WorldWideScience

Sample records for glucose total protein

  1. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows

    Directory of Open Access Journals (Sweden)

    Saime Guzel

    2014-12-01

    Full Text Available In the present study we measured serum glucose, leptin, total cholesterol and total protein concentrations in repeat breeder cows and compared them with fertile cows. For this aim, 20 repeat breeder cows and 20 fertile cows were used as material. Repeat breeder cows were found to have lower levels of leptin and glucose as compared with fertile ones. No significant differences in total cholesterol and total protein levels were observed between the two groups. No significant correlation of leptin with glucose, total cholesterol and total protein was observed in fertile and repeat breeder cows. Low concentrations of glucose and leptin can have some effects on reproductive problems as repeat breeder and help to understand potential mechanisms impairing fertility in repeat breeder cows.

  2. GLUCOSE AND TOTAL PROTEIN LEVEL IN LABORATORY RATS UNDER CONDITIONS OF SHORT-TERM FASTING

    Directory of Open Access Journals (Sweden)

    Damir Suljević

    2013-09-01

    Full Text Available Glucose level (UV enzymatic method and total protein level (Biuret method were measured in the blood samples of the rats exposed to short-term starvation. We found a statistically significant increase in the glucose level in experimental animals during starvation, which is also evident in males and females in the experimental group (p <0.05, while decrease in the total protein level was not statistically significant. During starvation, more significant weight loss was observed in females compared to males.Key words: glucose, total protein, serum, Rattus

  3. Study on N-Amino, Protein and Total Glucose of Etawah Crossbreed Goat and Boer Crossbreed Goat Meat Sauce

    OpenAIRE

    Khothibul Umam Al Awwaly; Aris Sri Widati; Vina Rahmadani

    2012-01-01

    The aim of this study was to know the difference between Etawah crossbreed goat meat sauce and Boer crossbreed goat meat sauce evaluated on N-amino, protein, and total glucose.The material used in the research were meat sauce from Etawah crossbreed goat and Boer crossbreed goat. The result showed that the different species of goat statistically gave  no significant  effect (P>0.05) on N-amino, protein and total glucose of goat meat sauce. Boer crossbreed meat sauce tend higher than Etawah cro...

  4. Estimation of salivary glucose, salivary amylase, salivary total protein and salivary flow rate in diabetics in India.

    Science.gov (United States)

    Panchbhai, Arati S; Degwekar, Shirish S; Bhowte, Rahul R

    2010-09-01

    Diabetes is known to influence salivary composition and function, eventually affecting the oral cavity. We thus evaluated saliva samples for levels of glucose, amylase and total protein, and assessed salivary flow rate in diabetics and healthy non-diabetics. We also analyzed these parameters with regard to duration and type of diabetes mellitus and gender, and aimed to assess the interrelationships among the variables included in the study. A total of 120 age- and sex-matched participants were divided into 3 groups of 40 each; the uncontrolled diabetic group, the controlled diabetic group and the healthy non-diabetic group. Salivary investigations were performed using unstimulated whole saliva. Mean salivary glucose levels were found to be significantly elevated in both uncontrolled and controlled diabetics, as compared to healthy non-diabetics. There were significant decreases in mean salivary amylase levels in controlled diabetics when compared to healthy non-diabetics. Other than salivary glucose, no other parameters were found to be markedly affected in diabetes mellitus. Further research is needed to explore the clinical implications of these study results.

  5. Spectrophotometric and Refractometric Determination of Total Protein in Avian Plasma

    Directory of Open Access Journals (Sweden)

    Rodica Căpriță

    2013-10-01

    Full Text Available The aim of this study was to compare the total protein values obtained in heparin plasma of chickens by a spectrophotometric technique (biuret method, and the values obtained on the same day in the same samples by refractometry. The results obtained by refractometry (average value 2.638±0.153g% were higher than those obtained by the spectrophotometric method (average value 2.441±0.181g%. There was a low correlation (r = 0.6709 between the total protein values, determined with both methods. Protein is the major determinant of plasma refractive index, but glucose contributes too. The refractometric method is not recommended in chickens for the determination of total protein, because avian blood glucose concentration averages about twice than in mammalian blood.

  6. Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Jaiswal

    2016-04-01

    Full Text Available Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS. A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119 were not known previously. AtRGS1 protein interactions were dynamically modulated by d-glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1.

  7. Effects of Higher Dietary Protein and Fiber Intakes at Breakfast on Postprandial Glucose, Insulin, and 24-h Interstitial Glucose in Overweight Adults.

    Science.gov (United States)

    Amankwaah, Akua F; Sayer, R Drew; Wright, Amy J; Chen, Ningning; McCrory, Megan A; Campbell, Wayne W

    2017-04-02

    Dietary protein and fiber independently influence insulin-mediated glucose control. However, potential additive effects are not well-known. Men and women ( n = 20; age: 26 ± 5 years; body mass index: 26.1 ± 0.2 kg/m²; mean ± standard deviation) consumed normal protein and fiber (NPNF; NP = 12.5 g, NF = 2 g), normal protein and high fiber (NPHF; NP = 12.5 g, HF = 8 g), high protein and normal fiber (HPNF; HP = 25 g, NF = 2 g), or high protein and fiber (HPHF; HP = 25 g, HF = 8 g) breakfast treatments during four 2-week interventions in a randomized crossover fashion. On the last day of each intervention, meal tolerance tests were completed to assess postprandial (every 60 min for 240 min) serum glucose and insulin concentrations. Continuous glucose monitoring was used to measure 24-h interstitial glucose during five days of the second week of each intervention. Repeated-measures ANOVA was applied for data analyses. The HPHF treatment did not affect postprandial glucose and insulin responses or 24-h glucose total area under the curve (AUC). Higher fiber intake reduced 240-min insulin AUC. Doubling the amount of protein from 12.5 g to 25 g/meal and quadrupling fiber from 2 to 8 g/meal at breakfast was not an effective strategy for modulating insulin-mediated glucose responses in these young, overweight adults.

  8. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males.

    Science.gov (United States)

    Fisher, F F M; Trujillo, M E; Hanif, W; Barnett, A H; McTernan, P G; Scherer, P E; Kumar, S

    2005-06-01

    It is well established that total systemic adiponectin is reduced in type 2 diabetic subjects. To date most studies have been concerned with the singular full-length protein or proteolytically cleaved globular domain. It is, however, apparent that the native protein circulates in serum as a lower molecular weight hexamer and as larger multimeric structures of high molecular weight (HMW). In this study we address the clinical significance of each form of the protein with respect to glucose tolerance. Serum was obtained from 34 Indo-Asian male subjects (BMI 26.5+/-3.1; age 52.15+/-10.14 years) who had undertaken a 2-h oral glucose tolerance test. An aliquot of serum was fractionated using velocity sedimentation followed by reducing SDS-PAGE. Western blots were probed for adiponectin, and HMW adiponectin as a percentage of total adiponectin (percentage of higher molecular weight adiponectin [S(A)] index) was calculated from densitometry readings. Total adiponectin was measured using ELISA; leptin, insulin and IL-6 were determined using ELISA. Analysis of the cohort demonstrated that total adiponectin (r = 0.625, p = 0.0001), fasting insulin (r = -0.354, p = 0.040) and age (r = 0.567, p = 0.0001) correlated with S(A). S(A) showed a tighter, inverse correlation with 2-h glucose levels (r = -0.58, p = 0.0003) than total adiponectin (r = -0.38, p = 0.0001). This study demonstrates the importance of the S(A) index as a better determinant of glucose intolerance than measurements of total adiponectin. Our findings suggest that HMW adiponectin is the active form of the protein.

  9. Influence of Acute High Glucose on Protein Abundance Changes in Murine Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Michelle T. Barati

    2016-01-01

    Full Text Available The effects of acute exposure to high glucose levels as experienced by glomerular mesangial cells in postprandial conditions and states such as in prediabetes were investigated using proteomic methods. Two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry methods were used to identify protein expression patterns in immortalized rat mesangial cells altered by 2 h high glucose (HG growth conditions as compared to isoosmotic/normal glucose control (NG⁎ conditions. Unique protein expression changes at 2 h HG treatment were measured for 51 protein spots. These proteins could be broadly grouped into two categories: (1 proteins involved in cell survival/cell signaling and (2 proteins involved in stress response. Immunoblot experiments for a protein belonging to both categories, prohibitin (PHB, supported a trend for increased total expression as well as significant increases in an acidic PHB isoform. Additional studies confirmed the regulation of proteasomal subunit alpha-type 2 and the endoplasmic reticulum chaperone and oxidoreductase PDI (protein disulfide isomerase, suggesting altered ER protein folding capacity and proteasomal function in response to acute HG. We conclude that short term high glucose induces subtle changes in protein abundances suggesting posttranslational modifications and regulation of pathways involved in proteostasis.

  10. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  12. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults.

    Science.gov (United States)

    Vikøren, Linn A; Nygård, Ottar K; Lied, Einar; Rostrup, Espen; Gudbrandsen, Oddrun A

    2013-02-28

    The popularity of high-protein diets for weight reduction is immense. However, the potential benefits from altering the source of dietary protein rather than the amount is scarcely investigated. In the present study, we examined the effects of fish protein supplement on glucose and lipid metabolism in overweight adults. A total of thirty-four overweight adults were randomised to 8 weeks' supplementation with fish protein or placebo tablets (controls). The intake of fish protein supplement was 3 g/d for the first 4 weeks and 6 g/d for the last 4 weeks. In this study, 8 weeks of fish protein supplementation resulted in lower values of fasting glucose (Pfish protein supplementation compared to controls. Glucose-AUC was decreased after 8 weeks with fish protein supplement compared to baseline (Pfish protein may have beneficial effects on blood levels of glucose and LDL-cholesterol as well as glucose tolerance and body composition in overweight adults. The long-term effects of fish protein supplementation is of interest in the context of using more fish as a protein source in the diet, and the effects of inclusion of fish in the diet of individuals with low glucose tolerance should be evaluated.

  13. A novel bi-protein bio-interphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis

    International Nuclear Information System (INIS)

    Song, Yonghai; Liu, Hongyu; Wang, Yu; Wang, Li

    2013-01-01

    Graphical abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) nanocomposites modified glassy carbon electrode. Electron transfer and electrocatalysis of the novel bi-protein bio-interphase were investigated. The bio-interphase developed here not only successfully achieved DET of GOD, but also showed great potential for the fabrication of novel glucose biosensors with linear response up to 18 mM. Highlights: ► A bio-interphase composed of cytochrome c and glucose oxidase was developed. ► The electron transfer in the bio-interphase was investigated. ► Electrocatalytic performances of bio-interphase were explored. ► The bio-interphase exhibited good electrocatalytic response glucose. - Abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) hybrid nanocomposites modified glassy carbon electrode to prepare a novel bi-protein bio-interphase. Electron transfer and electrocatalysis of the bi-protein bio-interphase were investigated in detail. The results showed that the PDDA–Gp–AuNPs nanocomposites accelerated the electron transfer between proteins and electrode. The bi-protein exhibited effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.36 s −1 . The optimal molar ratio and total amount of Cyt c and GOD in the bio-interphase for DET of GOD was estimated to be about 3:1 and 1.40 nmol, respectively. The bi-protein bio-interphase could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOD. The resulted biosensor exhibits wide linear range from 2.0 to 18.0 mM. Thus, this study not only successfully achieved DET of GOD, but also constructed a novel biosensor for glucose detection

  14. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  15. Ribosomal dimerization factor YfiA is the major protein synthesized after abrupt glucose depletion in Lactococcus lactis.

    Science.gov (United States)

    Breüner, Anne; Frees, Dorte; Varmanen, Pekka; Boguta, Anna Monika; Hammer, Karin; Martinussen, Jan; Kilstrup, Mogens

    2016-10-01

    We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the yfiA transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.

  16. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faaizah; Pickup, John C., E-mail: john.pickup@kcl.ac.uk

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  17. Validity of a portable glucose, total cholesterol, and triglycerides multi-analyzer in adults.

    Science.gov (United States)

    Coqueiro, Raildo da Silva; Santos, Mateus Carmo; Neto, João de Souza Leal; Queiroz, Bruno Morbeck de; Brügger, Nelson Augusto Jardim; Barbosa, Aline Rodrigues

    2014-07-01

    This study investigated the accuracy and precision of the Accutrend Plus system to determine blood glucose, total cholesterol, and plasma triglycerides in adults and evaluated its efficiency in measuring these blood variables. The sample consisted of 53 subjects (≥ 18 years). For blood variable laboratory determination, venous blood samples were collected and processed in a Labmax 240 analyzer. To measure blood variables with the Accutrend Plus system, samples of capillary blood were collected. In the analysis, the following tests were included: Wilcoxon and Student's t-tests for paired samples, Lin's concordance coefficient, Bland-Altman method, receiver operating characteristic curve, McNemar test, and k statistics. The results show that the Accutrend Plus system provided significantly higher values (p ≤ .05) of glucose and triglycerides but not of total cholesterol (p > .05) as compared to the values determined in the laboratory. However, the system showed good reproducibility (Lin's coefficient: glucose = .958, triglycerides = .992, total cholesterol = .940) and high concordance with the laboratory method (Lin's coefficient: glucose = .952, triglycerides = .990, total cholesterol = .944) and high sensitivity (glucose = 80.0%, triglycerides = 90.5%, total cholesterol = 84.4%) and specificity (glucose = 100.0%, triglycerides = 96.9%, total cholesterol = 95.2%) in the discrimination of high values of the three blood variables analyzed. It could be concluded that despite the tendency to overestimate glucose and triglyceride levels, a portable multi-analyzer is a valid alternative for the monitoring of metabolic disorders and cardiovascular risk factors. © The Author(s) 2013.

  18. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined...... in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......-consumption in a dose dependent manner but the T4 stimulation was dependent on the total concentration of T4 and did not differ between serum incubation or non-protein containing medium. Addition of ANS (100 mg/l) which inhibits binding of T4 to TBG, did not increase T4 effect in serum. Inhibition of the Na...

  19. Glucose Deprivation Triggers Protein Kinase C-dependent β-Catenin Proteasomal Degradation*

    Science.gov (United States)

    Choi, Seung-Won; Song, Jun-Kyu; Yim, Ye-Seal; Yun, Ho-Geun; Chun, Kyung-Hee

    2015-01-01

    Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy. PMID:25691573

  20. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  1. Postprandial glucose-lowering effect of premeal consumption of protein-enriched, dietary fiber-fortified bar in individuals with type 2 diabetes mellitus or normal glucose tolerance.

    Science.gov (United States)

    Bae, Jae Hyun; Kim, Lee Kyung; Min, Se Hee; Ahn, Chang Ho; Cho, Young Min

    2018-03-04

    Protein preload improves postprandial glycemia by stimulating secretion of insulin and incretin hormones. However, it requires a large dose of protein to produce a significant effect. The present study was carried out to investigate the postprandial glucose-lowering effect of a premeal protein-enriched, dietary fiber-fortified bar (PFB), which contains moderate amounts of protein, in individuals with type 2 diabetes mellitus or normal glucose tolerance (NGT). The participants (15 type 2 diabetes mellitus and 15 NGT) were randomly assigned to either a premeal or postmeal PFB group and underwent two mixed meal tolerance tests, 1 week apart in reverse order. Plasma levels of glucose, insulin, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide were measured. During the mixed meal tolerance tests, the incremental area under the curve from 0 to 180 min of plasma glucose levels was lower with premeal PFB than with postmeal PFB in the type 2 diabetes mellitus (14,723 ± 1,310 mg min/dL vs 19,642 ± 1,367 mg min/dL; P = 0.0002) and NGT participants (3,943 ± 416 mg min/dL vs 4,827 ± 520 mg min/dL, P = 0.0296). In the type 2 diabetes mellitus participants, insulinogenic index and the incremental area under the curve from 0 to 180 min of plasma total glucagon-like peptide-1 levels were higher with premeal PFB than with postmeal PFB, but not in the NGT participants. There was no difference in postprandial glucose-dependent insulinotropic polypeptide levels between premeal and postmeal PFB in both groups. Acute administration of premeal PFB decreased postprandial glucose excursion in both type 2 diabetes mellitus and NGT participants. In the type 2 diabetes mellitus participants, premeal PFB augmented the early-phase insulin secretion, possibly through enhancing glucagon-like peptide-1 secretion. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons

  2. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-12-01

    Full Text Available Glucose autoxidation has been proposed as a key reaction associated with deleterious effects induced by hyperglycemia in the eye lens. Little is known about chromophores generated during glucose autoxidation. In this study, we analyzed the effect of oxidative and dicarbonyl stress in the generation of a major chromophore arising from glucose degradation (GDC and its association with oxidative damage in lens proteins. Glucose (5 mM was incubated with H2O2 (0.5–5 mM, Cu2+ (5–50 μM, glyoxal (0.5–5 mM or methylglyoxal (0.5–5 mM at pH 7.4, 5% O2, 37 °C, from 0 to 30 days. GDC concentration increased with incubation time, as well as when incubated in the presence of H2O2 and/or Cu2+, which were effective even at the lowest concentrations. Dicarbonylic compounds did not increase the levels of GDC during incubations. 1H, 13C and FT-IR spectra from the purified fraction containing the chromophore (detected by UV/vis spectroscopy showed oxidation products of glucose, including gluconic acid. Lens proteins solutions (10 mg/mL incubated with glucose (30 mM presented increased levels of carboxymethyl-lysine and hydrogen peroxide that were associated with GDC increase. Our results suggest a possible use of GDC as a marker of autoxidative reactions occurring during lens proteins glycation induced by glucose.

  3. [Effect of raw and cooked nopal (Opuntia ficus indica) ingestion on growth and profile of total cholesterol, lipoproteins, and blood glucose in rats].

    Science.gov (United States)

    Cárdenas Medellín, M L; Serna Saldívar, S O; Velazco de la Garza, J

    1998-12-01

    Two different concentrations (approx. 6 and 12%) and two presentations (raw and cooked) of dehydrated nopal were fed to laboratory rats and growth and serum total cholesterol, lipoprotein profile and glucose determined. Samples of raw and cooked nopal were chemically characterized for moisture, protein, ash, crude fiber, ether extract, total dietary fiber, reducing sugars, amino acids, minerals and gross energy. Cooking slightly affected some of the nutrients analyzed. After one month feeding, blood was withdrawn via intracardiac puncture and serum glucose, total cholesterol, HDL, LDL, and VLDL were determined. Rats fed 12% nopal had lower weight gains (P nopal or the control diet. Consumption of nopal did not affect (P > 0.05) glucose, total cholesterol and HDL cholesterol levels. However, rats fed raw nopal at the 12% concentration level had a 34% reduction in LDL cholesterol levels; thus, it was concluded that raw nopal had a potentially beneficial effect for hypercholesterolemic individuals.

