta3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement?

    Science.gov (United States)

    Hutchinson, Dana S; Summers, Roger J; Gibbs, Marie E

    2007-11-01

    Isoprenaline, acting at beta-adrenoceptors (ARs), enhances memory formation in single trial discriminated avoidance learning in day-old chicks by mechanisms involving alterations in glucose and glycogen metabolism. Earlier studies of memory consolidation in chicks indicated that beta3-ARs enhanced memory by increasing glucose uptake, whereas beta2-ARs enhance memory by increasing glycogenolysis. This study examines the ability of beta-ARs to increase glucose uptake in chick forebrain astrocytes. The beta-AR agonist isoprenaline increased glucose uptake in a concentration-dependent manner, as did insulin. Glucose uptake was increased by the beta2-AR agonist zinterol and the beta3-AR agonist CL316243, but not by the beta1-AR agonist RO363. In chick astrocytes, reverse transcription-polymerase chain reaction studies showed that beta1-, beta2-, and beta3-AR mRNA were present, whereas radioligand-binding studies showed the presence of only beta2- and beta3-ARs. beta-AR or insulin-mediated glucose uptake was inhibited by phosphatidylinositol-3 kinase and protein kinase C inhibitors, suggesting a possible interaction between the beta-AR and insulin pathways. However beta2- and beta3-ARs increase glucose uptake by two different mechanisms: beta2-ARs via a Gs-cAMP-protein kinase A-dependent pathway, while beta3-ARs via interactions with Gi. These results indicate that activation of beta2- and beta3-ARs causes glucose uptake in chick astrocytes by distinct mechanisms, which may be relevant for memory enhancement.

  4. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  5. Rac1- a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2014-01-01

    -stimulated glucose uptake in skeletal muscle, since muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake in skeletal muscle. The molecular mechanisms by which Rac1 regulate glucose uptake is presently unknown. However, recent studies link Rac1......Muscle contraction stimulates muscle glucose uptake by facilitating translocation of the glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibers. However, the intracellular mechanisms regulating this process are not well...... understood. The GTPase, Rac1 has, until recently, only been investigated with regards to its involvement in insulin-stimulated glucose uptake. However, we recently found that Rac1 is activated during muscle contraction and exercise in mice and humans. Remarkably, Rac1 seems to be necessary for exercise/contraction...

  6. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  7. Rabbit hindlimb glucose uptake assessed with positron-emitting fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Rowe, R.W.; Tewson, T.J.; Taegtmeyer, H.

    1989-01-01

    The feasibility of estimating skeletal muscle glucose uptake in vivo was examined by using the glucose analogue 2-[ 18 F]deoxy-2-fluoro-D-glucose (2-[ 18 F]FDG) in the rabbit hindlimb. A pair of collimated coincidence gamma photon detectors was used to monitor the accumulation of tracer in the tissue after 2-[ 18 F]FDG injection. Time-activity curves were generated on a second-by-second basis under control conditions, during increased contractile activity, or hyperinsulinemia. The arterial input of 2-[ 18 F]FDG, plasma glucose, lactate, free fatty acids, and insulin were determined. A graphical (Patlak plot) procedure was used to determine the fractional rate of tracer phosphorylation and therefore trapping in the muscle. From the graphical analysis, the estimated rate of glucose phosphorylation (R) in the unperturbed state was calculated to be 0.037 mumol.min-1.ml-1 of tissue. During perturbation by electrical stimulation, an increase in the rate of tracer phosphorylation (K) was observed. No change in the rate of tracer phosphorylation was observed during hyperinsulinemia. The results support the use of 2-[ 18 F]FDG and the graphical procedure for the noninvasive assessment of glucose uptake by skeletal muscle in vivo. The method described is sensitive to changes in the rate of tracer uptake with respect to time and physiological interventions

  8. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture

    DEFF Research Database (Denmark)

    Benrick, Anna; Kokosar, Milana; Hu, Min

    2017-01-01

    was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS...... of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M......., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture....

  9. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    Science.gov (United States)

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  11. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    International Nuclear Information System (INIS)

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-01-01

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2- 3 H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased V max but not K m of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  12. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jialin [Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Slitt, Angela L., E-mail: aslitt@uri.edu [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States)

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 μM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 μg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 μM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. - Highlights: • PFOS induces adipogenesis in association

  13. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  14. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    Science.gov (United States)

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  16. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  17. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    Science.gov (United States)

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (ptea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ. Copyright © 2015 the American Physiological Society.

  19. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  20. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  1. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-01-01

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance

  2. Activation of muscarinic M-1 cholinoceptors by curcumin to increase glucose uptake into skeletal muscle isolated from Wistar rats.

    Science.gov (United States)

    Cheng, Tse-Chou; Lin, Chian-Shiung; Hsu, Chih-Chieh; Chen, Li-Jen; Cheng, Kai-Chun; Cheng, Juei-Tang

    2009-11-20

    Curcumin, an active principle contained in rhizome of Curcuma longa, has been mentioned to show merit for diabetes through its anti-oxidative and anti-inflammatory properties. In the present study, we found that curcumin caused a concentration-dependent increase of glucose uptake into skeletal muscle isolated from Wistar rats. This action was inhibited by pirenzepine at concentration enough to block muscarinic M-1 cholinoceptor (M(1)-mAChR). In radioligand binding assay, the binding of [(3)H]-pirenzepine was also displaced by curcumin in a concentration-dependent manner. In the presence of inhibitors for PLC-PI3K pathway, either U73122 (phospholipase C inhibitor) or LY294002 (phosphoinositide 3-kinase inhibitor), curcumin-stimulated glucose uptake into skeletal muscle was markedly reduced. In Western blotting analysis, the membrane protein level of glucose transporter 4 (GLUT4) increased by curcumin was also reversed by blockade of M(1)-mAChR or PLC-PI3K pathway in a same manner. In conclusion, the obtained results suggest that curcumin can activate M(1)-mAChR at concentrations lower than to scavenge free radicals for increase of glucose uptake into skeletal muscle through PLC-PI3-kinase pathway.

  3. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  4. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    Science.gov (United States)

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  5. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise

    Directory of Open Access Journals (Sweden)

    Rodrigo Martins Pereira

    2017-05-01

    Full Text Available Abstract Glucose uptake is an important phenomenon for cell homeostasis and for organism health. Under resting conditions, skeletal muscle is dependent on insulin to promote glucose uptake.Insulin, after binding to its membrane receptor, triggers a cascade of intracellular reactions culminating in activation of the glucose transporter 4, GLUT4, among other outcomes.This transporter migrates to the plasma membrane and assists in glucose internalization.However, under special conditions such as physical exercise, alterations in the levels of intracellular molecules such as ATP and calcium actto regulate GLUT4 translocation and glucose uptake in skeletal muscle, regardless of insulinlevels.Regular physical exercise, due to stimulating pathways related to glucose uptake, is an important non-pharmacological intervention for improving glycemic control in obese and diabetic patients. In this mini-review the main mechanisms involved in glucose uptake in skeletal muscle in response to muscle contraction will be investigated.

  6. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation

    Science.gov (United States)

    Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina

    2017-01-01

    Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512

  7. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.

    Science.gov (United States)

    Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir

    2010-05-04

    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    Science.gov (United States)

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  9. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway.

    Science.gov (United States)

    Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung

    2016-12-09

    Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na⁺-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C ) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.

  10. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Kang-Hyun Leem

    2016-12-01

    Full Text Available Opuntia ficus-indica var. saboten (OFS has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na+-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C and p38 MAPK (SB203580 abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4 translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.

  11. Knockout of the predominant conventional PKC isoform, PKCalpha, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Jensen, Thomas E; Maarbjerg, Stine J; Rose, Adam J

    2009-01-01

    Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contrac...... working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.......Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required...... for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited...

  12. Skeletal muscle glucose uptake during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Saltin, Bengt

    1988-01-01

    uptake was not compensated for by increased uptake of free fatty acids but was accompanied by decreases in plasma insulin and increases in plasma epinephrine and norepinephrine. During work with large muscle masses, arterial lactate increased to approximately 6 mM, and net leg lactate release reverted......To study the role of muscle mass in glucoregulation, six subjects worked with the knee extensors of one leg on a specially constructed cycle ergometer. The knee extensors of one leg worked either alone or in combination with the knee extensors of the other leg and/or with the arms. Substrate usage...... to net lactate uptake. Decreased glucose uptake could not be explained by decreased perfusion. It is concluded that thigh muscle glucose uptake is affected by the size of the total muscle mass engaged in exercise. The decrease in thigh glucose uptake, when arm cranking was added and O2 uptake...

  13. Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Audrey E Brown

    Full Text Available Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS. Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects.Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS for up to 24h and examined for changes associated with exercise.In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16 h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16 h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured.EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets.

  14. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  15. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    Science.gov (United States)

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  16. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.

    Science.gov (United States)

    Merry, Troy L; Steinberg, Gregory R; Lynch, Gordon S; McConell, Glenn K

    2010-03-01

    Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in the regulation of skeletal muscle glucose uptake during contraction, and there is evidence that they do so via interaction with AMP-activated protein kinase (AMPK). In this study, we tested the hypothesis that ROS and NO regulate skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism. Isolated extensor digitorum longus (EDL) and soleus muscles from mice that expressed a muscle-specific kinase dead AMPKalpha2 isoform (AMPK-KD) and wild-type litter mates (WT) were stimulated to contract, and glucose uptake was measured in the presence or absence of the antioxidant N-acetyl-l-cysteine (NAC) or the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Contraction increased AMPKalpha2 activity in WT but not AMPK-KD EDL muscles. However, contraction increased glucose uptake in the EDL and soleus muscles of AMPK-KD and WT mice to a similar extent. In EDL muscles, NAC and l-NMMA prevented contraction-stimulated increases in oxidant levels (dichloroflourescein fluorescence) and NOS activity, respectively, and attenuated contraction-stimulated glucose uptake in both genotypes to a similar extent. In soleus muscles of AMPK-KD and WT mice, NAC prevented contraction-stimulated glucose uptake and l-NMMA had no effect. This is likely attributed to the relative lack of neuronal NOS in the soleus muscles compared with EDL muscles. Contraction increased AMPKalpha Thr(172) phosphorylation in EDL and soleus muscles of WT but not AMPK-KD mice, and this was not affected by NAC or l-NMMA treatment. In conclusion, ROS and NO are involved in regulating skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism.

  17. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M.

    2005-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis

  18. Comparison of [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect

    International Nuclear Information System (INIS)

    Soo Jung Lim; Jin-Sook Ryu; Heuiran Lee; Seok Young Kim; Seung Jun Oh; Dae Hyuk Moon

    2004-01-01

    [18F]FLT is a new radiopharmaceutical for cell proliferation. We compared [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect. Method: In vitro cancer cell uptake of [18F]FLT was evaluated using SCC7(mouse squamous cell carcinoma). At 24 hours after seeding 1 x 106 cells/well in 6 well plates with RPMI 1640 medium, culture media were changed to medium with glucose free or glucose concentration of 100 mg/dl. Then, [18F]FLT 5 μCi/50 ml was added to each well. After incubation for 30, 60, 90, 120 minutes, cells were washed twice by PBS, and harvested using 0.25% trypsin-EDTA. After centrifugation and counting at gamma counter, cell uptake was calculated by % activity of cellular uptake to total activity of cell and supernatant. For comparison, same tumor cell uptake experiment was performed with [18F]FDG. Results: After incubation with SCC7 cell line for 30, 60, 90, 120 minutes, [18F]FLT showed 1.95%, 2.17%, 2.10% and 2.80% of cell uptake in glucose free media, respectively. The results [18F]FLT uptake in glucose 100 mg/dl media were 1.82%, 1.87%, 1.97%, and 2.94%, respectively. The results of [18F]FDG in glucose free media were 2.50%, 3.47%, 5.04%, and 10.4%, whereas those in glucose 100 mg/dl media were 1.60%, 1.79%, 1.53%, and 1.82%, respectively. Conclusion: In contrast to [18F]FDG, [18F]FLT uptake in cancer cell was not affected by glucose concentration. In physiologic glucose concentration, [18F]FLT uptake in SCC7 cell line was significantly higher than [18F]FDG uptake after 120 minutes incubation. In [18F]FLT PET imaging may not need fasting for preparation before imaging study. (authors)

  19. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    Science.gov (United States)

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  20. Lactate, Glucose and Oxygen Uptake in Human Brain During Recovery from Maximal Exercise

    DEFF Research Database (Denmark)

    Kojiro, I.; Schmalbruch, I.K.; Quistorff, B.

    1999-01-01

    Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake......Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake...

  1. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  2. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian P; Sacchetti, Massimo

    2003-01-01

    adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake......The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three...... the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P

  4. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells. The role of proliferation rate, viability, glucose transporter expression and hexokinase activity

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Bisse, E.; Epting, T.; Engelhardt, R.

    2005-01-01

    Using human (SK-MEL 23, SK-MEL 24 and G361) and murine (B16) melanoma cell lines, the coregulatory potential of the uptake of the positron emission tomography (PET) tracer, [Fluorine-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) has been investigated in relationship to tumor characteristics. Comparative studies among the four melanoma cell lines demonstrated that the lowest FDG uptake in SK-MEL 24 corresponded strongly to the data for DT (population doubling time) and MTT (tetrazolium salt) cell viability as well as hexokinase (HK) activity, but was not related to the glucose transporter 1 (GLUT 1) expression level. Furthermore, the FDG uptake in each melanoma cell line measured by cell cycle kinetics was significantly positively correlated to both the proliferation index (PI=S/G 2 M phase fractions) and the cell viability, though with one exception relating to the proliferation index (PI) of the lowest FDG uptake cell line, SK-MEL 24. No positive correlation was found between the expression of GLUT 1 and FDG uptake in any individual cell line. However, the HK activities in SK-MEL 23 and 24 showed considerable positive relationships with FDG uptake. Our present study suggests that both the proliferation rate and the cell viability of melanoma cells may be key factors for FDG uptake and that HK activity, rather than GLUT 1 expression, seems to be a major factor. (author)

  5. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling.

    Science.gov (United States)

    McKenzie, Maxine; Kirk, Ruth S; Walker, Anthony J

    2018-06-05

    In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.

  6. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  7. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  9. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  10. Glucose uptake and its effect on gene expression in prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Guadalupe Gómez-Baena

    Full Text Available The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon

  11. Variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Hove, Jens D; Freiberg, Jacob

    2002-01-01

    The aim of this study was to assess regional and global variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects and to evaluate potentially responsible factors. Twenty men with a mean age of 64 years, no history of cardiovascular disease, and normal blood pressure...... rest and hyperaemic blood flow during dipyridamole infusion were measured with nitrogen-13 ammonia and positron emission tomography in 16 left ventricular myocardial segments. Intra-individual and inter-individual variability of insulin-stimulated myocardial glucose uptake [relative dispersion...... = (standard deviation/mean)] was 13% and 29% respectively. Although inter-individual variability of glucose uptake and blood flow at rest was of the same magnitude, no correlation was found between these measures. Regional and global insulin-stimulated myocardial glucose uptake correlated linearly with whole...

  12. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  13. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity

  14. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  16. The effect of dynamic knee-extension exercise on patellar tendon and quadriceps femoris muscle glucose uptake in humans studied by positron emission tomography

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine

    2005-01-01

    Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose...... that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake....... uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing...

  17. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.

    Science.gov (United States)

    Merry, Troy L; Lynch, Gordon S; McConell, Glenn K

    2010-12-01

    There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P contraction by ∼50% (P contraction; however, DTT attenuated (P contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.

  18. [Increased glucose uptake by seborrheic keratosis on PET scan].

    Science.gov (United States)

    Merklen-Djafri, C; Truntzer, P; Hassler, S; Cribier, B

    2017-05-01

    Positron emission tomography (PET) is an examination based upon the uptake of a radioactive tracer by hypermetabolic cells. It is primarily used in tandem with tomodensitometry (PET-TDM) for cancer staging because of its high sensitivity and specificity for the detection of metastases. However, unusually high uptake may occur with benign tumours, including skin tumours. Herein, we report an extremely rare case of pathological uptake levels resulting from seborrhoeic keratosis. A 55-year-old male patient with oesophageal squamous-cell carcinoma was referred to us following the discovery of an area of high marker uptake following PET-TDM and corresponding to a pigmented skin lesion. No other areas of suspect high uptake were seen. The lesion was surgically excised and histological examination indicated seborrhoeic keratosis. The histological appearance was that of standard seborrhoeic keratosis without any notable mitotic activity. PET-TDM is an examination that enables diagnosis of malignancy. However, rare cases have been described of increased marker uptake by benign cutaneous tumours such as histiocytofibroma, pilomatricoma and condyloma. To date, there have only been only very few cases of increased uptake due to seborrhoeic keratosis. This extremely unusual case of increased glucose uptake in PET-TDM due to seborrhoeic keratosis confirms that the hypermetabolic activity detected by this examination is not necessarily synonymous with malignancy and that confirmation by clinical and histological findings is essential. The reasons for increased metabolic activity within such benign tumours are not known. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    Science.gov (United States)

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  20. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  1. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2014-01-01

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [ 18 F]-FDG (1 μCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14 C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/10 6 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  2. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  3. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography

    International Nuclear Information System (INIS)

    Merhige, M.E.; Ekas, R.; Mossberg, K.; Taegtmeyer, H.; Gould, K.L.

    1987-01-01

    Uptake of radiolabelled deoxyglucose out of proportion to reduced coronary flow demonstrated by positron emission tomography has been used to identify reversibly ischemic, viable myocardium. For this concept to be applied reliably in the clinical setting, factors that may depress glucose availability independent of tissue viability, such as adrenergic stimulation and substrate competition, must be examined. Accordingly, we studied the effect of catecholamine stimulation by dopamine on myocardial glucose uptake in vivo using chronically instrumented, intact dogs and positron emission tomography. We measured myocardial activity of [2- 18 F]-2-deoxyglucose (FDG) and 82 Rb in glucose-loaded animals randomly studied during dopamine infusion, during insulin infusion, and then during their combined infusion. Myocardial FDG uptake was significantly decreased when animals were treated with dopamine, compared with treatment in the same animals with insulin. When insulin was added to the dopamine infusion, myocardial FDG uptake was restored. In contrast, myocardial activity of 82 Rb, which is taken up in proportion to coronary flow, was similar under all three experimental conditions. Plasma glucose, free fatty acid, and lactate concentrations were determined before and during each infusion. The depression of myocardial FDG activity seen during dopamine infusion and its reversal with addition of insulin can be explained on the basis of effects of these hormones on substrate availability and competition

  4. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    Daphna D.J. Habets

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  5. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice

    International Nuclear Information System (INIS)

    Li, Xueyi; Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B.; DiFiglia, Marian

    2012-01-01

    Highlights: ► Primary Huntington’s disease neurons are impaired in taking up glucose. ► Rab11 modulates glucose uptake in neurons. ► Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. ► We provide a novel mechanism for glucose hypometabolism in Huntington’s disease. -- Abstract: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD 140Q/140Q ). Primary HD 140Q/140Q cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD 140Q/140Q neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD 140Q/140Q neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  6. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  7. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  8. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin...... stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......M. This concentration of wortmannin also decreased the contraction-stimulated glucose transport and uptake by approximately 30-70% without confounding effects on contractility or on muscle ATP and phosphocreatine concentrations. At higher concentrations (3 and 10 microM), wortmannin completely blocked the contraction...

  9. Photoactivation of GLUT4 translocation promotes glucose uptake via PI3-K/Akt2 signaling in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2014-05-01

    Full Text Available Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Dysfunction of PI-3K/Akt signaling was involved in insulin resistance. Glucose transporter 4 (GLUT4 is a key factor for glucose uptake in muscle and adipose tissues, which is closely regulated by PI-3K/Akt signaling in response to insulin treatment. Low-power laser irradiation (LPLI has been shown to regulate various physiological processes and induce the synthesis or release of multiple molecules such as growth factors, which (especially red and near infrared light is mainly through the activation of mitochondrial respiratory chain and the initiation of intracellular signaling pathways. Nevertheless, it is unclear whether LPLI could promote glucose uptake through activation of PI-3K/Akt/GLUT4 signaling in 3T3L-1 adipocytes. In this study, we investigated how LPLI promoted glucose uptake through activation of PI-3K/Akt/GLUT4 signaling pathway. Here, we showed that GLUT4 was localized to the Golgi apparatus and translocated from cytoplasm to cytomembrane upon LPLI treatment in 3T3L-1 adipocytes, which enhanced glucose uptake. Moreover, we found that glucose uptake was mediated by the PI3-K/Akt2 signaling, but not Akt1 upon LPLI treatment with Akt isoforms gene silence and PI3-K/Akt inhibitors. Collectively, our results indicate that PI3-K/Akt2/GLUT4 signaling act as the key regulators for improvement of glucose uptake under LPLI treatment in 3T3L-1 adipocytes. More importantly, our findings suggest that activation of PI3-K/Akt2/GLUT4 signaling by LPLI may provide guidance in practical applications for promotion of glucose uptake in insulin-resistant adipose tissue.

  10. Rac1 governs exercise‐stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    Science.gov (United States)

    Nielsen, Ida L.; Kleinert, Maximilian; Møller, Lisbeth L. V.; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J.; Klip, Amira; Jensen, Thomas E.; Richter, Erik A.

    2016-01-01

    Key point Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood.The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin‐stimulated glucose uptake, although its role in exercise‐stimulated glucose uptake is unknown.We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise.We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. Abstract Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise‐induced uptake of radiolabelled 2‐deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle‐specific inducible Rac1 knockout (mKO) mice compared to wild‐type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. PMID:27061726

  11. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  12. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  13. Implications of Resveratrol on Glucose Uptake and Metabolism

    Directory of Open Access Journals (Sweden)

    David León

    2017-03-01

    Full Text Available Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  14. Limited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle

    Science.gov (United States)

    Becker, Tracy A.; DellaValle, Brian; Gesser, Hans; Rodnick, Kenneth J.

    2013-01-01

    SUMMARY We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic stimulation or (4) during reoxygenation with or without adrenaline after severe hypoxia. Contractile responses to ryanodine, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, were also not affected by exogenous glucose. However, glucose did attenuate the fall in twitch force during severe hypoxia. Glucose uptake was assayed in non-contracting ventricle strips using 2-[3H] deoxy-d-glucose (2-DG) under aerobic and hypoxic conditions, at different incubation temperatures and with different inhibitors. Based upon a lack of saturation of 2-DG uptake and incomplete inhibition of uptake by cytochalasin B and d-glucose, 2-DG uptake was mediated by a combination of facilitated transport and simple diffusion. Hypoxia stimulated lactate efflux sixfold to sevenfold with glucose present, but did not increase 2-DG uptake or reduce lactate efflux in the presence of cytochalasin B. Increasing temperature (14 to 24°C) also did not increase 2-DG uptake, but decreasing temperature (14 to 4°C) reduced 2-DG uptake by 45%. In conclusion, exogenous glucose improves mechanical performance under hypoxia but not under any of the aerobic conditions applied. The extracellular concentration of glucose and cold temperature appear to determine and limit cardiomyocyte glucose uptake, respectively, and together may help define a metabolic strategy that relies predominantly on intracellular energy stores. PMID:23685969

  15. Antidiabetic Activity of Pterospermum acerifolium Flowers and Glucose Uptake Potential of Bioactive Fraction in L6 Muscle Cell Lines with Its HPLC Fingerprint

    Directory of Open Access Journals (Sweden)

    Rathinavelusamy Paramaguru

    2014-01-01

    Full Text Available The present study was designed to estimate the detailed antidiabetic activity of Pterospermum acerifolium (L. Willd flowers. In vitro alpha amylase inhibition study was carried out on 50% ethanol extract of flowers (PAFEE and its various fractions. The active ethyl acetate fraction (PAFEF was subfractionated into three subfractions (PAFE1, PAFE2, and PAFE3 and subjected to acute toxicity studies followed by antidiabetic screening in vivo by streptozotocin-nicotinamide induced type II diabetes. Diabetic animals treated with PAFE2 (30 mg/kg reduced the levels of fasting blood glucose, significantly (P<0.001 compared to that of diabetic control animals. Histological studies on drug treated groups did not show remarkable positive changes in β-cells. PAFE2 showed 32.6±1.93% glucose uptake over control and, in the presence of PI3K inhibitor wortmannin, declined to 13.7±2.51%. HPLC analysis of PAFE2 reveals the presence of quercetin and apigenin as major constituents and both are inhibiting the glycogen phosphorylase enzyme in molecular modelling studies. The study evidenced strongly that the probable glucose lowering mechanism of action of active subfraction PAFE2 is by increasing the glucose uptake in peripheral tissues and by inhibition of gluconeogenesis.

  16. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.

    Science.gov (United States)

    Fidler, Trevor P; Middleton, Elizabeth A; Rowley, Jesse W; Boudreau, Luc H; Campbell, Robert A; Souvenir, Rhonda; Funari, Trevor; Tessandier, Nicolas; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-09-01

    On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions. © 2017 American Heart Association, Inc.

  17. Recombinant Uncarboxylated Osteocalcin Per Se Enhances Mouse Skeletal Muscle Glucose Uptake in both Extensor Digitorum Longus and Soleus Muscles

    Directory of Open Access Journals (Sweden)

    Xuzhu Lin

    2017-11-01

    Full Text Available Emerging evidence suggests that undercarboxylated osteocalcin (ucOC improves muscle glucose uptake in rodents. However, whether ucOC can directly increase glucose uptake in both glycolytic and oxidative muscles and the possible mechanisms of action still need further exploration. We tested the hypothesis that ucOC per se stimulates muscle glucose uptake via extracellular signal-regulated kinase (ERK, adenosine monophosphate-activated protein kinase (AMPK, and/or the mechanistic target of rapamycin complex 2 (mTORC2-protein kinase B (AKT-AKT substrate of 160 kDa (AS160 signaling cascade. Extensor digitorum longus (EDL and soleus muscles from male C57BL/6 mice were isolated, divided into halves, and then incubated with ucOC with or without the pretreatment of ERK inhibitor U0126. ucOC increased muscle glucose uptake in both EDL and soleus. It also enhanced phosphorylation of ERK2 (Thr202/Tyr204 and AS160 (Thr642 in both muscle types and increased mTOR phosphorylation (Ser2481 in EDL only. ucOC had no significant effect on the phosphorylation of AMPKα (Thr172. The inhibition of ucOC-induced ERK phosphorylation had limited effect on ucOC-stimulated glucose uptake and AS160 phosphorylation in both muscle types, but appeared to inhibit the elevation in AKT phosphorylation only in EDL. Taken together, ucOC at the physiological range directly increased glucose uptake in both EDL and soleus muscles in mouse. The molecular mechanisms behind this ucOC effect on muscle glucose uptake seem to be muscle type-specific, involving enhanced phosphorylation of AS160 but limitedly modulated by ERK phosphorylation. Our study suggests that, since ucOC increases muscle glucose uptake without insulin, it could be considered as a potential agent to improve muscle glucose uptake in insulin resistant conditions.