  4. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  5. Harmful effect of protein difficiency on lipids, glucose, insulin and estradiol levels in female albino rats

    International Nuclear Information System (INIS)

    El-Mahdy, A.A.; El-Sherbiny, E.M.; Bayomi, M.M.

    2005-01-01

    The present study was undertaken to investigate the harmful effect of protein deficient diet on some biochemical activities in serum of female rats. Protein malnutrition is a well known socioeconomic problem in different parts of the world. Many studies were investigated on the biological parameters following protein malnutrition in human and experimental animals. Forty albino female rats were divided into 3 groups. The first group (10 rats) fed 18% protein diet and served as normal control and the other two groups, each contains 15 rats, fed 5% protein for 21 and 45 days, respectively, and served as malnourished groups. The results showed significant decrease in total body weight, serum glucose, insulin and estradiol levels in the third group as well as decrease in the total cholesterol, HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol and triglycerides concentrations that compared to normal control rats

  6. Structure of a periplasmic glucose-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Palani, Kandavelu; Kumaran, Desigan; Burley, Stephen K.; Swaminathan, Subramanyam

    2012-01-01

    The periplasmic glucose-binding protein from T. maritima consists of two domains with the ligand β-d-glucose buried between them. The two domains adopt a closed conformation. ABC transport systems have been characterized in organisms ranging from bacteria to humans. In most bacterial systems, the periplasmic component is the primary determinant of specificity of the transport complex as a whole. Here, the X-ray crystal structure of a periplasmic glucose-binding protein (GBP) from Thermotoga maritima determined at 2.4 Å resolution is reported. The molecule consists of two similar α/β domains connected by a three-stranded hinge region. In the current structure, a ligand (β-d-glucose) is buried between the two domains, which have adopted a closed conformation. Details of the substrate-binding sites revealed features that determine substrate specificity. In toto, ten residues from both domains form eight hydrogen bonds to the bound sugar and four aromatic residues (two from each domain) stabilize the substrate through stacking interactions

  7. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  8. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    International Nuclear Information System (INIS)

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-01-01

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2- 3 H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased V max but not K m of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  9. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  10. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  11. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  12. Protein structural development of threadfin bream ( Nemipterus spp.) surimi gels induced by glucose oxidase.

    Science.gov (United States)

    Wang, Lei; Fan, Daming; Fu, Lulu; Jiao, Xidong; Huang, Jianlian; Zhao, Jianxin; Yan, Bowen; Zhou, Wenguo; Zhang, Wenhai; Ye, Weijian; Zhang, Hao

    2018-01-01

    This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly ( p glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.

  13. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  14. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C-glucose

  15. Blood glucose control in healthy subject and patients receiving intravenous glucose infusion or total parenteral nutrition using glucagon-like peptide 1

    DEFF Research Database (Denmark)

    Nauck, Michael A; Walberg, Jörg; Vethacke, Arndt

    2004-01-01

    It was the aim of the study to examine whether the insulinotropic gut hormone GLP-1 is able to control or even normalise glycaemia in healthy subjects receiving intravenous glucose infusions and in severely ill patients hyperglycaemic during total parenteral nutrition.......It was the aim of the study to examine whether the insulinotropic gut hormone GLP-1 is able to control or even normalise glycaemia in healthy subjects receiving intravenous glucose infusions and in severely ill patients hyperglycaemic during total parenteral nutrition....

  16. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  17. Detecting early kidney damage in horses with colic by measuring matrix metalloproteinase -9 and -2, other enzymes, urinary glucose and total proteins

    Directory of Open Access Journals (Sweden)

    Salonen Hanna

    2007-01-01

    Full Text Available Abstract Background The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9 activity, alkaline phosphatase/creatinine (U-AP/Cr and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5 were compared to healthy stallions (n = 7 that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography. Results We found out that horses with colic had significantly higher urinary MMP-9 complex and proMMP-9 activities than horses in the control group. Colic horses also had higher plasma MMP-2 activity than the control horses. Serum creatinine, although within reference range, was significantly higher in the colic horses than in the control group. There was no significant increase in urinary alkaline phosphatase, gamma-glutamyltranspeptidase or total proteins in the colic horses compared to the control group. A human cystatin-C test (Dako Cytomation latex immunoassay® based on turbidimetry did not cross react with equine cystatin-C. Conclusion The results indicate that plasma MMP-2 may play a role in the pathogenesis of equine colic and urinary MMP-9 in equine kidney damage.

  18. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  19. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast.

    Directory of Open Access Journals (Sweden)

    Antoine E Roux

    2009-03-01

    Full Text Available Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Galpha subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Deltagit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.

  20. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    International Nuclear Information System (INIS)

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-01-01

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  1. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  2. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS.

    Science.gov (United States)

    Yildiz, Bulent O; Bozdag, Gurkan; Otegen, Umit; Harmanci, Ayla; Boynukalin, Kubra; Vural, Zehra; Kirazli, Serafettin; Yarali, Hakan

    2010-01-01

    Since insulin resistance is accepted to be a common feature of polycystic ovary syndrome (PCOS), the exact molecular mechanism(s) involved in glucose and lipid metabolism have been under investigation in the syndrome. Recently, two novel adipokines, namely visfatin and retinol-binding protein 4 (RBP4), have been suggested to play a role in insulin resistance and diabetes. This study sought to determine whether plasma concentrations of visfatin and RBP4 are altered in PCOS by comparing a total of 27 lean, normal glucose-tolerant PCOS patients with 19 age- and body mass index-matched healthy controls. The mean plasma visfatin concentrations were higher in PCOS patients than those in healthy subjects (37.9+/-18.2 versus 19.8+/-17.5, PPCOS (r=0.52, Plean, glucose-tolerant women with PCOS have increased circulating visfatin and unaltered RBP4 concentrations compared with healthy lean women. In order to clarify overlapping effects and their potential contribution to the pathophysiology of PCOS, further studies are needed. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Effect of supplemental protein source during the winter on pre- and postpartum glucose metabolism

    Science.gov (United States)

    Circulating serum glucose concentrations as well as glucose utilization have been shown to be affected by forage quality. Supplemental protein provided to grazing range cows while consuming low quality forage may improve glucose metabolism. The objective of our study was to determine the effects of ...

  4. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2009-06-01

    Full Text Available Abstract Background Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae. Results To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters. Conclusion This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.

  5. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  6. A novel N-terminal domain may dictate the glucose response of Mondo proteins.

    Directory of Open Access Journals (Sweden)

    Lisa G McFerrin

    Full Text Available Glucose is a fundamental energy source for both prokaryotes and eukaryotes. The balance between glucose utilization and storage is integral for proper energy homeostasis, and defects are associated with several diseases, e.g. type II diabetes. In vertebrates, the transcription factor ChREBP is a major component in glucose metabolism, while its ortholog MondoA is involved in glucose uptake. Both MondoA and ChREBP contain five Mondo conserved regions (MCRI-V that affect their cellular localization and transactivation ability. While phosphorylation has been shown to affect ChREBP function, the mechanisms controlling glucose response of both ChREBP and MondoA remain elusive. By incorporating sequence analysis techniques, structure predictions, and functional annotations, we synthesized data surrounding Mondo family proteins into a cohesive, accurate, and general model involving the MCRs and two additional domains that determine ChREBP and MondoA glucose response. Paramount, we identified a conserved motif within the transactivation region of Mondo family proteins and propose that this motif interacts with the phosphorylated form of glucose. In addition, we discovered a putative nuclear receptor box in non-vertebrate Mondo and vertebrate ChREBP sequences that reveals a potentially novel interaction with nuclear receptors. These interactions are likely involved in altering ChREBP and MondoA conformation to form an active complex and induce transcription of genes involved in glucose metabolism and lipogenesis.

  7. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  8. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Effects of maternal exposure to trichloroethylene on glucose uptake and nucleic acid and protein levels in the brains of developing rat pups

    International Nuclear Information System (INIS)

    Gerbec, E.A.N.

    1985-01-01

    Trichloroethylene (TCE) is a widespread contaminant of drinking water sources. This study examined several biochemical aspects of the hippocampus and cerebellum of rat pups that were exposed prenatally (gestational) and postnatally (lactational) to TCE via their dams' drinking water. The effects of TCE on glucose uptake, and on nucleic and protein levels in brain tissue were examined in these pups. Glucose uptake in the cerebellum, hippocampus and whole brain of the pups during the first 21 days of life was measured using the tritium-labeled 2-deoxy-D-glucose (2-DG) dissection/scintillation counting technique. The author determined that 312 mg TCE/I in drinking water (total dam exposure was 684 mg) significantly depressed 2-DG uptake in the whole brains and cerebella of 7- to 21-day old pups. This concentration also reduced 2-DG uptake in the hippocampus of exposed pups at 7, 11, and 16 days, but the uptake returned to control levels by 21 days. No overt toxicity, such as lower body or brain weight, was observed at this exposure level. This decrease in 2-DG uptake is a reflection of a decreased relative glucose uptake in the TCE exposed animals. Total DNA and RNA were extracted and measured using a modification of the Schmidt-Thannhauser procedure and Schneider technique, respectively. Proteins were determined based on the method of Bradford (1976)

  10. Duodenal mucosal protein kinase C-δ regulates glucose production in rats.

    Science.gov (United States)

    Kokorovic, Andrea; Cheung, Grace W C; Breen, Danna M; Chari, Madhu; Lam, Carol K L; Lam, Tony K T

    2011-11-01

    Activation of protein kinase C (PKC) enzymes in liver and brain alters hepatic glucose metabolism, but little is known about their role in glucose regulation in the gastrointestinal tract. We investigated whether activation of PKC-δ in the duodenum is sufficient and necessary for duodenal nutrient sensing and regulates hepatic glucose production through a neuronal network in rats. In rats, we inhibited duodenal PKC and evaluated whether nutrient-sensing mechanisms, activated by refeeding, have disruptions in glucose regulation. We then performed gain- and loss-of-function pharmacologic and molecular experiments to target duodenal PKC-δ; we evaluated the impact on glucose production regulation during the pancreatic clamping, while basal levels of insulin were maintained. PKC-δ was detected in the mucosal layer of the duodenum; intraduodenal infusion of PKC inhibitors disrupted glucose homeostasis during refeeding, indicating that duodenal activation of PKC-δ is necessary and sufficient to regulate glucose homeostasis. Intraduodenal infusion of the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) specifically activated duodenal mucosal PKC-δ and a gut-brain-liver neuronal pathway to reduce glucose production. Molecular and pharmacologic inhibition of duodenal mucosal PKC-δ negated the ability of duodenal OAG and lipids to reduce glucose production. In the duodenal mucosa, PKC-δ regulates glucose homeostasis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    Science.gov (United States)

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Estimation of the Relative Contribution of Postprandial Glucose Exposure to Average Total Glucose Exposure in Subjects with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2016-01-01

    Full Text Available We hypothesized that the relative contribution of fasting plasma glucose (FPG versus postprandial plasma glucose (PPG to glycated haemoglobin (HbA1c could be calculated using an algorithm developed by the A1c-Derived Average Glucose (ADAG study group to make HbA1c values more clinically relevant to patients. The algorithm estimates average glucose (eAG exposure, which can be used to calculate apparent PPG (aPPG by subtracting FPG. The hypothesis was tested in a large dataset (comprising 17 studies from the vildagliptin clinical trial programme. We found that 24 weeks of treatment with vildagliptin monotherapy (n=2523 reduced the relative contribution of aPPG to eAG from 8.12% to 2.95% (by 64%, p<0.001. In contrast, when vildagliptin was added to metformin (n=2752, the relative contribution of aPPG to eAG insignificantly increased from 1.59% to 2.56%. In conclusion, glucose peaks, which are often prominent in patients with type 2 diabetes, provide a small contribution to the total glucose exposure assessed by HbA1c, and the ADAG algorithm is not robust enough to assess this small relative contribution in patients receiving combination therapy.

  13. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.

    Science.gov (United States)

    Jeyapalan, Asumthia S; Orellana, Renan A; Suryawan, Agus; O'Connor, Pamela M J; Nguyen, Hanh V; Escobar, Jeffery; Frank, Jason W; Davis, Teresa A

    2007-08-01

    Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.

  14. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Science.gov (United States)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  15. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  16. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    DEFF Research Database (Denmark)

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  17. Refractometric total protein concentrations in icteric serum from dogs.

    Science.gov (United States)

    Gupta, Aradhana; Stockham, Steven L

    2014-01-01

    To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.

  18. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  19. Glucose and protein kinetics in patients undergoing colorectal surgery: perioperative amino acid versus hypocaloric dextrose infusion.

    Science.gov (United States)

    Lugli, Andrea Kopp; Schricker, Thomas; Wykes, Linda; Lattermann, Ralph; Carli, Franco

    2010-11-01

    Surgical injury provokes a stress response that leads to a catabolic state and, when prolonged, interferes with the postoperative recovery process. This study tests the impact of 2 nutrition support regimens on protein and glucose metabolism as part of an integrated approach in the perioperative period incorporating epidural analgesia in 18 nondiabetic patients undergoing colorectal surgery. To test the hypothesis that parenteral amino acid infusion (amino acid group, n = 9) maintains glucose homeostasis while maintaining normoglycemia and reduces proteolysis compared with infusion of dextrose alone (DEX group, n = 9), glucose and protein kinetics were measured before and on the second day after surgery using a stable isotope tracer technique. Postoperatively, the rate of appearance of glucose was higher (P dextrose alone. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  1. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    Science.gov (United States)

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  3. Effect of two different regimes of carbohydrate and protein on performance and serum level of insulin and glucose in soccer players

    Directory of Open Access Journals (Sweden)

    M. Hozoori

    2006-07-01

    Full Text Available Background: The aim of this study was to determine the effect of two different regimes, containing different carbohydrate to protein ratios on performance, serum glucose and insulin after exercise in soccer players in Tehran; Iran. Methods: Nineteen male soccer players under training [age = 17/5 +/- 1.5 (SE yr] were selected and completed two sequential trials separated by 1 week, in a paired cross-over study design. In each trial, subjects after running to fatigue; received one of three regimes, using a random- order design as follows: HPRO ( CHO 56%, PRO 19% & fat 25% of total energy; HCHO ( CHO 64%, PRO 11% & fat 25% of total energy or control ( CHO 60%, PRO 15% & fat 25% of total energy. The calorie of 3 regimes were equal. After consumption of meal up to120 min, blood was obtained before and at intervals. After 3 hours athlete performance was measured. Results: The study indicates no significant difference in the serum insulin and glucose response among three regimes (P > 0.05. There was no difference in performance between three regimes after 3 h (p > 0.05. Conclusion: The results suggest that post exercise regimes have no influence on performance, serum glucose and serum insulin. Thus total energy content and carbohydrate content may be important in recovery after exercise.

  4. A study of glucose handling by Buddhist monks.

    Science.gov (United States)

    Aung, T; Myint, H; Thein, M

    1988-04-01

    Fourteen Buddhist monks and comparable male subjects were studied in relation to their handling of glucose after a meal (consisting of 1190 kcal, 29 g protein, 21 g fat and 221 g carbohydrate) and afterwards subjected to an oral glucose tolerance test (oGTT). The time course of blood glucose levels after the meal indicated that the monks had enhanced absorption and utilization of glucose. The monks were also found to have increased tolerance to glucose on oGTT. In addition the mean total serum cholesterol level in the monks (157.2 +/- 5.53 mg/dl) was found to be significantly higher than that of the control subjects (117.4 +/- 2.85 mg/dl).

  5. Glucose Binding Protein as a Novel Optical Glucose Nanobiosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2009-11-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  6. Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Hye-Sook Han

    2014-12-01

    Full Text Available Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

  7. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  8. Clinical performance evaluation of total protein measurement by digital refractometry and characterization of non-protein solute interferences

    Directory of Open Access Journals (Sweden)

    Joshua J.H. Hunsaker

    2016-12-01

    Full Text Available Objectives: Refractometric methods to measure total protein (TP in serum and plasma specimens have been replaced by automated biuret methods in virtually all routine clinical testing. A subset of laboratories, however, still report using refractometry to measure TP in conjunction with serum protein electrophoresis. The objective of this study was therefore to conduct a modern performance evaluation of a digital refractometer for TP measurement. Design and methods: Performance evaluation of a MISCO Palm Abbe™ digital refractometer was conducted through device familiarization, carryover, precision, accuracy, linearity, analytical sensitivity, analytical specificity, and reference interval verification. Comparison assays included a manual refractometer and an automated biuret assay. Results: Carryover risk was eliminated using a demineralized distilled water (ddH2O wash step. Precision studies demonstrated overall imprecision of 2.2% CV (low TP pool and 0.5% CV (high TP pool. Accuracy studies demonstrated correlation to both manual refractometry and the biuret method. An overall positive bias (+5.0% was observed versus the biuret method. On average, outlier specimens had an increased triglyceride concentration. Linearity was verified using mixed dilutions of: a low and high concentration patient pools, or b albumin-spiked ddH2O and high concentration patient pool. Decreased recovery was observed using ddH2O dilutions at low TP concentrations. Significant interference was detected at high concentrations of glucose (>267 mg/dL and triglycerides (>580 mg/dL. Current laboratory reference intervals for TP were verified. Conclusions: Performance characteristics of this digital refractometer were validated in a clinical laboratory setting. Biuret method remains the preferred assay for TP measurement in routine clinical analyses. Keywords: Refractometry, Digital refractometry, Total protein, Biuret, Serum protein electrophoresis, Monoclonal

  9. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  10. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy.

    Science.gov (United States)

    Paterson, M A; Smart, C E M; Lopez, P E; McElduff, P; Attia, J; Morbey, C; King, B R

    2016-05-01

    To determine the effects of protein alone (independent of fat and carbohydrate) on postprandial glycaemia in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Participants with Type 1 diabetes mellitus aged 7-40 years consumed six 150 ml whey isolate protein drinks [0 g (control), 12.5, 25, 50, 75 and 100] and two 150 ml glucose drinks (10 and 20 g) without insulin, in randomized order over 8 days, 4 h after the evening meal. Continuous glucose monitoring was used to assess postprandial glycaemia. Data were collected from 27 participants. Protein loads of 12.5 and 50 g did not result in significant postprandial glycaemic excursions compared with control (water) throughout the 300 min study period (P > 0.05). Protein loads of 75 and 100 g resulted in lower glycaemic excursions than control in the 60-120 min postprandial interval, but higher excursions in the 180-300 min interval. In comparison with 20 g glucose, the large protein loads resulted in significantly delayed and sustained glucose excursions, commencing at 180 min and continuing to 5 h. Seventy-five grams or more of protein alone significantly increases postprandial glycaemia from 3 to 5 h in people with Type 1 diabetes mellitus using intensive insulin therapy. The glycaemic profiles resulting from high protein loads differ significantly from the excursion from glucose in terms of time to peak glucose and duration of the glycaemic excursion. This research supports recommendations for insulin dosing for large amounts of protein. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  11. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition.

    Science.gov (United States)

    Kanaley, Jill A; Heden, Timothy D; Liu, Ying; Fairchild, Timothy J

    2014-11-14

    A frequent eating pattern may alter glycaemic control and augment postprandial insulin concentrations in some individuals due to the truncation of the previous postprandial period by a subsequent meal. The present study examined glucose, insulin, C-peptide and glucose-dependent insulinotropic peptide (GIP) responses in obese individuals when meals were ingested in a high-frequency pattern (every 2 h, 6M) or in a low-frequency pattern (every 4 h, 3M) over 12 h. It also examined these postprandial responses to high-frequency, high-protein meals (6MHP). In total, thirteen obese subjects completed three 12 h study days during which they consumed 6276 kJ (1500 kcal): (1) 3M - 15 % protein and 65 % carbohydrate; (2) 6M - 15 % protein and 65 % carbohydrate; (3) 6MHP - 45 % protein and 35 % carbohydrate. Blood samples were collected every 10 min and analysed for glucose, insulin, C-peptide and GIP. Insulin total AUC (tAUC) and peak insulin concentrations (Pmeal frequency or composition. In obese subjects, ingestion of meals in a low-frequency pattern does not alter glucose tAUC, but increases postprandial insulin responses. The substitution of carbohydrates with protein in a frequent meal pattern results in tighter glycaemic control and reduced postprandial insulin responses.

  12. Specific interaction of central nervous system myelin basic protein with lipids effects of basic protein on glucose leakage from liposomes

    NARCIS (Netherlands)

    Gould, R.M.; London, Y.

    1972-01-01

    The leakage from liposomes preloaded with glucose was continuously monitored in a Perkin-Elmer Model 356 dual beam spectrophotometer using an enzyme-linked assay system. The central nervous system myelin basic protein (A1 protein) caused a 3–4-fold increase in the rate of leakage from liposomes

  13. The Tp0684 (MglB-2 Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    Directory of Open Access Journals (Sweden)

    Chad A Brautigam

    Full Text Available Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  14. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    Science.gov (United States)

    Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  15. Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants*

    Science.gov (United States)

    Xiong, Yan; Sheen, Jen

    2012-01-01

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs. PMID:22134914

  16. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats

    Science.gov (United States)

    Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish

    2017-01-01

    Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067

  17. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    International Nuclear Information System (INIS)

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-01-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ([ 123 I]isopropyl-iodoamphetamine[IMP])-glucose utilization ([ 14 C]2-deoxyglucose), and protein synthesis ([ 14 C]leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of [ 123 I]IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in [ 14 C]leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury

  18. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  19. Co-induction of glucose regulated proteins and adriamycin resistance in Chinese hamster cells

    International Nuclear Information System (INIS)

    Shen, J.; Hughes, C.; Cai, J.; Bartels, C.; Gessner, T.; Subjeck, J.

    1987-01-01

    Glucose deprivation, anoxia, calcium ionophore A23187 or 2-deoxyglucose all inducers of glucose regulated proteins (grps), also lead to a significant induction of resistance to the drug adriamycin. In the case of anoxia, A23187 and 2-deoxyglucose, the induction of resistance correlates with both the application of the inducing stress and the induction of grps. In the case of glucose deprivation, the onset of resistance correlates with the onset of glucose deprivation and precedes grp induction. Removal of each grp including condition results in the rapid disappearance of this resistance in a manner which correlates with the repression of the grps. This drug resistance can be induced in confluent cells or in actively proliferating cells, although the effect is greater in the more sensitive proliferating cells. Induction of heat shock proteins (hsps) does not appear to lead to any major change in adriamycin resistance. Grp induced cells retain less adriamycin than do controls with the greatest reduction occurring during anoxia, which is also the strongest inducer of grps and resistance. The authors propose that the application of a grp inducing stress leads to a concurrent induction in drug resistance, possibly via the translocation of grps in the cell. Finally, they also observed that adriamycin itself can induce both hsps and grps. It is possible that adriamycin exposure may correspondingly induce auto-resistance

  20. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  1. Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons.

    Science.gov (United States)

    Gaspar, J M; Castilho, Á; Baptista, F I; Liberal, J; Ambrósio, A F

    2010-12-29

    A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal

  2. Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2011-01-01

    Full Text Available Berberine is known to improve glucose and lipid metabolism disorders, but the mechanism is still under investigation. In this paper, we explored the effects of berberine on the weight, glucose levels, lipid metabolism, and serum insulin of KKAy mice and investigated its possible glucose and lipid-regulating mechanism. We randomly divided KKAy mice into two groups: berberine group (treated with 250 mg/kg/d berberine and control group. Fasting blood glucose (FBG, weight, total cholesterol (TC, triglyceride (TG, high-density lipoprotein-cholesterol (HDL-c, low-density lipoprotein-cholesterol (LDL-c, and fasting serum insulin were measured in both groups. The oral glucose tolerance test (OGTT was performed. RT2 PCR array gene expression analysis was performed using skeletal muscle of KKAy mice. Our data demonstrated that berberine significantly decreased FBG, area under the curve (AUC, fasting serum insulin (FINS, homeostasis model assessment insulin resistance (HOMA-IR index, TC, and TG, compared with those of control group. RT2 profiler PCR array analysis showed that berberine upregulated the expression of glucose transporter 4 (GLUT4, mitogen-activated protein kinase 14 (MAPK14, MAPK8(c-jun N-terminal kinase, JNK, peroxisome proliferator-activated receptor α (PPARα, uncoupling protein 2 (UCP2, and hepatic nuclear factor 4α(HNF4α, whereas it downregulated the expression of PPARγ, CCAAT/enhancer-binding protein (CEBP, PPARγ coactivator 1α(PGC 1α, and resistin. These results suggest that berberine moderates glucose and lipid metabolism through a multipathway mechanism that includes AMP-activated protein kinase-(AMPK- p38 MAPK-GLUT4, JNK pathway, and PPARα pathway.

  3. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  4. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dombek, Kenneth M; Kacherovsky, Nataly; Young, Elton T

    2004-09-10

    In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.

  5. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method

    International Nuclear Information System (INIS)

    Wolters, G.H.J.; Wiegman, J.B.; Konijnendijk, W.

    1982-01-01

    Glucose-stimulated 45 calcium uptake and total calcium content of rat pancreatic islets has been studied, using a new fluorometric micro-method to estimate total calcium. Extracellular calcium was separated from incubated tissue by a rapid micro-filtration procedure. Islets incubated up to 60 min with calcium chloride 2.5 mmol/l and glucose 2.5 mmol/l maintained the same calcium content (670 +- 7.5 pmol/μg DNA). When the glucose concentration was raised to 15 mmol/l no change in the total calcium content could be detected. On incubation with glucose 2.5 mmol/l in the absence of calcium, the calcium content decreased to 488 +- 27 pmol/μg DNA. On incubation with 45 calcium chloride 2.5 mmol/l for 5 or 30 min at 2.5 mmol/l glucose, islets exchanged 21 +- 2 and 28 +- 1% of their total calcium content and, at 15 mmol/l glucose, 30 +- 3 and 45 +- 2%, respectively. Thus, islet calcium has a high turn-over rate. Glucose stimulation results in an increase of the calcium uptake without enhancing the total calcium content and hence must increase the calcium-exchangeable pool. (orig.)

  6. Early enteral nutrition and total parenteral nutrition on the nutritional status and blood glucose in patients with gastric cancer complicated with diabetes mellitus after radical gastrectomy.

    Science.gov (United States)

    Wang, Junli; Zhao, Jiamin; Zhang, Yanling; Liu, Chong

    2018-07-01

    Effects of early enteral nutrition (EEN) or total parenteral nutrition (TPN) support on nutritional status and blood glucose in patients with gastric cancer complicated with diabetes mellitus after radical gastrectomy were investigated. One hundred and twenty-nine patients with gastric cancer complicated with diabetes mellitus type 2 admitted to the First People's Hospital of Jinan (Jinan, China), from June 2012 to June 2016 were selected into the study. According to different nutrition support pathways, these patients were randomly divided into the EEN group and the TPN group. The improvement of nutritional indexes, postoperative complications, gastrointestinal function recovery and perioperative blood glucose fluctuation were compared between the two groups. On the 4th day after operation, the improvement levels of total bilirubin (TBL), alanine aminotransferase (ALT), aspartate transaminase (AST), total protein (TP), prealbumin (PAB), hemoglobin (HGB) and weight (Wt) in the EEN group were significantly higher than those in the conventional group (P0.05). No patients had complications in the EEN group, while a total of 29 patients in the TPN group suffered adverse reactions, indicating that the incidence rate of complications in the EEN group was significantly lower than that in the TPN group (Pnutrition for patients with gastric cancer complicated with diabetes mellitus after radical gastrectomy, which is worthy of clinical promotion as it maintains good nutritional status, produces few postoperative complications and keeps the blood glucose level stable, by which the postoperative evacuation time is early, the hospitalization time is short and the cost is low.

  7. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    Directory of Open Access Journals (Sweden)

    Miao Xu

    Full Text Available Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1 inhibition of AMPK activity by Compound C, (2 suppression of AMPKα expression by siRNA, and (3 blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  9. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  10. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    Science.gov (United States)

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  11. Effect of low-carbohydrate diets high in either fat or protein on thyroid function, plasma insulin, glucose, and triglycerides in healthy young adults.

    Science.gov (United States)

    Ullrich, I H; Peters, P J; Albrink, M J

    1985-01-01

    A low-carbohydrate diet, frequently used for treatment of reactive hypoglycemia, hypertriglyceridemia, and obesity may affect thyroid function. We studied the effects of replacing the deleted carbohydrate with either fat or protein in seven healthy young adults. Subjects were randomly assigned to receive seven days of each of two isocaloric liquid-formula, low-carbohydrate diets consecutively. One diet was high in polyunsaturated fat (HF), with 10%, 55%, and 35% of total calories derived from protein, fat, and carbohydrate, respectively. The other was high in protein (HP) with 35%, 30%, and 35% of total calories derived from protein, fat, and carbohydrate. Fasting blood samples were obtained at baseline and on day 8 of each diet. A meal tolerance test representative of each diet was given on day 7. The triiodothyronine (T3) declined more (P less than .05) following the HF diet than the HP diet (baseline 198 micrograms/dl, HP 138, HF 113). Thyroxine (T4) and reverse T3 (rT3) did not change significantly. Thyroid-stimulating hormone (TSH) declined equally after both diets. The insulin level was significantly higher 30 minutes after the HP meal (148 microU/ml) than after the HF meal (90 microU/ml). The two-hour glucose level for the HP meal was less, 85 mg/dl, than after the HF meal (103 mg/dl). Serum triglycerides decreased more after the HF diet (HF 52 mg/dl, HP 67 mg/dl). Apparent benefits of replacing carbohydrate with polyunsaturated fat rather than protein are less insulin response and less postpeak decrease in blood glucose and lower triglycerides. The significance of the lower T3 level is unknown.

  12. Fasting gall bladder volume and lithogenicity in relation to glucose tolerance, total and intra-abdominal fat masses in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Hendel, H W; Højgaard, L; Andersen, T

    1998-01-01

    OBJECTIVE: To investigate whether total body fat mass or fat distribution and associated metabolic disturbances in glucose and lipid metabolism influence the well known gallstone pathogenetic factors in obese subjects in order to explain why some obese subjects develop gallstones and some do not...... with a specific radioimmunoassay. Insulin sensitivity was measured by the Minimal Model and glucose tolerance by an oral glucose tolerance test (OGTT). Serum lipid concentrations were measured by standard methods. RESULTS: The gallbladder volume in the fasting state increased with increasing intra-abdominal fat...... mass (P=0.006) and was increased in subjects with impaired glucose tolerance (41 vs 27 ml, P=0.001). The lithogenic index was > 1 in all subjects and correlated with total fat mass (P=0.04). CONCLUSION: Gallstone pathogenesis in obesity seems to be influenced by the total body fat mass and its regional...

  13. Activation of protein kinase C by elevation of glucose concentration: Proposal for a mechanism in the development of diabetic vascular complications

    International Nuclear Information System (INIS)

    Lee, Tianshing; Saltsman, K.A.; Ohashi, Hiromi; King, G.L.

    1989-01-01

    Hyperglycemia is believed to be the major cause of diabetic vascular complications involving both microvessels and arteries as in the retina, renal glomeruli, and aorta. It is unclear by which mechanism hyperglycemia is altering the metabolism and functions of vascular cells, although changes in nonenzymatic protein glycosylation and increases in cellular sorbitol levels have been postulated to be involved. Previously, the authors have reported that the elevation of extracellular glucose levels with cultured bovine retinal capillary endothelial cells causes an increase in protein kinase C (PKC) activity of the membranous pool with a parallel decrease in the cytosol without alteration of its total activity. Now they demonstrate that the mechanism for the activation of PKC is due to an enhanced de novo synthesis of diacylglycerol as indicated by a 2-fold increase of [ 14 C]diacylglycerol labeling from [ 14 C]glucose. The elevated diacylglycerol de novo synthesis is secondarily due to increased formation of precursors derived from glucose metabolism; this formation is enhanced by hyperglycemia as substantiated by elevated [ 3 H]glucose conversion into water. This effect of hyperglycemia on PKC is also observed in cultured aortic smooth muscle and endothelial cells and the retina and kidney of diabetic rats, but not in the brain. Since PKC in vascular cells has been shown to modulate hormone receptor turnover, neovascularization in vitro, and cell growth, they propose that this mechanism of enhancing the membranous PKC activities by hyperglycemia plays an important role in the development of diabetic vascular complications

  14. Bridging the Gap Between Protein Carboxyl Methylation and Phospholipid Methylation to Understand Glucose-Stimulated Insulin Secretion From the Pancreatic β Cell

    OpenAIRE

    Kowluru, Anjaneyulu

    2007-01-01

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also be...

  15. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid

    International Nuclear Information System (INIS)

    Carone, F.A.; Nakamura, S.; Goldman, B.

    1985-01-01

    In several models of acute renal failure leakage of glomerular filtrate out of the tubule is an important pathogenetic mechanism; however, bidirectional diffusion of solute to account for certain pathophysiologic features of acute renal failure has received meager attention. Using micropuncture and clearance methods, the authors assessed sequentially leakage of solutes and inulin across proximal straight tubules (PST) injured by two nephrotoxins. In d-serine-treated rats with extensive necrosis of PST, the basis for glucosuria and tubular leakage of inulin was studied. Glucose absorption by the proximal convoluted tubule and glucose delivery to the PST were normal, but glucose delivery to the distal tubule was increased nearly 8-fold, indicating diffusion of glucose from interstitial to tubular luminal fluid across the necrotic PST. Total kidney inulin clearance was greatly reduced, but single nephron glomerular filtration rate, based on proximal convoluted tubule samples, was normal, indicating tubular loss of inulin. Urinary recovery of [ 14 C]inulin infused into tubular lumina revealed that proximal convoluted tubule and distal tubule were impermeable to inulin and that inulin diffused out of the necrotic PST. The progressive return over 6 days of tubular impermeability for inulin correlated with relining of PST with new cells. In maleic acid-treated rats the site and extent of tubular necrosis and the nature of urinary loss of solutes were studied. Microdissection revealed that maleic acid caused limited necrosis of PST which averaged 7.4% of total proximal tubular length. Increased urinary excretion of protein, phosphate, and glucose and increased tubular permeability to microinfused [ 14 C]inulin occurred with the onset of PST necrosis, and return of these abnormalities to normal correlated with the degree of cellular repair of the PST

  16. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    Science.gov (United States)

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  17. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  18. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    International Nuclear Information System (INIS)

    Rodrigues, G.A.; Moraes, V.M.B.; Cherici, I; Furlan, R.L.; Macari, M.

    1991-01-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T 4 and T 3 concentrations irrespective of protein intake, except T 4 level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs

  19. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G A; Moraes, V M.B.; Cherici, I; Furlan, R L; Macari, M [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    1991-12-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T{sub 4} and T{sub 3} concentrations irrespective of protein intake, except T{sub 4} level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs.

  20. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    Science.gov (United States)

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  1. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Science.gov (United States)

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  2. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic

  3. Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Denshchikov, M T; Shashilova, V P

    1964-01-01

    Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.

  4. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats

    DEFF Research Database (Denmark)

    Caillaud, Corinne; Mechta, Mie; Ainge, Heidi

    2015-01-01

    Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels...... and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle...... not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism....

  5. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jian [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Ren, Xian [Shanghai Green Valley Pharmaceutical Co., Ltd., Shanghai 201304 (China); Hou, Rui-ying; Dai, Xing-ping [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Zhao, Ying-chun [Laboratories of Functional Genomics and Proteomics, Creighton University Medical Center, Omaha, NE 68131 (United States); Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China)

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  6. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race.

    Science.gov (United States)

    Hoffman, R M; Hess, T M; Williams, C A; Kronfeld, D S; Griewe-Crandell, K M; Waldron, J E; Graham-Thiers, P M; Gay, L S; Splan, R K; Saker, K E; Harris, P A

    2002-09-01

    To test the hypothesis that endurance performance may be related quantitatively to changes in blood, we measured selected blood variables then determined their reference ranges and associations with speed during an 80 km race. The plan had 46 horses in a 2 x 2 factorial design testing a potassium-free electrolyte mix and a vitamin supplement. Blood samples were collected before the race, at 21, 37, 56 and 80 km, and 20 min after finishing, for assay of haematocrit, plasma pH, pO2, pCO2, [Na+], [K+], [Ca++], [Mg++], [Cl-], lactate, glucose, urea, cortisol, alpha-tocopherol, ascorbate, creatine kinase, aspartate amino transferase, lipid hydroperoxides, total protein, albumin and creatinine, and erythrocyte glutathione and glutathione peroxidase. Data from 34 finishers were analysed statistically. Reference ranges for resting and running horses were wide and overlapping and, therefore, limiting with respect to evaluation of individual horses. Speed correlations were most repeatable, with variables reflecting blood oxygen transport (enabling exercise), acidity and electrolytes (limiting exercise) and total protein (enabling then, perhaps, limiting). Stepwise regressions also included plasma urea concentration (limiting). The association of speed with less plasma acidity and urea suggests the potential for fat adaptation and protein restriction in endurance horses, as found previously in Arabians performing repeated sprints. Conditioning horses fed fat-fortified and protein-restricted diets may not only improve performance but also avoid grain-associated disorders.