  18. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    Science.gov (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Heyland, Jan; Fu, Jianan; Blank, Lars M

    2009-12-01

    Glucose repression of the tricarboxylic acid (TCA) cycle in Saccharomyces cerevisiae was investigated under different environmental conditions using (13)C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO(2) allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g(-1) h(-1)), while the highest acetate production rate of 2.1 mmol g(-1) h(-1) was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l(-1) , pH 5.0, 30 degrees C) S. cerevisiae had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g(-1) h(-1) to about 1.7 mmol g(-1) h(-1) was observed when S. cerevisiae grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO(2) to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (hxk2, grr1) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

  20. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    Science.gov (United States)

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  1. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  2. Appropriate uptake period for myocardial PET imaging with 18F-FDG after oral glucose loading

    International Nuclear Information System (INIS)

    Brink, I.; Hentschell, M.; Hoegerle, S.; Moser, E.; Nitzsche, E.U.; Mix, M.; Schindler, T.

    2003-01-01

    Aim: Identification of a rationale for the appropriate uptake period for myocardial 18 F-FDG-PET imaging of patients with and without diabetes mellitus. Methods: In a subset of 27 patients, static 2D-PET examination was performed of patients with chronic coronary artery disease and known myocardial infarction. The patients fasted (at least 4 h) before examination. 18 F-FDG (330 ± 20 MBq) was injected intravenously. The image quality was semiquantitativly determined by ROI-analysis and the myocardium-to-blood pool activity ratio (M/B) was calculated. I.) Scans 30, 60, and 90 min p. i. of 10 non-diabetic patients (60 g oral glucose loading one hour before FDG-injection, low-dose intravenous insulin bolus if necessary). II.) Scans 30, 60, and 90 min p. i. of 10 patients with known non-insulin dependent diabetes (20 g glucose, insulin bolus). III.) Scans 90 min p. i. of 7 patients with known non-insulin dependent diabetes and elevated fasting serum glucose level (140-200 mg/dl; insulin bolus, no glucose). Results: I.) The M/B ratio significantly increases in non-diabetic patients with the uptake time (30 min 1.95 ± 0.20; 60 min 2.96 ± 0.36; 90 min 3.78 ± 0.43). II.) In patients with non-insulin dependent diabetes the M/B ratio also significantly increases with uptake time. Compared to non-diabetic patients group II reached smaller M/B values (30 min 1.56 ± 0.10; 60 min 2.15 ± 0.14; 90 min 2.71 ± 0.19). III.) In the group of patients with elevated fasting serum glucose level (who only got insulin but no glucose loading) the M/B activity ratio 90 min p. i. was clearly inferior compared with diabetic patients after oral glucose loading and insulin administration (M/B 2.71 ± 0.19 versus 2.16 ± 0.07). Conclusions: In static myocardial viability PET studies with 18 F-FDG an uptake time of 90 min yields image quality superior to that obtained after shorter uptake time. (orig.) [de

  3. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi, E-mail: xli12@partners.org [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B. [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); DiFiglia, Marian, E-mail: difiglia@helix.mgh.harvard.edu [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Primary Huntington's disease neurons are impaired in taking up glucose. Black-Right-Pointing-Pointer Rab11 modulates glucose uptake in neurons. Black-Right-Pointing-Pointer Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. Black-Right-Pointing-Pointer We provide a novel mechanism for glucose hypometabolism in Huntington's disease. -- Abstract: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD{sup 140Q/140Q}). Primary HD{sup 140Q/140Q} cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD{sup 140Q/140Q} neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD{sup 140Q/140Q} neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  4. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij; Kotowska, Dorota Ewa; C. B. Olsen, Louise

    2014-01-01

    while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes...

  5. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum

    Directory of Open Access Journals (Sweden)

    Prachyaporn Inthongkaew

    Full Text Available ABSTRACT A methanol extract from the whole plant of Dendrobium formosum Roxb. ex Lindl., Orchidaceae, showed inhibitory potential against α-glucosidase and pancreatic lipase enzymes. Chromatographic separation of the extract resulted in the isolation of twelve phenolic compounds. The structures of these compounds were determined through analysis of NMR and HR-ESI-MS data. All of the isolates were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities, as well as glucose uptake stimulatory effect. Among the isolates, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12 showed the highest α-glucosidase and pancreatic lipase inhibitory effects with an IC50 values of 126.88 ± 0.66 µM and 69.45 ± 10.14 µM, respectively. An enzyme kinetics study was conducted by the Lineweaver-Burk plot method. The kinetics studies revealed that compound 12 was a non-competitive inhibitor of α-glucosidase and pancreatic lipase enzymes. Moreover, lusianthridin at 1 and 10 µg/ml and moscatilin at 100 µg/ml showed glucose uptake stimulatory effect without toxicity on L6 myotubes. This study is the first report on the phytochemical constituents and anti-diabetic and anti-obesity activities of D. formosum.

  6. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  7. effects of caffeine and ethanolic extract of kolanut on glucose uptake

    African Journals Online (AJOL)

    Daniel Owu

    calculated as the product of (A-V) glucose and blood flow. ... Key words: Caffeine, kolanut, dog, glucose uptake, hindlimb ...... free fatty acids, and amino acids. ... involved in glucose homeostasis. ... independent of obesity and type 2 diabetes.

  8. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  9. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    Science.gov (United States)

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  10. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  11. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    Science.gov (United States)

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  12. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Contraction-mediated glucose uptake is increased in men with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Skov-Jensen, Camilla; Skovbro, Mette; Flint, Anne

    2007-01-01

    stimulation alone and with superimposed exercise. Patients with type 2 diabetes, subjects with impaired glucose tolerance (IGT), healthy controls, and endurance-trained subjects were studied. The groups were matched for age and lean body mass (LBM), and differed in peak oxygen uptake (VO2 peak), body fat...

  15. Myo-inositol uptake by cultured calf retinal pigment epithelial cells: regulation by glucose

    International Nuclear Information System (INIS)

    Khatami, M.; Rockey, J.H.

    1986-01-01

    Confluent primary (P-1) or subcultured passage 2 or 3 (P-2, P-3) calf retinal pigment epithelial cells (RPE) were incubated with [ 3 H]-myo-inositol (MI, 100-200 μM) in balanced salt solution (BSS), for 5 to 60 min at 37 0 C. MI uptake into RPE (P-2, 5 days old) was saturable with K/sub m/ of 147 μM and V/sub max/ of 5.5 pmole/min/μg DNA. P-1 or P-2 incubated with 10 μM MI for 40 min accumulated MI against a concentration gradient ([MI]in/[MI]out > 20). Replacement of 150 mM NaCl in BSS by 150 mM choline-Cl reduced the uptake of MI by 87%. MI uptake was inhibited (39%) when cells were incubated in BSS in the absence of Ca Cl 2 . Transport of MI into RPE incubated in the presence of phloridzin, ouabain or 2,4-dinitrophenol (1 mM each) for 10 min was inhibited by 65, 37 and 21%, respectively. α-D-Glucose (20 mM) in the incubation media inhibited MI uptake into primary (or P-2) cultured RPE by 30 or 43% when cells were incubated for 10 or 60 min, respectively. The ability of RPE cells, grown in the presence of 50 mM glucose for 15-25 days, to concentrate MI (40 μM) was reduced up to 41%. Cultured RPE cells accumulated myo-inositol by an active transport system, sensitive to ouabain, DNP and phloridzin. High glucose in the incubation media or in the growth media inhibited the uptake of MI into calf RPE cells

  16. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    International Nuclear Information System (INIS)

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-01-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively

  17. Effects of blood glucose level on FDG uptake by liver: a FDG-PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kazuo, E-mail: kkubota@cpost.plala.or.j [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Watanabe, Hiroshige; Murata, Yuji [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Yukihiro, Masashi; Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Hori, Ai [Department of Epidemiology and International Health, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Shibuya, Hitoshi [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2011-04-15

    In FDG-PET for abdominal malignancy, the liver may be assumed as an internal standard for grading abnormal FDG uptake both in early images and in delayed images. However, physiological variables of FDG uptake by the liver, especially the effects of blood glucose level, have not yet been elucidated. Methods: FDG-PET studies of 70 patients examined at 50 to 70 min after injection (60{+-}10 min: early images) and of 68 patients examined at 80 to 100 min after injection (90{+-}10 min: delayed images) were analyzed for liver FDG uptake. Patients having lesions in the liver, spleen and pancreas; patients having bulk tumor in other areas; and patients early after chemotherapy or radiotherapy were excluded; also, patients with blood glucose level over 125 mg/dl were excluded. Results: Mean standardized uptake value (SUV) of the liver, blood glucose level and sex showed no significant differences between early images and delayed images. However, liver SUV in the delayed image showed a larger variation than that in the early image and showed significant correlation to blood glucose level. The partial correlation coefficient between liver SUV and blood glucose level in the delayed image with adjustment for sex and age was 0.73 (P<.0001). Multivariate regression coefficient (95% confidence interval) of blood glucose was 0.017 (0.013-0.021). Conclusion: Blood glucose level is an important factor affecting the normal liver FDG uptake in nondiabetic patients. In the case of higher glucose level, liver FDG uptake is elevated especially in the delayed image. This may be due to the fact that the liver is the key organ responsible for glucose metabolism through gluconeogenesis and glycogen storage.

  18. Enhanced Glucose Uptake in Human Liver Cells and Inhibition of Carbohydrate Hydrolyzing Enzymes by Nordic Berry Extracts

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-10-01

    Full Text Available A Western lifestyle with low physical activity and a diet rich in sugar, fat and processed food contribute to higher incidences of diabetes and obesity. Enhanced glucose uptake in human liver cells was observed after treatment with phenolic extracts from different Nordic berries. All berry extracts showed higher inhibition against α-amylase and α-glucosidase than the anti-diabetic agent acarbose. Total phenolic content and phenolic profiles in addition to antioxidant activities, were also investigated. The berries were extracted with 80% methanol on an accelerated solvent extraction system (ASE and then purified by C-18 solid phase extraction (SPE. Among the ASE methanol extracts, black chokeberry, crowberry and elderberry extracts showed high stimulation of glucose uptake in HepG2 cells and also considerable inhibitory effect towards carbohydrate hydrolyzing enzymes. SPE extracts with higher concentrations of phenolics, resulted in increased glucose uptake and enhanced inhibition of α-amylase and α-glucosidase compared to the ASE extracts. Crowberry and cloudberry were the most potent 15-lipoxygenase inhibitors, while bog whortleberry and lingonberry were the most active xanthine oxidase inhibitors. These results increase the value of these berries as a component of a healthy Nordic diet and have a potential benefit against diabetes.

  19. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  20. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    International Nuclear Information System (INIS)

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J.

    1987-01-01

    The effects of cold exposure and insulin injection on the rates of net 2-[ 3 H]deoxyglucose uptake (K i ) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K i values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K i increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K i that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake

  1. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise-induc...

  2. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake.

    Directory of Open Access Journals (Sweden)

    Ramachandran Rashmi

    Full Text Available PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233* were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206 with or without the glucose analogue 2-deoxyglucose (2-DG. Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG. Cell migration was assessed by scratch assay.Activating PIK3CA (E545K, E542K and inactivating PTEN (R233* mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56% and MK-2206 (30 µM-49% treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.

  3. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    Science.gov (United States)

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  4. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake.

    Science.gov (United States)

    Maekawa, Yoichi; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Yagita, Hideo; Yasutomo, Koji

    2015-01-01

    CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.

  5. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  6. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice

    Directory of Open Access Journals (Sweden)

    Peter E. M. Gibbs

    2016-01-01

    Full Text Available Insulin’s stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2 peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h. The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK’s downstream effector, Akt-GSK3-(α,β axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes.

  7. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine.

    Science.gov (United States)

    Stumvoll, M; Chintalapudi, U; Perriello, G; Welle, S; Gutierrez, O; Gerich, J

    1995-11-01

    Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis.

  8. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  9. The regulation of cerebral glucose uptake and metabolism in normal and diabetic man

    International Nuclear Information System (INIS)

    Polonsky, K.

    1987-01-01

    The effects of changes in serum insulin and glucose on brain glucose metabolism using PET technology were investigated. Eight normal, right-handed, male subjects were studied on three separate occasions at least one week apart. In each subject a PET scan was performed under three different metabolic circumstances: basal conditions after an overnight fast, euglycemic clamp, and hypoglycemic clamp in which the plasma glucose was maintained at 55 mg/dl. Exogenous insulin was infused at the same rate in the euglycemic and hypoglycemic clamp studies. In the latter study, the concomitant glucose infusion rate was reduced to allow the plasma glucose concentration to fall to the desired level of mild hypoglycemia. During each study, dynamic positron emission tomography was used to characterize cerebral uptake and distribution of the Fluorine-18 2-deoxyglucose radiotracer as a function of time. Analysis of the brain uptake curve and tracer input function provided rate constants for transport and phosphorylation in accord with a 3 compartmental model (Sokoloff, 1979). Dynamic scans were performed on each study occasion allowing individual rate constants to be studied. In addition to the brain uptake curves, plasma glucose, F-18 2DG levels and counterregulatory hormone values were determined from frequent arterialized venous blood samples

  10. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK......, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2......-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose...

  11. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Leonardo J Magnoni

    Full Text Available AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively. We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase and mitochondrial biogenesis (PGC-1α and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.

  12. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  13. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  14. DiabetterTM Reduces Post Meal Hyperglycemia Via Enhancement Of Glucose Uptake Into Adipocytes And Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis

    2014-01-01

    Currently, there are lots of herbal products available in local markets that are used for treatment of diabetes mellitus. Most of these products are not standardized and lack of efficacy and safety data. DiaBetterTM is one of the local herbal products that have been used for treatment of diabetes. This study was carried out to determine the efficacy of DiaBetterTM in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. Antihyperglycemic evaluation was done in normal and streptozotocin-induced diabetic rats at different prandial states and the antihyperglycemic mechanisms elucidation was carried out in muscle and adipocytes cells using glucose tracer method (2-deoxy-[1-3H]-glucose). The results showed that DiaBetterTM significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetterTM significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54-fold (p<0.01) and 1.46-fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetterTM was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity activity of DiaBetterTM was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetterTM suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that DiaBetterTM can be used as dietary adjunct for the treatment of type 2 diabetes mellitus which related to insulin resistance. (author)

  15. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  16. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS: PA increased glucose uptake by approximately 35...

  17. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    Science.gov (United States)

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  18. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  19. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    Science.gov (United States)

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  20. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yonghoon Kwon

    Full Text Available 5' AMP-activated protein kinase (AMPK is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl-thioureido]-ethyl}-amide (Xn and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl-thioureido]-ethyl}-amide (Xc elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4. Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.

  1. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  2. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    Directory of Open Access Journals (Sweden)

    Muhammad Taher

    2015-01-01

    Full Text Available Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P<0.05 with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.

  3. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes.

    Science.gov (United States)

    Kim, Gyuri; Jo, Kwanhyeong; Kim, Kwang Joon; Lee, Yong-ho; Han, Eugene; Yoon, Hye-jin; Wang, Hye Jin; Kang, Eun Seok; Yun, Mijin

    2015-11-04

    The heart requires constant sources of energy mostly from free fatty acids (FFA) and glucose. The alteration in myocardial substrate metabolism occurs in the heart of diabetic patients, but its specific association with other metabolic variables remains unclear. We aimed to evaluate glucose uptake in hearts of subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes mellitus (T2DM) using [(18)F]-fluorodeoxyglucose-positron emission tomography ((18)FDG-PET) in association with visceral and subcutaneous adiposity, and metabolic laboratory parameters. A total of 346 individuals (NGT, n = 76; prediabetes, n = 208; T2DM, n = 62) in a health promotion center of a tertiary hospital were enrolled. The fasting myocardial glucose uptake, and visceral and subcutaneous fat areas were evaluated using (18)FDG-PET and abdominal computed tomography, respectively. Myocardial glucose uptake was significantly decreased in subjects with T2DM compared to the NGT or prediabetes groups (p for trend = 0.001). Multivariate linear regression analyses revealed that visceral fat area (β = -0.22, p = 0.018), fasting FFA (β = -0.39, p < 0.001), and uric acid levels (β = -0.21, p = 0.007) were independent determinants of myocardial glucose uptake. Multiple logistic analyses demonstrated that decreased myocardial glucose uptake (OR 2.32; 95% CI 1.02-5.29, p = 0.045) and visceral fat area (OR 1.02, 95% CI 1.01-1.03, p = 0.018) were associated with T2DM. Our findings indicate visceral adiposity is strongly associated with the alteration of myocardial glucose uptake evaluated by (18)FDG-PET, and its association further relates to T2DM.

  4. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    Science.gov (United States)

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  5. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway.

    Science.gov (United States)

    Zapata-Bustos, Rocio; Alonso-Castro, Angel Josabad; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A

    2014-03-28

    Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Modulation of adipogenesis and glucose uptake by Curcuma longa extract in 3T3L1 and L6 cell lines - An in vitro study

    Directory of Open Access Journals (Sweden)

    A. Prathapan

    2012-05-01

    Full Text Available Objective: To evaluate the effects of ethyl acetate extract of Curcuma longa against modulation of glucose uptake and adipogenesis in cell line models. Methods: We used 3T3L1 and L6 cells to investigate cytotoxicity, glucose uptake with 2-NBDG as probe and adipogenesis. All the analysis was done with flowcytometry. Results: The results showed that the extract did not possess any significant glucose uptake activity but it exhibited significant adipocyte differentiation potential. Conclusions: Ethyl acetate extract of Curcuma longa exhibits significant antiadipogenesis and can be used as an effective drug for the treatment of obesity and other associated complications.

  7. Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects

    International Nuclear Information System (INIS)

    Schmitz, O.; Arnfred, J.; Hother Nielsen, O.; Beck-Nielsen, H.; Oerskov, H.

    1986-01-01

    To test the hypothesis that insulin has a greater effect on glucose metabolism when given as pulsatile than as continuous infusion, a 354-min euglycaemic clamp study was carried out in 8 healthy subjects. At random order soluble insulin was given intravenously either at a constant rate of 0.45mU/kg · min or in identical amounts in pulses of 1 1 / 2 to 2 1 / 4 min followed by intervals of 10 1 / 2 to 9 3 / 4 min. Average serum insulin levels were similar during the two infusion protocols, but pulsatile administration induced oscillations ranging between 15 and 62 μU/ml. Glucose uptake expressed as metabolic clearance rate (MCR) for glucose was significantly increased during pulsatile insulin delivery as compared with continuous administration (270-294 min: 8.7±0.7 vs 6.8±0.9 ml/kg · min, P 3 H]glucose infusion technique was suppressed to insignificant values. Finally, the effect of insulin on endogenous insulin secretion and lipolysis as assessed by changes in serum C-peptide and serum FFA was uninfluenced by the infusion mode. In conclusion, insulin infusion resulting in physiological serum insulin levels enhances glucose uptake in peripheral tissues in healthy subjects to a higher degree when given in a pulsed pattern mimicking that of the normal endocrine pancreas than when given as a continuous infusion. (author)

  8. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  9. Potent PPARγ Ligands from Swietenia macrophylla Are Capable of Stimulating Glucose Uptake in Muscle Cells

    Directory of Open Access Journals (Sweden)

    Wai Kwan Lau

    2015-12-01

    Full Text Available Numerous documented ethnopharmacological properties have been associated with Swietenia macrophylla (Meliaceae, with its seed extract reported to display anti-hypoglycemic activities in diabetic rats. In the present study, three compounds isolated from the seeds of S. macrophylla were tested on a modified ELISA binding assay and showed to possess PPARγ ligand activity. They were corresponded to PPARγ-mediated cellular response, stimulated adipocyte differentiation but produced lower amount of fat droplets compared to a conventional anti-diabetic agent, rosiglitazone. The up-regulation of adipocytes was followed by increased adipocyte-related gene expressions such as adiponectin, adipsin, and PPARγ. The S. macrophylla compounds also promoted cellular glucose uptake via the translocation of GLUT4 glucose transporter.

  10. Ischaemia and insulin, but not ischaemia and contraction, act synergistically in stimulating muscle glucose uptake in vivo in humans.

    NARCIS (Netherlands)

    Bosselaar, M.; Smits, P.; Tack, C.J.J.

    2009-01-01

    Ischaemia, like muscle contraction, has been reported to induce skeletal muscle glucose uptake in in vitro models. This stimulating effect appears independent of insulin and is probably mediated by activation of AMPK (AMP-activated protein kinase). In the present study, we hypothesized that in vivo

  11. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching

    2010-01-01

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  12. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators.

    Science.gov (United States)

    Lai, Yu-Chiang; Kviklyte, Samanta; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Viollet, Benoît; Hallén, Stefan; Rider, Mark H

    2014-06-15

    AMPK (AMP-activated protein kinase) is an attractive therapeutic drug target for treating metabolic disorders. We studied the effects of an AMPK activator developed by Merck (ex229 from patent application WO2010036613), comparing chemical activation with contraction in intact incubated skeletal muscles. We also compared effects of ex229 with those of the Abbott A769662 compound and AICAR (5-amino-4-imidazolecarboxamide riboside). In rat epitrochlearis muscle, ex229 dose-dependently increased AMPK activity of α1-, α2-, β1- and β2-containing complexes with significant increases in AMPK activity seen at a concentration of 50 μM. At a concentration of 100 μM, AMPK activation was similar to that observed after contraction and importantly led to an ~2-fold increase in glucose uptake. In AMPK α1-/α2-catalytic subunit double-knockout myotubes incubated with ex229, the increases in glucose uptake and ACC (acetyl-CoA carboxylase) phosphorylation seen in control cells were completely abolished, suggesting that the effects of the compound were AMPK-dependent. When muscle glycogen levels were reduced by ~50% after starvation, ex229-induced AMPK activation and glucose uptake were amplified in a wortmannin-independent manner. In L6 myotubes incubated with ex229, fatty acid oxidation was increased. Furthermore, in mouse EDL (extensor digitorum longus) and soleus muscles, ex229 increased both AMPK activity and glucose uptake at least 2-fold. In summary, ex229 efficiently activated skeletal muscle AMPK and elicited metabolic effects in muscle appropriate for treating Type 2 diabetes by stimulating glucose uptake and increasing fatty acid oxidation.

  13. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats.

    Science.gov (United States)

    Hong, Yet Hoi; Betik, Andrew C; Premilovac, Dino; Dwyer, Renee M; Keske, Michelle A; Rattigan, Stephen; McConell, Glenn K

    2015-05-15

    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction. Copyright © 2015 the American Physiological Society.

  14. Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-11-01

    Full Text Available The metabolism of glucose is a nearly exclusive source of energy for maintaining neuronal survival, synaptic transmission and information processing in the brain. Two glucose metabolism pathways have been reported, direct neuronal glucose uptake and the astrocyte-neuron lactate shuttle (ANLS, which can be involved in these functions simultaneously or separately. Although ANLS in the dorsal hippocampus (DH has been proved to be required for memory consolidation, the specific metabolic pathway involved during memory acquisition remains unclear. The DH and amygdala are two key brain regions for acquisition of contextual fear conditioning (CFC. In 2-NBDG experiments, we observed that 2-NBDG-positive neurons were significantly increased during the acquisition of CFC in the DH. However, in the amygdala and cerebellum, 2-NBDG-positive neurons were not changed during CFC training. Strikingly, microinjection of a glucose transporter (GLUT inhibitor into the DH decreased freezing values during CFC training and 1 h later, while injection of a monocarboxylate transporter (MCT inhibitor into the amygdala also reduced freezing values. Therefore, we demonstrated that direct neuronal glucose uptake was the primary means of energy supply in the DH, while ANLS might supply energy in the amygdala during acquisition. Furthermore, knockdown of GLUT3 by a lentivirus in the DH impaired the acquisition of CFC. Taken together, the results indicated that there were two different glucose metabolism pathways in the DH and amygdala during acquisition of contextual fear memory and that direct neuronal glucose uptake in the DH may be regulated by GLUT3.

  15. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...

  16. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-08

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  17. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    Science.gov (United States)

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important

  18. Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth Liliendal Valbjørn; Kleinert, Maximilian

    2017-01-01

    Exercise bypasses insulin resistance to increase glucose uptake in skeletal muscle and therefore represents an important alternative to stimulate glucose uptake in insulin resistant muscle. Both Rac1 and AMPK have been shown to partly regulate contraction-stimulated muscle glucose uptake but whet...

  19. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... normal glucose tolerant subjects (p muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p ... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  20. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  1. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  2. Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease.

    Science.gov (United States)

    Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L

    2016-11-01

    Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions

    International Nuclear Information System (INIS)

    Zhao, Songji; Tsukamoto, Eriko; Kato, Takashi; Tamaki, Nagara; Kuge, Yuji; Hikosaka, Kenji; Mochizuki, Takafumi; Hosokawa, Masuo; Kohanawa, Masashi

    2001-01-01

    Fluorine-18 2-deoxy-2-fluoro-D-glucose (FDG) accumulation in tumours has been well investigated, but much less is known regarding FDG accumulation in inflammatory lesions. In this study, we determined the effects of hypo- and hyperglycaemia on FDG uptake in inflammatory lesions of infectious and non-infectious origin and compared them with those in malignant tumours in rats, to provide a biological basis for differentiating malignant lesions from benign lesions by means of FDG-PET. Rats were inoculated with a suspension of allogenic hepatoma cells (KDH-8) or Staphylococcus aureus, or with turpentine oil into the left calf muscle. Two weeks after KDH-8 inoculation and 1 week after S. aureus and turpentine oil inoculations, the rats were divided into three subgroups: insulin-loaded (2 U/kg body weight, i.p.), glucose-loaded (1.2 g/kg body weight, p.o.) and control groups. Radioactivity in tissues was determined 1 h after i.v. injection of FDG. Intraperitoneal injection of insulin and oral administration of glucose induced hypoglycaemia and hyperglycaemia, respectively. In the control animals, tumours showed a level of FDG uptake which was 2.2 and 3.0 times higher than the levels in the inflammatory lesions induced by S. aureus and turpentine oil, respectively (P<0.0001). There was no significant difference in the level of FDG uptake between the two inflammatory lesions of infectious and non-infectious origin. Insulin loading significantly decreased the level of FDG uptake in tumours and in both types of inflammatory lesion to approximately one-half of the control values (P=0.001 in the tumour group and P<0.0001 in the two inflammatory lesion groups). In the glucose-loaded group, the level of FDG uptake in both types of inflammatory lesion decreased significantly to 50%-61% of the control value (P=0.0002 in the S.aureus group and P<0.0001 in the turpetine group), while the tumour uptake did not decrease significantly (86% of the control value) (P=NS). It is concluded

  4. Diabetter"T"M Reduces Post Meal Hyperglycemia Via Enhancement of Glucose Uptake Into Adipocytes and Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Mohd Hishamudin Mohd Jinal; Alqarni Bader Ayed; Shafii Khamis

    2014-01-01

    There are lots of herbal products for diabetes mellitus treatment available in local market. Most of these products are not standardized and lack of efficacy and safety data. DiaBetter"T"M is one of the herbal products that have been used for diabetes treatment. This study was carried out to determine the efficacy of DiaBetter"T"M in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. The results showed that DiaBetter"T"M significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetter"T"M significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54 fold (p<0.01) and 1.46 fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetter"T"M was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity of DiaBetter"T"M was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetter"T"M suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that the DiaBetter"T"M can be used as dietary adjunct for the management of type 2 diabetes mellitus which related to insulin resistance. (Author)

  5. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  6. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    Science.gov (United States)

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  7. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    Science.gov (United States)

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  8. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  9. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  10. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  11. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    International Nuclear Information System (INIS)

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-01-01

    In this study we characterized 3 H-2-deoxy-D-glucose ( 3 H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon 3 H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells 3 H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V max ) and affinity (K m ), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that 3 H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited 3 H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling

  12. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut

    International Nuclear Information System (INIS)

    Groot, Michel de; Meeuwis, Antoi P.W.; Kok, Peter J.M.; Corstens, Frans H.M.; Oyen, Wim J.G.

    2005-01-01

    Increased, non-pathological FDG uptake in myocardium, stomach and bowel is frequently observed while performing clinical positron emission tomography (PET) studies. This ''physiological'' increased FDG uptake is not related to (oncological) disease and is unwanted since it may interfere with correct image reading. We evaluated the role of several patient-related factors that may have an influence on this phenomenon. One hundred and seventy-five non-diabetic patients with malignant diseases, referred to our department for routine whole-body FDG-PET, were retrospectively evaluated. Age, blood glucose levels and duration of the fasting period were recorded. FDG uptake in myocardium, bowel and stomach was visually graded. Statistical analysis showed that increased FDG uptake in myocardium, bowel and stomach was not significantly correlated to blood glucose level, age or duration of fasting. Most patients who underwent repeated PET scans (92 scans in 25 patients), showed no or minor changes in uptake in bowel and stomach on the consecutive scans, while myocardial uptake was more variable. Age, fasting period and blood glucose levels did not influence physiological uptake. However, there seemed to be a patient-specific pattern for stomach and bowel uptake. (orig.)

  13. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  15. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    Science.gov (United States)

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  16. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  17. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men.

    Science.gov (United States)

    Heni, Martin; Wagner, Robert; Kullmann, Stephanie; Gancheva, Sofiya; Roden, Michael; Peter, Andreas; Stefan, Norbert; Preissl, Hubert; Häring, Hans-Ulrich; Fritsche, Andreas

    2017-07-01

    Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6- 2 H 2 ]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis. © 2017 by the American Diabetes Association.

  18. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans

    DEFF Research Database (Denmark)

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj

    2003-01-01

    BACKGROUND: Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin....../or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow....... Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (Palpha...

  19. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    International Nuclear Information System (INIS)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik; Kjaer, Andreas

    2009-01-01

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. 18 F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance≥1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  20. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  1. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study.

    Science.gov (United States)

    Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong

    2017-02-15

    Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.

  2. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  3. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  4. In vitro glucose uptake by isolated rat hemi-diaphragm study of Aegle marmelos Correa root

    Directory of Open Access Journals (Sweden)

    Subban Ravi

    2009-03-01

    Full Text Available The methanol extract of the root of Aegle marmelos, a medicinal plant, was fractionated into eight fractions using column chromatography. The anti-diabetic activity of all the fractions was studied using the glucose uptake by isolated rat hemi-diaphragm in vitro model. Using the bioassay-guided fractionation, two compounds 1 and 2 were isolated by column chromatography and identified as 6-methyl-4-chromanone and skimmianine respectively by NMR and mass spectral methods.

  5. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; D'Hulst, Gommaar; De Groote, Estelle; Schjerling, Peter; Steinberg, Gregory R; Jensen, Thomas E; Richter, Erik A

    2017-06-01

    Exercise bypasses insulin resistance to increase glucose uptake in skeletal muscle and therefore represents an important alternative to stimulate glucose uptake in insulin-resistant muscle. Both Rac1 and AMPK have been shown to partly regulate contraction-stimulated muscle glucose uptake, but whether those two signaling pathways jointly account for the entire signal to glucose transport is unknown. We therefore studied the ability of contraction and exercise to stimulate glucose transport in isolated muscles with AMPK loss of function combined with either pharmacological inhibition or genetic deletion of Rac1.Muscle-specific knockout (mKO) of Rac1, a kinase-dead α2 AMPK (α2KD), and double knockout (KO) of β1 and β2 AMPK subunits (β1β2 KO) each partially decreased contraction-stimulated glucose transport in mouse soleus and extensor digitorum longus (EDL) muscle. Interestingly, when pharmacological Rac1 inhibition was combined with either AMPK β1β2 KO or α2KD, contraction-stimulated glucose transport was almost completely inhibited. Importantly, α2KD+Rac1 mKO double-transgenic mice also displayed severely impaired contraction-stimulated glucose transport, whereas exercise-stimulated glucose uptake in vivo was only partially reduced by Rac1 mKO with no additive effect of α2KD. It is concluded that Rac1 and AMPK together account for almost the entire ex vivo contraction response in muscle glucose transport, whereas only Rac1, but not α2 AMPK, regulates muscle glucose uptake during submaximal exercise in vivo. © 2017 by the American Diabetes Association.

  6. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord

    Directory of Open Access Journals (Sweden)

    F Rigon

    Full Text Available Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT, which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.

  7. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  8. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Nagalakshmi Kamaraj

    2017-07-01

    Full Text Available Biodegradable polymer based novel drug delivery systems brought a considerable attention in enhancing the therapeutic efficacy and bioavailability of various drugs. 14-deoxy 11, 12-didehydro andrographolide (poorly water soluble compound loaded polycaprolactone (nano-DDA was synthesized using the solvent evaporation technique. Nano-DDA was characterized by scanning electron microscopy (SEM and dynamic light scattering (DLS studies. Fourier Transform InfraRed Spectroscopy (FTIR was used to investigate the structural interaction between the drug and the polymer. Functional characterization of the formulation was determined using drug content, cellular uptake and in vitro drug release. 2-deoxy-D-[1-3H] glucose uptake assay was carried out to assess the antidiabetic potential of nano-DDA in L6 myotubes. The nano-DDA displayed spherical shape with a smooth surface (252.898 nm diameter, zeta potential, encapsulation and loading efficiencies of −38.9 mV, 91.98 ± 0.13% and 15.09 ± 0.18% respectively. No structural alteration between the drug and the polymer was evidenced (FTIR analysis. Confocal microscopy studies with rhodamine 123 loaded polycaprolactone nanoparticles (Rh123-PCL NPs revealed the internalization of Rh123-PCL NPs in a time dependent manner in L6 myoblasts. A dose dependent increase in glucose uptake was observed for nano-DDA with a maximal uptake of 108.54 ± 1.42% at 100 nM on L6 myotubes, thereby proving its anti-diabetic efficacy. A biphasic pattern of in vitro drug release demonstrated an initial burst release at 24 h followed by a sustained release for up to 11 days. To conclude, our results revealed that nano-DDA formulation can be a potent candidate for antidiabetic drug delivery.

  10. Lycium barbarum L. Polysaccharide (LBP Reduces Glucose Uptake via Down-Regulation of SGLT-1 in Caco2 Cell

    Directory of Open Access Journals (Sweden)

    Huizhen Cai

    2017-02-01

    Full Text Available Lycium barbarum L. polysaccharide (LBP is prepared from Lycium barbarum L. (L. barbarum, which is a traditional Chinese medicine. LPB has been shown to have hypoglycemic effects. In order to gain some mechanistic insights on the hypoglycemic effects of LBP, we investigated the uptake of LBP and its effect on glucose absorption in the human intestinal epithelial cell line Caco2 cell. The uptake of LBP through Caco2 cell monolayer was time-dependent and was inhibited by phloridzin, a competitive inhibitor of SGLT-1. LPB decreased the absorption of glucose in Caco2 cell, and down-regulated the expression of SGLT-1. These results suggest that LBP might be transported across the human intestinal epithelium through SGLT-1 and it inhibits glucose uptake via down-regulating SGLT-1.

  11. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes

    DEFF Research Database (Denmark)

    Henriksson, Emma; Säll, Johanna; Gormand, Amélie

    2015-01-01

    regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that cAMP/PKA reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 promotes GLUT4 levels and glucose uptake...

  12. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P contraction-stimulated glucose uptake. Copyright © 2015 the American Physiological Society.

  13. The significance of alteration 2-[fluorine-18]fluoro-2-deoxy-(D)-glucose uptake in the liver and skeletal muscles of patients with hyperthyroidism.

    Science.gov (United States)

    Chen, Yen-Kung; Chen, Yen-Ling; Tsui, Chih-Cheng; Wang, Su-Chen; Cheng, Ru-Hwa

    2013-10-01

    Hyperthyroidism leads to an enhanced demand for glucose. The hypothesis of the study is that 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) can demonstrate the alteration of systemic glucose metabolism in hyperthyroidism patients by measuring the FDG standard uptake value (SUV) in liver and skeletal muscle. Forty-eight active hyperthyroidism patients and 30 control participants were recruited for the study. The intensity of FDG uptake in the liver and thigh muscles was graded subjectively, comprising three groups: group I, higher FDG uptake in the liver; group II, equal FDG uptake in the liver and muscles; and group III, higher FDG uptake in the muscles. Ten subjects with FDG PET scans at hyperthyroid and euthyroid status were analyzed. Serum levels of thyroxine (T4) and triiodothyronine (T3) correlated to the SUVs of the liver and muscles. Forty-one patients (41/48, 85.4%) showed symmetrically increased FDG uptake in the muscles (22 in group I, 9 in group II, and 17 in group III). Group I patients were significantly older than group II (P = .02) and group III (P = .001) patients. The correlation coefficient between the serum T3, T4, and SUV levels in the muscles was significant (r = 0.47-0.77, P hyperthyroid and euthyroid states. In the 30 control subjects, there was normal physiological FDG uptake in the liver and muscles. In PET scans showing a pattern of decreased liver and increased skeletal muscle FDG uptake in hyperthyroidism patients, this change of FDG distribution is correspondence to the severity of hyperthyroidism status. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. Glucose metabolism in diabetic blood vessels

    International Nuclear Information System (INIS)

    Brown, B.J.; Crass, M.F. III

    1986-01-01

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U -14 C. Norepinephrine (NE) (10 -6 M) and/or insulin (I) (150 μU/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and 14 CO 2 and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose

  15. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    Science.gov (United States)

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.

  16. Thyroid hormone stimulated glucose uptake in human mononuclear blood cells from normal persons and from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1989-01-01

    Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased...

  17. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter

    2014-01-01

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity......, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative...... within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle....

  18. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  19. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake.

    Science.gov (United States)

    Hamada, Taku; Hayashi, Tatsuya; Kimura, Tetsuya; Nakao, Kazuwa; Moritani, Toshio

    2004-03-01

    Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107-2112, 2003). The present study is further follow-up to examine the acute metabolic effects of ES to lower extremities compared with voluntary cycle exercise (VE) at identical intensity. In eight male subjects lying in the supine position, both lower leg (tibialis anterior and triceps surae) and thigh (quadriceps and hamstrings) muscles were sequentially stimulated to cocontract in an isometric manner at 20 Hz with a 1-s on-off duty cycle for 20 min. Despite small elevation of oxygen uptake by 7.3 +/- 0.3 ml x kg(-1) x min(-1) during ES, the blood lactate concentration was significantly increased by 3.2 +/- 0.3 mmol/l in initial period (5 min) after the onset of the ES (P increased anaerobic glycolysis by ES. Furthermore, whole body glucose uptake determined by GDR during euglycemic clamp demonstrated a significant increase during and after the cessation of ES for at least 90 min (P energy consumption, carbohydrate oxidation, and whole body glucose uptake at low intensity of exercise. Percutaneous ES may become a therapeutic utility to enhance glucose metabolism in humans.

  20. 14 C-Glucose uptake studies in the red rot toxin treated sugarcane ...

    African Journals Online (AJOL)

    Fungal toxins cause serious damage to the cellular functions of host tissue. In the present report the toxin extracted from Colletotrichum falcatum Went was partially purified and treatments were given to the callus of susceptible sugarcane callus variety CoC 671. The influence on 14C-glucose uptake and its further utilization ...

  1. Evidence for compromised metabolic function and limited glucose uptake in spermatozoa from the teratospermic domestic cat (Felis catus) and cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, Stanley P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E

    2010-11-01

    Cheetahs and certain other felids consistently ejaculate high proportions (≥ 60%) of malformed spermatozoa, a condition known as teratospermia, which is prevalent in humans. Even seemingly normal spermatozoa from domestic cat teratospermic ejaculates have reduced fertilizing capacity. To understand the role of sperm metabolism in this phenomenon, we conducted a comparative study in the normospermic domestic cat versus the teratospermic cat and cheetah with the general hypothesis that sperm metabolic function is impaired in males producing predominantly pleiomorphic spermatozoa. Washed ejaculates were incubated in chemically defined medium containing glucose and pyruvate. Uptake of glucose and pyruvate and production of lactate were assessed using enzyme-linked fluorescence assays. Spermatozoa from domestic cats and cheetahs exhibited similar metabolic profiles, with minimal glucose metabolism and approximately equimolar rates of pyruvate uptake and lactate production. Compared to normospermic counterparts, pyruvate and lactate metabolism were reduced in teratospermic cat and cheetah ejaculates, even when controlling for sperm motility. Rates of pyruvate and lactate (but not glucose) metabolism were correlated positively with sperm motility, acrosomal integrity, and normal morphology. Collectively, our findings reveal that pyruvate uptake and lactate production are reliable, quantitative indicators of sperm quality in these two felid species and that metabolic function is impaired in teratospermic ejaculates. Furthermore, patterns of substrate utilization are conserved between these species, including the unexpected lack of exogenous glucose metabolism. Because glycolysis is required to support sperm motility and capacitation in certain other mammals (including dogs), the activity of this pathway in felid spermatozoa is a target for future investigation.

  2. Increased Brain Glucose Uptake After 12 Weeks of Aerobic High-Intensity Interval Training in Young and Older Adults.

    Science.gov (United States)

    Robinson, Matthew M; Lowe, Val J; Nair, K Sreekumaran

    2018-01-01

    Aerobic exercise training can increase brain volume and blood flow, but the impact on brain metabolism is less known. We determined whether high-intensity interval training (HIIT) increases brain metabolism by measuring brain glucose uptake in younger and older adults. Brain glucose uptake was measured before and after HIIT or a sedentary (SED) control period within a larger exercise study. Study procedures were performed at the Mayo Clinic in Rochester, MN. Participants were younger (18 to 30 years) or older (65 to 80 years) SED adults who were free of major medical conditions. Group sizes were 15 for HIIT (nine younger and six older) and 12 for SED (six younger and six older). Participants completed 12 weeks of HIIT or SED. HIIT was 3 days per week of 4 × 4 minute intervals at over 90% of peak aerobic capacity (VO2peak) with 2 days per week of treadmill walking at 70% VO2peak. Resting brain glucose uptake was measured using 18F-fluorodeoxyglucose positron emission tomography scans at baseline and at week 12. Scans were performed at 96 hours after exercise. VO2peak was measured by indirect calorimetry. Glucose uptake increased significantly in the parietal-temporal and caudate regions after HIIT compared with SED. The gains with HIIT were not observed in all brain regions. VO2peak was increased for all participants after HIIT and did not change with SED. We demonstrate that brain glucose metabolism increased after 12 weeks of HIIT in adults in regions where it is reduced in Alzheimer's disease. Copyright © 2017 Endocrine Society

  3. A Novel EPO Receptor Agonist Improves Glucose Tolerance via Glucose Uptake in Skeletal Muscle in a Mouse Model of Diabetes

    Directory of Open Access Journals (Sweden)

    Michael S. Scully

    2011-01-01

    Full Text Available Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of 14C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude.

  4. Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D

    2000-01-01

    Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcuta......Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric...

  5. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  7. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  8. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization

    International Nuclear Information System (INIS)

    Kaneta, Tomohiro; Hakamatsuka, Takashi; Takanami, Kentaro

    2006-01-01

    Positron emission tomography (PET) with fluorodeoxyglucose (FDG) is widely used for evaluation of cancer and ischemic heart disease. Recently, increased myocardial FDG uptake has been reported to be related to some types of heart disease, such as sarcoidosis. However, the physiological increased FDG uptake in the heart often mimics the abnormal high uptake in these cases. In this study, we investigated the relationships between myocardial uptake and age, blood glucose level, fasting period, and hospitalization status (inpatient vs. outpatient). A total of 159 non-diabetic patients were enrolled in the present study. Patients were imaged on a PET/CT scanner, and a three-dimensional region of interest (ROI) was drawn on the fused PET/CT image to measure the maximum standardized uptake value (SUV max ) of the whole left ventricle. No significant relationships were observed between myocardial uptake and age or fasting period. Blood glucose level showed a significant relationship (p=0.025) with myocardial uptake, but the R-square was extremely small (r 2 =0.03). With an SUV max threshold of 3.0, there was no significant difference between inpatients and outpatients. However, outpatients showed a significantly higher frequency of myocardial uptake over SUV max of 5.0 (x 2 test: p=0.046). It is difficult to predict the degree of physiological uptake in the heart from data regarding age, fasting period, or blood glucose level. Outpatients tend to show higher myocardial uptake than inpatients, which may make it difficult to detect abnormally increased uptake in the heart. A long fasting period, such as overnight fasting, is an inadequate means to reduce the physiological uptake of FDG in the heart. (author)

  9. Effects of maternal exposure to trichloroethylene on glucose uptake and nucleic acid and protein levels in the brains of developing rat pups

    International Nuclear Information System (INIS)

    Gerbec, E.A.N.

    1985-01-01

    Trichloroethylene (TCE) is a widespread contaminant of drinking water sources. This study examined several biochemical aspects of the hippocampus and cerebellum of rat pups that were exposed prenatally (gestational) and postnatally (lactational) to TCE via their dams' drinking water. The effects of TCE on glucose uptake, and on nucleic and protein levels in brain tissue were examined in these pups. Glucose uptake in the cerebellum, hippocampus and whole brain of the pups during the first 21 days of life was measured using the tritium-labeled 2-deoxy-D-glucose (2-DG) dissection/scintillation counting technique. The author determined that 312 mg TCE/I in drinking water (total dam exposure was 684 mg) significantly depressed 2-DG uptake in the whole brains and cerebella of 7- to 21-day old pups. This concentration also reduced 2-DG uptake in the hippocampus of exposed pups at 7, 11, and 16 days, but the uptake returned to control levels by 21 days. No overt toxicity, such as lower body or brain weight, was observed at this exposure level. This decrease in 2-DG uptake is a reflection of a decreased relative glucose uptake in the TCE exposed animals. Total DNA and RNA were extracted and measured using a modification of the Schmidt-Thannhauser procedure and Schneider technique, respectively. Proteins were determined based on the method of Bradford (1976)

  10. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation......, and especially temporal relationships must be taken into account. What triggers the flow increase during functional brain activation is not entirely elucidated. The demand for excess glucose uptake may be important and a possible oxygen deficit in tissue distant from the capillaries is probably of minor...

  11. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models. Evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG

    International Nuclear Information System (INIS)

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke

    2017-01-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316, 243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  12. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, C.P.; Biermasz, N.R.; Geerling, J.J.; Guigas, B.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    OBJECTIVE - Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  13. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined...... in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......-consumption in a dose dependent manner but the T4 stimulation was dependent on the total concentration of T4 and did not differ between serum incubation or non-protein containing medium. Addition of ANS (100 mg/l) which inhibits binding of T4 to TBG, did not increase T4 effect in serum. Inhibition of the Na...

  14. Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus

    International Nuclear Information System (INIS)

    Cassone, V.M.; Roberts, M.H.; Moore, R.Y.

    1988-01-01

    Previously, we have demonstrated that metabolic activity, shown by autoradiographic determination of 2-deoxy-[1- 14 C]glucose (2-DG) uptake, within the rat hypothalamic suprachiasmatic nuclei (SCN) was inhibited by subcutaneous injection of 1 mg/kg melatonin. To determine whether this effect was specific to a particular time of day, the effects of melatonin on 2-DG uptake were studied in several hypothalamic areas, including the SCN, supraoptic nuclei (SON), lateral hypothalamic area (LHA), and anterior hypothalamic area (AHA) every 4 h throughout the circadian day. In a second experiment, the effects of different melatonin doses were studied at the time of day at which melatonin had its maximal effect to determine the dose-response relationship of melatonin-induced inhibition of SCN 2-DG uptake. The data indicate that melatonin inhibited 2-DG uptake in the SCN alone at one time of day, primarily at circadian time (CT) 6 and CT10, 2-6 h before subjective dusk, and secondarily at CT22, just before subjective dawn. This effect was dose dependent with a 50% effective dose of 1.49 +/- 2.30 micrograms/kg. The temporal and dose-response characteristics of these effects are similar to those characterizing the entraining effects of melatonin on circadian patterns of locomotion and drinking

  15. Inverse association between liver fat content and hepatic glucose uptake in patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Borra, Ronald; Lautamaki, Riikka; Parkkola, Riitta; Komu, Markku; Sijens, Paul E.; Hallsten, Kirstl; Bergman, Jorgen; Iozzo, Patricia; Nuutila, Pirjo

    2008-01-01

    The objective of this research was to study (1) the mutual relationship between liver fat content (LFC) and hepatic glucose uptake (HGU) in patients with type 2 diabetes mellitus and (2) the relationship between changes in LFC and HGU uptake induced by rosiglitazone in these patients. Liver fat was

  16. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    Directory of Open Access Journals (Sweden)

    Robert M. Badeau

    2017-02-01

    Full Text Available Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM or offspring of lean mothers (OLM. Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17 and elderly offspring from lean/normal weight mothers (OLM; n = 20 groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA was significantly lower in OOM (p = 0.015. DHA/FA associated significantly with skeletal muscle glucose uptake (GU (p = 0.031 and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value in the OLM group only (p = 0.050. Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  17. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  18. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  19. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  20. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    International Nuclear Information System (INIS)

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-01-01

    Highlights: → Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. → Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. → Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. → Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  1. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth; Kleinert, Maximilian

    2017-01-01

    , but whether those two signaling pathways jointly account for the entire signal to glucose transport is unknown. We therefore studied the ability of contraction and exercise to stimulate glucose transport in isolated muscles with AMPK loss of function combined with either pharmacological inhibition or genetic...... uptake in vivo was only partially reduced by Rac1 mKO with no additive effect of a2KD. It is concluded that Rac1 and AMPK together account for almost the entire ex vivo contraction response in muscle glucose transport, whereas only Rac1, but not a2 AMPK, regulates muscle glucose uptake during submaximal...

  2. Involvement of Rac1 and the actin cytoskeleton in insulin- and contraction-stimulated intracellular signaling and glucose uptake in mature skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke

    understood. The aim of the current PhD was therefore to investigate the involvement of Rac1 and the actin cytoskeleton in the regulation of insulin- and contraction-stimulated glucose uptake in mature skeletal muscle. The central findings of this PhD thesis was that Rac1 was activated by both insulin...

  3. The frequency and spectrum of thymus 2-[fluorine-18] fluoro-2-deoxy-D-glucose uptake patterns in hyperthyroidism patients.

    Science.gov (United States)

    Chen, Yen-Kung; Yeh, Chia-Lu; Chen, Yen-Ling; Wang, Su-Chen; Cheng, Ru-Hwa; Kao, Pan-Fu

    2011-10-01

    Thymic hyperplasia is associated with hyperthyroidism. Increased thymus 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) uptake in hyperthyroidism patients has been reported. The aim of this study was to analyze the FDG positron emission tomography (PET) thymus uptake spectrum in patients with active hyperthyroidism with correlation with serum hormones. The prospective study included FDG PET scans from 65 hyperthyroidism patients and 30 subjects with euthyroid status as control group. The intensity of FDG uptake in thyroid and thymus regions was graded subjectively on a five-point scale and semi-quantitatively by measuring standard uptake value (SUV). Correlation coefficient between thymus SUV and serum thyroxine, triiodothyronine, thyrotropin, thyroid peroxidase antibodies (TPO Ab), thyrotropin receptor autoantibody (TR Ab), and thymulin were analyzed. Among 65 hyperthyroidism patients, 30 (46.2%) and 39 (60%) patients showed thyroid and thymus FDG uptake, respectively. The frequency of thymus uptake FDG was high in patients younger than age 40 (28/31, 90.3%). The patterns of the thymic FDG uptake include inverted V or triangular, separated triangular, united nontriangular, unilateral right or left extension, and focal midline. Focal midline FDG uptake was the most common pattern (15/39, 38.5%). None of the control group showed thymus FDG uptake. The correlation coefficient between the FDG uptake SUV levels in thymus and serum hormones, thyrotropin, TPO Ab, TR Ab, and thymulin levels were all low (P > .05). In FDG PET scan, thymus activity was common in hyperthyroidism patients; this should not be misdiagnosed as a malignancy in patients exhibiting weight loss. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  4. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Shy, Cherng-Gueih; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching; Ko, Ying-Chin

    2010-01-01

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing that ≥ 300 μM arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.

  5. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    Science.gov (United States)

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  6. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    Science.gov (United States)

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  7. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    DEFF Research Database (Denmark)

    Habets, Daphna D J; Luiken, Joost J F P; Ouwens, Margriet

    2012-01-01

    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-¿ knockout mice the roles of atypical PKCs (PKC-¿ and PKC-¿) in regulating...

  8. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Laurent, Ida; Kleinert, Maximilian

    2016-01-01

    is a candidate molecule. This study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose (2-DG) at 65% max running capacity was blocked in soleus and decreased by 80 and 60...

  9. Quantification of tumour {sup 18}F-FDG uptake: Normalise to blood glucose or scale to liver uptake?

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); University of Sussex, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A.M. [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); Bush, Janice [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom)

    2015-09-15

    To compare normalisation to blood glucose (BG) with scaling to hepatic uptake for quantification of tumour {sup 18}F-FDG uptake using the brain as a surrogate for tumours. Standardised uptake value (SUV) was measured over the liver, cerebellum, basal ganglia, and frontal cortex in 304 patients undergoing {sup 18}F-FDG PET/CT. The relationship between brain FDG clearance and SUV was theoretically defined. Brain SUV decreased exponentially with BG, with similar constants between cerebellum, basal ganglia, and frontal cortex (0.099-0.119 mmol/l{sup -1}) and similar to values for tumours estimated from the literature. Liver SUV, however, correlated positively with BG. Brain-to-liver SUV ratio therefore showed an inverse correlation with BG, well-fitted with a hyperbolic function (R = 0.83), as theoretically predicted. Brain SUV normalised to BG (nSUV) displayed a nonlinear correlation with BG (R = 0.55); however, as theoretically predicted, brain nSUV/liver SUV showed almost no correlation with BG. Correction of brain SUV using BG raised to an exponential power of 0.099 mmol/l{sup -1} also eliminated the correlation between brain SUV and BG. Brain SUV continues to correlate with BG after normalisation to BG. Likewise, liver SUV is unsuitable as a reference for tumour FDG uptake. Brain SUV divided by liver SUV, however, shows minimal dependence on BG. (orig.)

  10. Antiangiogenic activity of 2-deoxy-D-glucose.

    Directory of Open Access Journals (Sweden)

    Jaime R Merchan

    2010-10-01

    Full Text Available During tumor angiogenesis, endothelial cells (ECs are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG on in vitro and in vivo angiogenesis were investigated.In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DG's ability to interfere with endothelial N-linked glycosylation. 2-DG's effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR, which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay. Thus, 2-DG's effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LH(BETAT(AG transgenic retinoblastoma model.In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies.

  11. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    OpenAIRE

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase repor...