  7. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  8. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  9. Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice

    DEFF Research Database (Denmark)

    Gunnarsson, P Thomas; Winzell, Maria Sörhede; Deacon, Carolyn F

    2006-01-01

    Monounsaturated fatty acids, such as oleic acid (OA), and certain milk proteins, especially whey protein (WP), have insulinotropic effects and can reduce postprandial glycemia. This effect may involve the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like pepti...

  10. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.

    Science.gov (United States)

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-09-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.

  11. Life and Death of Proteins: A Case Study of Glucose-starved Staphylococcus aureus*

    Science.gov (United States)

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-01-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis. PMID:22556279

  12. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  13. High protein and cholesterol intakes associated with emergence of glucose intolerance in a low-risk Canadian Inuit population.

    Science.gov (United States)

    Sefidbakht, Saghar; Johnson-Down, Louise; Young, T Kue; Egeland, Grace M

    2016-07-01

    The rate of type 2 diabetes mellitus among Inuit is 12·2 % in individuals over 50 years of age, similar to the Canadian prevalence. Given marked dietary transitions in the Arctic, we evaluated the dietary and other correlates of not previously diagnosed glucose intolerance, defined as type 2 diabetes mellitus, impaired fasting glucose or impaired glucose tolerance. Cross-sectional analyses were limited to adults with a completed 2 h oral glucose tolerance test and without pre-existing diabetes. Anthropometric assessments, health and medication usage questionnaires and a 24 h dietary recall were administered. Canadian International Polar Year Inuit Health Survey (2007-2008). Inuit adults (n 777). Glucose intolerance was associated with older age and adiposity. Percentage of energy from protein above the Acceptable Macronutrient Distribution Range of 35 %, compared with intake within the range, was associated with increased odds of glucose intolerance (OR=1·98; 95 % CI 1·09, 3·61) in multivariable analyses. Further, cholesterol intake in the highest three quartiles combined (median exposures of 207, 416 and 778 mg/d, respectively) compared with the lowest quartile (median intake of 81 mg/d) was associated with glucose intolerance (OR=2·15; 95 % CI 1·23, 3·78) in multivariable analyses. Past-day traditional food consumption was borderline protective of glucose intolerance (P=0·054) and high fibre intake was not significantly protective (P=0·08). The results contribute to the existing literature on high protein and cholesterol intakes as they may relate to diabetes risk.

  14. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    Science.gov (United States)

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  15. Prognostic implications of total hemispheric glucose metabolism ratio in cerebro-cerebellar diaschisis

    DEFF Research Database (Denmark)

    Segtnan, Eivind Antonsen; Grupe, Peter; Jarden, Jens Ole

    2017-01-01

    and 9 women aged 35-77 years) with 10 single scans from healthy controls aged 43-75 years. Dedicated 3D-segmentation software was used to obtain total hemispheric glucose metabolic ratios (THGr) by dividing total hemispheric (18)F-fluorodeoxyglucose (FDG) uptake in each diaschitic hemisphere, i.......e., the ipsilateral cerebral hemisphere (THGr(Ce)) and the contralateral cerebellar hemisphere (THGr(Cb)), to its respective contralateral side. Receiver operating characteristic (ROC) analysis was performed to determine optimal cut-offs for combinations of THGr(Ce) and THGr(Cb). Two independent observers obtained...... data for reproducibility analysis, and THGr values were compared with qualitative assessment of diaschisis performed by a PET neuroimaging specialist. RESULTS: Qualitative analysis confirmed cerebro-cerebellar diaschisis in all glioblastoma PET studies performed within one year of death. Healthy...

  16. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  17. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.

    Science.gov (United States)

    Berry, Brandon N; Dobrowsky, Terrence M; Timson, Rebecca C; Kshirsagar, Rashmi; Ryll, Thomas; Wiltberger, Kelly

    2016-01-01

    Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed-batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo-first order, non-enzymatic reaction of a reducing sugar with an amino group. Glucose is the highest concentration reducing sugar in the chemically defined media (CDM), thus a strategy controlling glucose in the production bioreactor was developed utilizing Raman spectroscopy for feedback control. Raman regions for glucose were determined by spiking studies in water and CDM. Calibration spectra were collected during 8 bench scale batches designed to capture a wide glucose concentration space. Finally, a PLS model capable of translating Raman spectra to glucose concentration was built using the calibration spectra and spiking study regions. Bolus feeding in mammalian cell culture results in wide glucose concentration ranges. Here we describe the development of process automation enabling glucose setpoint control. Glucose-free nutrient feed was fed daily, however glucose stock solution was fed as needed according to online Raman measurements. Two feedback control conditions were executed where glucose was controlled at constant low concentration or decreased stepwise throughout. Glycation was reduced from ∼9% to 4% using a low target concentration but was not reduced in the stepwise condition as compared to the historical bolus glucose feeding regimen. © 2015 American Institute of Chemical Engineers.

  18. Study of the levels of beta hydroxy butyrate, glucose, protein and albumin in Holstein cows with subclinical ketosis

    Directory of Open Access Journals (Sweden)

    B Amouoghli Tabrizi

    2007-08-01

    Full Text Available The objective of this study was to comparatively evaluate the levels of beta hydroxy butyrate (BHB, glucose, protein and albumin in serum of healthy Holstein cows and those with subclinical ketosis. In this survey, blood samples were collected at two stages from cows selected at 7 dairy farms in Shahriar province of Tehran. Five to 7 ml of blood were taken from the coccygeal vein of 100 cows during the last week of pregnancy when the animals were dry and once again 2 months after parturition from the same cows, their sera separated and the amounts of BHB, glucose, protein and albumin determined by enzymatic techniques and commercially available kits. With the cut point of BHB at 1.2, 1.4 and 1.7 mmol/lit, the percentage of cows affected with subclinical ketosis were 18, 14 and 4 percent, respectively. Mean levels of BHB in ketotic cows was significantly higher than healthy cows before and after parturition while mean levels of glucose, protein and albumin was significantly lower during the same periods (P

  19. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training.

    Science.gov (United States)

    Bradley, Scott J; Kingwell, Bronwyn A; Canny, Benedict J; McConell, Glenn K

    2007-10-01

    Skeletal muscle inducible nitric oxide synthase (NOS) protein is greatly elevated in people with type 2 diabetes mellitus, whereas endothelial NOS is at normal levels. Diabetic rat studies suggest that skeletal muscle neuronal NOS (nNOS) micro protein expression may be reduced in human insulin resistance. The aim of this study was to determine whether skeletal muscle nNOSmicro protein expression is reduced in people with impaired glucose homeostasis and whether exercise training increases nNOSmicro protein expression in these individuals because exercise training increases skeletal muscle nNOSmicro protein in rats. Seven people with type 2 diabetes mellitus or prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and 7 matched (sex, age, fitness, body mass index, blood pressure, lipid profile) healthy controls aged 36 to 60 years participated in this study. Vastus lateralis muscle biopsies for nNOSmicro protein determination were obtained, aerobic fitness was measured (peak pulmonary oxygen uptake [Vo(2) peak]), and glucose tolerance and insulin homeostasis were assessed before and after 1 and 4 weeks of cycling exercise training (60% Vo(2) peak, 50 minutes x 5 d wk(-1)). Skeletal muscle nNOSmicro protein was significantly lower (by 32%) in subjects with type 2 diabetes mellitus or prediabetes compared with that in controls before training (17.7 +/- 1.2 vs 26.2 +/- 3.4 arbitrary units, P glucose homeostasis have reduced skeletal muscle nNOSmicro protein content. However, because exercise training improves insulin sensitivity without influencing skeletal muscle nNOSmicro protein expression, it seems that changes in skeletal muscle nNOSmicro protein are not central to the control of insulin sensitivity in humans and therefore may be a consequence rather than a cause of diabetes.

  20. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  1. Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Even, Patrick C; Tomé, Daniel; Chaumontet, Catherine; Piedcoq, Julien; Gaudichon, Claire; Azzout-Marniche, Dalila

    2016-10-01

    Fibroblast growth factor 21 (FGF21) is a polypeptide secreted by the liver and involved in several metabolic processes such as thermogenesis and lipid oxidation. The nutritional mechanisms controlling FGF21 production are poorly understood. This study aimed to investigate how dietary carbohydrates and proteins impact FGF21 production and how in turn, FGF21 is involved in the metabolic adaptation to changes in the carbohydrate and protein contents of the diet. For that purpose, we fed 25 male C57BL/6 mice diets composed of different protein and carbohydrate contents (normal-protein and carbohydrate diet (N=9, NPNC), low-protein high-carbohydrate diet (N=8, LPHC), high-protein low-carbohydrate diet (N=8, HPLC) for 3 weeks. We measured liver Fgf21 gene expression, synthesis and secretion as well as different parameters related to energy and glucose metabolism. We also investigated the direct role of amino acids and glucose in the control of Fgf21 gene expression in hepatocyte primary cultures (n=6). In vivo, FGF21 responds acutely to LPHC intake whereas under an HPLC diet, plasma FGF21 circulating levels are low in the fasted and refed states. In hepatocytes, Fgf21 expression was controlled by glucose but not amino acids. Both diets increased the thermic effect of feeding (TEF) and ketogenesis was increased in fasted HPLC mice. The results presented suggest that dietary glucose, rather than amino acids, directly controls FGF21 secretion, and that FGF21 may be involved in the increased TEF response to LPHC. The effects of the HPLC diet on ketogenesis and TEF are probably controlled by other metabolic pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. In vivo inhibition of incorporation of (U-/sup 14/C)glucose into proteins in experimental focal epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho-Netto, J.; Boyar, M.M.; Abdul-Ghani, A.S.; Bradford, H.F.

    1982-08-01

    The in vivo incorporation of (/sup 14/C) from (U-/sup 14/C)-glucose into rat brain proteins from different cortical areas was examined in three different experimental focal epilepsies: cobalt, freeze-lesions, and tityustoxin. When (U-/sup 14/C)-glucose was injected intraperitoneally into awake and unrestrained animals with marked signs of epileptic hyperactivity, the inhibition of incorporation of (/sup 14/C)-amino acids into trichloracetic acid (TCA)-insoluble proteins was highest in the focal (sensorimotor) area when compared with distant regions (approx. 60%), but less when compared with the contralateral (sensorimotor) region (approx. 23%). Greatly decreased incorporation caused by both cobalt and freeze-lesion-induced epilepsies was also observed in the contralateral area when a comparison was made with distant regions (approx. 50%), but there were no significant differences in protein-specific radioactivity between the different distant areas.

  3. The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation

    Directory of Open Access Journals (Sweden)

    Edith Renguet

    2018-06-01

    Full Text Available Cellular catabolism is the cell capacity to generate energy from various substrates to sustain its function. To optimize this energy production, cells are able to switch between various metabolic pathways in accordance to substrate availability via a modulation of several regulatory enzymes. This metabolic flexibility is essential for the healthy heart, an organ requiring large quantities of ATP to sustain its contractile function. In type 2 diabetes, excess of non-glucidic nutrients such as fatty acids, branched-chain amino-acids, or ketones bodies, induces cardiac metabolic inflexibility. It is characterized by a preferential use of these alternative substrates to the detriment of glucose, this participating in cardiomyocytes dysfunction and development of diabetic cardiomyopathy. Identification of the molecular mechanisms leading to this metabolic inflexibility have been scrutinized during last decades. In 1963, Randle demonstrated that accumulation of some metabolites from fatty acid metabolism are able to allosterically inhibit regulatory steps of glucose metabolism leading to a preferential use of fatty acids by the heart. Nevertheless, this model does not fully recapitulate observations made in diabetic patients, calling for a more complex model. A new piece of the puzzle emerges from recent evidences gathered from different laboratories showing that metabolism of the non-glucidic substrates induces an increase in acetylation levels of proteins which is concomitant to the perturbation of glucose transport. The purpose of the present review is to gather, in a synthetic model, the different evidences that demonstrate the role of acetylation in the inhibition of the insulin-stimulated glucose uptake in cardiac muscle.

  4. Glucose-lowering effect of whey protein depends upon clinical characteristics of patients with type 2 diabetes

    OpenAIRE

    Almario, Rogelio U; Buchan, Wendy M; Rocke, David M; Karakas, Sidika E

    2017-01-01

    Objective Whey protein (WP) intake has been shown to reduce postprandial glycemia. Majority of WP research in type 2 diabetes (T2DM) involved acute challenge or weight loss studies. It is not known if WP supplementation can provide sustained glucose lowering. Our goal was to investigate the effects of WP on glycemia comprehensively by using continuous glucose monitoring (CGM) while avoiding the confounding effects of variable food intake through controlled feeding. Research design and methods...

  5. A modified gelatin zymography technique incorporating total protein normalization.

    Science.gov (United States)

    Raykin, Julia; Snider, Eric; Bheri, Sruti; Mulvihill, John; Ethier, C Ross

    2017-03-15

    Gelatinase zymography is a commonly used laboratory procedure; however, variability in sample loading and concentration reduce the accuracy of quantitative results obtained from this technique. To facilitate normalization of gelatinase activity by loaded protein amount, we developed a protocol using the trihalocompound 2,2,2-trichloroethanol to allow for gelatin zymography and total protein labeling within the same gel. We showed that detected protein levels increased linearly with loading, and describe a loading concentration range over which normalized gelatinase activity was constant. We conclude that in-gel total protein detection is feasible in gelatin zymography and greatly improves comparison of gelatinase activity between samples. Published by Elsevier Inc.

  6. Ribosomal dimerization factor YfiA is the major protein synthesized after abrupt glucose depletion in Lactococcus lactis

    DEFF Research Database (Denmark)

    Breuner, Anne; Frees, Dorte; Varmanen, Pekka

    2016-01-01

    R, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting...

  7. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

    Science.gov (United States)

    Sharick, Joe T; Favreau, Peter F; Gillette, Amani A; Sdao, Sophia M; Merrins, Matthew J; Skala, Melissa C

    2018-04-03

    While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ 2 ) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ 2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.

  8. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  9. Cy5 total protein normalization in Western blot analysis.

    Science.gov (United States)

    Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola

    2015-10-01

    Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Total parenteral nutrition in diabetic rats

    International Nuclear Information System (INIS)

    Norcross, E.D.; Stein, T.P.

    1986-01-01

    Parenteral Nutrition with hypertonic glucose is frequently given to diabetic patients. Large amounts of insulin can be required. The purpose of this investigation was to develop a totally parenterally nourished diabetic rat model. 200 g Female Sprague Dawley rats were made diabetic by i.v. injection of streptozotocin (50 mg/kg). Rats were then allowed to recover for at least 1 week before undergoing surgical insertion of a central venous catheter for parenteral feeding. TPN was begun 3 days after surgery. Prior to this they were allowed unlimited access to food and water. Control (non-streptozotocin treated) rats were run at the same time. Protein turnover was investigated by using 15 N glycine. Preliminary results: diabetic rats given mostly fat as a calorie source survived well in the absence of exogenous insulin whereas those that were given glucose only as their non-protein calorie source showed poor survival even with exogenous insulin. N balance and protein turnover in the lipid treated diabetic rats were comparable to the non-diabetic control rats

  11. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation

    DEFF Research Database (Denmark)

    Kang, Taewook; Jensen, Pia; Solovyeva, Vita

    2018-01-01

    , we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import......Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β...... the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells....

  12. Model of Oxygen and Glucose Deprivation in PC12 Cells and Detection of HSP70 Protein

    Science.gov (United States)

    He, Jinting; Yang, Le; Shao, Yankun

    2018-01-01

    Objective: PC12 cell was used to set up a ischemia model by OGD and detected HSP70 protein. Methods: Use of PC12 cells induced by NGF stimulation into nerve cells, oxygen and glucose deprivation to build the nerve cells of oxygen and glucose deprivation model; using Western blot analysis of PC12 cells into neuron-like cells and oxygen-glucose deprivation model established. Results: The application of a final concentration of 50 ng / ml of NGF in DMEM complete mediumPC12 cells showed a typical neuronal morphology with the increase in cell culture time. NGF culture time showed a positive correlation, the establishment of oxygen and glucose deprivation (OGD) training environment, the OGD after nerve element appears different degrees of damage, OGD can effectively induce the expression of HSP70. Conclusion: PC12 cell transformed into cells by NGF; the cell model of OGD was established.

  13. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun

    2006-01-01

    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  14. Total protein and cholesterol concentrations in brain regions of male ...

    African Journals Online (AJOL)

    The results showed similarities (P>0.05) between the treatments in total protein concentrations in the cerebral cortex, medulla, hypothalamus, amygdala, mesencephalon and hippocampus. Total protein concentrations however differed significantly between diets (P<0.05) in the cerebellum and pons varoli with the lowest ...

  15. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    Science.gov (United States)

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System.

    Science.gov (United States)

    Lloyd, Chelsea R; Park, Seongjin; Fei, Jingyi; Vanderpool, Carin K

    2017-06-01

    The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria. IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic

  17. Metabolic and haemodynamic effects of oral glucose loading in young healthy men carrying the 825T-allele of the G protein β3 subunit

    Directory of Open Access Journals (Sweden)

    Wenzel Rene R

    2003-06-01

    Full Text Available Abstract Background A C825T polymorphism was recently identified in the gene encoding the β3 subunit of heterotrimeric G-proteins (GNB3. The T-allele is significantly associated with essential hypertension and obesity. In order to further explore a possible pathogenetic link between the T-allele and impaired glucose tolerance we studied metabolic and haemodynamic responses to oral glucose loading in young, healthy subjects with and without the 825T-allele. Methods Twelve subjects with and 10 without the 825T-allele were investigated at rest and following glucose ingestion (75 g. Blood glucose, serum insulin and haemodynamics were determined prior to and over 2 hours following glucose ingestion. We non-invasively measured stroke volume (SV, by impedance-cardiography, blood pressure (BP, heart rate (HR, and systolic-time-intervals. Cardiac output (CO was calculated from HR and SV. Total peripheral resistance was calculated from CO and BP. Metabolic and haemodynamic changes were quantified by maximal responses and by calculation of areas under the concentration time profile (AUC. Significances of differences between subjects with and without the T-allele were determined by unpaired two-tailed t-tests. A p Results Metabolic and haemodynamic parameters at baseline were very similar between both groups. The presence of the T-allele did not alter the response of any metabolic or haemodynamic parameter to glucose loading. Conclusions In conclusion, this study does not support the hypothesis that the C825T polymorphism may serve as a genetic marker of early impaired glucose tolerance.

  18. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  19. The expression and regulation of glucose transporters in tumor cells

    Directory of Open Access Journals (Sweden)

    Pengfei Zhao

    2016-12-01

    Full Text Available Glucose transporter proteins are involved in many physiological and biochemical processes. In particular, the high expressions of sodium-glucose cotransporter and glucose transporter proteins in tumor cells show that these two transporters play a key role in tumor cell metabolism. Studying the crystal structure and conformation of human glucose transporter proteins has enabled the development of drugs based on specific binding sites, opening up a new path towards more effective cancer treatments. This mini review serves to summarize our existing understanding of the metabolic pathways of tumor cells, focusing on the roles of glucose transporter proteins.

  20. Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus.

    Science.gov (United States)

    Stanirowski, Paweł Jan; Szukiewicz, Dariusz; Pazura-Turowska, Monika; Sawicki, Włodzimierz; Cendrowski, Krzysztof

    2018-04-01

    Gestational diabetes mellitus and pregestational diabetes mellitus constitute carbohydrate metabolism disorders, which, if not diagnosed and adequately treated, lead to serious and often life-threatening pregnancy complications. According to a recently formulated hypothesis, some diabetes-related complications, such as fetal macrosomia, may be the result of disturbances in the transplacental transport of nutrients-in particular, excessive maternal-fetal glucose transfer. Throughout pregnancy, glucose flux across the placenta is mediated by the group of facilitative glucose transporters (GLUT), the expression of which in different placental compartments is the precondition for effective glucose uptake from maternal blood and its subsequent transfer to the fetal circulation. In diabetes-complicated pregnancies, the location, expression and activity of glucose transporters are modified to an extent that results in alterations in the maternal-fetal glucose exchange, potentially leading to an excessive supply of energy substrates to the fetus. This paper reviews the literature on the expression and activity of glucose transporter proteins-GLUT-1, GLUT-3, GLUT-4, GLUT-8, GLUT-9 and GLUT-12-in the human placenta, with a special focus on diabetes-complicated pregnancy. The characteristics of transporters in conditions of maternal normoglycemia and modifications occurring in the diabetic placenta are summarized, and the factors responsible for the regulation of the expression of selected isoforms are described. Finally, the impact of alterations in the placental expression of the aforementioned members of the GLUT family on intrauterine fetal development in pregnancies complicated by diabetes mellitus is discussed. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  1. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  2. Estimation of Insulin Resistance in Mexican Adults by the [13C]Glucose Breath Test Corrected for Endogenous Total CO2 Production

    Directory of Open Access Journals (Sweden)

    Erika Ibarra-Pastrana

    2012-01-01

    Full Text Available Objective. To evaluate the efficacy of the [13C]glucose breath test for measuring insulin resistance in Mexican adults with different glycemic states. Research Design and Methods. Fifty-eight adults underwent a [13C]glucose breath test with simultaneous measurement of total CO2 production by indirect calorimetry, at baseline and 90 minutes after the ingestion of 15 g of dextrose and 25 mg of [13C]glucose. HOMA was used as a marker of insulin resistance. Results. We found an inverse correlation between HOMA and the breath test δ13CO2 (‰, r=-0.41 (P=0.001. After adjusting for total CO2 production, correlations between HOMA and fasting glucose were less strong but remained significant. An ROC curve was constructed using δ13CO2 (‰ and HOMA values; the cut-off point was 9.99‰ δ13CO2, corresponding to a sensitivity of 80.0 (95% CI: 51.9, 95.7 and a specificity of 67.4 (95% CI: 51.5, 80.9. Conclusions. The [13C]glucose breath test is a simple noninvasive procedure but was not sufficiently robust for an accurate diagnosis of insulin resistance. Our findings suggest that the test might be helpful in identifying individuals who are not IR, which in turn may contribute to improved diabetes prevention.

  3. Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity.

    Science.gov (United States)

    Macias, Alba T; Williamson, Douglas S; Allen, Nicola; Borgognoni, Jenifer; Clay, Alexandra; Daniels, Zoe; Dokurno, Pawel; Drysdale, Martin J; Francis, Geraint L; Graham, Christopher J; Howes, Rob; Matassova, Natalia; Murray, James B; Parsons, Rachel; Shaw, Terry; Surgenor, Allan E; Terry, Lindsey; Wang, Yikang; Wood, Mike; Massey, Andrew J

    2011-06-23

    78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM. X-ray crystal structures of Grp78 bound to ATP, ADPnP, and adenosine derivative 10 revealed differences in the binding site between Grp78 and homologous proteins.

  4. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Hsiao-Ya Tsai

    2016-01-01

    Full Text Available Coenzyme Q10 (CoQ10, an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM or high glucose (25 mM enviroment for 3 days, followed by treatment with CoQ10 (10 μM for 24 hr. Cell proliferation, nitric oxide (NO production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK, eNOS/Akt, and heme oxygenase-1 (HO-1 were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.

  5. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  6. Possible Biochemical Markers in Protein-Energy Malnutrition and ...

    African Journals Online (AJOL)

    This study was carried out to determine possible biochemical markers in children suffering from Plasmodium falciparum malaria and Protein-Energy Malnutrition in a Hospital setting in Western Kenya. Spectrophotometric assays of selected biochemical parameters namely, albumin, total proteins, glucose, glutamate ...

  7. Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model.

    Science.gov (United States)

    Oliva, María E; Creus, Agustina; Ferreira, María R; Chicco, Adriana; Lombardo, Yolanda B

    2018-01-01

    This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (Psoya protein significantly increased (Psoya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.

  8. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    Science.gov (United States)

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  9. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography.

    Science.gov (United States)

    Wegner, Florian; Wilke, Florian; Raab, Peter; Tayeb, Said Ben; Boeck, Anna-Lena; Haense, Cathleen; Trebst, Corinna; Voss, Elke; Schrader, Christoph; Logemann, Frank; Ahrens, Jörg; Leffler, Andreas; Rodriguez-Raecke, Rea; Dengler, Reinhard; Geworski, Lilli; Bengel, Frank M; Berding, Georg; Stangel, Martin; Nabavi, Elham

    2014-06-20

    Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis.

  10. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  11. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  12. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  13. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane

    NARCIS (Netherlands)

    Bosch, Remko R.; Bazuine, Merlijn; Wake, Michelle M.; Span, Paul N.; Olthaar, André J.; Schürmann, Annette; Maassen, J. Antonie; Hermus, Ad R. M. M.; Willems, Peter H. G. M.; Sweep, C. G. J.

    2003-01-01

    The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the

  14. Profile of total protein, albumin, globulin and albumin globulin ratio in bulls

    Directory of Open Access Journals (Sweden)

    Ida Zahidah Irfan

    2014-06-01

    Full Text Available Determination of serum total protein concentration and main fractions (albumin and globulin can be used as an important diagnostic tool in clinical biochemistry. Several factors can affect the concentration of total protein, albumin, globulin and albumin globulin ratio (A/G. The aim of this study is to obtain serum protein profiles, albumin, globulin and A/G ratio based on breed, age and BCS (body condition score. Blood samples from 160 bulls were collected. Blood chemistry were analyzed by photometer principle using a commercial kit. There were significant (P<0.001 breed variation on total protein, albumin, globulin and albumin globulin ratio. Significant age differences were observed on total protein and albumin concentration (P<0.001, while globulin concentration and A/G ratio were also significant (P<0.05. Amongs groups of BCS, significant difference was verified only in the albumin concentration (P<0.05. The concentration of total proteins, albumins and globulins in the serum of the bulls are higher than standard values for cattle, while A/G ratio is lower.

  15. Clinical performance evaluation of total protein measurement by digital refractometry and characterization of non-protein solute interferences.

    Science.gov (United States)

    Hunsaker, Joshua J H; Wyness, Sara P; Snow, Taylor M; Genzen, Jonathan R

    2016-12-01

    Refractometric methods to measure total protein (TP) in serum and plasma specimens have been replaced by automated biuret methods in virtually all routine clinical testing. A subset of laboratories, however, still report using refractometry to measure TP in conjunction with serum protein electrophoresis. The objective of this study was therefore to conduct a modern performance evaluation of a digital refractometer for TP measurement. Performance evaluation of a MISCO Palm Abbe™ digital refractometer was conducted through device familiarization, carryover, precision, accuracy, linearity, analytical sensitivity, analytical specificity, and reference interval verification. Comparison assays included a manual refractometer and an automated biuret assay. Carryover risk was eliminated using a demineralized distilled water (ddH 2 O) wash step. Precision studies demonstrated overall imprecision of 2.2% CV (low TP pool) and 0.5% CV (high TP pool). Accuracy studies demonstrated correlation to both manual refractometry and the biuret method. An overall positive bias (+5.0%) was observed versus the biuret method. On average, outlier specimens had an increased triglyceride concentration. Linearity was verified using mixed dilutions of: a) low and high concentration patient pools, or b) albumin-spiked ddH 2 O and high concentration patient pool. Decreased recovery was observed using ddH 2 O dilutions at low TP concentrations. Significant interference was detected at high concentrations of glucose (>267 mg/dL) and triglycerides (>580 mg/dL). Current laboratory reference intervals for TP were verified. Performance characteristics of this digital refractometer were validated in a clinical laboratory setting. Biuret method remains the preferred assay for TP measurement in routine clinical analyses.

  16. Plasma levels of leptin, omentin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and adiponectin before and after oral glucose uptake in slim adults

    Directory of Open Access Journals (Sweden)

    Schäffler Andreas

    2007-02-01

    Full Text Available Abstract Background Adipose tissue secreted proteins are collectively named adipocytokines and include leptin, adiponectin, resistin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and omentin. Several of these adipocytokines influence insulin sensitivity and glucose metabolism and therefore systemic levels may be affected by oral glucose uptake. Whereas contradictory results have been published for leptin and adiponectin, resistin has not been extensively investigated and no reports on omentin and CORS-26 do exist. Methods Therefore the plasma levels of these proteins before and 120 min after an oral glucose load were analyzed in 20 highly-insulin sensitive, young adults by ELISA or immunoblot. Results Circulating leptin was reduced 2 h after glucose uptake whereas adiponectin and resistin levels are not changed. Distribution of adiponectin and CORS-26 isoforms were similar before and after glucose ingestion. Omentin is highly abundant in plasma and immunoblot analysis revealed no alterations when plasma levels before and 2 h after glucose intake were compared. Conclusion Taken together our data indicate that only leptin is reduced by glucose uptake in insulin-sensitive probands whereas adiponectin and resistin are not altered. CORS-26 was demonstrated for the first time to circulate as high molecular weight form in plasma and like omentin was not influenced by oral glucose load. Omentin was shown to enhance insulin-stimulated glucose uptake but systemic levels are not correlated to postprandial blood glucose.

  17. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Aspirin-mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2015-09-01

    Full Text Available Glycation represents the first stage in the development of diabetic complications. Aspirin was shown to prevent sugars reacting with proteins, but the exact mechanism of this interaction was not well defined. We performed a quantitative analysis to calculate the levels of acetylation and glycation of haemoglobin, among others red blood cell (RBC proteins, using a label free approach. After glucose incubation, increases in the acetylation levels were seen for several haemoglobin subunits, while a parallel decrease of their glycation levels was observed after aspirin incubation. These results suggest that, a mutual influence between these two modifications, occur at protein level.

  19. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  20. Low-Molecular-Weight Peptides from Salmon Protein Prevent Obesity-Linked Glucose Intolerance, Inflammation, and Dyslipidemia in LDLR-/-/ApoB100/100 Mice.

    Science.gov (United States)

    Chevrier, Geneviève; Mitchell, Patricia L; Rioux, Laurie-Eve; Hasan, Fida; Jin, Tianyi; Roblet, Cyril Roland; Doyen, Alain; Pilon, Geneviève; St-Pierre, Philippe; Lavigne, Charles; Bazinet, Laurent; Jacques, Hélène; Gill, Tom; McLeod, Roger S; Marette, André

    2015-07-01

    We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. ApoB(100) only, LDL receptor knockout male mice (LDLR(-/-)/ApoB(100/100)) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g SPF/kg (HFS+SPF), and 1 group was additionally fed 4.35 g FO/kg (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P ≤ 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. SPF reduces obesity-linked MetS features in LDLR(-/-)/ApoB(100/100) mice. The anti-inflammatory and glucoregulatory properties of SPF were

  1. TOTAL HEMOCYTE COUNT AND HEMOLYMPH GLUCOSE CONCENRATION RESPONSE OF SPINY LOBSTER Panulirus homarus ON RATIO OF SHELTER

    Directory of Open Access Journals (Sweden)

    Suhaiba Djai

    2017-11-01

    Full Text Available This research was conducted to assess the physiological response of the lobster Panulirus homarus for the ratio of the shelters. The method used completely randomized design with two replicates of each treatments with shelter ratio (A 1 : 5, (B 3 : 5, (C 4 : 5, (D 5 : 5. Weight average for 184 lobsters with the stocking density of 23 lobsters for each treatment was 32.64 ± 0.58 g. The experiment was conducted for 60 days. The lobster was fed with trash fish and acclimatized for 7 days before the experiment. Observations on the physiologycal of every 10 days. The physiological responses that observed were total hemocyte count (THC and hemolymph glucose concentration. The results showed that 4:5 was the best lobster shelter ratio because it could reduce stress levels. This is indicated by the stable values of THC and hemolymph glucose level during the experiment and supported by the growth of 57.28 ± 0.15 g and survival rate of 91.31 ± 2.60%. Keywords: lobster, Panulirus homarus, ratio, shelter, THC, glucose

  2. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.

    Science.gov (United States)

    García-Salcedo, Raúl; Lubitz, Timo; Beltran, Gemma; Elbing, Karin; Tian, Ye; Frey, Simone; Wolkenhauer, Olaf; Krantz, Marcus; Klipp, Edda; Hohmann, Stefan

    2014-04-01

    The AMP-activated protein kinase, AMPK, controls energy homeostasis in eukaryotic cells but little is known about the mechanisms governing the dynamics of its activation/deactivation. The yeast AMPK, SNF1, is activated in response to glucose depletion and mediates glucose de-repression by inactivating the transcriptional repressor Mig1. Here we show that overexpression of the Snf1-activating kinase Sak1 results, in the presence of glucose, in constitutive Snf1 activation without alleviating glucose repression. Co-overexpression of the regulatory subunit Reg1 of the Glc-Reg1 phosphatase complex partly restores glucose regulation of Snf1. We generated a set of 24 kinetic mathematical models based on dynamic data of Snf1 pathway activation and deactivation. The models that reproduced our experimental observations best featured (a) glucose regulation of both Snf1 phosphorylation and dephosphorylation, (b) determination of the Mig1 phosphorylation status in the absence of glucose by Snf1 activity only and (c) a regulatory step directing active Snf1 to Mig1 under glucose limitation. Hence it appears that glucose de-repression via Snf1-Mig1 is regulated by glucose via at least two independent steps: the control of activation of the Snf1 kinase and directing active Snf1 to inactivating its target Mig1. © 2014 FEBS.

  3. Relation of periodontitis and metabolic syndrome with gestational glucose metabolism disorder.

    Science.gov (United States)

    Bullon, Pedro; Jaramillo, Reyes; Santos-Garcia, Rocio; Rios-Santos, Vicente; Ramirez, Maria; Fernandez-Palacin, Ana; Fernandez-Riejos, Patricia

    2014-02-01

    Gestational diabetes mellitus (GDM) and metabolic syndrome have been related to periodontitis. This study's objective is to establish the relationship between them in pregnant women affected by gestational glucose metabolism disorder. In 188 pregnant women with positive O'Sullivan test (POT) results, an oral glucose tolerance test (OGTT) was performed to diagnose GDM. The mother's periodontal parameters, age, prepregnancy weight and height and body mass index (BMI), blood pressure, gestational age, and birth weight were recorded at 24 to 28 weeks of pregnancy, as well as levels of glucose, C-reactive protein, triglycerides, glycated hemoglobin (HbA1c), and total, low-density lipoprotein, high-density lipoprotein (HDL), and very-low-density lipoprotein (VLDL) cholesterol levels. Prepregnancy weight, prepregnancy BMI, systolic and diastolic blood pressure, VLDL cholesterol, and glucose parameters were higher in GDM compared with POT (P periodontitis than in patients without periodontitis (P c, triglycerides, and 1- and 2-hour OGTT were positively related with probing depth and clinical attachment level; blood glucose was related only to bleeding on probing (P c, basal OGTT, and 1- and 2-hour OGTT were positively related to prepregnancy BMI and blood pressure; HDL cholesterol was negatively related to prepregnancy BMI; C-reactive protein was positively related to prepregnancy BMI and diastolic blood pressure (P periodontal disease and some biochemical parameters such as lipid and glucose data in pregnancy, and also among metabolic syndrome and biochemical parameters.

  4. Quantitative genetic analysis of total glucosinolate, oil and protein ...

    African Journals Online (AJOL)

    Quantitative genetic analysis of total glucosinolate, oil and protein contents in Ethiopian mustard ( Brassica carinata A. Braun) ... Seeds were analyzed using HPLC (glucosinolates), NMR (oil) and NIRS (protein). Analyses of variance, Hayman's method of diallel analysis and a mixed linear model of genetic analysis were ...

  5. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    Science.gov (United States)

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  6. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR, are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K, and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1 protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes

  7. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Science.gov (United States)

    Dhurandhar, Emily J; Dubuisson, Olga; Mashtalir, Nazar; Krishnapuram, Rashmi; Hegde, Vijay; Dhurandhar, Nikhil V

    2011-01-01

    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or

  8. Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion

    DEFF Research Database (Denmark)

    Thams, P; Capito, K; Hedeskov, C J

    1990-01-01

    and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1...