  12. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  13. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  14. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR, are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K, and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1 protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes

  15. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Science.gov (United States)

    Dhurandhar, Emily J; Dubuisson, Olga; Mashtalir, Nazar; Krishnapuram, Rashmi; Hegde, Vijay; Dhurandhar, Nikhil V

    2011-01-01

    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or

  16. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    Science.gov (United States)

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  17. Uptake and metabolism of carbohydrates by Bradyrhizobium japonicum bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with 14 C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O 2 (2% in the gas phase). Uptake and conversion of 14 C to CO 2 were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO 2 , and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO 2 at a very low but measurable rate ( 2 at a rate 30 times greater than the conversion of carbon Number 6 to CO 2 , indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase

  18. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Roepstorff, Carsten; Brandt, Nina

    2009-01-01

    This study evaluated whether improved insulin-stimulated glucose uptake in recovery from acute exercise coincides with reduced malonyl-CoA (MCoA) content in human muscle. Furthermore, we investigated whether a high-fat diet [65 energy-% (Fat)] would alter the content of MCoA and insulin action...... to be compromised, although to a minor extent, by the Fat diet. Collectively, this study indicates that reduced muscle MCoA content in recovery from exercise may be part of the adaptive response leading to improved insulin action on glucose uptake after exercise in human muscle....

  19. Uptake and utilization of nutrients by developing kernels of Zea mays L

    International Nuclear Information System (INIS)

    Lyznik, L.A.

    1987-01-01

    The mechanisms involved in amino acid and sugar uptake by developing maize kernels were investigated. In the pedicel region of maize kernel, the site of nutrient unloading from phloem terminals, amino acids are accumulated in considerable amounts and undergo significant interconversion. A wide spectrum of enzymatic activities involved in the metabolism of amino acids is observed in these tissues. Subsequently, amino acids are taken up by the endosperm tissue in processes which require energy and the presence of carrier proteins. Conversely, no evidence was found that energy and carriers are involved in sugar uptake. This process of sugar uptake is not inhibited by metabolic inhibitors and shows nonsaturable kinetics, but the uptake is pH-dependent. L-glucose is taken up at a significantly reduced rate in comparison to D-glucose uptake. Based on analysis of radioactivity distribution among sugar fractions after incubations of kernels with radiolabeled D-glucose, it seems that sucrose is not efficiently resynthesized from D-glucose in the endosperm tissue. Thus, the proposed mechanism of sucrose transport involving sucrose hydrolysis in the pedicel region and subsequent resynthesis in endosperm cells may not be the main pathway. The evidence that transfer cells play an active role in D-glucose transport is presented

  20. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  1. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  2. Plasma levels of leptin, omentin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and adiponectin before and after oral glucose uptake in slim adults

    Directory of Open Access Journals (Sweden)

    Schäffler Andreas

    2007-02-01

    Full Text Available Abstract Background Adipose tissue secreted proteins are collectively named adipocytokines and include leptin, adiponectin, resistin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and omentin. Several of these adipocytokines influence insulin sensitivity and glucose metabolism and therefore systemic levels may be affected by oral glucose uptake. Whereas contradictory results have been published for leptin and adiponectin, resistin has not been extensively investigated and no reports on omentin and CORS-26 do exist. Methods Therefore the plasma levels of these proteins before and 120 min after an oral glucose load were analyzed in 20 highly-insulin sensitive, young adults by ELISA or immunoblot. Results Circulating leptin was reduced 2 h after glucose uptake whereas adiponectin and resistin levels are not changed. Distribution of adiponectin and CORS-26 isoforms were similar before and after glucose ingestion. Omentin is highly abundant in plasma and immunoblot analysis revealed no alterations when plasma levels before and 2 h after glucose intake were compared. Conclusion Taken together our data indicate that only leptin is reduced by glucose uptake in insulin-sensitive probands whereas adiponectin and resistin are not altered. CORS-26 was demonstrated for the first time to circulate as high molecular weight form in plasma and like omentin was not influenced by oral glucose load. Omentin was shown to enhance insulin-stimulated glucose uptake but systemic levels are not correlated to postprandial blood glucose.

  3. Akt and Rac1 signalling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance

    DEFF Research Database (Denmark)

    Sylow, Lykke; Kleinert, Maximilian; Pehmøller, Christian

    2014-01-01

    Skeletal muscle plays a major role in regulating whole body glucose metabolism. Akt and Rac1 are important regulators of insulin-stimulated glucose uptake in skeletal muscle. However the relative role of each pathway and how they interact is not understood. Here we delineate how Akt and Rac1...... pathways signal to increase glucose transport independently of each other and are simultaneously downregulated in insulin resistant muscle. Pharmacological inhibition of Rac1 and Akt signalling was used to determine the contribution of each pathway to insulin-stimulated glucose uptake in mouse muscles....... The actin filament-depolymerizing agent LatrunculinB was combined with pharmacological inhibition of Rac1 or Akt, to examine whether either pathway mediates its effect via the actin cytoskeleton. Akt and Rac1 signalling were investigated under each condition, as well as upon Akt2 knockout and in ob/ob mice...

  4. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron...... emission tomography (PET) determined uptake of [18F]-fluoro-deoxy-glucose (GU) during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest...

  5. Relationship between local cerebral glucose uptakes, serum prolactin, growth hormone and cortisol levels changes during epilepsy

    International Nuclear Information System (INIS)

    Wang Mingfang; Mao Xianghui; Tang Ganghua; Zhao Jun; Sun Aijun

    2002-01-01

    Objective: To explore the relation of local cerebral FDG uptake value of glucose to the changes of prolactin (PRL), growth hormone (GH) and cortisol levels in serum during epilepsy. Methods: 76 epileptic patients with solitary epileptic focus were examined by 2-deoxy-2-[ 18 F] fluoro-D-glucose ( 18 F-FDG) positron emission tomography (PET) imaging and the FDG uptake value of epileptic foci were measured. Serum PRL, GH and cortisol levels of the patients were determined by radioimmunoassay (RIA) before and after seizures. Results: During ictal studies, all patients showed increased FDG uptake of epileptic foci compared with that in interictal phase. The serum PRL, GH and cortisol levels were significant higher after seizures. The changes of hormone levels correlated significantly with the lengths of seizure free intervals (SFIs) and with the types of seizures. But the variations of hormone levels had no relation with the site and FDG uptake of epileptic foci. In patients with absentia seizures, no significant increase was observed in serum PRL and cortisol levels. The changes of GH were not related with the types of seizures. Also, it was found that changes of hormone levels had significant relations to the lengths of SFIs. Conclusions: Serum PRL, GH and cortisol levels were significantly different before and after seizures. This study suggests that changes of postictal hormone levels correlated significantly with the types of seizures and lengths of SFIs, but the changes of hormone levels are not related with the site and FDG uptake of epileptic foci

  6. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    2016-12-09

    The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  8. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease.

    Science.gov (United States)

    Willette, Auriel A; Bendlin, Barbara B; Starks, Erika J; Birdsill, Alex C; Johnson, Sterling C; Christian, Bradley T; Okonkwo, Ozioma C; La Rue, Asenath; Hermann, Bruce P; Koscik, Rebecca L; Jonaitis, Erin M; Sager, Mark A; Asthana, Sanjay

    2015-09-01

    Converging evidence suggests that Alzheimer disease (AD) involves insulin signaling impairment. Patients with AD and individuals at risk for AD show reduced glucose metabolism, as indexed by fludeoxyglucose F 18-labeled positron emission tomography (FDG-PET). To determine whether insulin resistance predicts AD-like global and regional glucose metabolism deficits in late middle-aged participants at risk for AD and to examine whether insulin resistance-predicted variation in regional glucose metabolism is associated with worse cognitive performance. This population-based, cross-sectional study included 150 cognitively normal, late middle-aged (mean [SD] age, 60.7 [5.8] years) adults from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study, a general community sample enriched for AD parental history. Participants underwent cognitive testing, fasting blood draw, and FDG-PET at baseline. We used the homeostatic model assessment of peripheral insulin resistance (HOMA-IR). Regression analysis tested the statistical effect of HOMA-IR on global glucose metabolism. We used a voxelwise analysis to determine whether HOMA-IR predicted regional glucose metabolism. Finally, predicted variation in regional glucose metabolism was regressed against cognitive factors. Covariates included age, sex, body mass index, apolipoprotein E ε4 genotype, AD parental history status, and a reference region used to normalize regional uptake. Regional glucose uptake determined using FDG-PET and neuropsychological factors. Higher HOMA-IR was associated with lower global glucose metabolism (β = -0.29; P factor scores. Our results show that insulin resistance, a prevalent and increasingly common condition in developed countries, is associated with significantly lower regional cerebral glucose metabolism, which in turn may predict worse memory performance. Midlife may be a critical period for initiating treatments to lower peripheral insulin resistance to maintain neural metabolism

  9. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.

    Science.gov (United States)

    Carter, Edward A; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A; Jung, Walter; Tompkins, Ronald G; Fischman, Alan J

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the

  10. Glucose utilisation in the lungs of septic rats

    International Nuclear Information System (INIS)

    Hansson, L.; Jeppsson, B.; Ohlsson, T.; Sandell, A.; Valind, S.; Luts, A.; Wollmer, P.

    1999-01-01

    Sequestration and degranulation of leucocytes in the pulmonary microcirculation is considered to be a key event in the development of acute respiratory distress syndrome in patients with sepsis. Glucose serves as the main source of energy in activated leucocytes. The aim of this study was to assess whether glucose utilisation in the lungs can be used as an indicator of pulmonary leucocyte accumulation in an experimental model of sepsis of intra-abdominal origin. Sepsis was induced in rats by abdominal implantation of a gelatine capsule containing bacteria and rat colonic contents. Empty gelatine capsules were implanted in control animals. Animals were studied 6 and 12 h after sepsis induction. Glucose utilisation was measured as the tissue uptake of fluorine-18-fluorodeoxyglucose ( 18 FDG) 1 h after intravenous injection of the tracer. Micro-autoradiography was also performed after injection of tritiated deoxyglucose. We found increased uptake of 18 FDG in the lungs of septic animals. The uptake also increased with time after sepsis induction. 18 FDG uptake in circulating leucocytes was increased in septic animals compared with controls, and micro-autoradiography showed intense accumulation of deoxyglucose in leucocytes in the lungs of septic animals. We conclude that glucose utilisation is increased in the lungs of septic rats. Measurements of pulmonary glucose utilisation as an index of leucocyte metabolic activity may open new possibilities for studies of the pathophysiology of sepsis and for evaluation of therapeutic interventions. (orig.)

  11. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  12. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients

    DEFF Research Database (Denmark)

    Nielsen, Roni; Jorsal, Anders; Iversen, Peter

    2017-01-01

    BACKGROUND: The glucagon-like peptide-1 analog liraglutide increases heart rate and may be associated with more cardiac events in chronic heart failure (CHF) patients. We studied whether this could be ascribed to effects on myocardial glucose uptake (MGU), myocardial blood flow (MBF) and MBF rese...

  13. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  14. Intratumoral Heterogeneous F 18 Fluorodeoxyglucose Uptake Corresponds with Glucose Transporter 1 and Ki-67 Expression in a Case of Krukenberg Tumor: Localization of Intratumoral Hypermetabolic Focus by Fused PET/MR

    International Nuclear Information System (INIS)

    Im, Hyung Jun; Kim, Youg il; Kim, Woo Ho; Kim, Seung Hyup; Kang, Keon Wook

    2011-01-01

    The expression of glucose transporters (Glut 1, Glut 3), Hexokinase II, and Ki-67 has been proposed to explain intratumoral heterogeneous F-18 fluorodeoxyglucose (FDG) uptake. We report a case of Krukenberg tumor with intratumoral heterogeneous FDG uptake which corresponded well with the expression tomography (PET)/magnetic resonance (MR) imaging was helpful for localizing the metabolically active area in the tumor specimen. This report elucidates the relationship between the intratumoral heterogeneous FDG uptake and biologic heterogeneity, and shows the usefulness of PET/MR in research on intratumoral heterogeneity.

  15. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  16. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.

    Science.gov (United States)

    Hatanaka, Haruyo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro

    2018-01-01

    Saccharomyces cerevisiae expresses α-glucoside transporters, such as MalX1p (X=1(Agt1p), 2, 3, 4, and 6), which are proton symporters. These transporters are regulated at transcriptional and posttranslational levels in the presence of glucose. Malt wort contains glucose, maltose, and maltotriose, and the assimilation of maltose is delayed as a function of glucose concentration. With the objective of increasing beer fermentation rates, we characterized α-glucoside transporters and bred laboratory yeasts that expressed various α-glucoside transporters for the simultaneous uptake of different sugars. Mal21p was found to be the most resistant transporter to glucose-induced degradation, and strain (HD17) expressing MAL21 grew on a medium containing glucose or maltose, but not on a medium containing both sugars (YPDM). This unexpected growth defect was observed on a medium containing glucose and >0.1% maltose but was not exhibited by a strain that constitutively expressed maltase. The defect depended on intracellular maltose concentration. Although maltose accumulation caused a surge in turgor pressure, addition of sorbitol to YPDM did not increase growth. When strain HD17 was cultivated in a medium containing only maltose, protein synthesis was inhibited at early times but subsequently resumed with reduction in accumulated maltose, but not if the medium was exchanged for YPDM. We conclude that protein synthesis was terminated under the accumulation of maltose, regardless of extracellular osmolarity, and HD17 could not resume growth, because the intracellular concentration of maltose did not decrease due to insufficient synthesis of maltase. Yeast should incorporate maltose after expressing adequate maltase in beer brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Haruka Amitani

    Full Text Available Hydrogen (H(2 acts as a therapeutic antioxidant. However, there are few reports on H(2 function in other capacities in diabetes mellitus (DM. Therefore, in this study, we investigated the role of H(2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2 promoted 2-[(14C]-deoxy-d-glucose (2-DG uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K, protein kinase C (PKC, and AMP-activated protein kinase (AMPK, although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p. and oral (p.o. administration. However, long-term p.o. administration of H(2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  18. Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation

    DEFF Research Database (Denmark)

    Steensberg, Adam; van Hall, Gerrit; Keller, Charlotte

    2002-01-01

    on two occasions: one after 60 min of two-legged cycling (16 h prior to the experimental trial) followed by a high carbohydrate diet (HCHO) and the other after the same exercise followed by a low carbohydrate diet (LCHO) (Series 2). Muscle glycogen was decreased by 40 % when comparing the pre-exercised......There are many factors that can influence glucose uptake by contracting skeletal muscle during exercise and although one may be intramuscular glycogen content, this relationship is at present not fully elucidated. To test the hypothesis that muscle glycogen concentration influences glucose uptake...... during exercise, 13 healthy men were studied during two series of experiments. Seven men completed 4 h of two-legged knee extensor exercise 16 h after reducing of muscle glycogen by completing 60 min of single-legged cycling (Series 1). A further six men completed 3 h of two-legged knee extensor exercise...

  19. False-positive uptake on 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) in oncological imaging

    International Nuclear Information System (INIS)

    Culverwell, A.D.; Scarsbrook, A.F.; Chowdhury, F.U.

    2011-01-01

    With the increasing utilization of integrated positron-emission tomography/computed tomography (PET/CT) using the glucose analogue 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG) in oncological imaging, it is important for radiologists and nuclear medicine physicians to be aware that FDG uptake is not specific for malignancy, as many different physiological variants and benign pathological conditions can also exhibit increased glucose metabolism. Such false-positive FDG uptake often arises outside the area of primary interest and may mimic malignant disease, thereby confounding accurate interpretation of PET/CT studies. With the use of illustrative clinical cases, this article will provide a systematic overview of potential interpretative pitfalls and illustrate how such unexpected findings can be appropriately evaluated.

  20. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  1. Magnesium Affects Poly(3-hydroxybutyrate-co-4-hydroxybutyrate Content and Composition by Affecting Glucose Uptake in Delftia acidovorans

    Directory of Open Access Journals (Sweden)

    Lee, W. H.

    2007-01-01

    Full Text Available Precise control of polyhydroxyalkanoate (PHA composition is necessary in order to synthesize polymers with specific properties. Among the various types of PHA that have been identified, those that contain 4-hydroxybutyrate (4HB monomers are especially useful in the medical and pharmaceutical fields as absorbable biomaterial. In this study, we have investigated the effect of magnesium concentration on the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB] by Delftia acidovorans DS-17. Our results show that, magnesium affects the copolymer content and composition by affecting glucose uptake from the culture medium. Higher concentrations of magnesium resulted in lower molar fractions of 3HB in the copolymer and reduced uptake of glucose. The results show for the first time that magnesium may be used to achieve fine control of biologically synthesized PHA copolymer composition.

  2. SDF7, a group of Scoparia dulcis Linn. derived flavonoid compounds, stimulates glucose uptake and regulates adipocytokines in 3T3-F442a adipocytes.

    Science.gov (United States)

    Beh, Joo Ee; Khoo, Li Teng; Latip, Jalifah; Abdullah, Mohd Paud; Alitheen, Noorjahan Baru Mohamed; Adam, Zainah; Ismail, Amin; Hamid, Muhajir

    2013-10-28

    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes. Morphology and lipid accumulation of differentiated 3T3-F442a adipocytes by 100 nM insulin treated with different concentrations of SDF7 and rosiglitazone were examined followed by the evaluation of glucose uptake activity expressions of insulin signalling downstream components (IRS-1, PI3-kinase, PKB, PKC, TC10 and GLUT4) from four cellular fractions (plasma membrane, cytosol, high density microsome and low density microsome). Next, the expression level of adipocytokines (TNF-α, adiponectin and leptin) and immunoblotting of treated 3T3-F442 adipocytes was determined at 30 min and 480 min. Glucose transporter 4 (GLUT4) translocation of 3T3-F442a adipocytes membrane was also determined. Lastly, mRNA expression of adiponectin and PPAR-γ of 3T3-F442a adipocytes were induced and compared with basal concentration. It was found that SDF7 was able to induce adipocytes differentiation with great extends of morphological changes, lipid synthesis and lipid stimulation in vitro. SDF7 stimulation of glucose transport on 3T3-F442a adipocytes are found to be dose independent, time-dependent and plasma membrane GLUT4 expression-dependent. Moreover, SDF7 are observed to be able to suppress TNF-α and leptin expressions that were mediated by 3T3-F442a adipocytes, while stimulated adiponectin secretion on the cells. There was a significant expression (p<0.01) of protein kinase C and small G protein TC10 on 3T3-F442a adipocytes

  3. α-MSH stimulates glucose uptake in mouse muscle and phosphorylates Rab-GTPase-activating protein TBC1D1 independently of AMPK

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Kjøbsted, Rasmus; Enriori, Pablo J

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure...... pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate -MSH stimulation in both wild type and AMPK deficient mice. We found that -MSH significantly induces phosphorylation of TBC1 domain (TBC1...

  4. Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous cultures

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    The production of the extracellular alkaline protease Savinase(R) (EC 3.4.21.62) and glucose uptake in a non-sporulating strain of Bacillus clausii were investigated by analysing steady-state and transients during continuous cultivations. The specific production rate was found to have an optimum...

  5. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  6. Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis.

    Science.gov (United States)

    Gibbs, Marie E; Hutchinson, Dana S; Summers, Roger J

    2008-09-01

    Noradrenaline, acting via beta(2)- and beta(3)-adrenoceptors (AR), enhances memory formation in single trial-discriminated avoidance learning in day-old chicks by mechanisms involving changes in metabolism of glucose and/or glycogen. Earlier studies of memory consolidation in chicks implicated beta(3)- rather than beta(2)-ARs in enhancement of memory consolidation by glucose, but did not elucidate whether stimulation of glucose uptake or of glycolysis was responsible. This study examines the role of glucose transport in memory formation using central injection of the nonselective facilitative glucose transporter (GLUT) inhibitor cytochalasin B, the endothelial/astrocytic GLUT-1 inhibitor phloretin and the Na(+)/energy-dependent endothelial glucose transporter (SGLT) inhibitor phlorizin. Cytochalasin B inhibited memory when injected into the mesopallium (avian cortex) either close to or between 25 and 45 min after training, whereas phloretin and phlorizin only inhibited memory at 30 min. This suggested that astrocytic/endothelial (GLUT-1) transport is critical at the time of consolidation, whereas a different transporter, probably the neuronal glucose transporter (GLUT-3), is important at the time of training. Inhibition of glucose transport by cytochalasin B, phloretin, or phlorizin also interfered with beta(3)-AR-mediated memory enhancement 20 min posttraining, whereas inhibition of glycogenolysis interfered with beta(2)-AR agonist enhancement of memory. We conclude that in astrocytes (1) activities of both GLUT-1 and SGLT are essential for memory consolidation 30 min posttraining; (2) neuronal GLUT-3 is essential at the time of training; and (3) beta(2)- and beta(3)-ARs consolidate memory by different mechanisms; beta(3)-ARs stimulate central glucose transport, whereas beta(2)-ARs stimulate central glycogenolysis.

  7. Comparative effect of lidocaine and bupivacaine on glucose uptake and lactate production in the perfused working rat heart

    International Nuclear Information System (INIS)

    Cronau, L.H. Jr.; Merin, R.G.; Aboulish, E.; Steenberg, M.L.; Maljorda, A.

    1986-01-01

    It has been suggested that at equivalent therapeutic concentrations, lidocaine and bupivacaine may have different cardiotoxic potency. In the isolated working rat heart preparation, the effect of a range of lidocaine and bupivacaine concentrations on glucose uptake and lactate production (LP) were observed. Insulin was added, 10 μ/L, to Ringer's solution containing 3 H-labeled glucose to measure the glycolytic flux (GF). The effect of the local anesthetics on LP at the indicated concentrations were similar. Lidocaine appears to depress the glycolytic flux from exogenous glucose to a lesser degree. Bupivacaine, 10 mg/L, depresses VO 2 to a greater degree than does lidocaine, 40 mg/L

  8. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-01-01

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  9. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  11. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  12. Increased fluoro-deoxy-D-glucose uptake on positron emission tomography-computed tomography postbronchoalveolar lavage: a potential cause of radiologic misinterpretation.

    LENUS (Irish Health Repository)

    Leong, Sum

    2011-08-01

    Cytologic analysis of bronchoalveolar lavage (BAL) fluid is used for lung cancer diagnosis. We describe a patient with a history of rectal carcinoma who presented with a new lung mass. BAL was performed, with positron emission tomography-computed tomography the following day. There was mildly increased fluoro-deoxy-D-glucose uptake in areas of the lung parenchyma with new ground-glass opacification. This created ambiguity in staging, clarified 2 weeks later by a computed tomography showing complete resolution of the ground-glass opacity. Clinicians should be aware that BAL may cause increased pulmonary fluoro-deoxy-D-glucose uptake, making accurate radiologic interpretation problematic. We suggest that to optimize positron emission tomography-computed tomography, studies should not be performed within 24 hours of BAL.

  13. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Comparative effect of lidocaine and bupivacaine on glucose uptake and lactate production in the perfused working rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Cronau, L.H. Jr.; Merin, R.G.; Aboulish, E.; Steenberg, M.L.; Maljorda, A.

    1986-03-01

    It has been suggested that at equivalent therapeutic concentrations, lidocaine and bupivacaine may have different cardiotoxic potency. In the isolated working rat heart preparation, the effect of a range of lidocaine and bupivacaine concentrations on glucose uptake and lactate production (LP) were observed. Insulin was added, 10 ..mu../L, to Ringer's solution containing /sup 3/H-labeled glucose to measure the glycolytic flux (GF). The effect of the local anesthetics on LP at the indicated concentrations were similar. Lidocaine appears to depress the glycolytic flux from exogenous glucose to a lesser degree. Bupivacaine, 10 mg/L, depresses VO/sub 2/ to a greater degree than does lidocaine, 40 mg/L.

  15. Effects of cytochalasin B on the uptake of ascorbic acid and glucose by 3T3 fibroblasts: Mechanism of impaired ascorbate transport in diabetes

    International Nuclear Information System (INIS)

    Fay, M.J.; Bush, M.J.; Verlangieri, A.J.

    1990-01-01

    Hyperglycemia and/or hypoinsulinemia have been found to inhibit L-ascorbic acid cellular transport. The resultant decrease in intracellular ascorbic acid may de-inhibit aryl sulfatase B and increase degradation of sulfated glycosaminoglycans (sGAG). This could lead to a degeneration of the extracellular matrix and result in increased intimal permeability, the initiating event in atherosclerosis. The present studies show that the glucose transport inhibitor cytochalasin B blocked the uptake of 3 H-2-deoxy-D-glucose by mouse 3T3 fibroblasts. Cytochalasin B also blocked the uptake of 14 C-L-ascorbic acid. The results of these studies further support the hypothesis that glucose and ascorbate share a common transport system. This may have important implications concerning the vascular pathology associated with diabetes mellitus

  16. Low whole-body insulin sensitivity in patients with ischaemic heart disease is associated with impaired myocardial glucose uptake predictive of poor outcome after revascularisation

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Carstensen, Steen; Hove, Jens D

    2002-01-01

    patients with ischaemic heart disease and impaired LV ejection fraction (EF) and age-matched healthy volunteers ( n = 30). As assessed by euglycaemic glucose-insulin clamp, 15 patients had a low and 14 a normal whole-body insulin sensitivity. Using positron emission tomography, patterns of fluorine-18......We tested the hypothesis that low whole-body insulin sensitivity in patients with ischaemic heart disease and impaired left ventricular (LV) function is associated with abnormalities of insulin-mediated myocardial glucose uptake affecting outcome after coronary bypass surgery (CABG). We studied 29......-normal myocardium was found to be higher in patients with normal whole-body insulin sensitivity ( P body insulin sensitivity more segments displayed a pattern of reduced glucose uptake in normoperfused myocardium (PET-reverse mismatch) ( P

  17. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong

    2017-01-01

    BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment. PMID:28584574

  18. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  19. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V.

    1990-01-01

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  20. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method

    International Nuclear Information System (INIS)

    Wolters, G.H.J.; Wiegman, J.B.; Konijnendijk, W.

    1982-01-01

    Glucose-stimulated 45 calcium uptake and total calcium content of rat pancreatic islets has been studied, using a new fluorometric micro-method to estimate total calcium. Extracellular calcium was separated from incubated tissue by a rapid micro-filtration procedure. Islets incubated up to 60 min with calcium chloride 2.5 mmol/l and glucose 2.5 mmol/l maintained the same calcium content (670 +- 7.5 pmol/μg DNA). When the glucose concentration was raised to 15 mmol/l no change in the total calcium content could be detected. On incubation with glucose 2.5 mmol/l in the absence of calcium, the calcium content decreased to 488 +- 27 pmol/μg DNA. On incubation with 45 calcium chloride 2.5 mmol/l for 5 or 30 min at 2.5 mmol/l glucose, islets exchanged 21 +- 2 and 28 +- 1% of their total calcium content and, at 15 mmol/l glucose, 30 +- 3 and 45 +- 2%, respectively. Thus, islet calcium has a high turn-over rate. Glucose stimulation results in an increase of the calcium uptake without enhancing the total calcium content and hence must increase the calcium-exchangeable pool. (orig.)

  1. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  2. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  3. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  4. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle.

    Science.gov (United States)

    Bultot, Laurent; Jensen, Thomas E; Lai, Yu-Chiang; Madsen, Agnete L B; Collodet, Caterina; Kviklyte, Samanta; Deak, Maria; Yavari, Arash; Foretz, Marc; Ghaffari, Sahar; Bellahcene, Mohamed; Ashrafian, Houman; Rider, Mark H; Richter, Erik A; Sakamoto, Kei

    2016-10-01

    AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 μM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle. Copyright © 2016 the American Physiological Society.