  9. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  10. Glucose ingestion stimulates atherothrombotic inflammation in polycystic ovary syndrome

    Science.gov (United States)

    Kirwan, John P.; Rote, Neal S.; Minium, Judi

    2013-01-01

    Women with polycystic ovary syndrome (PCOS) have chronic low-grade inflammation that can increase the risk of atherothrombosis. We performed a cross-sectional study to examine the effect of glucose ingestion on markers of atherothrombotic inflammation in mononuclear cells (MNC) of 16 women with PCOS (8 lean, 8 obese) and 16 weight-matched controls. Activator protein-1 (AP-1) activation and the protein content of early growth response-1 (EGR-1), matrix matalloproteinases-2 (MMP2), and tissue factor (TF) were quantified from MNC obtained from blood drawn fasting and 2 h after glucose ingestion. Plasma MMP9 and C-reactive protein (CRP) were measured from fasting blood samples. Truncal fat was determined by DEXA. Lean women with PCOS exhibited greater AP-1 activation and MMP2 protein content after glucose ingestion and higher plasma MMP9 and CRP levels than lean controls. Obese women with PCOS exhibited greater EGR-1 and TF protein content after glucose ingestion, and plasma CRP levels were even higher compared with lean subjects regardless of PCOS status. Truncal fat correlated with MMP9 and CRP levels and glucose-stimulated increases in AP-1 activation and EGR-1 and TF protein content. Testosterone correlated with glucose-stimulated AP-1 activation, and androstenedione correlated with MMP9 and CRP levels and glucose-stimulated AP-1 activation. Thus, both PCOS and obesity contribute to an atherothrombotic state in which excess abdominal adiposity and hyperandrogenism may be specific risk factors for developing atherothrombosis. PMID:23249695

  11. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  12. Na+-glucose cotransporter SGLT1 protein in salivary glands: potential involvement in the diabetes-induced decrease in salivary flow.

    Science.gov (United States)

    Sabino-Silva, R; Freitas, H S; Lamers, M L; Okamoto, M M; Santos, M F; Machado, U F

    2009-03-01

    Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p salivary secretion, which was accompanied by enhanced (p diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.

  13. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  14. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  15. Evaluation of Total Cardiovascular Risk in Patients with Hypertension and Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    I.V. Cherniavska

    2016-11-01

    Full Text Available Aim. Timely reveal of the patients at high risk of cardiovascular diseases for whom earlier intervention for cardiovascular risk correction is the most effective. Materials and methods. Seventy patients aged 30–55 years old with stage 2 hypertension, impaired glucose tolerance (IGT and high cardiovascular risk were examined according to Framingham criteria. Cardiovascular risk was compared by SCORE and PROCAM results. Results. Percentage ratio of males with high cardiovascular risk was higher by 52.3 % in comparison to females by SCORE and by 2.3 % in comparison to females by PROCAM. Males did not present any significant discrepancy by evaluation of cardiovascular risk by both scores unlike females. Obtained results showed that total cardiovascular risk in females was twofold higher by PROCAM compared to SCORE scale. Conclusions. Total cardiovascular risk level in patients with stage 2 hypertension and IGT is influenced by age, systolic blood pressure level, smoking, lipid storage disease and carbohydrate metabolism disorder. When we evaluate total cardiovascular risk, we should not be limited only by determination of factors determined in SCORE. It is reasonable to evaluate risk factors by PROCAM, too, especially for females.

  16. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows.

    Science.gov (United States)

    Curtis, Richelle V; Kim, Julie J M; Doelman, John; Cant, John P

    2018-05-01

    The objectives of this study were to investigate the effects of branched-chain AA (BCAA) supplementation when glucose is infused postruminally into lactating dairy cows consuming a diet low in crude protein (CP) and to test the hypothesis that low BCAA concentrations are responsible for the poor stimulation of milk protein yield by glucose. Twelve early-lactation Holstein cows were randomly assigned to 15% and 12% CP diets in a switchback design of 6-wk periods. Cows consuming the 12% CP diet received 96-h continuous jugular infusions of saline and 1 kg/d of glucose with 0, 75, or 150 g/d of BCAA in a Latin square sequence of treatments. Compared with saline, glucose infusion did not affect dry matter intake but increased milk yield by 2.2 kg/d and milk protein and lactose yields by 63 and 151 g/d, respectively. Mammary plasma flow increased 36% during glucose infusion compared with saline infusion, possibly because of a 31% decrease in total acetate plus β-hydroxybutyrate concentrations. Circulating concentrations of total essential AA and BCAA decreased 19 and 31%, respectively, during infusion of glucose, yet net mammary uptakes of AA remained unchanged compared with saline infusion. The addition of 75 and 150 g/d of BCAA to glucose infusions increased arterial concentrations of BCAA to 106 and 149%, respectively, of the concentrations in saline-infused cows, but caused a decrease in concentrations of non-branched-chain essential AA in plasma, as well as their mammary uptakes and milk protein yields. Plasma urea concentration was not affected by BCAA infusion, indicating no change in catabolism of AA. The lack of mammary and catabolic effects leads us to suggest that BCAA exerted their effects on plasma concentrations of the other essential AA by stimulating utilization in skeletal muscle for protein accretion. Results indicate that the glucose effect on milk protein yield was not limited by low BCAA concentrations, and that a stimulation of extra-mammary use

  17. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yonghoon Kwon

    Full Text Available 5' AMP-activated protein kinase (AMPK is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl-thioureido]-ethyl}-amide (Xn and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl-thioureido]-ethyl}-amide (Xc elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4. Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.

  18. A glucose-centric perspective of hyperglycemia.

    Science.gov (United States)

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  19. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  20. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    International Nuclear Information System (INIS)

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-01-01

    Highlights: ► High glucose significantly induced TLR2 expression in gingival fibroblasts. ► High glucose increased NF-κB p65 nuclear activity, IL-1β and TNF-α levels. ► PKC-α/δ-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-κB) p65 nuclear activity, tumor necrosis factor-α (TNF-α) and interleukin-lβ (IL-1β) levels. Protein kinase C (PKC)-α and δ knockdown with siRNA significantly decreased TLR2 and NF-κB p65 expression (p < 0.05), whereas inhibition of PKC-β had no effect on TLR2 and NF-κB p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-κB expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-α and IL-1β secretion via inducing TLR2 through PKC-α and PKC-δ in human gingival fibroblasts.

  1. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  2. Osteocalcin: The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism

    Directory of Open Access Journals (Sweden)

    Eibhlís M. O'Connor

    2017-03-01

    Full Text Available The role of vitamin K in the body has long been associated with blood clotting and coagulation. In more recent times, its role in a range of physiological processes has been described including the regulation of bone and soft tissue calcification, cell growth and proliferation, cognition, inflammation, various oxidative processes and fertility, where osteocalcin is thought to up-regulate the synthesis of the enzymes needed for the biosynthesis of testosterone thereby increasing male fertility. Vitamin K dependent proteins (VKDP contain γ-carboxyglutamic acid residues which require post-translational, gamma-glutamyl carboxylation by the vitamin K-dependent (VKD gamma-glutamyl carboxylase enzyme for full functionality. These proteins are present both hepatically and extrahepatically. The role of bone-derived osteocalcin has many physiological roles including, maintenance of bone mass with more recent links to energy metabolism due to the role of the skeleton as an endocrine organ. It has been proposed that insulin binds to bone forming cells (osteoblasts promoting osteocalcin production which in turn promotes β-cell proliferation, insulin secretion and glucose control. However much of this research has been conducted in animal models with equivocal findings in human studies. This review will discuss the role of osteocalcin in relation to its role in human health, focusing specifically on glucose metabolism.

  3. Deteriorated glucose metabolism with a high-protein, low-carbohydrate diet in db mice, an animal model of type 2 diabetes, might be caused by insufficient insulin secretion.

    Science.gov (United States)

    Arimura, Emi; Pulong, Wijang Pralampita; Marchianti, Ancah Caesarina Novi; Nakakuma, Miwa; Abe, Masaharu; Ushikai, Miharu; Horiuchi, Masahisa

    2017-02-01

    We previously showed the deleterious effects of increased dietary protein on renal manifestations and glucose metabolism in leptin receptor-deficient (db) mice. Here, we further examined its effects on glucose metabolism, including urinary C-peptide. We also orally administered mixtures corresponding to low- or high-protein diets to diabetic mice. In diet experiments, under pair-feeding (equivalent energy and fat) conditions using a metabolic cage, mice were fed diets with different protein content (L diet: 12 % protein, 71 % carbohydrate, 17 % fat; H diet: 24 % protein, 59 % carbohydrate, 17 % fat) for 15 days. In oral administration experiments, the respective mixtures (L mixture: 12 % proline, 71 % maltose or starch, 17 % linoleic acid; H mixture: 24 % proline, 59 % maltose or starch, 17 % linoleic acid) were supplied to mice. Biochemical parameters related to glucose metabolism were measured. The db-H diet mice showed significantly higher water intake, urinary volume, and glucose levels than db-L diet mice but similar levels of excreted urinary C-peptide. In contrast, control-H diet mice showed significantly higher C-peptide excretion than control-L diet mice. Both types of mice fed H diet excreted high levels of urinary albumin. When maltose mixtures were administered, db-L mixture mice showed significantly higher blood glucose after 30 min than db-H mixture mice. However, db mice administered starch-H mixture showed significantly higher blood glucose 120-300 min post-administration than db-L mixture mice, although both groups exhibited similar insulin levels. High-protein, low-carbohydrate diets deteriorated diabetic conditions and were associated with insufficient insulin secretion in db mice. Our findings may have implications for dietary management of diabetic symptoms in human patients.

  4. Dynamic analysis of sexual organ weight and serum levels of glucose, glycosyl protein, testosterone in male rats with short-term diabetes

    International Nuclear Information System (INIS)

    Zou Donghui; Wang Zhongshan; Zhao Hui; Xu Zongge

    2001-01-01

    Objective: To study the effect of short-term diabetes on the changes of sexual organ weights and serum levels of testosterone in male rats. Methods: All rats were divided into control (C) and diabetes (D). Diabetes group was observed on 1 day, 3 days, 5 days, 7 days, 14 days after injection of streptozotocin. All rats were killed for measurement of serum levels of glucose, glycosyl protein, testosterone and weights of sexual organs (testis, epididymis, seminal vesicle and prostate). Results: The serum levels of glucose, glycosyl protein of diabetes group decreased significantly, compared with those of control group; the serum levels of T lowered remarkably compared with control levels after three days of injection of STZ. The weight of epididymis, seminal vesicle and prostate reduced remarkably, compared with control group. The weights of seminal vesicle, prostate negatively correlated with serum levels of glucose and glycosyl protein, and they positively correlated with serum levels of testosterone. Conclusion: The sexual organs (testis, epididymis, seminal vesicle and prostate) of male rats with short-term diabetes were damaged, and the changes of sexual organs closely related with the serum levels of testosterone besides irregular metabolism in diabetes

  5. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    International Nuclear Information System (INIS)

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-01-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process

  6. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  7. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  8. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  9. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.

    Directory of Open Access Journals (Sweden)

    Rikard G Fred

    Full Text Available BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM or high glucose (20 mM. Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism

  10. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  11. Distribution of glucose transporters in renal diseases

    OpenAIRE

    Szablewski, Leszek

    2017-01-01

    Kidneys play an important role in glucose homeostasis. Renal gluconeogenesis prevents hypoglycemia by releasing glucose into the blood stream. Glucose homeostasis is also due, in part, to reabsorption and excretion of hexose in the kidney. Lipid bilayer of plasma membrane is impermeable for glucose, which is hydrophilic and soluble in water. Therefore, transport of glucose across the plasma membrane depends on carrier proteins expressed in the plasma membrane. In humans, there are three famil...

  12. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  13. Protein Carbamylation in Peritoneal Dialysis and the Effect of Low Glucose Plus Amino Acid Solutions.

    Science.gov (United States)

    Trottier, Caitlin; Perl, Jeffrey; Freeman, Megan; Thadhani, Ravi; Berg, Anders; Kalim, Sahir

    2018-01-01

    Protein carbamylation is a post-translational urea-driven protein modification associated with mortality. Free amino acids (AAs) competitively inhibit protein carbamylation and parenteral AA therapy reduces carbamylation in hemodialysis (HD) patients. Peritoneal dialysis (PD) yields differences in urea clearance and AA balance compared with HD, but the influence of PD and intraperitoneal AA solutions on carbamylation is unclear. Thus, we first measured carbamylated albumin (C-Alb; a marker of carbamylation load) in 100 diabetic HD patients frequency-matched by age, sex, and race to 98 diabetic PD subjects from the IMPENDIA trial, which originally compared the metabolic effects of low-glucose PD solutions (incorporating icodextrin and AAs) to a control group (dextrose-only solutions). We then determined the effects of the AA-enriched PD solutions by measuring the 6-month change in C-Alb within the IMPENDIA cohort by treatment allocation (48 treated vs 50 controls). Peritoneal dialysis patients, when compared with HD patients, had higher baseline urea and higher C-Alb. Among IMPENDIA participants, there was no difference in C-Alb change in either arm, but treated subjects showed a trend towards increased carbamylation. Treated subjects also demonstrated an increase in urea, possibly explaining the carbamylation trend. In summary, carbamylation levels in PD patients appeared higher than in matched HD patients. A regimen of AA and low-glucose PD solutions did not reduce C-Alb in IMPENDIA subjects. Copyright © 2018 International Society for Peritoneal Dialysis.

  14. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  15. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  16. Serum biochemistry and native protein electrophoresis in diarrheic calves with arthritis

    Directory of Open Access Journals (Sweden)

    Pekcan M.

    2012-01-01

    Full Text Available In this study, serum biochemistry and native protein electrophoresis in newborn calves with diarrhea and arthritis, were performed in order to evaluate the changes along with clinical findings for their possible application in the diagnosis and prognosis of disease. Based on clinical examination, animals were allotied into two groups comprising either diseased or healthy animals. Urea, creatinine, ALT, AST, LDH, albumin, total protein, glucose, total cholesterol, uric acid and iron levels were determined in the sera. Serum protein native polyacrilamide gel electrophoresis (nPAGE was performed followed by protein band ratio estimation supported with densitometry at 596 nm. Differences between the average mean of healthy and diseased animals were compared statistically (Kruskal-Walley test. In this study a decrease in serum glucose and cholesterol values (p<0.001, increase in urea, LDH levels and α1-and α2-globulin levels (p<0.01 and p<0.05 respectively were found to be associated with the disease. As a result, the observed significant changes in biochemical parameters and clinical investigation in calves, suggesting acute inflammation causing the decrease in glucose and increase in α-globulins, may be of prognostic value.

  17. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.

    Science.gov (United States)

    Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio

    2017-01-01

    Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.

  18. Solubilization and separation of the human erythrocyte D-glucose transporter covalently and noncovalently photoaffinity-labeled with [3H]cytochalasin B

    International Nuclear Information System (INIS)

    Kurokawa, T.; Tillotson, L.G.; Chen, C.C.; Isselbacher, K.J.

    1986-01-01

    The D-glucose transporter in the human erythrocyte membranes was photoaffinity-labeled with [ 3 H]cytochalasin B and solubilized with n-octyl β-D-glucopyranoside (octyl glucoside). [ 3 H]Cytochalasin B-bound proteins were further isolated by using Sephadex G-50 chromatography. The amount of [ 3 H]cytochalasin B associated with the membrane proteins was approximately 10% of the total radioactivity in the octyl glucoside extract. The solubilized photoaffinity-labeled D-glucose transporter was isolated and found to consist of two major peaks by DEAE-Sephacel chromatography. The radioactivity of peak II was considerably greater than that of peak I. The incorporation of [ 3 H]cytochalasin B into both peaks was blocked by the presence of D-glucose during photolysis. These results indicate the [ 3 H]cytochalasin B was covalently bound to the D-glucose transporter only in peak II and that peak II could be generated by the photoaffinity labeling of peak I. However, the D-glucose transport activity was associated only with peak I. These findings suggest that the anionic domain of the D-glucose transporter becomes exposed because of the conformational changes of the protein as a result of covalent binding with [ 3 H]cytochalasin B by photoaffinity labeling

  19. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion

    Directory of Open Access Journals (Sweden)

    Caroline Giezenaar

    2017-12-01

    Full Text Available Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein—although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m2 and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m2 adults were studied on three occasions in which they ingested 30 g (120 kcal or 70 g (280 kcal whey protein, or a flavored-water control drink (~2 kcal. At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK, gastric inhibitory peptide (GIP, and glucagon-like peptide-1 (GLP-1 concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.

  20. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  1. Effect of Momordica charantia (bitter melon on serum glucose level and various protein parameters in acetaminophen intoxicated rabbits

    Directory of Open Access Journals (Sweden)

    Kanwal Zahra

    2012-02-01

    Full Text Available Aim: Liver function tests, including total plasma proteins, albumin, bilirubin and glucose were analyzed to find out the hepatocurative and hepatoprotective effects of Momordica charantia. Method: The study was divided into two categories. In first category, the livers of rabbits were intoxicated with acetaminophen, and then Momordica fruit extract was given to observe its hepatocurative effects. Results: The results indicated significant changes in concentrations of the parameters in acetaminophen-challenged rabbits. In the second category, treatment was started by giving Momordica fruit extract dose orally for 10 days and 15 days to two groups of rabbits, respectively. Then, livers of rabbits were damaged with acetaminophen and hepatoprotective effects of Momordica were observed. Conclusion: The results showed that the animals treated with Momordica fruit extract experienced less liver damage due to acetaminophen intoxication, indicating that Momordica has hepatoprotective properties. [J Intercult Ethnopharmacol 2012; 1(1.000: 7-12

  2. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  3. Total protein and lipid contents of canned fish on the Serbian market

    OpenAIRE

    Marković Goran; Mladenović Jelena; Cvijović Milica; Miljković Jelena

    2015-01-01

    Total protein and lipid contents were analysed in 5 samples of canned fish (sardines, Atlantic mackerel fillets, tuna in olive oil, smoked Baltic sprat and herring fillets) available on the Serbian market. Standard methods for the determination of protein (Kjeldahl method) and lipid (Soxhlet method) contents were used on drained samples. The protein content was 21.31% on average, with a range of 18.59% - 24.17%. Total lipids showed considerably large variations (5.49% - 35.20%), and averaged ...

  4. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor

    DEFF Research Database (Denmark)

    Murphy, R; Tura, A; Clark, P M

    2008-01-01

    AIMS/HYPOTHESIS: The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic peptide (GIP) are released from intestinal endocrine cells in response to luminal glucose. Glucokinase is present in these cells and has been proposed as a glucose sensor. The physiological...... role of glucokinase can be tested using individuals with heterozygous glucokinase gene (GCK) mutations. If glucokinase is the gut glucose sensor, GLP-1 and GIP secretion during a 75 g OGTT would be lower in GCK mutation carriers compared with controls. METHODS: We compared GLP-1 and GIP concentrations...... measured at five time-points during a 75 g OGTT in 49 participants having GCK mutations with those of 28 familial controls. Mathematical modelling of glucose, insulin and C-peptide was used to estimate basal insulin secretion rate (BSR), total insulin secretion (TIS), beta cell glucose sensitivity...

  5. Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.

    Science.gov (United States)

    Teo, Adrian Kee Keong; Kulkarni, Rohit N

    2012-10-17

    Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.

  6. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  7. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    Science.gov (United States)

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  8. Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Kong, Xianming; Yu, Qian; Lv, Zhongpeng; Du, Xuezhong

    2013-10-11

    Tandem assays of protein and glucose in combination with mannose-functionalized Fe3 O4 @SiO2 and Ag@SiO2 tag particles have promising potential in effective magnetic separation and highly sensitive and selective SERS assays of biomaterials. It is for the first time that tandem assay of glucose is developed using SERS based on the Con A-sandwiched microstructures between the functionalized magnetic and tag particles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Yeast Interacting Proteins Database: YMR280C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available olved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensor... glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, an

  10. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  11. Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes.

    Science.gov (United States)

    Ceriotti, A; Colman, A

    1988-03-01

    We have studied the compartmentation and movement of the rat 78-kd glucose-regulated protein (GRP78) and other secretory and membrane proteins in Xenopus oocytes. Full length GRP78, normally found in the lumen of rat endoplasmic reticulum (ER), is localized to a membraneous compartment in oocytes and is not secreted. A truncated GRP78 lacking the C-terminal (KDEL) ER retention signal is secreted, although at a slow rate. When the synthesis of radioactive GRP78 is confined to a polar (animal or vegetal) region of the oocyte and the subsequent movement across the oocyte monitored, we find that both full-length and truncated GRP78 move at similar rates and only slightly slower than a secretory protein, chick ovalbumin. In contrast, a plasma membrane protein (influenza haemagglutinin) and two ER membrane proteins (rotavirus VP10 and a mutant haemagglutinin) remained confined to their site of synthesis. We conclude that the retention of GRP78 in the ER is not due to its tight binding to a membrane-bound receptor.

  12. Effects of milk and milk constituents on postprandial lipid and glucose metabolism in overweight and obese men.

    Science.gov (United States)

    van Meijl, Leonie E C; Mensink, Ronald P

    2013-08-28

    Studies have suggested that two major milk constituents, casein and Ca, favourably affect postprandial responses. However, effects of milk on postprandial metabolism are unknown. We therefore investigated effects of using milk with a fat-containing meal on lipid and glucose responses in overweight men. To identify the constituent responsible for possible effects, we also studied responses to Ca and protein. A total of sixteen men (BMI .27 kg/m2) participated in four postprandial tests. They consumed a breakfast (44 g of fat) plus a drink: a control drink, low-fat milk or a protein and Ca drink (500 ml). Blood samples were taken before the meals and at regular time points during 6 h thereafter. Compared with control, the incremental AUC (iAUC) for serum TAG was increased by 44% after the protein meal (P¼0·015). Although the iAUC were not different (P¼0·051), peak glucose concentrations were reduced by 24% after protein intake, as compared with control (P¼0·021). The decrease of 18% after milk intake did not reach statistical significance. Compared with the milk meal, the iAUC for insulin was 52% lower after the control meal (P¼0·035) and 51% after the protein meal (P¼0·005). The present results indicate that the intake of milk with a fat-containing meal enhances postprandial TAG and insulin responses and may blunt glucose increases. The protein fraction of milk seems to be the main determinant for the effects on TAG and glucose. Ca did not change any of the postprandial responses.

  13. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  14. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  15. Glucose-lowering effect of whey protein depends upon clinical characteristics of patients with type 2 diabetes.

    Science.gov (United States)

    Almario, Rogelio U; Buchan, Wendy M; Rocke, David M; Karakas, Sidika E

    2017-01-01

    Whey protein (WP) intake has been shown to reduce postprandial glycemia. Majority of WP research in type 2 diabetes (T2DM) involved acute challenge or weight loss studies. It is not known if WP supplementation can provide sustained glucose lowering. Our goal was to investigate the effects of WP on glycemia comprehensively by using continuous glucose monitoring (CGM) while avoiding the confounding effects of variable food intake through controlled feeding. This double-blinded and placebo (PL)-controlled study included 22 patients with T2DM patients (11 male, 11 female; age 57.1±12.6 years) on diet or metformin monotherapy. First, one serving (21 g) of WP was compared with PL in parallel-armed acute challenge studies. Next, in a crossover design, each patient underwent CGM twice, over 2 consecutive weeks, 3.5 days each week. Identical diets were provided by the study during both CGM periods. During the first CGM, one serving of either WP or PL was consumed before breakfast and another before dinner. During the second CGM, participants switched to the alternate supplement. Order of the supplements was randomized. During acute challenge studies, WP stimulated insulin and glucagon-like peptide (GLP)-1 secretion; suppressed ghrelin (all pObesity, hypertriglyceridemia and high fasting GLP-1 concentrations predicted increased glucose levels. Effects of WP supplementation on glycemia in T2DM depend on the baseline characteristics. Lower body weight, normal triglyceride and lower GLP-1 levels predict glucose lowering. In contrast, obesity, hypertriglyceridemia and high baseline GLP-1 predict increased glucose response.

  16. Yeast Interacting Proteins Database: YGL127C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regula...rotein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors

  17. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  18. Yeast Interacting Proteins Database: YOR047C, YKL038W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a...Bait description Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose senso...rs Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator of the tra

  19. Yeast Interacting Proteins Database: YFR049W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator... (0) YOR047C STD1 Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sens...ors Snf3p and Rgt2p, and TATA-binding protein Spt15p; ac

  20. Pleocytosis is not fully responsible for low CSF glucose in meningitis.

    Science.gov (United States)

    Baud, Maxime O; Vitt, Jeffrey R; Robbins, Nathaniel M; Wabl, Rafael; Wilson, Michael R; Chow, Felicia C; Gelfand, Jeffrey M; Josephson, S Andrew; Miller, Steve

    2018-01-01

    The mechanism of hypoglycorrhachia-low CSF glucose-in meningitis remains unknown. We sought to evaluate the relative contribution of CSF inflammation vs microorganisms (bacteria and fungi) in lowering CSF glucose levels. We retrospectively categorized CSF profiles into microbial and aseptic meningitis and analyzed CSF leukocyte count, glucose, and protein concentrations. We assessed the relationship between these markers using multivariate and stratified linear regression analysis for initial and repeated CSF sampling. We also calculated the receiver operating characteristics of CSF glucose and CSF-to-serum glucose ratios to presumptively diagnose microbial meningitis. We found that increasing levels of CSF inflammation were associated with decreased CSF glucose levels in the microbial but not aseptic category. Moreover, elevated CSF protein levels correlated more strongly than the leukocyte count with low CSF glucose levels on initial ( R 2 = 36%, p CSF sampling ( R 2 = 46%, p CSF glucose and CSF-to-serum glucose ratios had similar low sensitivity and moderate-to-high specificity in diagnosing microbial meningitis at thresholds commonly used. The main driver of hypoglycorrhachia appears to be a combination of microbial meningitis with moderate to high degrees of CSF inflammation and proteins, suggesting that the presence of microorganisms capable of catabolizing glucose is a determinant of hypoglycorrhachia in meningitis. A major notable exception is neurosarcoidosis. Low CSF glucose and CSF-to-serum glucose ratios are useful markers for the diagnosis of microbial meningitis.

  1. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  2. Recent Advances in Fluorescent Arylboronic Acids for Glucose Sensing

    Directory of Open Access Journals (Sweden)

    Jon Stefan Hansen

    2013-12-01

    Full Text Available Continuous glucose monitoring (CGM is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

  3. Relationships between obesity, lipids and fasting glucose in the menopause.

    Science.gov (United States)

    Netjasov, Aleksandra Simoncig; Vujović, Svetlana; Ivović, Miomira; Tancić-Gajić, Milina; Marina, Ljiljana; Barać, Marija

    2013-01-01

    Menopause leads to the development of central adiposity, a more atherogenic lipid profile and increased incidence of metabolic syndrome independent of age and other factors. The aim of the study was to investigate the relationships between anthropometric characteristics, sex hormones, lipids and fasting glucose in menopausal women. The study included 87 menopausal women, who where divided into groups according to two criteria: BMI > or = 26.7 kg/m2 and BMI > or = 25 kg/m2. Anthropometric characteristics and blood pressure were measured. Blood was taken at 08.00 h for fasting glucose, triglycerides, cholesterol, HDL, LDL, apolipoprotein A, apolipoprotein B, lipoprotein(a) (Lp(a)), C-reactive protein, fibrinogen, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol, progesterone, testosterone and sex hormone binding globulin (SHBG). Significant differences between groups were found for weight, BMI, waist, hips circumference, waist/hip ratio (WHR), systolic and diastolic blood pressure, Lp(a), FSH, LH, PRL (for systolic blood pressure p fasting glucose (p obese and overweight women with BMI > or = 26.7 kg/m2 significant negative correlations were found for FSH and glucose, SHBG and LDL, SHBG and total cholesterol, SHBG and glucose, BMI and HDL, WC and HDL. In obese and overweight women with BMI > or = 25 kg/m2 significant negative correlations were found for BMI and HDL, waist circumference (WC) and HDL, WHR and HDL, FSH and glucose, SHBG and glucose; significant positive correlations were between BMI and glucose, WC and glucose and WHR with triglycerides. Gaining weight and decreased SHBG are related to dyslipidemia and increased fasting glucose confirming increased incidence of metabolic abnormalities in the menopause.

  4. Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk

    NARCIS (Netherlands)

    Troise, A.D.; Dathan, N.A.; Fiore, A.; Roviello, G.; Fiore, Di A.; Caira, S.; Cuollo, M.; Simone, De G.; Fogliano, V.; Monti, S.M.

    2014-01-01

    Fructosamines, also known asAmadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in

  5. [Analysis of total proteins in the seed of almond (Prunus dulcis) by two-dimensional electrophoresis].

    Science.gov (United States)

    Li, Dong-dong; He, Shao-heng

    2004-07-01

    To analyse the total proteins in the seeds of almond (Prunus dulcis), one of the popular ingestent allergens in China, by two-dimensional electrophoresis. The total proteins of the seeds were extracted by trichloracetic acid (TCA) method, and then separated by isoelectric focusing as first dimension and SDS-PAGE as the second dimension. The spots of proteins were visualized by staining with Coomassie Brilliant Blue R-250. After analysis with software (ImageMaster 2D), 188 different proteins were detected. The isoelectric points (pI) for approximately 28% of total proteins were between 4.5-5.5, and the relative molecular mass (M(r)) of approximately 62% total proteins were between (20-25)x10(3). This was the first high-resolution, two-dimensional protein map of the seed of almond (Prunus dulcis) in China. Our finding has laid a solid foundation for further identification, characterization, gene cloning and standardization of allergenic proteins in the seed of almond (Prunus dulcis).

  6. Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    Science.gov (United States)

    Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M

    2018-01-01

    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount

  7. Acute satiety response of mammalian, avian and fish proteins in dogs.

    Science.gov (United States)

    Vester Boler, Brittany M; Faber, Trevor A; Bauer, Laura L; Swanson, Kelly S; Smiley, Scott; Bechtel, Peter J; Fahey, George C

    2012-01-01

    Fish proteins have been reported to be more satiating than meat proteins. The objective was to determine the effect of different animal protein pre-meals on satiety. A total of ten intact female hounds were fed pork loin, beef loin, chicken breast, salmon fillet or pollock fillet. Each pre-meal was fed to contain 100 g protein. Blood was collected at 0, 5, 15, 30, 60, 90 and 120 min postprandially and analysed for glucose, insulin, total ghrelin, active glucagon-like peptide-1 (GLP-1) and plasma amino acids (AA). Dogs were fed 2 ×  metabolisable energy, 3 h following the pre-meal, and intake was determined 30, 60, 180 and 1440 min after food presentation. Glucose decreased over time (P dogs consumed pollock or chicken. Insulin increased (P dogs consumed salmon. GLP-1 increased (P dogs consumed beef. Ghrelin decreased (P dogs consumed pork, salmon and pollock. Different protein sources may influence blood markers in dogs, but it does not appear that fish substrates have different satiating abilities than mammalian or avian sources.

  8. Yeast Interacting Proteins Database: YPR103W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors...gulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf

  9. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  10. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  11. Cell surface localization of the 78 kD glucose regulated protein (GRP 78) induced by thapsigargin.

    Science.gov (United States)

    Delpino, A; Piselli, P; Vismara, D; Vendetti, S; Colizzi, V

    1998-01-01

    In the present study it was found that the synthesis of the 78 kD glucose-regulated protein (GRP 78 or BIP) is vigorously induced in human rabdomiosarcoma cells (TE 671/RD) following both short-term (1 h) and prolonged (18 h) exposure to 100 nM thapsigargin (Tg). Flow cytometric analysis with a specific anti-GRP 78 polyclonal antibody showed that Tg-treated cells express the GRP 78 on the plasma membrane. Cell surface localization of the Tg-induced GRP 78 was confirmed by biotinylation of membrane-exposed proteins and subsequent isolation of the biotin-labelled proteins by streptavidin/agarose affinity chromatography. It was found that a fraction of the Tg-induced GRP 78 is present among the biotin-labelled, surface-exposed, proteins. Conversely, the GRP 78 immunoprecipitated from unfractionated lysates of Tg-treated and biotin-reacted cells was found to be biotinylated. This is the first report demonstrating surface expression of GRP 78 in cells exposed to a specific GRP 78-inducing stimulus.

  12. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    Science.gov (United States)

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  13. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  14. O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-modified proteins induced under glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Takahiro Isono

    Full Text Available Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT and β-D-N-acetylglucosaminase (O-GlcNAcase. O-GlcNAc modification of proteins is dependent on the concentration of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc, which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc(2, rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc(2-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc(2-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc(2. Our results demonstrated that N-GlcNAc(2-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc(2-modified proteins is a newly

  15. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    2007-11-01

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  16. Serum total protein, albumin and globulin levels in Trypanosoma ...

    African Journals Online (AJOL)

    The effect of orally administered Scoparia dulcis on Trypanosoma brucei-induced changes in serum total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. Results obtained show that infection resulted in hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia. However ...

  17. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  18. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  19. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure.

    Science.gov (United States)

    Krisko, Tibor I; LeClair, Katherine B; Cohen, David E

    2017-03-01

    Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. Mice lacking both PC-TP and leptin (Pctp -/- ;ob/ob) were prepared by crossing Pctp -/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. Pctp -/- ;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. Improved glucose tolerance in Pctp -/- ;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. My Sweetheart Is Broken: Role of Glucose in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Manoja K. Brahma

    2017-01-01

    Full Text Available Despite overall reductions in heart disease prevalence, the risk of developing heart failure has remained 2-fold greater among people with diabetes. Growing evidence has supported that fluctuations in glucose level and uptake contribute to cardiovascular disease (CVD by modifying proteins, DNA, and gene expression. In the case of glucose, clinical studies have shown that increased dietary sugars for healthy individuals or poor glycemic control in diabetic patients further increased CVD risk. Furthermore, even after decades of maintaining tight glycemic control, susceptibility to disease progression can persist following a period of poor glycemic control through a process termed "glycemic memory." In response to chronically elevated glucose levels, a number of studies have identified molecular targets of the glucose-mediated protein posttranslational modification by the addition of an O-linked N-acetylglucosamine to impair contractility, calcium sensitivity, and mitochondrial protein function. Additionally, elevated glucose contributes to dysfunction in coupling glycolysis to glucose oxidation, pentose phosphate pathway, and polyol pathway. Therefore, in the "sweetened" environment associated with hyperglycemia, there are a number of pathways contributing to increased susceptibly to "breaking" the heart of diabetics. In this review we will discuss the unique contribution of glucose to heart disease and recent advances in defining mechanisms of action.

  2. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  3. [Investigation the Inhibitory Effects of Kaempferol on Rat Renalmesangial Cells Proliferation under High Glucose Condition].

    Science.gov (United States)

    Chen, Ni; Han, Peng-Ding; Chen, Wen; Deng, Yan

    2017-07-01

    To investigate the protective effects of kaempferol on rat renal mesangial cells under high glucose condition and explore its mechanism. The HBZY-1 cells were divided into normal glucose group (5.5 mmol/L), high glucose group (25 mmol/L), 10 μmol/L kaempferol+high glucose group, and 30 μmol/L kaempferol+high glucose group. Cell proliferative ability was measured by MTT; cell cycle was analyzed by flow cytometry; mRNA and protein levels were determined by Real-time PCR and Western blot, respectively. Kaempferol had no effect on the proliferative ability of rat renal mesangial cells under normal glucose (5.5 mmol/L) condition. High glucose (25 mmol/L) enhanced the cell proliferative ability, and this effect was antagonized by kaempferol (10-30 μmol/L) treatment. High glucose reduced the cell population at G 0 /G 1 phase with an associated increase in S phase, and had no effect on G₂/M phase; and kaempferol treatment restored high glucose-induced changes in cell cycle. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Further, high glucose caused an increase in protein level of phosphorylated p38 mitogen-activated protein kinases (p38 MAPK), which was antagonized by kaempferol treatment. Our results suggest that kaempferol exerts its protective effect on rat renal mesangial cells under high glucose condition via p38 MAPK signaling pathway.

  4. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  5. Comparative analysis of salivary glucose and electrolytes in diabetic individuals with periodontitis.

    Science.gov (United States)

    Lasisi, T J; Fasanmade, A A

    2012-06-01

    A high incidence of periodontal disease has been reported among diabetics, however the role of saliva in the occurrence of this oral disease in these patients is yet to be understood. To determine the effects of type-2 diabetes and periodontal disease on salivary flow rate and biochemical composition. A prospective study involving 40 adult human subjects divided equally into four groups of diabetics with periodontitis (group 1), diabetics without periodontitis (group 2), non diabetics with periodontitis (group 3) and non diabetics without periodontitis (group 4). Saliva samples were collected and analyzed for salivary glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rates were also determined. Salivary glucose and potassium levels were significantly higher (P = 0.002 and 0.04 respectively) in diabetic patients regardless of periodontal disease (mean = 100.7 ± 9.33 mg/dl; 111.5 ± 32.85 mg/dl and 23.79 ± 5.19 mg/dl; 22.9 ± 6.25 mg/dl respectively) compared with non diabetic participants (mean = 80.5 ± 30.85 mg/ dl; 62.5 ± 31.89 mg/dl and 19.23 ± 5.04 mg/dl; 17.74 ± 4.68 mg/dl respectively). In contrast, there was no significant difference in saliva flow rates and levels of total protein, Na(+), Ca(++), Cl(-) and HCO3 (-)between the groups. Salivary glucose and potassium levels were significantly higher among diabetics with or without periodontitis compared with non-diabetics with or without periodontitis. However, biochemical composition of saliva in diabetic individuals has probably little role in their susceptibility to periodontitis.

  6. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    Science.gov (United States)

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Yeast Interacting Proteins Database: YOR302W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available rol of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt...tein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt1

  8. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  9. Reduction in muscle glycogen and protein utilization with glucose feeding during exercise.

    NARCIS (Netherlands)

    Hamont, D. van; Harvey, C.R.; Massicotte, D.; Frew, R.; Peronnet, F.; Rehrer, N.J.

    2005-01-01

    Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 +/- 1.9 mL x kg(-1) x min(-1)) males (N = 5) completed two 75 min, 80% VO(2max) trials: 125 g 13(C)-glucose CHO); 13(C)-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 . 2 g 13(C)-glucose was

  10. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows.

    Science.gov (United States)

    Oh, J; Harper, M; Giallongo, F; Bravo, D M; Wall, E H; Hristov, A N

    2017-03-01

    The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) supplementation on feed intake, milk yield and composition, nutrient utilization, fecal microbial ecology, and responses to a glucose tolerance test in lactating dairy cows. Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design balanced for residual effects with three 28-d periods. Each period consisted of 14 d for adaptation and 14 d for data collection and sampling. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day. They were mixed with a small portion of the total mixed ration and top-dressed. Glucose tolerance test was conducted once during each experimental period by intravenous administration of glucose at a rate of 0.3 g/kg of body weight. Dry matter intake was not affected by RPC. Milk yield tended to increase for RPC treatments compared to the control. Feed efficiency was linearly increased by RPC supplementation. Concentrations of fat, true protein, and lactose in milk were not affected by RPC. Apparent total-tract digestibility of dry matter, organic matter, and crude protein was linearly increased, and fecal nitrogen excretion was linearly decreased by RPC supplementation. Rumen-protected Capsicum oleoresin did not affect the composition of fecal bacteria. Glucose concentration in serum was not affected by RPC supplementation post glucose challenge. However, compared to the control, RPC decreased serum insulin concentration at 5, 10, and 40 min post glucose challenge. The area under the insulin concentration curve was also decreased 25% by RPC. Concentration of nonesterified fatty acids and β-hydroxybutyrate in serum were not affected by RPC following glucose administration. In this study, RPC tended to increase milk production and increased feed efficiency in dairy cows. In addition, RPC decreased serum insulin concentration during the glucose tolerance test, but glucose concentration was not affected

  11. High Glucose Promotes Aβ Production by Inhibiting APP Degradation

    Science.gov (United States)

    Zhang, Shuting; Song, Weihong

    2013-01-01

    Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression. PMID:23894546

  12. Mechanism-based population modelling for assessment of L-cell function based on total GLP-1 response following an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Møller, Jonas B.; Jusko, William J.; Gao, Wei

    2011-01-01

    was to build a mechanism-based population model that describes the time course of total GLP-1 and provides indices for capability of secretion in each subject. The goal was thus to model the secretion of GLP-1, and not its effect on insulin production. Single 75 g doses of glucose were administered orally......GLP-1 is an insulinotropic hormone that synergistically with glucose gives rise to an increased insulin response. Its secretion is increased following a meal and it is thus of interest to describe the secretion of this hormone following an oral glucose tolerance test (OGTT). The aim of this study....... The individual estimates of absorption rate constants were used in the model for GLP-1 secretion. Estimation of parameters was performed using the FOCE method with interaction implemented in NONMEM VI. The final transit/indirect-response model obtained for GLP-1 production following an OGTT included two...

  13. Uric Acid or 1-Methyl Uric Acid in the Urinary Bladder Increases Serum Glucose, Insulin, True Triglyceride, and Total Cholesterol Levels in Wistar Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2003-01-01

    Full Text Available In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs, can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels.

  14. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  15. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  16. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development.

    Science.gov (United States)

    Baviskar, Sandhya N; Shields, Malcolm S

    2010-01-01

    Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.

  17. Binge drinking and total alcohol consumption from 16 to 43 years of age are associated with elevated fasting plasma glucose in women: results from the northern Swedish cohort study.

    Science.gov (United States)

    Nygren, Karina; Hammarström, Anne; Rolandsson, Olov

    2017-06-08

    Studies have indicated that moderate alcohol consumption is associated with lower incidence of diabetes in women. However, not only the amount but also the drinking pattern could be of importance when assessing the longitudinal relation between alcohol and glucose. Also, there is a lack of studies on alcohol use beginning in adolescence on adult glucose levels. The aim was to examine the association between total alcohol consumption and binge drinking between ages 16 and 43 and fasting plasma glucose at age 43. Data were retrieved from a 27-year prospective cohort study, the Northern Swedish Cohort. In 1981, all 9th grade students (n = 1083) within a municipality in Sweden were invited to participate. There were re-assessments at ages 18, 21, 30 and 43. This particular study sample consisted of 897 participants (82.8%). Fasting plasma glucose (mmol/L) was measured at a health examination at age 43. Total alcohol consumption (in grams) and binge drinking were calculated from alcohol consumption data obtained from questionnaires. Descriptive analyses showed that men had higher levels of fasting plasma glucose as compared to women. Men also reported higher levels of alcohol consumption and binge drinking behavior. Linear regressions showed that total alcohol consumption in combination with binge drinking between ages 16 and 43 was associated with elevated fasting plasma glucose at age 43 in women (beta = 0.14, p = 0.003) but not in men after adjustment for BMI, hypertension and smoking at age 43. Our findings indicate that reducing binge drinking and alcohol consumption among young and middle-aged women with the highest consumption might be metabolically favorable for their future glucose metabolism.

  18. Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men.

    Science.gov (United States)

    Alves, Raquel Duarte Moreira; de Oliveira, Fernanda Cristina Esteves; Hermsdorff, Helen Hermana Miranda; Abete, Itziar; Zulet, María Angeles; Martínez, José Alfredo; Bressan, Josefina

    2014-02-01

    To evaluate the effects of two dietary patterns in which carbohydrates and proteins were eaten mostly at lunch or dinner on body weight and composition, energy metabolism, and biochemical markers in overweight/obese men. Fifty-eight men (30.0 ± 7.4 years; 30.8 ± 2.4 kg/m(2)) followed a covert hypocaloric balanced diet (-10 % of daily energy requirements) during 8 weeks. Subjects were randomly assigned to three groups: control diet (CT); diurnal carbohydrate/nocturnal protein (DCNP); and nocturnal carbohydrate/diurnal protein (NCDP). Main analyzed outcomes were weight loss, body composition, diet-induced thermogenesis (DIT), and glucose/lipid profile. In all groups, a significant decrease in body weight, BMI, and fat mass (kg and %) was verified, without differences between groups. Interestingly, within group analyses showed that the fat-free mass (kg) significantly decreased in NCDP and in CT after 8-week intervention, but not in DCNP. A detrimental increase in fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMAIR) was verified only in DCNP, while NCDP and CT groups presented a non-significant reduction. Moreover, significant differences between DCNP and the other groups were detected for fasting insulin and HOMAIR. After the adjustments, NCDP presented a significantly higher DIT and energy expenditure after lunch, compared with DCNP, but after dinner, there were no differences among groups. Eating carbohydrates mostly at dinner and protein mostly at lunch within a hypocaloric balanced diet had similar effect on body composition and biochemical markers, but higher effect on DIT compared with control diet. Moreover, eating carbohydrates mostly at lunch and protein mostly at dinner had a deleterious impact on glucose homeostasis.

  19. Heat shock protein 70 modulates neural progenitor cells dynamics in human neuroblastoma SH-SY5Y cells exposed to high glucose content.

    Science.gov (United States)

    Salimi, Leila; Rahbarghazi, Reza; Jafarian, Vahab; Biray Avci, Çıgır; Goker Bagca, Bakiye; Pinar Ozates, Neslihan; Khaksar, Majid; Nourazarian, Alireza

    2018-01-18

    In the current experiment, detrimental effects of high glucose condition were investigated on human neuroblastoma cells. Human neuroblastoma cell line SH-SY5Y were exposed to 5, 40, and 70 mM glucose over a period of 72 h. Survival rate and the proliferation of cells were analyzed by MTT and BrdU incorporation assays. Apoptosis was studied by the assays of flow cytometry and PCR array. In order to investigate the trans-differentiation capacity of the cell into mature neurons, we used immunofluorescence imaging to follow NeuN protein level. The transcription level of HSP70 was shown by real-time PCR analysis. MMP-2 and -9 activities were shown by gelatin Zymography. According to data from MTT and BrdU incorporation assay, 70 mM glucose reduced cell viability and proliferation rate as compared to control (5 mM glucose) and cells treated with 40 mM glucose (P Cell exposure to 70 mM glucose had potential to induced apoptosis after 72 h (P SH-SY5Y cells to detrimental effects of high glucose condition during trans-differentiation into mature neuron-like cells. Real-time PCR analysis confirmed the expression of HSP70 in cells under high content glucose levels, demonstrating the possible cell compensatory response to an insulting condition (p control vs 70 mM group  cells being exposed to 70 mM glucose. High glucose condition could abrogate the dynamics of neural progenitor cells. The intracellular level of HSP70 was proportional to cell damage in high glucose condition. © 2018 Wiley Periodicals, Inc.

  20. The effects of maternal total protein, albumin and hemoglobin levels on birth weight

    Directory of Open Access Journals (Sweden)

    Berna Haliloglu

    2007-12-01

    Full Text Available OBJECTIVE: The present study was designed to investigate the influence of third trimester maternal total protein, albumin, hemoglobin levels on birth weight.\tMATERIAL-METHOD: Between January 2005 and July 2005, 750 pregnant women applied for delivery at Zeynep Kamil Women’s and Children Education and Research Hospital at 37-40 week’s gestation were examined. Maternal total protein, albumin and hemoglobin levels were measured. Data included maternal age, gravidity, parity, gestational age, birth weight, gender, presence of iron supplementation and its duration.\tRESULTS: The birth weight was significantly higher in anemic and hypoproteinemic groups compared those with normal levels. After adjusting for counfounding factors, significance of both findings lost. The cases received iron supplementation had infants with higher birth weight, however, it was not statistically significant (p: 0.055. A significant positive relation was observed between birth weight and maternal age, gravidity, parity and gestational age. No relation found between maternal total protein, albumin, hemoglobin levels and birth weight.\tCONCLUSION: The last trimester maternal total protein, albumin, hemoglobin levels seem not to be a determining factor on infant's birth weight.

  1. Comparison of biuret and refractometry methods for the serum total proteins measurement in ruminants.

    Science.gov (United States)

    Katsoulos, Panagiotis D; Athanasiou, Labrini V; Karatzia, Maria A; Giadinis, Nektarios; Karatzias, Harilaos; Boscos, Constantin; Polizopoulou, Zoe S

    2017-12-01

    Determination of serum total protein concentration is commonly performed by the biuret method. Refractometric measurement is a faster and less expensive alternative but its accuracy has not been determined in ruminants. The purpose of the study was to compare the serum total protein concentrations in cattle, sheep, and goats measured by the biuret method with those obtained by refractometry. Serum total protein concentration was determined in 120 cattle, 67 sheep, and 58 goat blood samples refractometrically and with the biuret method. The data were analyzed with a paired samples t-test, and Passing and Bablok regression equations and Bland and Altman plots were generated. There was a strong linear relationship between the total protein values determined with the refractometer and the biuret method in cattle, sheep, and goats. The statistical accuracy, which represents a bias correction factor that measures the deviation of the best-fit line from the 45° line through the origin, was 90.63% for cattle, 93.05% for sheep, and 91.76% for goats. The mean protein values determined with the refractometer were significantly lower than those measured with the biuret method in cattle and goats (P  .05). The evaluated refractometer was sufficiently accurate for the determination of serum total proteins in cattle, sheep, and goats, although it cannot be used interchangeably with the biuret method. The RIs should be corrected for negative bias based on the created equations. © 2017 American Society for Veterinary Clinical Pathology.

  2. An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius, E-mail: mariusc@mail.nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR field. Here, we describe a novel protocol for incorporating unnatural amino acids into fully deuterated proteins using glucose-based media (which are relevant to the production, for example, of amino acid-specific methyl-labeled proteins used in the study of large molecular weight systems). The method consists of pre-induction of the pEVOL plasmid encoding the tRNA/aminoacyl-tRNA synthetase pair in a rich, H{sub 2}O-based medium prior to exchanging the culture into a D{sub 2}O-based medium. Our protocol results in high level of isotopic incorporation ({approx}95%) and retains the high expression level of the target protein observed in Luria-Bertani medium.

  3. Yeast Interacting Proteins Database: YLR447C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp...; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act

  4. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  5. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  6. Comparative changes in monthly blood urea nitrogen, total protein ...

    African Journals Online (AJOL)

    The objective of this study was to determine the comparative changes in the monthly blood urea nitrogen (BUN) concentration, total protein (TP) concentration in blood serum and the body condition score of Nguni cows and heifers raised on sweetveld. Twenty-four clinically healthy animals in different parities, namely Parity ...

  7. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  8. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    Daphna D.J. Habets

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  9. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

    Directory of Open Access Journals (Sweden)

    Els Willems

    Full Text Available Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group, compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3, corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4 concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected

  10. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    Science.gov (United States)

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  11. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  12. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  13. Nonenzymatic glycosylation of bovine myelin basic protein

    International Nuclear Information System (INIS)

    Hitz, J.B.

    1987-01-01

    In the CNS myelin sheath the nonenzymatic glycosylation reaction (at the early stage of the Amadori product) occurs only with the myelin basic protein and not with the other myelin proteins. This was observed in isolated bovine myelin by in vitro incubation with [ 14 C]-galactose and [ 14 C]-glucose. The respective in-vitro incorporation rates for purified bovine myelin basic protein with D-galactose, D-glucose and D-mannose were 7.2, 2.4 and 2.4 mmoles/mole myelin basic protein per day at 37 0 C. A more rapid, HPLC method was devised and characterized to specifically analyze for the Amadori product. The HPLC method was correlated to the [ 14 C]-sugar incorporation method for myelin basic protein under a set of standard reaction conditions using [ 14 C]-glucose and [ 14 C]-mannose with HPLC values at 1/6 and 1/5 of the [ 14 C]-sugar incorporation method. A novel myelin basic protein purification step has been developed that yields a relativity proteolytic free preparation that is easy to work with, being totally soluble at a neutral pH. Nine new spots appear for a trypsinized glycosylated MBP in the paper peptide map of which eight correspond to positions of the [ 3 H]-labeled Amadori product in affinity isolated peptides. These studies provide a general characterization of and a structural basis for investigations on nonenzymatically glycosylated MBP as well as identifying MBP as the only nonenzymatically glycosylated protein in the CNS myelin sheath which may accumulate during aging, diabetes, and demyelinating diseases in general

  14. Serum total proteins and creatinine levels in experimental gambian ...

    African Journals Online (AJOL)

    Attempt was therefore made to evaluate the effect of two strains of Trypanosoma brucei gambiense on total proteins and other serum biochemical parameters using vervet monkeys as a model. The outcome of both strains in vervet monkeys was traumatic as the monkeys died from infection 12 – 15 weeks post infection while ...

  15. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    International Nuclear Information System (INIS)

    Steffen, C.A.; Smith, C.M.

    1987-01-01

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt 2 cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 μM) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 μm/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of [ 14 C]-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis

  16. The importance of sensitive screening for abnormal glucose metabolism in patients with IgA nephropathy.

    Science.gov (United States)

    Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan

    2016-01-01

    To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.

  17. Persistent Organic Pollutants Induced Protein Expression and Immunocrossreactivity by Stenotrophomonas maltophilia PM102: A Prospective Bioremediating Candidate

    Directory of Open Access Journals (Sweden)

    Piyali Mukherjee

    2013-01-01

    Full Text Available A novel bacterium capable of growth on trichloroethylene as the sole carbon source was identified as Stenotrophomonas maltophilia PM102 by 16S rDNA sequencing (accession number of NCBI GenBank: JQ797560. In this paper, we report the growth pattern, TCE degradation, and total proteome of this bacterium in presence of various other carbon sources: toluene, phenol, glucose, chloroform, and benzene. TCE degradation was comparatively enhanced in presence of benzene. Densitometric analysis of the intracellular protein profile revealed four proteins of 78.6, 35.14, 26.2, and 20.47 kDa while the extracellular protein profile revealed two distinct bands at 14 kDa and 11 kDa that were induced by TCE, benzene, toluene, and chloroform but absent in the glucose lane. A rabbit was immunised with the total protein extracted from the bacteria grown in 0.2% TCE + 0.2% peptone. Antibody preadsorbed on proteins from peptone grown PM102 cells reacted with a single protein of 35.14 kDa (analysed by MALDI-TOF-mass-spectrometry from TCE, benzene, toluene, or chloroform grown cells. No reaction was seen for proteins of PM102 grown with glucose. The PM102 strain was immobilised in calcium alginate beads, and TCE degradation by immobilised cells was almost double of that by free cells. The beads could be reused 8 times.

  18. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  19. Effects of Fat and Protein Preloads on Pouch Emptying, Intestinal Transit, Glycaemia, Gut Hormones, Glucose Absorption, Blood Pressure and Gastrointestinal Symptoms After Roux-en-Y Gastric Bypass.

    Science.gov (United States)

    Nguyen, Nam Q; Debreceni, Tamara L; Burgstad, Carly M; Neo, Melissa; Bellon, Max; Wishart, Judith M; Standfield, Scott; Bartholomeusz, Dylan; Rayner, Chris K; Wittert, Gary; Horowitz, Michael

    2016-01-01

    The aim was to determine the effects of fat and protein preloads on pouch emptying (PE), caecal arrival time (CAT), glucose absorption, blood glucose (BSL), gut hormones, haemodynamics and gastrointestinal (GI) symptoms in subjects who had undergone Roux-en-Y gastric bypass (RYGB) >12 months previously. Ten RYGB subjects were studied on three occasions, in randomised order, receiving 200-ml preloads of either water, fat (30 ml olive oil) or whey protein (55 g), 30 min before a mixed meal. PE, CAT, BSL, plasma 3-O-methyl-D-glucopyranose (3-OMG), insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