  5. 14C glucose uptake and turnover, a biomarker in benzo(a)pyrene induced lung carcinogenesis: role of curcumin and resveratrol

    International Nuclear Information System (INIS)

    Malhotra, Anshoo; Nair, P.; Dhawan, D.K.

    2010-01-01

    Full text: The aim of the present study was to explore the synergistic potential of curcumin and resveratrol in modulation of glucose metabolism by studying 14 C glucose uptake, turnover in the lung slices and ultra-histoarchitectural changes during benzo(a)pyrene (BP) induced lung carcinogenesis in mice. The mice were segregated into five treatment groups which included group I (normal control), group II (BP treated), group III (BP+curcumin treated), group IV (BP+resveratrol treated) and group V (BP+curcumin+resveratrol treated). Animals in Group II were given a single intraperitoneal injection of Benzo(a)pyrene in corn oil at a dose level of 100mg/Kg body weight. Group III animals were given curcumin orally in drinking water at a dose level of 60 mg /Kg/ body weight, thrice a week. Animals in Group IV were given resveratrol orally at a dose level of 5.7 microgram/ml drinking water, thrice a week. Animals in group V were given a combined treatment of curcumin and resveratrol in a similar manner as was given to group III and group IV animals, respectively. All the animals had free access to the diet and water and the treatments continued for a total duration of 22 weeks. The morphological and ultra-histoachitectural analyses confirmed lung carcinogenesis, in the BP treated mice. Tumor incidence and tumor multiplicity were observed to be 88% and 1.75 respectively in the BP treated mice. A statistically significant increase in the uptake of 14 C glucose was observed in the lung slices of BP treated mice. Further, radiorespirometric analyses of 14 C turnover also showed a significant increase in the lung slices of BP treated mice. The ultra-histoarchitecture of the BP treated mice revealed disruption in cellular integrity along with nuclear deformation. Mitochondria were swollen and cytoplasm appeared granular along with extensive vacuolization. Further, spaces between the endothelium, epithelium and basement membrane indicative of lung injury and edema were observed

  6. Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines.

    Science.gov (United States)

    Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V

    2016-05-01

    Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and

  7. Activity-Dependent Regulation of Surface Glucose Transporter-3

    OpenAIRE

    Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.

    2011-01-01

    Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...

  8. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    Science.gov (United States)

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: A systematic review.

    Directory of Open Access Journals (Sweden)

    Clarice Sprinz

    Full Text Available To perform a systematic review of the effect of blood glucose levels on 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG uptake in normal organs.We searched the MEDLINE, EMBASE and Cochrane databases through 22 April 2017 to identify all relevant studies using the keywords "PET/CT" (positron emission tomography/computed tomography, "standardized uptake value" (SUV, "glycemia," and "normal." Analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations. Maximum and mean SUVs and glycemia were the main parameters analyzed. To objectively measure the magnitude of the association between glycemia and 18F-FDG uptake in different organs, we calculated the effect size (ES and the coefficient of determination (R2 whenever possible.The literature search yielded 225 results, and 14 articles met the inclusion criteria; studies included a total of 2714 (range, 51-557 participants. The brain SUV was related significantly and inversely to glycemia (ES = 1.26; R2 0.16-0.58. Although the liver and mediastinal blood pool were significantly affected by glycemia, the magnitudes of these associations were small (ES = 0.24-0.59, R2 = 0.01-0.08 and negligible (R2 = 0.02, respectively. Lung, bone marrow, tumor, spleen, fat, bowel, and stomach 18F-FDG uptakes were not influenced by glycemia. Individual factors other than glycemia can also affect 18F-FDG uptake in different organs, and body mass index appears to be the most important of these factors.The impact of glycemia on SUVs in most organs is either negligible or too small to be clinically significant. The brain SUV was the only value largely affected by glycemia.

  10. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.

    Science.gov (United States)

    Castro, Maite A; Pozo, Miguel; Cortés, Christian; García, María de Los Angeles; Concha, Ilona I; Nualart, Francisco

    2007-08-01

    It has been demonstrated that glutamatergic activity induces ascorbic acid (AA) depletion in astrocytes. Additionally, different data indicate that AA may inhibit glucose accumulation in primary cultures of rat hippocampal neurons. Thus, our hypothesis postulates that AA released from the astrocytes during glutamatergic synaptic activity may inhibit glucose uptake by neurons. We observed that cultured neurons express the sodium-vitamin C cotransporter 2 and the facilitative glucose transporters (GLUT) 1 and 3, however, in hippocampal brain slices GLUT3 was the main transporter detected. Functional activity of GLUTs was confirmed by means of kinetic analysis using 2-deoxy-d-glucose. Therefore, we showed that AA, once accumulated inside the cell, inhibits glucose transport in both cortical and hippocampal neurons in culture. Additionally, we showed that astrocytes are not affected by AA. Using hippocampal slices, we observed that upon blockade of monocarboxylate utilization by alpha-cyano-4-hydroxycinnamate and after glucose deprivation, glucose could rescue neuronal response to electrical stimulation only if AA uptake is prevented. Finally, using a transwell system of separated neuronal and astrocytic cultures, we observed that glutamate can reduce glucose transport in neurons only in presence of AA-loaded astrocytes, suggesting the essential role of astrocyte-released AA in this effect.

  11. Predicting Insulin Absorption and Glucose Uptake during Exercise in Type 1 Diabetes

    Science.gov (United States)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Szeri, Andrew; Basu, Ananda

    2017-11-01

    A dose of insulin infused into subcutaneous tissue has been shown to absorb more quickly during exercise, potentially causing hypoglycemia in persons with type 1 diabetes. We develop a model that relates exercise-induced physiological changes to enhanced insulin-absorption (k) and glucose uptake (GU). Drawing on concepts of the microcirculation we derive a relationship that reveals that k and GU are mainly determined by two physiological parameters that characterize the tissue: the tissue perfusion rate (Q) and the capillary permeability surface area (PS). Independently measured values of Q and PS from the literature are used in the model to make predictions of k and GU. We compare these predictions to experimental observations of healthy and diabetic patients that are given a meal followed by rest or exercise. The experiments show that during exercise insulin concentrations significantly increase and that glucose levels fall rapidly. The model predictions are consistent with the experiments and show that increases in Q and PS directly increase k and GU. This mechanistic understanding provides a basis for handling exercise in control algorithms for an artificial pancreas. Now at University of British Columbia.

  12. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Viergever, M.A.; Pijl, H.; Grond, J. van der

    2007-01-01

    We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load,

  13. Novel benzoxazine-based aglycones block glucose uptake in vivo by inhibiting glycosidases.

    Directory of Open Access Journals (Sweden)

    Hanumantharayappa Bharathkumar

    Full Text Available Glycoside hydrolases catalyze the selective hydrolysis of glycosidic bonds in oligosaccharides, polysaccharides, and their conjugates. β-glucosidases occur in all domains of living organisms and constitute a major group among glycoside hydrolases. On the other hand, the benzoxazinoids occur in living systems and act as stable β-glucosides, such as 2-(2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H-one-β-D-gluco-pyranose, which hydrolyse to an aglycone DIMBOA. Here, we synthesized the library of novel 1,3-benzoxazine scaffold based aglycones by using 2-aminobenzyl alcohols and aldehydes from one-pot reaction in a chloroacetic acid catalytic system via aerobic oxidative synthesis. Among the synthesized benzoxazines, 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-ylphenol (compound 7 exhibit significant inhibition towards glucosidase compared to acarbose, with a IC50 value of 11.5 µM. Based upon results generated by in silico target prediction algorithms (Naïve Bayesian classifier, these aglycones potentially target the additional sodium/glucose cotransporter 1 (where a log likelihood score of 2.70 was observed. Furthermore, the in vitro glucosidase activity was correlated with the in silico docking results, with a high docking score for the aglycones towards the substrate binding site of glycosidase. Evidently, the in vitro and in vivo experiments clearly suggest an anti-hyperglycemic effect via glucose uptake inhibition by 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-ylphenol in the starved rat model. These synthetic aglycones could constitute a novel pharmacological approach for the treatment, or re-enforcement of existing treatments, of type 2 diabetes and associated secondary complications.

  14. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Viergever, M.A.; Pijl, H.; Grond, van der J.

    2007-01-01

    Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 293: E754-E758, 2007. First published June 12, 2007; doi:10.1152/ajpendo.00231.2007. - We previously showed that hypothalamic neuronal activity, as measured by the blood

  15. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    Science.gov (United States)

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of iodoacetic acid on 59Fe uptake and aconitase aivity during sporulation of Bacillus cereus T

    International Nuclear Information System (INIS)

    Twari, B.K.; Sharma, D.

    1975-01-01

    Iodoacetic acid (IAA), a well known inhibitor of glycolysis, inhibited sporulation of B. cereus T when added to the culture just prior to the transition stage at 2-2.5 hr. In the inhibited culture, no considerable aconitase activity and 59 Fe uptake were observed. Time studies with IAA in modified G-medium had shown that whenever it was added it prevented further glycolysis of glucose. Addition of IAA at zero hr had no effect on aconitase activity and 59 Fe uptake whether glucose was present or absent from the medium. IAA added at rising pH at 3 hr. i.e. after transition period had no effect on the pH characteristics and sporulation of the organism. IAA seems to inhibit the induction of metal transport system. There exists a considerable correlation between aconitase activity and 59 Fe uptake during growth and sporulation of B. cereus T in modified G-medium in the presence and absence of glucose. (author)

  17. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  18. Glucose pathways adaptation supports acquisition of activated microglia phenotype.

    Science.gov (United States)

    Gimeno-Bayón, J; López-López, A; Rodríguez, M J; Mahy, N

    2014-06-01

    With its capacity to survey the environment and phagocyte debris, microglia assume a diversity of phenotypes to respond specifically through neurotrophic and toxic effects. Although these roles are well accepted, the underlying energetic mechanisms associated with microglial activation remain largely unclear. This study investigates microglia metabolic adaptation to ATP, NADPH, H(+) , and reactive oxygen species production. To this end, in vitro studies were performed with BV-2 cells before and after activation with lipopolysaccharide + interferon-γ. Nitric oxide (NO) was measured as a marker of cell activation. Our results show that microglial activation triggers a metabolic reprogramming based on an increased glucose uptake and a strengthening of anaerobic glycolysis, as well as of the pentose pathway oxidative branch, while retaining the mitochondrial activity. Based on this energy commitment, microglial defense capacity increases rapidly as well as ribose-5-phosphate and nucleic acid formation for gene transcription, essential to ensure the newly acquired functions demanded by central nervous system signaling. We also review the role of NO in this microglial energy commitment that positions cytotoxic microglia within the energetics of the astrocyte-neuron lactate shuttle. Copyright © 2014 Wiley Periodicals, Inc.

  19. Functional expression of sodium-glucose transporters in cancer

    Science.gov (United States)

    Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.

    2015-01-01

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  20. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Büsing, Karen A.; Schönberg, Stefan O.; Brade, Joachim; Wasser, Klaus

    2013-01-01

    Introduction: Chronically altered glucose metabolism interferes with 18 F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in 18 F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on 18 F-FDG uptake in tumors and biodistribution in normal organ tissues. Methods: 18 F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index > 25. The maximum standardized uptake value (SUV max ) of normal organs and the main tumor site was measured. Differences in SUV max in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Results: Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV max in muscle cells and fat, whereas the mean cerebral SUV max was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Conclusions: Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases

  1. Effects of Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis extracts on in vitro α-glucosidase activity and glucose diffusion.

    Science.gov (United States)

    Schultz Moreira, Adriana R; Garcimartín, Alba; Bastida, Sara; Jiménez-Escrig, Antonio; Rupérez, Pilar; Green, Brian D; Rafferty, Eamon; Sánchez-Muniz, Francisco J; Benedí, Juana

    2014-06-01

    Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control. To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion. The in vitro effects Chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect. Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively). The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Chapter 10: Glucose control: insulin therapy*

    African Journals Online (AJOL)

    Insulin and its analogues lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits ... control on 2 or 3 oral glucose lowering drugs.

  3. Monoaminergic Control of Cellular Glucose Utilization by Glycogenolysis in Neocortex and Hippocampus.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2015-12-01

    Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system

  4. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro

    DEFF Research Database (Denmark)

    Pedersen, M W; Holm, S; Lund, E L

    2001-01-01

    We examined the relationship between (18)F- labeled 2-fluro-2-deoxy-d-glucose (FDG) uptake, and expression of glucose transporters (GLUTs) in two human small-cell lung cancer (SCLC) lines CPH 54A and CPH 54B. Changes in the expression of GLUTs and vascular endothelial growth factor (VEGF) during 12......-, 18-, and 24 hours of severe hypoxia in vivo (xenografts) and in vitro (cell cultures) were recorded for both tumor lines. The two SCLC lines are subpopulations of the same patient tumor. In spite of their common genomic origin they represent consistently different metabolic and microenvironmental...... phenotypes as well as treatment sensitivities. There were higher levels of Glut-1 protein in 54B and a correspondingly higher FDG uptake in this tumor line (P

  5. The effect of PPAR-γ agonist on 18F-FDG uptake in tumor and macrophages and tumor cells

    International Nuclear Information System (INIS)

    Kim, Se-Lim; Kim, Eun-Mi; Cheong, Su-Jin; Lee, Chang-Moon; Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Yim, Chang Yeol

    2009-01-01

    Purpose: The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors, and its role in adipogenesis and glucose metabolism has been well established. PPAR-γ agonists have been shown to inhibit many cytokines and to have anti-inflammatory effects. In pathologic conditions, enhanced fluoro-2-deoxy-D-glucose (FDG) uptake is observed not only in malignant tumors but also in inflammatory lesions, and this uptake occurs through the glucose transporter in these cells. Thus, the present study was undertaken to investigate the potential of using PPAR-γ's glucose uptake ability as a diagnostic tool to differentiate between macrophage and tumor cells. Materials and Methods: Cellular uptake studies were carried out on macrophage and two tumor cell lines for comparison by using 18 F-FDG. Western blot analysis was performed to determine the expression levels of both the glucose transporter and hexokinase protein. To confirm the possibility of differentiation between tumor and inflammatory lesions using rosiglitazone based on in vitro studies, 18 F-FDG (3.7x10 6 Bq) uptake in A549 and RAW 264.7 xenograft mice was compared. Results: The cellular uptake study findings were quite different for macrophages and tumor cells. 18 F-FDG uptakes by macrophages decreased by about 60% but was increased twofold in tumor cells after rosiglitazone treatment. Moreover, the expressions of proteins related to glucose uptake correlated well with cellular glucose accumulation in both cell types. Higher tumor uptake was observed after the injection of rosiglitazone in A549 xenograft mice (1.58±0.55 to 4.66±1.16), but no significant change of 18 F-FDG uptake was shown in RAW 264.7 xenograft mice (4.04±1.16 to 4.00±0.14). Conclusion: The present study demonstrates the roles of PPAR-γ agonist on FDG uptake in macrophages and tumor cells in vitro and in vivo. Our findings suggest that rosiglitazone has the

  6. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1

    DEFF Research Database (Denmark)

    Vohra, Rupali; Gurubaran, Iswariyaraja Sridevi; Henriksen, Ulrik

    2017-01-01

    Using the human Müller cell line, MIO-M1, the aim was to study the impact of mitochondrial inhibition in Müller glia through antimycin A treatment. MIO-M1 cell survival, levels of released lactate, mitochondrial function, and glutamate uptake were studied in response to mitochondrial inhibition...... and glucose restriction. Lactate release decreased in response to glucose restriction. Combined glucose restriction and blocked mitochondrial activity decreased survival and caused collapse of the respiratory chain measured by oxygen consumption rate and extracellular acidification rate. Mitochondrial...... inhibition caused impaired glutamate uptake and decreased mRNA expression of the glutamate transporter, EAAT1. Over all, we show important roles of mitochondrial activity in MIO-M1 cell function and survival....

  7. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  8. Effects of Endogenous Androgens and Abdominal Fat Distribution on the Interrelationship Between Insulin and Non-Insulin-Mediated Glucose Uptake in Females

    Science.gov (United States)

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Dey, Damini; Berman, Daniel; Chen, Ida Y.; Dumesic, Daniel A.

    2013-01-01

    Background: Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism and insulin resistance. Glucose disposal occurs via noninsulin-mediated glucose uptake (NIMGU) and insulin-mediated glucose uptake (IMGU). It is unknown whether in PCOS NIMGU increases to compensate for declining IMGU and whether androgens and fat distribution influence this relationship. Objectives: The objective of the study was to compare in women with PCOS and controls the interrelationship between NIMGU [ie, glucose effectiveness (Sg)] and IMGU [ie, the insulin sensitivity index (Si)] and the role of androgens and fat distribution. Participants: Twenty-eight PCOS (by National Institutes of Health 1990 criteria) and 28 control (age, race, and body mass index matched) women were prospectively studied. A subset of 16 PCOS subjects and 16 matched controls also underwent abdominal computed tomography. Main Outcome Measures: Glucose disposal (by a frequently sampled iv glucose tolerance test), circulating androgens, and abdominal fat distribution [by waist to hip ratio and visceral (VAT) and sc (SAT) adipose tissue content] were measured. Results: PCOS women had lower mean Si and similar Sg and abdominal fat distribution compared with controls. PCOS women with Si below the PCOS median (more insulin resistant) had a lower mean Sg than controls with Si above the control median (more insulin sensitive). In PCOS only, body mass index, free T, modified Ferriman-Gallwey score, and waist to hip ratio independently predicted Sg, whereas Si did not. In PCOS, VAT and SAT independently and negatively predicted Si and Sg, respectively. Conclusion: The decreased IMGU in PCOS is not accompanied by a compensatory increase in NIMGU or associated with excessive VAT accumulation. Increased general obesity, SAT, and hyperandrogenism are primary predictors of the deterioration of NIMGU in PCOS. PMID:23450052

  9. Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, Michala H.; Larsen, Rasmus

    2014-01-01

    We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (Km) from dynamic [18F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low...

  10. Characteristics of sugar uptake by immature maize embryos

    International Nuclear Information System (INIS)

    Griffith, S.M.; Jones, R.J.; Brenner, M.L.

    1986-01-01

    Characteristics of sugar uptake by immature maize embryos were determined in vitro utilizing a 14 C-sugar solution incubation method. Hexose uptake rates were greater than those for sucrose, however, all showed biphasic kinetics. Glucose and fructose saturable components were evidence at <50 mM and sucrose at <5 mM. Chemical inhibitors (CCCP, DNP, NaCN, and PCMBS) and low temperature reduced sugar uptake. Sucrose influx was pH dependent while glucose was not. Embryos maintained a high sucrose to hexose ratio throughout development. At 25 days after pollination sucrose levels exceeded 200 mM while hexose levels remained below 5 mM. Glucose was rapidly converted to sucrose upon transport into the embryo. These circumstantial data indicate that sugar uptake by immature maize embryos is metabolically dependent and carrier mediated. Furthermore, sucrose transport appears to occur against its concentration gradient involving a H+/sucrose cotransport mechanism, while glucose influx is driven by its concentration gradient and subsequent metabolism

  11. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control

    DEFF Research Database (Denmark)

    Sylow, Lykke; Kleinert, Maximilian; Richter, Erik

    2017-01-01

    energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry...

  12. Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hideo; Nishiyama, Shingo; Ohba, Hiroyuki; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro [Hamamatsu Photonics K.K., Central Research Laboratory, Shizuoka (Japan)

    2014-11-15

    The aim of the present study was to compare amyloid-β (Aβ) deposition, translocator protein (TSPO) activity, regional cerebral metabolic rate of glucose (rCMRglc), and mitochondrial complex I (MC-I) activity in the brain of aged monkeys. PET scans with {sup 11}C-PIB (Aβ), {sup 18}F-BCPP-EF (MC-I), {sup 11}C-DPA-713 (TSPO), and {sup 18}F-FDG (rCMRglc) were performed in aged monkeys (Macaca mulatta) in the conscious state and under isoflurane anaesthesia. {sup 11}C-PIB binding to Aβ and {sup 11}C-DPA-713 binding to TSPO were evaluated in terms of standard uptake values (SUV). The total volume of distribution (V{sub T}) of {sup 18}F-BCPP-EF and rCMRglc with {sup 18}F-FDG were calculated using arterial blood sampling. Isoflurane did not affect MC-I activity measured in terms of {sup 18}F-BCPP-EF uptake in living brain. There was a significant negative correlation between {sup 18}F-BCPP-EF binding (V{sub T}) and {sup 11}C-PIB uptake (SUVR), and there was a significant positive correlation between {sup 11}C-DPA-713 uptake (SUV) and {sup 11}C-PIB uptake. In contrast, there was no significant correlation between rCMRglc ratio and {sup 11}C-PIB uptake. {sup 18}F-BCPP-EF could be a potential PET probe for quantitative imaging of impaired MC-I activity that is correlated with Aβ deposition in the living brain. (orig.)

  13. Decreased insulin secretory response of pancreatic islets during culture in the presence of low glucose is associated with diminished 45Ca2+ net uptake, NADPH/NADP+ and GSH/GSSG ratios

    International Nuclear Information System (INIS)

    Verspohl, E.J.; Kaiser, P.; Wahl, M.; Ammon, H.P.T.

    1988-01-01

    In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86 Rb + efflux, and 45 Ca ++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86 Rb + efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was not longer any insulin responsiveness to glucose. The 45 Ca ++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45 Ca ++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium ( 86 Rb + ) efflux may not be related to changes of NADPH and GSH

  14. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    Mongillo, Marco; Leccisotti, Lucia; John, Anna S.; Pennell, Dudley J.; Camici, Paolo G.

    2007-01-01

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [ 11 C]meta-hydroxy-ephedrine (HED) volume of distribution (V d ) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1 .g -1 ) and dysfunctional (0.49 ± 0.14 μmol.min -1 .g -1 ) segments compared with controls (0.61 ± 0.7 μmol.min -1 .g -1 ; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g -1 ) compared with normal segments (52.2 ± 19.6 ml.g -1 ) and compared with controls (62.7 ± 11.3 ml.g -1 ). In patients, regional MGU was correlated with HED V d . The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  15. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    International Nuclear Information System (INIS)

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-01-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the [6- 3 H]glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 μU/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production

  16. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  17. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  18. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt

    Science.gov (United States)

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  19. The ratio of (18)F-FDG activity uptake between the right and left ventricle in patients with pulmonary hypertension correlates with the right ventricular function.

    Science.gov (United States)

    Yang, Tao; Wang, Lei; Xiong, Chang-Ming; He, Jian-Guo; Zhang, Yan; Gu, Qing; Zhao, Zhi-Hui; Ni, Xin-Hai; Fang, Wei; Liu, Zhi-Hong

    2014-05-01

    It is known that patients with pulmonary hypertension (PH) can have elevated F-FDG uptake in the right ventricle (RV) on PET imaging. This study was designed to assess possible relationship between FDG uptake of ventricles and the function/hemodynamics of the RV in patients with PH. Thirty-eight patients with PH underwent FDG PET imaging in both fasting and glucose-loading conditions. The standard uptake value (SUVs) corrected for partial volume effect in both RV and left ventricle (LV) were measured. The ratio of FDG uptake between RV to LV (SUVR/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within 1 week. The FDG uptake levels by the ventricles were compared with the result form the right heart catheterization and CMR. The SUV of RV (SUVR) and SUV of LV were significantly higher in glucose-loading condition than in fasting condition. In both fasting and glucose-loading conditions, SUVR and SUVR/L showed reverse correlation with right ventricular ejection fraction derived from CMR. In addition, in both fasting and glucose-loading conditions, SUVR and SUVR/L showed positive correlations with pulmonary vascular resistance. However, only SUVR/L in glucose-loading condition could independently predict right ventricular ejection fraction after adjusted for age, body mass index, sex, mean right atrial pressure, mean pulmonary arterial pressure, and pulmonary vascular resistance (P = 0.048). The FDG uptake of RV increases with decreased right ventricular function in patients with PH. Increased FDG uptake ratio between RV and LV might be useful to assess the right ventricular function.

  20. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  1. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    Science.gov (United States)

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, pinflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  2. Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption

    DEFF Research Database (Denmark)

    Winther, Sally; Isidor, Marie Sophie; Basse, Astrid Linde

    2018-01-01

    During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated kn......During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using si...... of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely...... on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways....

  3. Regional cerebral glucose metabolism associated with ataxic gait. An FDG-PET activation study in patients with olivo-pontocerebellar atrophy

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Ohyama, Masashi; Kitamura, Shin; Terashi, Akirou; Senda, Michio; Ishii, Kenji.

    1995-01-01

    In 7 patients with olivo-pontocerebellar atrophy (OPCA), regional cerebral glucose metabolism was evaluated using 18 F-FDG PET under two different conditions; 30 minutes' treadmill walking, and supine resting. The two sets of PET images were three-dimensionally registered to the MRI. Then, the PET images were normalized by the global value. Regions of interest (ROIs) were drawn on the cerebellar vermis, cerebellar hemispheres, pons, and thalamus, and FDG uptake was obtained to calculate the activation ratio (=[FDG uptake under walking]/ [FDG uptake under resting]) for each region. Normalized resting FDG uptake had no significant difference between controls and OPCA patients in any region. Activation ratio of OPCA patients was significantly decreased in the cerebellar vermis compared with the controls. In the controls, FDG uptake had little difference between resting and walking in the cerebellar hemisphere, pons and thalamus. On the other hand, the FDG uptake of OPCA patients was moderately increased by walking in these regions. The reduction of activation ratio in the cerebellar vermis reflects the dysfunction caused by degeneration. The result suggests that the PET activation study can demonstrate cerebellar dysfunction in the early phase of OPCA, in which other neuro-imaging methods cannot detect the tissue atrophy, hypometabolism or hypoperfusion in the resting state. In the cerebellar hemisphere, pons and thalamus, the activation ratio was nearly equal to one in control subjects, while it was larger in OPCA patients. The instability during the ataxic gait increases the inputs from the vestibular, somatosensory and visual systems to these regions and outputs from these regions to the other neural systems. In conclusion, PET activation study is a useful and noninvasive technique for investigating the brain function associated with human gait. (H.O.)

  4. [sup 123]I-iodobenzoylglucosamines: glucose analogues for heart imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, T [British Columbia Univ., Vancouver, BC (Canada). Dept. of Pharmaceutical Sciences; Dougan, H [TRIUMF, Vancouver, BC (Canada); Rihela, T; Vo, C V [Vancouver General Hospital (Canada). Div. of Nuclear Medicine; Lyster, D M [British Columbia Univ., Vancouver, BC (Canada). Dept. of Pharmaceutical Sciences Vancouver General Hospital (Canada). Div. of Nuclear Medicine

    1993-01-01

    The ortho-, meta- and para-[[sup 123]I]-2-deoxy-2-N-(iodobenzoyl)-D-glucosamine (BGA) derivatives were investigated to determine the effect of iodine position and lipophilicity on tissue distribution. There was no correlation between tissue uptake and lipophilicity. Maximum uptake was observed for o-BGA displaying a heart:blood ratio of 36.0 at 18 hours post injection. Yeast hexokinase phosphorylation studies in vitro and an in vivo insulin experiment were carried out on o-BGA. No phosphorylation was detected, but the insulin study indicated that o-BGA uses the glucose transporter. o-BGA showed maximum tissue uptake in mice at an optimal specific activity of 0.004mg/[mu]Ci. Mouse biodistribution studies of o-[[sup 123]I]-iodobenzamide(o-[sup 123]IBA) indicated that the glucose moiety of o-BGA may be involved in the heart accumulation process in mice. Heart tissue extraction studies showed unmetabolized o-[[sup 123]I]BGA was the predominant species. A rabbit image of o-[[sup 123]I]BGA, recorded at 14 hours post injection, showed significant heart uptake. (author).

  5. The distribution of FDG at PET examinations constitutes a relative mechanism: significant effects at activity quantification in patients with a high muscular uptake

    International Nuclear Information System (INIS)

    Lindholm, Henry; Johansson, Ove; Jacobsson, Hans; Jonsson, Cathrine

    2012-01-01

    At 18 F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) examinations a high tracer uptake of the skeletal muscles is sometimes encountered which can lead to reduced uptake in pathological lesions. This was evaluated in retrospect in patients being recalled for a repeat examination after reducing the muscular uptake. Ten patients with increased muscular tracer uptake were examined with FDG PET/CT on two occasions with a mean of 6 days. All patients showed at least one pathological lesion with increased tracer uptake. The muscular uptake was reduced at the second examination by informing the patient to refrain from physical activity together with pretreatment with diazepam. The maximum standardized uptake value (SUV max ) of the pathological lesion and SUV mean of certain skeletal muscles, liver, spleen, lungs, blood and certain bone marrow portions were calculated. In all patients, the muscular uptake was reduced to a normal level at visual evaluation as well as at comparison of SUVs with 25 consecutive clinical patients exhibiting a normal FDG distribution (p max increased from 2.4 to 3.7 (54 %) between the examinations (p max to the activity of any of the reference tissues/organs there was no significant difference between the studies. The distribution of FDG constitutes a relative mechanism. This must be especially considered at longitudinal examinations in the same patient at therapy evaluations. In examinations with a somehow distorted general distribution of the activity, it may be more relevant to relate the lesion activity to a reference tissue/organ than relying on SUV assessments. (orig.)

  6. Energy metabolism and memory processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken.

    Science.gov (United States)

    Hutchinson, Dana S; Summers, Roger J; Gibbs, Marie E

    2008-06-15

    From experiments using a discriminated bead task in young chicks, we have defined when and where adrenoceptors (ARs) are involved in memory modulation. All three ARs subtypes (alpha(1)-, alpha(2)- and beta-ARs) are found in the chick brain and in regions associated with memory. Glucose and glycogen are important in the role of memory consolidation in the chick since increasing glucose levels improves memory consolidation while inhibiting glucose transporters (GLUTs) or glycogen breakdown inhibits memory consolidation. The selective beta(3)-AR agonist CL316243 enhances memory consolidation by a glucose-dependent mechanism and the administration of the non-metabolized glucose analogue 2-deoxyglucose reduces the ability of CL316243 to enhance memory. Agents that reduce glucose uptake by GLUTs and its incorporation into the glycolytic pathway also reduce the effectiveness of CL316243, but do not alter the dose-response relationship to the beta(2)-AR agonist zinterol. However, beta(2)-ARs do have a role in memory related to glycogen breakdown and inhibition of glycogenolysis reduces the ability of zinterol to enhance memory. Both beta(2)- and beta(3)-ARs are found on astrocytes from chick forebrain, and the actions of beta(3)-ARs on glucose uptake, and beta(2)-ARs on the breakdown of glycogen is consistent with an effect on astrocytic metabolism at the time of memory consolidation 30 min after training. We have shown that both beta(2)- and beta(3)-ARs can increase glucose uptake in chick astrocytes but do so by different mechanisms. This review will focus on the role of ARs on memory consolidation and specifically the role of energy metabolism on AR modulation of memory.

  7. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    Science.gov (United States)

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured

  8. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.

    Science.gov (United States)

    de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I

    2013-12-11

    Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake.

  9. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  10. Heterotrophic utilization of acetate and glucose in Swartvlei, South Africa

    International Nuclear Information System (INIS)

    Robarts, R.D.

    1979-01-01

    The utilization of dissolved organic compounds in Swartvlei was measured by the addition of single concentrations of 14 C-labelled acetate and glucose to water samples. The results indicated acetate uptake was greatest in the aerobic zone while glucose was predominantly utilized in the anaerobic zone. With the exception of two months, integral glucose uptake was usually greater than the uptake of acetate. In August and September 1971 acetate was indicated as being utilized predominantly by flagellates and in December 1971 by dinoflagellates. During the remainder of the study, bacteria were assumed to be responsible for the uptake of acetate. The extensive weed beds which surround the upper reaches of Swartvlei may be a major source of acetate and glucose in the pelagic water column

  11. Use of digitonin permeabilization for characterization of calcium incorporated into. beta. cells in response to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wesslen, N [Uppsala Univ. (Sweden)

    1985-01-01

    ..beta.. cell-rich pancreatic islets were used to characterize /sup 45/Ca uptake into pools with different sensitivities to permeabilization with digitonin. The plasma and secretory granule membranes were among the membranes most sensitive to digitonin treatment whereas the mitochondria were more resistant. Most of the /sup 45/Ca incorporated in response to glucose was found in a fraction released after exposure to a high concentration of digitonin. The results suggest that glucose promotes active sequestration of calcium in mitochondria and that the uptake of /sup 45/Ca in the secretory granules in secondary to a raised cytosolic Ca/sup 2 +/ activity.

  12. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    Science.gov (United States)

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  13. The UPR reduces glucose metabolism via IRE1 signaling.

    Science.gov (United States)

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  15. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  16. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    Directory of Open Access Journals (Sweden)

    Miao Xu

    Full Text Available Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1 inhibition of AMPK activity by Compound C, (2 suppression of AMPKα expression by siRNA, and (3 blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  17. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium

    International Nuclear Information System (INIS)

    Schwaiger, M.; Neese, R.A.; Araujo, L.

    1989-01-01

    Ischemically injured reperfused myocardium is characterized by increased 18F-fluorodeoxyglucose uptake as demonstrated by positron emission tomography. To elucidate the metabolic fate of exogenous glucose entering reperfused myocardium, D-[6-14C] glucose and L-[U-13C] lactate were used to determine glucose uptake, glucose oxidation and the contribution of exogenous glucose to lactate production. The pathologic model under investigation consisted of a 3 h balloon occlusion of the left anterior descending coronary artery followed by 24 h of reperfusion in canine myocardium. The extent and severity of myocardial injury after the ischemia and reperfusion were assessed by histochemical evaluation (triphenyltetrazolium chloride and periodic acid-Schiff stains). Thirteen intervention and four control dogs were studied. The glucose uptake in the occluded/reperfused area was significantly enhanced compared with that in control dogs (0.40 +/- 0.14 versus 0.15 +/- 0.10 mumol/ml, respectively). In addition, a significantly greater portion of the glucose extracted immediately entered glycolysis in the intervention group (75%) than in the control dogs (33%). The activity of the nonoxidative glycolytic pathway was markedly increased in the ischemically injured reperfused area, as evidenced by the four times greater lactate release in this area compared with the control value. The dual carbon-labeled isotopes showed that 57% of the exogenous glucose entering glycolysis was being converted to lactate. Exogenous glucose contributed to greater than 90% of the observed lactate production. This finding was confirmed by the histochemical finding of sustained glycogen depletion in the occlusion/reperfusion area. The average area of glycogen depletion (37%) significantly exceeded the average area of necrosis

  18. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, Christopher C; Hoffman, Nolan J

    2015-01-01

    Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated...... weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise endurance...... together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers....

  19. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    James R. Krycer

    2017-12-01

    Full Text Available Insulin triggers an extensive signaling cascade to coordinate adipocyte glucose metabolism. It is considered that the major role of insulin is to provide anabolic substrates by activating GLUT4-dependent glucose uptake. However, insulin stimulates phosphorylation of many metabolic proteins. To examine the implications of this on glucose metabolism, we performed dynamic tracer metabolomics in cultured adipocytes treated with insulin. Temporal analysis of metabolite concentrations and tracer labeling revealed rapid and distinct changes in glucose metabolism, favoring specific glycolytic branch points and pyruvate anaplerosis. Integrating dynamic metabolomics and phosphoproteomics data revealed that insulin-dependent phosphorylation of anabolic enzymes occurred prior to substrate accumulation. Indeed, glycogen synthesis was activated independently of glucose supply. We refer to this phenomenon as metabolic priming, whereby insulin signaling creates a demand-driven system to “pull” glucose into specific anabolic pathways. This complements the supply-driven regulation of anabolism by substrate accumulation and highlights an additional role for insulin action in adipocyte glucose metabolism.

  1. Alantolactone Improves Prolonged Exposure of Interleukin-6-Induced Skeletal Muscle Inflammation Associated Glucose Intolerance and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Minjee Kim

    2017-06-01

    Full Text Available The pro-inflammatory cytokine, Interleukin-6 (IL-6, has been proposed to be one of the mediators that link chronic inflammation to glucose intolerance and insulin resistance. Many studies have demonstrated the effects of IL-6 on insulin action in the skeletal muscle. However, few studies have investigated the effect of long-term treatment of IL-6, leading to glucose intolerance and insulin resistance. In the present study, we observed protective effects of alantolactone, a sesquiterpene lactone isolated from Inula helenium against glucose intolerance and insulin resistance induced by prolonged exposure of IL-6. Alantolactone has been reported to have anti-inflammatory and anti-cancer effects through IL-6-induced signal transducer and activator of transcription 3 (STAT3 signaling pathway. The relationship between IL-6 exposure and expression of toll-like receptor 4 (TLR4, involved in inflammation in the skeletal muscle, and the underlying mechanisms were investigated. We observed maximum dysregulation of glucose uptake after 40 ng/ml IL-6 induction for 24 h in L6 myotubes. Prolonged IL-6 exposure suppressed glucose uptake regulating alpha serine/threonine-protein kinase (AKT phosphorylation; however, pretreatment with alantolactone activated AKT phosphorylation and improved glucose uptake. Alantolactone also attenuated IL-6-stimulated STAT3 phosphorylation, followed by an increase in expression of negative regulator suppressor of cytokine signaling 3 (SOCS3. Furthermore, IL-6-induced expression of pathogen recognition receptor, TLR4, was also suppressed by alantolactone pretreatment. Post-silencing of STAT3 using siRNA approach, IL-6-stimulated siRNA-STAT3 improved glucose uptake and suppressed TLR4 gene expression. Taken together, we propose that, as a STAT3 inhibitor, alantolactone, improves glucose regulation in the skeletal muscle by inhibiting IL-6-induced STAT3-SOCS3 signaling followed by inhibition of the TLR4 gene expression. Therefore

  2. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice

    International Nuclear Information System (INIS)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M.; Wang, Yong; Wollert, Kai C.

    2015-01-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial 18 F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial 18 F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial 18 F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In contrast to

  3. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...

  4. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic......-insensitive GS knock-in mice, although AICAR-stimulated AMPK activation, glucose transport, and total glucose utilization were normal. CONCLUSIONS We provide genetic evidence that AMPK activation promotes muscle glycogen accumulation by allosteric activation of GS through an increase in glucose uptake...

  5. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of 18F-Fluorodeoxyglucose After Radiation Treatment

    International Nuclear Information System (INIS)

    Wilson, George D.; Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L.; Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John; Oliver Wong, Ching Yee; Yan, Di; Marples, Brian; Huang, Jiayi

    2014-01-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm 3 they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: 18 F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism

  6. Factors influencing physiological FDG uptake in the intestine

    International Nuclear Information System (INIS)

    Yasuda, Seiei; Takahashi, Wakoh; Takagi, Shigeharu; Fujii, Hirofumi; Ide, Michiru; Shohtsu, Akira

    1998-01-01

    The intestine is a well-known site of physiological 18 F-fluorodeoxyglucose (FDG) accumulation in positron emission tomography (PET). To identify factors influencing physiological FDG uptake in the intestine, the intensity of FDG uptake was evaluated in a total of 1,068 healthy adults. Non-attenuation-corrected whole-body PET images were obtained for all subjects and visually evaluated. Subjects were then classified into two groups according to the intensity of intestinal FDG uptake. Sex, age, presence or absence of constipation, and serum glucose, hemoglobin A 1 c, and free fatty acid levels were compared between the two groups. High intestinal FDG uptake was observed at an overall rate of 11.0%. Sex (female), age, and bowel condition (constipation) were found to affect intestinal FDG uptake. The factors we identified lead to further questions the relationship between intestinal motility and glucose uptake that warrant further study. (author)

  7. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Thorsten eRudroff

    2014-05-01

    Full Text Available We used positron emission tomography/computed tomography (PET/CT and [18F]-FDG to test the hypothesis that glucose uptake (GU heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 yrs and six old (77 ± 6 yrs men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD for knee extensors and flexors was greater for the old (35.3 ± 3.3 % than the young (28.6 ± 2.4 % (P = 0.006. Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P= 0.004. In a multiple regression model, knee extensor muscle volume was a predictor (partial r = - 0.87; P = 0.001 of GU heterogeneity for old men (R2 = 0.78; P < 0.001, and MVC force predicted GU heterogeneity for young men (partial r = - 0.95, P < 0.001. The findings demonstrate that glucose uptake is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy.

  9. Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons.

    Science.gov (United States)

    Morgenthaler, F D; Kraftsik, R; Catsicas, S; Magistretti, P J; Chatton, J-Y

    2006-08-11

    This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

  10. Glucose and carbachol activate phospholipase C in digitonin-permeabilized islets

    International Nuclear Information System (INIS)

    Wolf, B.A.; Florholmen, J.; Turk, J.; McDaniel, M.L.

    1987-01-01

    Stimulation of intact islets with D-glucose, the major insulin secretagogue, or with carbachol, a muscarinic agonist, results in the accumulation of inositoltrisphosphate (IP 3 ) suggesting that activation of phospholipase C (PLC) has a major role in stimulus-secretion coupling. Carbachol activation of PLC is an example of receptor-mediated activation in islets, whereas, the mechanism of glucose activation of PLC is controversial since a glucose receptor has not been identified. They have measured PLC activity in digitonin-permeabilized islets. Islets were labeled with 3 H-inositol, permeabilized and IP 3 accumulation measured by HPLC. Carbachol, in the presence of ATP, GTP and 1 μM free Ca 2+ released two-fold more Ins 1,3,4-P 3 than control in a time-dependent manner. Glucose, under the same conditions also significantly released more Ins 1,3,4-P 3 than control. This effect was not due to metabolism of glucose nor to an effect on the IP 3 -phosphomonoesterase. Preliminary Ca 2+ -dependency studies indicate that PLC is not activated by Ca 2+ in the submicromolar range. In conclusion, these studies show that Ca 2+ does not activate PLC, and furthermore, that D-glucose may be recognized directly by PLC

  11. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  12. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure.

    Science.gov (United States)

    Lu, Yonghui; Xu, Shangcheng; He, Mindi; Chen, Chunhai; Zhang, Lei; Liu, Chuan; Chu, Fang; Yu, Zhengping; Zhou, Zhou; Zhong, Min

    2012-07-16

    Extensive evidence indicates that glucose administration attenuates memory deficits in rodents and humans, and cognitive impairment has been associated with reduced glucose metabolism and uptake in certain brain regions including the hippocampus. In the present study, we investigated whether glucose treatment attenuated memory deficits caused by chronic low-power-density microwave (MW) exposure, and the effect of MW exposure on hippocampal glucose uptake. We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    Science.gov (United States)

    Al-Ahmad, Abraham J

    2017-10-01

    Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.

  14. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    Science.gov (United States)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  15. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  16. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  17. The regulation of glucose transport in the heart of control and diabetic rats: With special emphasis on the glucose transporter

    International Nuclear Information System (INIS)

    Pleta, M. de Leoz.

    1989-01-01

    Glucose transport regulation with insulin and high perfusion pressure in the perfused rat hearts from control and diabetic rat hearts was investigated. [ 3 H]-cytochalasin B binding assay was used to study the distribution of glucose transporters within the subcellular membranes fractionated by linear sucrose density gradient centrifugation. In the present study, insulin increased glucose uptake in the perfused heart of control and diabetic animals. This coincided with an increase of glucose transporters on the plasma membrane. The increase in glucose transporters on the plasma membrane could not be accounted for by a decrease of glucose transporters from the microsomal membranes. High perfusion pressure did not change the number of glucose transporters on the plasma membrane compared to basal in the control and diabetic animals, though it increased glucose uptake above that observed for insulin in the control. Instead, high perfusion pressure altered the distribution of glucose transporters within the subcellular membranes in reverse to that with insulin, increasing an intermediate membrane pool believed to reside between the plasma membrane and microsomal membranes as well as the intracellular membrane pool

  18. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    Directory of Open Access Journals (Sweden)

    Lonneke Bahler

    Full Text Available Physiological colonic 18F-fluorodeoxyglucose (18F-FDG uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT. Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake.In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid.The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature.Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  19. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  20. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  1. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  2. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for {sup 18}F-FDG imaging of myocardial inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M. [Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Wang, Yong; Wollert, Kai C. [Hanover Medical School, Department of Cardiology and Angiology, Hanover (Germany)

    2015-04-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial {sup 18}F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial {sup 18}F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial {sup 18}F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In

  3. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  4. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  5. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  6. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats.

    Science.gov (United States)

    Hsu, F L; Chen, Y C; Cheng, J T

    2000-04-01

    The antihyperglycemic effect of caffeic acid, one of the phenolic compounds contained in the fruit of Xanthium strumarium, was investigated. After an intravenous injection of caffeic acid into diabetic rats of both streptozotocin-induced and insulin-resistant models, a dose-dependent decrease of plasma glucose was observed. However, a similar effect was not produced in normal rats. An insulin-independent action of caffeic acid can thus be considered. Otherwise, this compound reduced the elevation of plasma glucose level in insulin-resistant rats receiving a glucose challenge test. Also, glucose uptake into the isolated adipocytes was raised by caffeic acid in a concentration-dependent manner. Increase of glucose utilization by caffeic acid seems to be responsible for the lowering of plasma glucose.

  7. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1

    DEFF Research Database (Denmark)

    Guan, Xinfu; Stoll, Barbara; Lu, Xiaofeng

    2003-01-01

    (n = 8) received consecutive intravenous infusions of saline, GLP-2, and GLP-2 plus N(G)-Nitro-L-arginine methyl ester (L-NAME, 50 micromol x kg(-1) x hour(-1)) for 4 hours each. RESULTS: GLP-2 acutely increased portal-drained visceral (PDV) blood flow rate (+25%) and intestinal blood volume (+51......%) in TPN-fed piglets. GLP-2 also increased intestinal constitutive nitric oxide synthase (NOS) activity and endothelial NOS protein abundance. GLP-2 acutely increased PDV glucose uptake (+90%) and net lactate production (+79%). Co-infusion of GLP-2 plus L-NAME did not increase either PDV blood flow rate......, and this response is nitric oxide-dependent. These findings suggest that GLP-2 may play an important physiological role in the regulation of intestinal blood flow and that nitric oxide is involved in GLP-2 receptor function....

  8. Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro

    International Nuclear Information System (INIS)

    Deichen, J.T.; Schmidt, C.; Prante, O.; Maschauer, S.; Kuwert, T.; Papadopoulos, T.

    2004-01-01

    Recent clinical evidence suggests that positron emission tomography with fluorine-18 fluorodeoxyglucose (FDG-PET) is more accurate in detecting thyroid carcinomatous tissue at high than at low TSH levels. The aim of this study was to determine the influence of TSH on FDG uptake in human thyroid cells in vitro. Monolayers of human thyroid tissue were cultured after mechanical disintegration and enzymatic digestion of samples from patients undergoing surgery for nodular goitre. The purity of thyroid cell preparations was ascertained by immunohistochemical staining for the epithelial antigen KL-1, and their viability by measuring the synthesis of thyroglobulin in vitro. The cells were incubated with 0.8-1.5 MBq FDG/ml uptake medium for 1 h. FDG uptake in thyroid cells was quantified as percent of whole FDG activity per well (% ID) or as % ID in relation to total protein mass. This experimental protocol was subsequently varied to study the effect of incubation time, glucose dependency and TSH. Furthermore, radio-thin layer chromatography was used to identify intracellular FDG metabolites. FDG accumulated in the thyroid cells linearly with time, doubling roughly every 20 min. Uptake was competitively inhibited by unlabelled glucose and decreased to approximately 70% at 100 mg/dl glucose compared to the value measured in glucose-free medium. FDG was intracellularly trapped as FDG-6 phosphate and FDG-1,6-diphosphate. TSH significantly increased FDG uptake in vitro in a time- and concentration-dependent manner: Cells cultured at a TSH concentration of 50 μU/ ml doubled FDG uptake compared to TSH-free conditions, and uptake after 72 h of TSH pre-incubation was approximately 300% of that without TSH pre-incubation. TSH stimulates FDG uptake by benign thyroid cells in a time- and concentration-dependent manner. This supports the clinical evidence that in well-differentiated thyroid carcinomas, most of which are still TSH-sensitive, FDG-PET is more accurate at high levels of

  9. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of {sup 18}F-Fluorodeoxyglucose After Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, George D., E-mail: george.wilson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L. [Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Oliver Wong, Ching Yee [Department of Diagnostic Radiology and Molecular Imaging Medicine, William Beaumont Hospital, Royal Oak, Michigan (United States); Yan, Di; Marples, Brian [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Huang, Jiayi [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm{sup 3} they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: {sup 18}F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism.

  10. Characteristics of [18F] fluorodeoxyglucose uptake in human colon cancer cells

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Jeong, Jae Min; Lee, Myung Chul; Koh, Chang Soon

    1997-01-01

    Cancer tissues are characterized by increased glucose uptake. 18 F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1μ Ci/ml of FDG in HEPES- buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 16.8±1.36, 12.3±5.55 and 61.0±2.17 cpm/μg of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29±0.03, 0.21±0.09 and 1.07±0.07 cpm/min/μg of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells

  11. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.

  12. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-Fluoromisonidazole (FMISO) and 18F- Fluorodeoxyglucose (FDG) positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tauro, A.J.; Scott, A.M.; Hannah, A.; Pathmaraj, K.; Tochon-Danguy, H.; Sachinidis, J.I.; Chan, J.D.; Berlangieri, S.U.; Egan, G.F.; Fabinyi, G.; McKay, W.J.; Cher, L.M.; Austin and Repatriation Medical Centre, Heidelberg, VIC

    1998-01-01

    Full text: FDG-PET studies of brain tumours to measure tumour activity are well established, with regions of higher grade tumour utilising more glucose compared to lower grade tumour tissue and normal tissue. FDG uptake in tumour cells may reflect anaerobic glycolysis, but this has not been proven in- vivo. FMISO is a novel positron-emitting compound that has been shown to selectively identify hypoxic but viable tissue, which may contribute to chemoradiotherapy resistance in tumour cells. Studies correlating measurements of regional hypoxia and glucose activity within brain tumours prior to therapy may help gain further insight into the relationship between hypoxic tumour tissue and resistance to chemoradiotherapy. Three patients with newly diagnosed primary brain tumours have been prospectively studied with FMISO-PET, FDG-PET and MRI, prior to surgery. Each patient presented with a suspected primary brain glioma on MRI, which were all confirmed to be high grade glioma on subsequent histology at surgery FMISO-PET, FDG-PET and MRI images of all patients were co-registered to precisely identify the areas of metabolic activity within tumour and surrounding cortical tissue. All gliomas demonstrated areas of FMISO uptake, which corresponded to areas of maximal FDG uptake, indicating a correlation between hypoxic areas within tumour with areas of increased glucose metabolic activity. This supports the hypothesis that hypoxic areas within tumour tissue may be associated with increased FDG uptake, although whether hypoxia itself increases FDG uptake remains controversial. These correlative studies characterising areas of hypoxia and glucose activity should hopefully assist in future therapeutic manipulations to improve the outcome from treatment of primary brain tumours

  13. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-01-01

    Highlights: → In 3T3-L1 adipocytes iAs 3+ decreases insulin-stimulated glucose uptake. → iAs 3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs 3+ activates the cellular adaptive oxidative stress response. → iAs 3+ impairs insulin-stimulated ROS signaling. → iAs 3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs 3+ ) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs 3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs 3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in

  14. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  15. Accumulation of polymorphonuclear leukocytes in reperfused ischemic canine myocardium: relation with tissue viability assessed by fluorine-18-2-deoxyglucose uptake

    International Nuclear Information System (INIS)

    Wijns, W.; Melin, J.A.; Leners, N.

    1988-01-01

    Polymorphonuclear leukocytes may participate in reperfusion injury. Whether leukocytes affect viable or only irreversibly injured tissue is not known. Therefore, we assessed the accumulation of 111In-labeled leukocytes in tissue samples characterized as either ischemic but viable or necrotic by metabolic, histochemical, and ultrastructural criteria. Six open-chest dogs received left anterior descending coronary occlusion for 2 hr followed by 4 hr reperfusion. Myocardial blood flow was determined by microspheres and autologous 111In-labeled leukocytes were injected intravenously. Fluorine-18-2-deoxyglucose, a tracer of exogenous glucose utilization, was injected 3 hr after reperfusion. The dogs were killed 4 hr after reperfusion. The risk and the necrotic regions were assessed following in vivo dye injection and postmortem tetrazolium staining. Myocardial samples were obtained in the ischemic but viable, necrotic and normal zones, and counted for 111In and 18F activity. Compared to normal, leukocytes were entrapped in necrotic regions (111In activity: 207 +/- 73%) where glucose uptake was decreased (26 +/- 15%). A persistent glucose uptake, marker of viability, was mainly seen in risk region (135 +/- 85%) where leukocytes accumulation was moderate in comparison to normal zone (146 +/- 44%). Thus, the glucose uptake observed in viable tissue is mainly related to myocytes metabolism and not to leukocytes metabolism

  16. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  17. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    International Nuclear Information System (INIS)

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-01-01

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  18. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru

    1989-01-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U- 14 C]glucose and [U- 14 C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  19. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  20. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  1. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  2. Brain areas and pathways in the regulation of glucose metabolism

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Serlie, Mireille J.; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E.

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes

  3. Involvement of the Niacin Receptor GPR109a in the LocalControl of Glucose Uptake in Small Intestine of Type 2Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Tung Po Wong

    2015-09-01

    Full Text Available Niacin is a popular nutritional supplement known to reduce the risk of cardiovascular diseases by enhancing high-density lipoprotein levels. Despite such health benefits, niacin impairs fasting blood glucose. In type 2 diabetes (T2DM, an increase in jejunal glucose transport has been well documented; however, this is intriguingly decreased during niacin deficient state. In this regard, the role of the niacin receptor GPR109a in T2DM jejunal glucose transport remains unknown. Therefore, the effects of diabetes and high-glucose conditions on GPR109a expression were studied using jejunal enterocytes of 10-week-old m+/db and db/db mice, as well as Caco-2 cells cultured in 5.6 or 25.2 mM glucose concentrations. Expression of the target genes and proteins were quantified using real-time polymerase chain reaction (RT-PCR and Western blotting. Glucose uptake in Caco-2 cells and everted mouse jejunum was measured using liquid scintillation counting. 10-week T2DM increased mRNA and protein expression levels of GPR109a in jejunum by 195.0% and 75.9%, respectively, as compared with the respective m+/db control; high-glucose concentrations increased mRNA and protein expression of GPR109a in Caco-2 cells by 130.2% and 69.0%, respectively, which was also confirmed by immunohistochemistry. In conclusion, the enhanced GPR109a expression in jejunal enterocytes of T2DM mice and high-glucose treated Caco-2 cells suggests that GPR109a is involved in elevating intestinal glucose transport observed in diabetes.

  4. Risk factors for glucose intolerance in active acromegaly

    Directory of Open Access Journals (Sweden)

    Kreze A.

    2001-01-01

    Full Text Available In the present retrospective study we determined the frequency of glucose intolerance in active untreated acromegaly, and searched for risk factors possibly supporting the emergence of the diabetic condition. Among 43 patients, 8 (19%; 95% CI: 8-33% had diabetes mellitus and 2 (5%; 1-16% impaired glucose tolerance. No impaired fasting glycemia was demonstrable. The frequency of diabetes was on average 4.5 times higher than in the general Slovak population. Ten factors suspected to support progression to glucose intolerance were studied by comparing the frequency of glucose intolerance between patients with present and absent risk factors. A family history of diabetes and arterial hypertension proved to have a significant promoting effect (P<0.05, chi-square test. A significant association with female gender was demonstrated only after pooling our data with literature data. Concomitant prolactin hypersecretion had a nonsignificant promoting effect. In conclusion, the association of active untreated acromegaly with each of the three categories of glucose intolerance (including impaired fasting glycemia, not yet studied in this connection was defined as a confidence interval, thus permitting a sound comparison with the findings of future studies. Besides a family history of diabetes, female gender and arterial hypertension were defined as additional, not yet described risk factors.

  5. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study...... evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...

  6. Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3.

    Science.gov (United States)

    Liang, Huiyun; Bourdon, Allen K; Chen, Liao Y; Phelix, Clyde F; Perry, George

    2018-06-11

    Fourteen glucose transporters (GLUTs) play essential roles in human physiology by facilitating glucose diffusion across the cell membrane. Due to its central role in the energy metabolism of the central nervous system, GLUT3 has been thoroughly investigated. However, the Gibbs free-energy gradient (what drives the facilitated diffusion of glucose) has not been mapped out along the transport path. Some fundamental questions remain. Here we present a molecular dynamics study of GLUT3 embedded in a lipid bilayer to quantify the free-energy profile along the entire transport path of attracting a β-d-glucose from the interstitium to the inside of GLUT3 and, from there, releasing it to the cytoplasm by Arrhenius thermal activation. From the free-energy profile, we elucidate the unique Michaelis-Menten characteristics of GLUT3, low K M and high V MAX , specifically suitable for neurons' high and constant demand of energy from their low-glucose environments. We compute GLUT3's binding free energy for β-d-glucose to be -4.6 kcal/mol in agreement with the experimental value of -4.4 kcal/mol ( K M = 1.4 mM). We also compute the hydration energy of β-d-glucose, -18.0 kcal/mol vs the experimental data, -17.8 kcal/mol. In this, we establish a dynamics-based connection from GLUT3's crystal structure to its cellular thermodynamics with quantitative accuracy. We predict equal Arrhenius barriers for glucose uptake and efflux through GLUT3 to be tested in future experiments.

  7. SUBSTRATE UPTAKE AND UTILIZATION BY A MARINE ULTRAMICROBACTERIUM

    NARCIS (Netherlands)

    SCHUT, F; JANSEN, M; GOMES, TMP; GOTTSCHAL, JC; HARDER, W; PRINS, RA

    A facultatively oligotrophic ultramicrobacterium (strain RB2256) isolated from an Alaskan fjord by extinction dilution in seawater, was grown in batch culture and under single- and dual-substrate-limitation of alanine and glucose in a chemostat. The nature of the uptake systems, and the uptake

  8. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  9. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik

    2009-01-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and...

  10. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice

    International Nuclear Information System (INIS)

    Kang, Seong-Il; Jin, Young-Jun; Ko, Hee-Chul; Choi, Soo-Youn; Hwang, Joon-Ho; Whang, Ilson; Kim, Moo-Han; Shin, Hye-Sun; Jeong, Hyung-Bok; Kim, Se-Jae

    2008-01-01

    The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes

  11. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  12. Stated Uptake of Physical Activity Rewards Programmes Among Active and Insufficiently Active Full-Time Employees.

    Science.gov (United States)

    Ozdemir, Semra; Bilger, Marcel; Finkelstein, Eric A

    2017-10-01

    Employers are increasingly relying on rewards programmes in an effort to promote greater levels of activity among employees; however, if enrolment in these programmes is dominated by active employees, then they are unlikely to be a good use of resources. This study uses a stated-preference survey to better understand who participates in rewards-based physical activity programmes, and to quantify stated uptake by active and insufficiently active employees. The survey was fielded to a national sample of 950 full-time employees in Singapore between 2012 and 2013. Participants were asked to choose between hypothetical rewards programmes that varied along key dimensions and whether or not they would join their preferred programme if given the opportunity. A mixed logit model was used to analyse the data and estimate predicted uptake for specific programmes. We then simulated employer payments based on predictions for the percentage of each type of employee likely to meet the activity goal. Stated uptake ranged from 31 to 67% of employees, depending on programme features. For each programme, approximately two-thirds of those likely to enrol were insufficiently active. Results showed that insufficiently active employees, who represent the majority, are attracted to rewards-based physical activity programmes, and at approximately the same rate as active employees, even when enrolment fees are required. This suggests that a programme with generous rewards and a modest enrolment fee may have strong employee support and be within the range of what employers may be willing to spend.

  13. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism

    DEFF Research Database (Denmark)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L.

    2015-01-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen...... exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating...

  14. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  15. Optimization of Glucose oxidase towards oxygen independency and high mediator activity for amperometric glucose determination in diabetes analytics

    OpenAIRE

    Arango Gutierrez, Erik Uwe

    2015-01-01

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies, and one simultaneous site saturation library (OmniC...

  16. Hydralazine administration activates sympathetic preganglionic neurons whose activity mobilizes glucose and increases cardiovascular function.

    Science.gov (United States)

    Parker, Lindsay M; Damanhuri, Hanafi A; Fletcher, Sophie P S; Goodchild, Ann K

    2015-04-16

    Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km

    DEFF Research Database (Denmark)

    Madsen, Klavs; MacLean, David A; Kiens, Bente

    1996-01-01

    This study was undertaken to determine the effects of ingesting either glucose (trial G) or glucose plus branched-chain amino acids (BCAA: trial B), compared with placebo (trial P), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 +/- 1.5 ml O2. min-1.kg-...

  18. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shichun Du

    2014-01-01

    Full Text Available Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1 was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo.

  19. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  20. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    Science.gov (United States)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  1. Antidiabetic effect of gomisin N via activation of AMP-activated protein kinase.

    Science.gov (United States)

    Jung, Dae Young; Kim, Ji-Hyun; Lee, Hoyoung; Jung, Myeong Ho

    2017-12-16

    Gomisin N (GN) is a lignan derived from Schisandra chinensis. AMP-activated kinase (AMPK) has gained attention as a therapeutic target for the treatment of metabolic syndrome. Previously, we reported that GN activated the AMPK pathway and ameliorated high-fat diet (HFD)-induced hepatic steatosis. In this study, we investigated the anti-diabetic effects of GN in C2C12 myotubes and HFD obese mice. GN enhanced the phosphorylation of AMPK/acetyl-CoA carboxylase (ACC) and Akt. In addition, GN promoted glucose uptake in C2C12 myotubes, which was accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Treatment with compound C, an AMPK inhibitor, suppressed GN-mediated stimulation of glucose uptake. Furthermore, GN increased the expression of mitochondria biogenesis and fatty acid oxidation genes in C2C12 myotubes. In the in vivo study, administration of GN to HFD mice decreased the levels of fasting blood glucose and insulin, and improved glucose tolerance in HFD obese mice. GN administration rescued the decreased phosphorylation of AMPK and Akt and stimulated the expression of mitochondria biogenesis genes in the skeletal muscle of HFD mice. These findings suggested that GN exerted anti-hyperglycemic effects through AMPK activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Julian Kopp

    2017-12-01

    Full Text Available The Gram-negative bacterium E. coli is the host of choice for a multitude of used recombinant proteins. Generally, cultivation is easy, media are cheap, and a high product titer can be obtained. However, harsh induction procedures using isopropyl β-d-1 thiogalactopyranoside as inducer are often referred to cause stress reactions, leading to a phenomenon known as “metabolic” or “product burden”. These high expressions of recombinant proteins mainly result in decreased growth rates and cell lysis at elevated induction times. Therefore, approaches tend to use “soft” or “tunable” induction with lactose and reduce the stress level of the production host. The usage of glucose as energy source in combination with lactose as induction reagent causes catabolite repression effects on lactose uptake kinetics and as a consequence reduced product titer. Glycerol—as an alternative carbon source—is already known to have positive impact on product formation when coupled with glucose and lactose in auto-induction systems, and has been referred to show no signs of repression when cultivated with lactose concomitantly. In recent research activities, the impact of different products on the lactose uptake using glucose as carbon source was highlighted, and a mechanistic model for glucose-lactose induction systems showed correlations between specific substrate uptake rate for glucose or glycerol (qs,C and the maximum specific lactose uptake rate (qs,lac,max. In this study, we investigated the mechanistic of glycerol uptake when using the inducer lactose. We were able to show that a product-producing strain has significantly higher inducer uptake rates when being compared to a non-producer strain. Additionally, it was shown that glycerol has beneficial effects on viability of cells and on productivity of the recombinant protein compared to glucose.

  3. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  4. Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise

    DEFF Research Database (Denmark)

    Dela, Flemming; Mikines, K J; Larsen, J J

    1999-01-01

    Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle tra...

  5. No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels

    DEFF Research Database (Denmark)

    Scott, Robert A; Chu, Audrey Y; Grarup, Niels

    2012-01-01

    to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were......Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact...... dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (ß = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were...

  6. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  7. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Jensen, Thomas Elbenhardt; Kleinert, Maximilian

    2013-01-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates...

  8. Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1

    Directory of Open Access Journals (Sweden)

    Maia Kavanagh Williamson

    2018-03-01

    Full Text Available Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out.

  9. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Kikuta, Shingo; Nakamura, Yuki; Hattori, Makoto; Sato, Ryoichi; Kikawada, Takahiro; Noda, Hiroaki

    2015-09-01

    Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    Science.gov (United States)

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  12. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  13. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    International Nuclear Information System (INIS)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-01-01

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  14. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  15. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  16. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  17. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    membrane to transport glucose into cells, and GLUT8 from cytosol to rough endoplasmic reticulum to recover redundant glucose to cytosol after protein glycosylation. In autoimmune diseases, the enhanced glucose uptake was found in inflamed peripheral tissue, mainly due to proliferating fibroblasts and activated macrophages. In our experimental model of rheumatoid arthritis (adjuvant arthritis), enhanced 2-deoxy-2[F-18]fluoro-D-glucose was found in the hippocampus and amygdala two days after the induction of the disease which, similarly as in the peripheral joints, can be ascribed to the activated macrophages. The knowledge on the glucose transport and the role of glucose transporters in the brain during systemic autoimmune inflammation is still incomplete and needs further investigations.

  18. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  19. Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae.

    Science.gov (United States)

    Elbing, Karin; Ståhlberg, Anders; Hohmann, Stefan; Gustafsson, Lena

    2004-12-01

    The addition of glucose to Saccharomyces cerevisiae cells causes reprogramming of gene expression. Glucose is sensed by membrane receptors as well as (so far elusive) intracellular sensing mechanisms. The availability of four yeast strains that display different hexose uptake capacities allowed us to study glucose-induced effects at different glycolytic rates. Rapid glucose responses were observed in all strains able to take up glucose, consistent with intracellular sensing. The degree of long-term responses, however, clearly correlated with the glycolytic rate: glucose-stimulated expression of genes encoding enzymes of the lower part of glycolysis showed an almost linear correlation with the glycolytic rate, while expression levels of genes encoding gluconeogenic enzymes and invertase (SUC2) showed an inverse correlation. Glucose control of SUC2 expression is mediated by the Snf1-Mig1 pathway. Mig1 dephosphorylation upon glucose addition is known to lead to repression of target genes. Mig1 was initially dephosphorylated upon glucose addition in all strains able to take up glucose, but remained dephosphorylated only at high glycolytic rates. Remarkably, transient Mig1-dephosphorylation was accompanied by the repression of SUC2 expression at high glycolytic rates, but stimulated SUC2 expression at low glycolytic rates. This suggests that Mig1-mediated repression can be overruled by factors mediating induction via a low glucose signal. At low and moderate glycolytic rates, Mig1 was partly dephosphorylated both in the presence of phosphorylated, active Snf1, and unphosphorylated, inactive Snf1, indicating that Mig1 was actively phosphorylated and dephosphorylated simultaneously, suggesting independent control of both processes. Taken together, it appears that glucose addition affects the expression of SUC2 as well as Mig1 activity by both Snf1-dependent and -independent mechanisms that can now be dissected and resolved as early and late/sustained responses.

  20. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  1. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    Science.gov (United States)

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  2. Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans

    DEFF Research Database (Denmark)

    Howlett, K.; Galbo, Henrik; Lorentsen, J.

    1999-01-01

    for 45 min at 68 +/- 1 % maximum pulmonary O2 uptake (VO2,max), followed by 15 min at 84 +/- 2 % VO2, max without (-ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4.49 +/- 0.69 nmol l-1; 60 min, 12.41 +/- 1.80 nmol l-1; means +/- s.e.m.). Glucose kinetics were...... measured using [3-3H]glucose. 3. Euglycaemia was maintained during exercise in CON and -ADR, whilst in +ADR plasma glucose was elevated. The exercise-induced increase in hepatic glucose production was similar in +ADR and -ADR; however, adrenaline infusion augmented the rise in hepatic glucose production...... early in exercise. Glucose uptake increased during exercise in +ADR and -ADR, but was lower and metabolic clearance rate was reduced in +ADR. 4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between...

  3. Glucose Absorption by the Bacillary Band of Trichuris muris.

    Directory of Open Access Journals (Sweden)

    Tina V A Hansen

    2016-09-01

    Full Text Available A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown.We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose.Glucose had a positive effect on both the motility (p < 0.001 and metabolic activity (p < 0.001 of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing.Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  4. Genetic variation in ATP5O is associated with skeletal muscle ATP50 mRNA expression and glucose uptake in young twins.

    Directory of Open Access Journals (Sweden)

    Tina Rönn

    Full Text Available BACKGROUND: Impaired oxidative capacity of skeletal muscle mitochondria contribute to insulin resistance and type 2 diabetes (T2D. Furthermore, mRNA expression of genes involved in oxidative phosphorylation, including ATP5O, is reduced in skeletal muscle from T2D patients. Our aims were to investigate mechanisms regulating ATP5O expression in skeletal muscle and association with glucose metabolism, and the relationship between ATP5O single nucleotide polymorphisms (SNPs and risk of T2D. METHODOLOGY/PRINCIPAL FINDINGS: ATP5O mRNA expression was analyzed in skeletal muscle from young (n = 86 and elderly (n = 68 non-diabetic twins before and after a hyperinsulinemic euglycemic clamp. 11 SNPs from the ATP5O locus were genotyped in the twins and a T2D case-control cohort (n = 1466. DNA methylation of the ATP5O promoter was analyzed in twins (n = 22 using bisulfite sequencing. The mRNA level of ATP5O in skeletal muscle was reduced in elderly compared with young twins, both during basal and insulin-stimulated conditions (p<0.0005. The degree of DNA methylation around the transcription start of ATP5O was <1% in both young and elderly twins and not associated with mRNA expression (p = 0.32. The mRNA level of ATP5O in skeletal muscle was positively related to insulin-stimulated glucose uptake (regression coefficient = 6.6; p = 0.02. Furthermore, two SNPs were associated with both ATP5O mRNA expression (rs12482697: T/T versus T/G; p = 0.02 and rs11088262: A/A versus A/G; p = 0.004 and glucose uptake (rs11088262: A/A versus A/G; p = 0.002 and rs12482697: T/T versus T/G; p = 0.005 in the young twins. However, we could not detect any genetic association with T2D. CONCLUSIONS/SIGNIFICANCE: Genetic variation and age are associated with skeletal muscle ATP5O mRNA expression and glucose disposal rate, suggesting that combinations of genetic and non-genetic factors may cause the reduced expression of ATP5O in T2D muscle. These findings propose a role for ATP5O, in

  5. Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro

    International Nuclear Information System (INIS)

    Deichen, Jan Thiess; Prante, Olaf; Gack, Michaela; Schmiedehausen, Kristin; Kuwert, Torsten

    2003-01-01

    The fact that fluorine-18 fluorodeoxyglucose ([ 18 F]FDG) accumulates in inflammatory lesions as well as in tumours reduces the diagnostic specificity of positron emission tomography (PET) in oncology. The aim of this study was to characterise the uptake of [ 18 F]FDG in isolated human monocyte-macrophages (HMMs) in vitro in comparison with that in human glioblastoma (GLI) and pancreatic carcinoma cells (PAN). The purity of HMM preparations was determined by immunohistochemical staining and their functional integrity was assessed by long-term incubation with iodine-131 acetylated bovine serum albumin. [ 18 F]FDG uptake in HMMs was quantified as percent of whole [ 18 F]FDG activity per well (% ID) or as % ID in relation to total protein mass. [ 18 F]FDG uptake in HMMs significantly increased with culture duration, yielding 7.5%±0.9% (% ID/100 μg) at day 14. Stimulation by lipopolysaccharide further enhanced [ 18 F]FDG uptake in HMMs by a factor of 2. [ 18 F]FDG uptake significantly decreased with increasing glucose concentration in the medium. Radio-thin layer chromatography of intracellular metabolites revealed that [ 18 F]FDG was trapped by HMMs mainly as [ 18 F]FDG-6-phosphate and [ 18 F]FDG-1,6-diphosphate. [ 18 F]FDG uptake was in the range of uptake values measured in GLI and PAN. By accumulating [ 18 F]FDG in a manner analogous to uptake by tumour cells, activated HMMs may contribute to the [ 18 F]FDG uptake values measured by PET in neoplasms. (orig.)

  6. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  7. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  8. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  9. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  10. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  11. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Directory of Open Access Journals (Sweden)

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  12. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  13. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    International Nuclear Information System (INIS)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine; Halimi, Serge; Demongeot, Jacques

    2007-01-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using 125 I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  14. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Science.gov (United States)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-01-01

    Purpose Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state and it has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats with 125I-6-Deoxy-6-Iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Methods Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood were assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Results Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady-state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p<0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) and whereas no significant changes were observed in fructose-fed rats. Conclusion This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. PMID:17171359

  15. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  16. The influence of blood glucose level on distribution of 18F-FDG in mice with tumor

    International Nuclear Information System (INIS)

    Fu Zhanli; Lin Jinghui; Wang Rongfu; Zhu Shaoli; Zhang Chunli; Pan Zhongyun

    2003-01-01

    To explore the influence of blood glucose level on 18 F-FDG uptake in tumor and normal tissues of mice, thirty five mice carrying Ehrlich ascitic cancer (EAC) are fasted 20 h and divided into four groups. The glucose loading group (n=12) and the control group (n=11) is given a solution of 50% glucose and distilled water orally just one hour before the 18 F FDG injection. Another two groups (n=5, n=7) is given a solution of 10%, 30% glucose respectively. Before 18 F-FDG intravenous injection, blood glucose levels are measured. The mice are killed one hour after the 18 F FDG injection. The tumor and normal tissues are excised, weighed, and counted by a γ well counter. The quantity of 18 F-FDG uptake is expressed as standardized uptake value (SUV). Blood glucose levels of the mice with EAC in the glucose loading group are significantly elevated than the control group (11.98 ± 3.01 mmol/L vs. 3.95 ± 1. 11 mmol/L, P 18 F-FDG uptake ratios of tumor and muscle in the glucose-loading group (1.34, 0.86, 0.48, 0.09, 1.38 respectively) are significantly lower than those in the control group (3.02, 2.62, 0.80, 0.16, 5.38 respectively) (P 18 F-FDG uptake ratios of tumor and brain, heart and blood in the glucose loading group (8.31. 1.05, 1.58, 103.00 respectively) are significantly higher than those in the control group (1.57, 0.64, 1.20, 9.73 respectively) (P 18 F-FDG distribution in mice. suggesting the blood glucose level should be controlled during clinically 18 F-FDG imaging

  17. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  18. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment

    Directory of Open Access Journals (Sweden)

    Timothy H. Witney

    2009-06-01

    Full Text Available Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG, have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose polymerase activity and subsequent depletion of the NAD(H pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic.

  19. Chronic effects of dietary carbohydrate variation on [18F]-2-fluoro-2-deoxyglucose uptake in rodent heart.

    Science.gov (United States)

    Fine, Eugene J; Miao, Weibing; Koba, Wade; Volek, Jeff S; Blaufox, M Donald

    2009-09-01

    Measured cardiac [F]-2-fluoro-2-deoxyglucose (FDG) activity in human PET scans is variable despite efforts to standardize patient preparation. Heart uptake can obscure chest disease, and is of physiologic interest. Short-term carbohydrate (CHO) restriction can reduce FDG uptake, although unreliably, whereas long-term restriction of CHO has not been systematically studied. It would be valuable to understand FDG hearts' chronic dietary dependence. Fifteen Wistar rats (age 4 weeks) were randomized to three diet groups (n = 5) of low (0.1% of total energy), intermediate (52%), and high (78%) CHO content (LC, IC, and HC, respectively). After 4 weeks, blood for ketone bodies (KB), glucose, insulin, and glucagon was obtained, followed in 2 days by whole-body PET with 37 MBq FDG. Diet groups were switched every 4 weeks to control for the effects of dietary order. Heart maximal standardized uptake value was compared among animals. Heart mean maximal standardized uptake value was dramatically reduced for LC (3.4+/-0.4; P<0.001) compared with either IC (10.9+/-0.7) or HC (11.0+/-0.7) (P=NS, IC vs. HC). KB (mumol/l) differed widely (P<0.001) in LC (718.6+/-40.0) versus IC (120.3+/-34.0) and HC (99.2+/-32.1) (P=NS, IC vs. HC), whereas glucose, insulin, and glucagon did not differ among the groups. Sustained CHO-restriction results in marked, reproducibly reduced cardiac FDG uptake. Six-fold to seven-fold increased KB concentrations provide alternative substrate to glucose.

  20. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Science.gov (United States)

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Inhibition by nucleosides of glucose-transport activity in human erythrocytes.

    OpenAIRE

    Jarvis, S M

    1988-01-01

    The interaction of nucleosides with the glucose carrier of human erythrocytes was examined by studying the effect of nucleosides on reversible cytochalasin B-binding activity and glucose transport. Adenosine, inosine and thymidine were more potent inhibitors of cytochalasin B binding to human erythrocyte membranes than was D-glucose [IC50 (concentration causing 50% inhibition) values of 10, 24, 28 and 38 mM respectively]. Moreover, low concentrations of thymidine and adenosine inhibited D-glu...

  2. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    Science.gov (United States)

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  4. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ide, Kojiro; Cai, Yan

    2002-01-01

    During and after maximal exercise there is a 15-30 % decrease in the metabolic uptake ratio (O(2)/[glucose + 1/2 lactate]) and a net lactate uptake by the human brain. This study evaluated if this cerebral metabolic uptake ratio is influenced by the intent to exercise, and whether a change could......, the a-v difference for the amino acids and glycerol did not change significantly, and there was only a minimal increase in the a-v difference for free fatty acids after maximal exercise. After maximal exercise the metabolic uptake ratio of the brain decreased from 6.1 +/- 0.5 (mean +/- S.E.M.) at rest.......2) in the early recovery (n = 10; P brain are increased out of proportion to O(2) when the brain is activated by exhaustive exercise, and that such metabolic changes are influenced by the will to exercise. We speculate that the uptake ratio...

  5. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    Science.gov (United States)

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  6. Assessment of insulin resistance in fructose-fed rats with {sup 125}I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E340, 38000 Grenoble, (France); Univ Grenoble, 38000 Grenoble, (France); Halimi, Serge [CHRU Grenoble, Hopital Michallon, Service de Diabetologie, 38000 Grenoble, (France); Demongeot, Jacques [Univ Grenoble, 38000 Grenoble, (France); CNRS, UMR 5525, 38000 Grenoble, (France)

    2007-05-15

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using {sup 125}I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  7. Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow.

    Science.gov (United States)

    De Bundel, Dimitri; Smolders, Ilse; Yang, Rui; Albiston, Anthony L; Michotte, Yvette; Chai, Siew Yeen

    2009-07-01

    The IRAP ligands Angiotensin IV (Ang IV) and LVV-haemorphin 7 (LVV-H7) enhance performance in a range of memory paradigms in normal rats and ameliorate memory deficits in rat models for amnesia. The mechanism by which these peptides facilitate memory remains to be elucidated. In recent in vitro experiments, we demonstrated that Ang IV and LVV-H7 potentiate activity-evoked glucose uptake into hippocampal neurons. This raises the possibility that IRAP ligands may facilitate memory in hippocampus-dependent tasks through enhancement of hippocampal glucose uptake. Acute intracerebroventricular (i.c.v.) administration of 1nmol Ang IV or 0.1nmol LVV-H7 in 3 months-old Sprague-Dawley rats enhanced spatial working memory in the plus maze spontaneous alternation task. Extracellular hippocampal glucose levels were monitored before, during and after behavioral testing using in vivo microdialysis. Extracellular hippocampal glucose levels decreased significantly to about 70% of baseline when the animals explored the plus maze, but remained constant when the animals were placed into a novel control chamber. Ang IV and LVV-H7 did not significantly alter hippocampal glucose levels compared to control animals in the plus maze or control chamber. Both peptides had no effect on hippocampal blood flow as determined by laser Doppler flowmetry, excluding that either peptide increased the hippocampal supply of glucose. We demonstrated for the first time that Ang IV and LVV-H7 enhance spatial working memory in the plus maze spontaneous alternation task but no in vivo evidence was found for enhanced hippocampal glucose uptake or blood flow.

  8. Whole body glucose kinetics in type I diabetes studied with [6,6-2H] and [U-13C]-glucose and the artificial B-cell

    International Nuclear Information System (INIS)

    Darmaun, D.; Cirillo, D.; Koziet, J.; Chauvet, D.; Young, V.R.; Robert, J.J.

    1988-01-01

    Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of [6,6- 2 H]glucose and [U- 13 C]glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states

  9. Trichosanthes cucumerina extracts enhance glucose uptake and regulate adiponectin and leptin concentrations in 3T3-L1 adipocytes model

    Directory of Open Access Journals (Sweden)

    Sassi, A.,

    2017-10-01

    Full Text Available Trichosanthes cucumerina (Cucurbitaceae commonly known as Snake gourd or Labu Ular is considered the largest genre in the Cucurbitaceae family and is mainly found in the southeast areas of Asia. It has been used in Ayurvedic medicine as a treatment for certain diseases such as Diabetes mellitus, but these acclaims lack scientific-based evidence. In this study, water and ethanol extracts of three parts of Trichosanthes cucumerina namely; whole vegetable, peels, and seeds, were assessed for toxicity through a cell viability assay using 3T3-L1 pre-adipocytes model which revealed a maximum toleration concentration of 0.063 mg/mL. The extracts were further tested on adipocytes’ differentiation and positively showed a stimulation of lipid droplets formation during adipogenesis and significantly (p<0.001 increased glycerol release levels (75.34±3.69 μg/ml during adipolysis. The extracts also significantly (p<0.001 promoted the uptake of glucose into the cells (2636.22±91.33 Bq in an action similar to that of insulin. Similar results were observed during ELISA assay with a significant increase (p<0.001 in adiponectin concentrations (3593.1±225.25 ng/mL and a decrease in leptin concentrations (23870±5066.07 pg/mL. The present study results indicate a beneficial effect of Trichosanthes cucumerina extracts on adipogenesis, adipolysis and glucose uptake, in addition to a regulation of adiponectin and leptin concentrations in 3T3-L1 adipocytes which can be of clinical importance in energy regulation which is a key factor in treating diabetes, obesity, and metabolic syndrome.

  10. Inclusion of Whole Flour from Latin-American Crops into Bread Formulations as Substitute of Wheat Delays Glucose Release and Uptake.

    Science.gov (United States)

    Laparra, José Moisés; Haros, Monika

    2018-03-01

    Bakery formulations limiting glucose availability for uptake without compromising product quality are required. Herein, bread formulations containing whole flour from Amaranthus hypochondriacus (AB), Chenopodium quinoa (QB), Salvia hispanica L (ChB) or wheat (WWB) were compared to white bread (WB) for glycaemic index (GI) in fasted animals. The hepatic expression (mRNA) of PPAR-γ receptor as key regulator in substrate fractionation towards energy expenditure was monitored. GIs were associated to fluxes of glucose release (F Gluc ) and metabolic response (MTT assay) of HepG2 cells. ChB (19.7%) and AB (13.5%) decreased GI to a higher extent than QB (2.7%), but all increased expression of PPARγ in relation to WB. F Gluc (AB> > ChB, WWB, WB > QB) showed a reciprocal relationship with the area under curve (AUC) in vivo, and decreased MTT conversion values (WB > WWB, ChB, AB, QB) by HepG2 cells. Thus, inclusion of latin-american crops (LAcs) reducing GI, without compromising bread quality, could help preventing metabolic diseases.

  11. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    Directory of Open Access Journals (Sweden)

    Flavia Letícia Martins Peçanha

    2017-07-01

    Full Text Available The thyroid hormones (THs, triiodothyronine (T3 and thyroxine (T4, are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 μg/g, i.p. during 21 days mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10, gastrocnemius (369.2% ± 112.4, n = 10 and heart (142.2% ± 13.6, n = 10 muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 μg/g, i.p. did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.

  12. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  13. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  14. Assessment of the antidiabetic potential of selected medicinal plants using in vitro bioassays of muscle glucose transport and liver glucose production

    DEFF Research Database (Denmark)

    Beidokhti, M N; Sanchez Villavicencio, M L; Eid, H M

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is the most common type of diabetes mellitus. It is caused by decreased insulin sensitivity in target organs like liver, muscle and adipose tissue, and/or a deficiency in insulin secretion. In T2DM, increased hepatic glucose output and decreased glucose uptake by s...

  15. Aloe arborescens aqueous gel extract alters the activities of key ...

    African Journals Online (AJOL)

    Mogale

    2011-05-16

    May 16, 2011 ... glucose uptake by fat and muscle cells; 3) altering the activity of some ... aqueous A. arborescens leaf gel extract on fasting blood glucose levels, insulin ..... weight loss of treated diabetic rats as compared to untreated alloxan ...

  16. Adipocyte glucose transport regulation by eicosanoid precursors and inhibitors

    International Nuclear Information System (INIS)

    Lee, H.C.C.

    1987-01-01

    Glucose uptake and free fatty acid release by adipocytes are increased by catecholamines. The mechanism of the stimulatory action of catecholamines on glucose uptake may be via eicosanoid production from release fatty acids. Rats were fed iso-nutrient diets with high or low safflower oil. After one month, 5 rats per diet group were fed diets with aspirin or without aspirin for 2 days. Isolated adipocytes from epididymal fat pads were incubated at 37 0 C, gassed with 95% O 2 -5% CO 2 in KRB buffer with 3% bovine serum albumin and with or without eicosanoid modifiers; a stimulator (10 -5 M norepinephrine, N), or inhibitors (167 μl of antiserum to prostaglandin E (AntiE) per 1600 μl or 23mM Asp), or combinations of these. At 2-, 5-, and 10-min incubation, samples of incubation mixtures were taken to measure 2-deoxy glucose transport using 3 H-2-deoxy glucose, 14 C-inulin, and liquid scintillation counter

  17. Triiodothyronine Acutely Stimulates Glucose Transport into L6 Muscle Cells Without Increasing Surface GLUT4, GLUT1, or GLUT3

    Science.gov (United States)

    Teixeira, Silvania Silva; Tamrakar, Akhilesh K.; Goulart-Silva, Francemilson; Serrano-Nascimento, Caroline; Klip, Amira

    2012-01-01

    Background Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T3 and insulin action. Methods Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T3. Results Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T3 treatment; however, in these cells glucose transport was not stimulated by T3. In wild-type L6 cells, although T3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T3 plus insulin. Conclusions These data reveal that T3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT. PMID:22663547

  18. Optimal glucose management in the perioperative period.

    Science.gov (United States)

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. Published by Elsevier Inc.

  19. Phosphorus uptake by decomposing leaf detritus: effect of microbial biomass and activity

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, P J; Elwood, J W; Newbold, J D; Webster, J R; Ferren, L A; Perkins, R E

    1984-12-01

    The dominant energy source in small woodland streams is the allochthonous input of leaves. Utilization of this energy source by stream biota establishes the patterns of secondary productivity and nutrient uptake in these ecosystems. Although leaf inputs support much of the production of macroinvertebrates and higher consumers in streams, microbes are the critical link between these organisms and the leaf resource, much of which is undigestible by higher organisms. A number of studies have indicated that stream macroinvertebrates preferentially select leaves with greater levels of microbial activity. Rates of microbial activity associated with decomposing leaves were shown to be dependent on the supply of P in one woodland stream. In other streams, leaf decomposition has been shown to be nutrient limited as well. Thus, as in many other ecosystems, maintenance of high levels of production in streams is dependent on retention and efficient recycling of nutrients. Uptake of P by microbes colonizing leaves is an important mechanism for nutrient retention in small woodland streams. In these systems, numerous debris collections efficiently retard downstream movement of particulate materials, especially decomposing leaves. Uptake of dissolved, easily transportable forms of P by microbes attached to decomposing leaves increases P retention in streams. The more rapid the rate of P uptake onto decomposing leaves for a given P supply, the shorter the P uptake length and the more times an atom of P is utilized within a given stream reach. In this study the authors examined the temporal patterns of P uptake during the early stages of leaf decomposition in streams. Patterns of P uptake were compared to patterns of other measurements of microbial activity to identify the effect of microbial succession or conditioning of leaves on P uptake. 22 references, 1 figure, 2 tables.

  20. The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells.

    Science.gov (United States)

    Tavares, Sandra; Sousa, Joana; Gonçalves, Pedro; Araújo, João R; Martel, Fátima

    2010-08-25

    The aim of this work was to investigate the effect of folate status on the uptake of several physiologically relevant substances by Caco-2 cells. For this, Caco-2 cells cultured in high-folate conditions (HF) and low-folate conditions (LF) were compared. Growth rates of HF and LF Caco-2 cells were similar. However, proliferation rate of LF cells was greater than that of HF cells during the first 2days of culture and slightly smaller thereafter, viability of LF cells was greater than that of HF cells, and apoptosis index was similar in both cell cultures. We verified that in LF cells, comparatively to HF cells: (1) uptake of [3H]folic acid is upregulated, via an increase in the Vmax of uptake; (2) uptake of [3H]deoxy-glucose, [3H]O-methyl-glucose and [3H]1-methyl-4-phenylpyridinium (MPP+) is downregulated, via a decrease in the Vmax of uptake; additionally, a reduction in Km was observed for [3H]O-methyl-glucose; (3) uptake of [3H]5-hydroxytryptamine and [14C]butyrate is not changed; and (4) the steady-state mRNA levels of the folic acid transporters RFC (reduced folate carrier), PCFT (proton-coupled folate transporter) and FRalpha (folate receptor alpha), of the organic cation transporter OCT1 (organic cation transporter type 1), of the glucose transporter GLUT2 (facilitative glucose transporter type 2) and of the butyrate transporter MCT1 (monocarboxylate transporter type 1) were decreased. In conclusion, folate deficiency produces substrate-specific changes in the uptake of bioactive compounds by Caco-2 cells. Moreover, these changes are associated with alterations in the mRNA levels of specific transporters for these compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Science.gov (United States)

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Clenbuterol-Stimulated Glucose Uptake Activates both GS and GI ...

    African Journals Online (AJOL)

    β2-adrenoceptors activated by adrenaline can also couple to both Gs and Gi proteins. The former is associated with an increase in cAMP to illicit the effect of the catecholamine. In the later, β2-AR induces PKA-catalysed phosphorylation of the receptor, which intends couples to Gi, at high concentration. We proposed that ...

  3. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  4. Glucose uptake heterogeneity of the leg muscles is similar between patients with multiple sclerosis and healthy controls during walking.

    Science.gov (United States)

    Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten

    2015-02-01

    Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (Pmuscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.

  5. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  6. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    Science.gov (United States)

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake.

    Science.gov (United States)

    Wurm, David Johannes; Veiter, Lukas; Ulonska, Sophia; Eggenreich, Britta; Herwig, Christoph; Spadiut, Oliver

    2016-10-01

    Therapeutic monoclonal antibodies are mainly produced in mammalian cells to date. However, unglycosylated antibody fragments can also be produced in the bacterium Escherichia coli which brings several advantages, like growth on cheap media and high productivity. One of the most popular E. coli strains for recombinant protein production is E. coli BL21(DE3) which is usually used in combination with the pET expression system. However, it is well known that induction by isopropyl β-D-1-thiogalactopyranoside (IPTG) stresses the cells and can lead to the formation of insoluble inclusion bodies. In this study, we revisited the pET expression system for the production of a novel antibody single-chain variable fragment (scFv) with the goal of maximizing the amount of soluble product. Thus, we (1) investigated whether lactose favors the recombinant production of soluble scFv compared to IPTG, (2) investigated whether the formation of soluble product can be influenced by the specific glucose uptake rate (q s,glu) during lactose induction, and (3) determined the mechanistic correlation between the specific lactose uptake rate (q s,lac) and q s,glu. We found that lactose induction gave a much greater amount of soluble scFv compared to IPTG, even when the growth rate was increased. Furthermore, we showed that the production of soluble protein could be tuned by varying q s,glu during lactose induction. Finally, we established a simple model describing the mechanistic correlation between q s,lac and q s,glu allowing tailored feeding and prevention of sugar accumulation. We believe that this mechanistic model might serve as platform knowledge for E. coli.

  8. Synthesis of high specific activity [1-3H]-D-glucose

    International Nuclear Information System (INIS)

    Saljoughian, M.; Morimoto, Hiromi; Williams, P.G.; Lee, Hakno

    1991-01-01

    Specifically labeled [1- 3 H]-D-glucose has been used for metabolic and mechanistic studies in erythrocytes. In vitro metabolism of the a and b anomers of the tritiated glucose was readily traced by 3 H NMR spectroscopy. Initial studies used labeled glucose obtained by catalytic exchange labeling (at 4.5-9 Ci/mmole, or 15-30% tritiated at the C-1 position), and this necessitated sample glucose concentrations of 2-4 times physiological. The availability of glucose at maximum specific activity (28.7 Ci/mmole, 100% at the C-1 position) would allow the authors to observe metabolic behavior using 1 mM levels of glucose. Accordingly, they have devised a new route for the synthesis of C-1 tritiated glucose, involving the synthesis of 4,6-O-benzylidene-D-gluconolactone followed by reduction with supertritide. Preliminary work with commercial superdeuteride is complete, and chromatographic and NMR analyses are promising. The analogous tritium reactions are currently underway, and experimental results are presented for all stages of investigation. This strategy should be generally applicable to the labeling of many reducing sugars, with the substrates 2-deoxyglucose and maltotriose being of particular interest to their research

  9. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    OpenAIRE

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide...

  10. Oxygen uptake rate (OUR) control strategy for improving avermectin B

    African Journals Online (AJOL)

    Glucose metabolism plays a crucial role in the process of avermectin B1a biosynthesis. Controlling glucose feeding based on oxygen uptake rate (OUR) was established to improve the efficiency of avermectin B1a production. The result showed that avermectin B1a production was greatly enhanced by OUR control strategy.

  11. Tumour and lymph node uptakes on dual-phased 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography correlate with prognostic parameters in breast cancer.

    Science.gov (United States)

    Chang, Chin-Chuan; Tu, Hung-Pin; Chen, Yu-Wen; Lin, Chia-Yang; Hou, Ming-Feng

    2014-12-01

    To examine correlations between the uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) by primary tumours and axillary lymph nodes, and clinical and biological tumour prognostic parameters, in patients with newly diagnosed breast cancer. Newly diagnosed breast cancer patients who had received a dual-phased FDG positron emission tomography/computed tomography scan for pretreatment staging were enrolled retrospectively. Maximal standardized uptake values at 1 h (SUV1), 2 h (SUV2), and retention indices (RI) of the tumours and ipsilateral axillary lymph nodes were measured. SUV and RI were compared with clinical and biological prognostic parameters. A total of 32 patients participated in the study. Tumour FDG uptake correlated with histological grade and tumour size. FDG uptake in axillary lymph nodes correlated positively with lymph node status, metastasis status and clinical stage. RI values for the tumour and lymph nodes were significantly positively correlated with human epidermal growth factor receptor-2 positivity. FDG uptake in tumours and lymph nodes showed correlations with some clinical and biological parameters, and may serve as a predictive marker of tumour biological behaviour in breast cancer. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes.

    Science.gov (United States)

    Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna

    2014-06-01

    Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells.

    Directory of Open Access Journals (Sweden)

    Sylvain J Le Marchand

    Full Text Available The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca(2+](i and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca(2+](i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on K(ATP channel activity but not on tetrodotoxin-sensitive Na(+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca(2+](i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by K(ATP channel activity or reduction in α-cell [Ca(2+](i. Our results demonstrate that glucose uncouples the positive relationship between [Ca(2+](i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.

  14. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia

    DEFF Research Database (Denmark)

    Green, Charlotte J; Henriksen, Tora I; Pedersen, Bente K

    2012-01-01

    Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the......Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose...

  15. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety-Schmidt-determined cerebral...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P

  16. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  17. Cucurbitane Triterpenoids from the Fruits of Momordica Charantia Improve Insulin Sensitivity and Glucose Homeostasis in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Han, Joo-Hui; Tuan, Nguyen Quoc; Park, Min-Ho; Quan, Khong Trong; Oh, Joonseok; Heo, Kyung-Sun; Na, MinKyun; Myung, Chang-Seon

    2018-04-01

    Momordica charantia (M. charantia) has antidiabetic effects, and cucurbitane-type triterpenoid is one of the compounds of M. charantia. This study aims to investigate whether the new cucurbitane-type triterpenoids affect insulin sensitivity both in vitro and in vivo, and the underlying mechanisms. Four compounds (C1-C4) isolated from the ethanol extract of M. charantia enhance glucose uptake in C2C12 myotubes via insulin receptor substrate-1 (IRS-1) rather than via adenosine monophosphate-activated protein kinase. The most potent, compound 2 (C2), significantly increases the activation of IRS-1 and downstream signaling pathways, resulting in glucose transporter 4 translocation. Furthermore, these C2-induced in vitro effects are blocked by specific signal inhibitors. We further evaluate the antidiabetic effect of C2 using a streptozotocin (STZ)-induced diabetic mouse model. Consistent with in vitro data, treatment with C2 (1.68 mg kg -1 ) significantly decreases blood glucose level and enhances glycogen storage in STZ-injected mice. These effects appear to be mediated by the IRS-1 signaling pathway in skeletal muscle, not in adipose and liver tissues, suggesting that C2 improves hyperglycemia by increasing glucose uptake into skeletal muscle. Our findings demonstrate that the new cucurbitane-type triterpenoids have potential for prevention and management of diabetes by improving insulin sensitivity and glucose homeostasis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  19. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation.

    Science.gov (United States)

    Daniel, Bareket; Green, Omer; Viskind, Olga; Gruzman, Arie

    2013-09-01

    Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.

  20. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    Science.gov (United States)

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  1. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Veli [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2007-07-15

    Uptake in brown adipose tissue (hibernating fat) is sometimes seen at FDG-PET examinations. Despite a characteristic appearance, this may hide clinically relevant uptake. Stimulation of the sympathetic nervous system increases glucose uptake of brown fat. We now re-examine patients with brown fat activity that could disguise tumour uptake after pre-treatment with propranolol (a non-selective {beta}-blocker) in order to reduce the uptake. Our first examinations of this kind are reported. Eleven patients with strong brown fat uptake were studied. There was a mean of 5 days (range 2-8) between the examinations. At the second examination, 80 mg of propranolol was given orally 2 h before FDG administration. In addition to visual evaluation of the brown fat uptake, SUV assessments of the uptake in brown fat, lung, heart, liver, spleen and bone marrow were made. All patients showed complete or almost complete disappearance of the brown fat activity at the second examination (p < 0.001) both upon visual evaluation and when comparing SUVs. In seven patients there was also uptake in a known or strongly suspected malignancy, which remained unchanged between the examinations. Beyond an insignificant decrease in the myocardial uptake, there was no redistribution to the various examined organs at the second examination. Pre-treatment with a single dose of propranolol blocks the FDG uptake in brown adipose tissue, thereby increasing the specificity of the examination. The tumour uptake seems not to be impaired. (orig.)

  2. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  3. Superior Glycemic Control with a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts.

    Science.gov (United States)

    Moore, Mary Courtney; Kelley, David E; Camacho, Raul C; Zafian, Peter; Ye, Tian; Lin, Songnian; Kaarsholm, Niels C; Nargund, Ravi; Kelly, Terri M; Van Heek, Margaret; Previs, Stephen F; Moyes, Christopher; Smith, Marta S; Farmer, Ben; Williams, Phil; Cherrington, Alan D

    2018-03-14

    We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3- 3 H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by 2 study periods (150 min each), P1 and P2. At 0 min, somatostatin and GRI (36±3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused IV; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole body insulin clearance (WBIC) and insulin concentrations were not different in P1 vs P2 with HI, but WBIC was 23% higher and arterial insulin 16% lower in P1 vs P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (2.1±0.5 [HI] vs 3.3±0.4 [GRI] mg/kg/min). Nonhepatic glucose uptake (nonHGU, mg/kg/min) in P1 and P2, respectively, differed between treatments (2.6±0.3 and 7.4±0.6 with HI; 2.0±0.2 and 8.1±0.8 with GRI). Thus, glycemia impacted GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions. © 2018 by the American Diabetes Association.

  4. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional activity. Adenoviral-mediated expression of PCAF in the obese mouse liver greatly represses gluconeogenic enzyme activation and glucose production and improves glucose homeostasis and insulin sensitivity. Moreover, liver-specific knockdown of PCAF stimulates PGC-1α activity, resulting in an increase in blood glucose and hepatic glucose output. Our results suggest that PCAF might be a potential pharmacological target for developing agents against metabolic disorders associated with hyperglycemia, such as obesity and diabetes.

  5. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice.

    Science.gov (United States)

    Huang, S-L; Yu, R-T; Gong, J; Feng, Y; Dai, Y-L; Hu, F; Hu, Y-H; Tao, Y-D; Leng, Y

    2012-05-01

    Arctigenin is a natural compound that had never been previously demonstrated to have a glucose-lowering effect. Here it was found to activate AMP-activated protein kinase (AMPK), and the mechanism by which this occurred, as well as the effects on glucose and lipid metabolism were investigated. 2-Deoxyglucose uptake and AMPK phosphorylation were examined in L6 myotubes and isolated skeletal muscle. Gluconeogenesis and lipid synthesis were evaluated in rat primary hepatocytes. The acute and chronic effects of arctigenin on metabolic abnormalities were observed in C57BL/6J and ob/ob mice. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye, JC-1. Analysis of respiration of L6 myotubes or isolated mitochondria was conducted in a channel oxygen system. Arctigenin increased AMPK phosphorylation and stimulated glucose uptake in L6 myotubes and isolated skeletal muscles. In primary hepatocytes, it decreased gluconeogenesis and lipid synthesis. The enhancement of glucose uptake and suppression of hepatic gluconeogenesis and lipid synthesis by arctigenin were prevented by blockade of AMPK activation. The respiration of L6 myotubes or isolated mitochondria was inhibited by arctigenin with a specific effect on respiratory complex I. A single oral dose of arctigenin reduced gluconeogenesis in C57BL/6J mice. Chronic oral administration of arctigenin lowered blood glucose and improved lipid metabolism in ob/ob mice. This study demonstrates a new role for arctigenin as a potent indirect activator of AMPK via inhibition of respiratory complex I, with beneficial effects on metabolic disorders in ob/ob mice. This highlights the potential value of arctigenin as a possible treatment of type 2 diabetes.

  6. Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3'-deoxy-3'fluorothymidine uptake

    International Nuclear Information System (INIS)

    Schwartz, Jeffrey L.; Tamura, Yasuko; Jordan, Robert; Grierson, John R.; Krohn, Kenneth A.

    2004-01-01

    The use of thymidine (TdR) and thymidine analogs such as 3'-deoxy-3'-fluorothymidine (FLT) as positron emission tomography (PET)-based tracers of tumor proliferation rate is based on the hypothesis that measurement of uptake of these nucleosides, a function primarily of thymidine kinase-1 (TK 1 ) activity, provides an accurate measure of cell proliferation in tumors. Tumor growth is influenced by many factors including the oxygen concentration within tumors and whether tumor cells have been exposed to cytotoxic therapies. The p53 gene plays an important role in regulating growth under both of these conditions. The goal of this study was to investigate the influence of p53 activation on cell growth, TK 1 activity, and FLT uptake. To accomplish this, TK 1 activity, S phase fraction, and the uptake of FLT were determined in plateau-phase and exponentially growing cultures of an isogenic pair of human tumor cell lines in which p53 expression was normal or inactivated by human papilloma virus type 16 E6 expression. Ionizing radiation exposure was used to stimulate p53 activity and to induce alterations in cell cycle progression. We found that exposure of cells to ionizing radiation induced dose-dependent changes in cell cycle progression in both cell lines. The relationship between S phase percentage, TK 1 activity, and FLT uptake were essentially unchanged in the p53-normal cell line. In contrast, TK 1 activity and FLT uptake remained high in the p53-deficient variant even when S phase percentage was low due to a p53-dependent G2 arrest. We conclude that a functional p53 response is required to maintain the normal relationship between TK1 activity and S phase percentage following radiation exposure

  7. TXNIP regulates peripheral glucose metabolism in humans

    DEFF Research Database (Denmark)

    Parikh, Hemang; Carlsson, Emma; Chutkow, William A

    2007-01-01

    combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated...... expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin......-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM....

  8. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.

    Science.gov (United States)

    Hanly, Timothy J; Henson, Michael A

    2011-02-01

    Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.

  9. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  10. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  11. Role of nitric oxide in glucose-, fructose and galactose-induced ...

    African Journals Online (AJOL)

    Previous studies have shown that the infusion of glucose, fructose and galactose resulted in significant increases in intestinal glucose uptake (IGU) and the role of nitric oxide in these responses was not known. The present study was designed to investigate the role of nitric oxide in the observed increases in IGU.

  12. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  13. Effect of vigorous physical activity on blood lipid and glucose.

    Science.gov (United States)

    Kwon, Hyoung-Jeong; Lee, Han-Joon

    2017-12-01

    The aim of the study is to investigate how the participation of vigorous physical activities in the health examination contributes to blood lipid and blood glucose. A total of 56,810 workers from the Ulsan University Hospital in Ulsan, Subjects were tested for health checkups from February to November in 2016. The subject is those who does not have medical history, current ailments, and medication histories, and selected those who conducted the study of subjects tested to research. And this study did not consider their drinking and smoking. The final selected population was 11,557 and categorized as a vigorous physical activity of the health survey items. In this study, the group participated by the vigorous physical activity activities, group 1 (n= 70) had more than 6 days of vigorous physical activity, group 2 (n= 2,960) is 3 to 5 days of vigorous physical activity, the group 3 (n= 7,389) is 1 to 2 days of vigorous physical activity. The group 4 (n= 1,138) were classified as those who did not perform vigorous physical activity. To achieve the purpose of the study, the questionnaire examined blood lipid and blood glucose, using questions related to physical activity related to health examination in the Ulsan University Hospital. We obtained the mean and standard deviation for each group and conducted the one-way analysis of variance as an independent variable. Post hoc is least significant difference test and significant level is 0.05. Vigorous physical activity more than 3 days of participation had a positive affect high-density lipoprotein cholesterol and triglyceride. But participation in vigorous physical activity did not affect blood glucose.

  14. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells.

    Science.gov (United States)

    Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M

    2016-10-01

    Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial

  15. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training...... session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold......The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers...

  17. Pre-gravid physical activity and reduced risk of glucose intolerance in pregnancy: the role of insulin sensitivity.

    Science.gov (United States)

    Retnakaran, Ravi; Qi, Ying; Sermer, Mathew; Connelly, Philip W; Zinman, Bernard; Hanley, Anthony J G

    2009-04-01

    Pre-gravid physical activity has been associated with a reduced risk of gestational diabetes mellitus (GDM), although neither the types of exercise nor the physiologic mechanisms underlying this protective effect have been well-studied. Thus, we sought to study the relationships between types of pre-gravid physical activity and metabolic parameters in pregnancy, including glucose tolerance, insulin sensitivity and beta-cell function. A total of 851 women underwent a glucose challenge test (GCT) and a 3-h oral glucose tolerance test (OGTT) in late pregnancy, yielding four glucose tolerance groups: (i) GDM; (ii) gestational impaired glucose tolerance (GIGT); (iii) abnormal GCT with normal glucose tolerance on OGTT (abnormal GCT NGT); and (iv) normal GCT with NGT on OGTT (normal GCT NGT). Pre-gravid physical activity was assessed using the Baecke questionnaire, which measures (i) total physical activity and (ii) its three component domains: work, nonsport leisure-time, and vigorous/sports activity. Glucose tolerance status improved across increasing quartiles of pre-gravid total physical activity (P = 0.0244). Whereas neither work nor nonsport leisure-time activity differed between glucose tolerance groups, pre-gravid vigorous/sports activity was significantly higher in women with normal GCT NGT compared to women with (i) abnormal GCT NGT (P = 0.0018) (ii) GIGT (P = 0.0025), and (iii) GDM (P = 0.0044). In particular, vigorous/sports activity correlated with insulin sensitivity (measured by IS(OGTT)) (r = 0.21, P sports activity emerged as a significant independent predictor of IS(OGTT) in pregnancy (t = 4.97, P sports activity is associated with a reduced risk of glucose intolerance in pregnancy, an effect likely mediated by enhanced insulin sensitivity.

  18. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  19. Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Hye-Sook Han

    2014-12-01

    Full Text Available Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

  20. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    Science.gov (United States)

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption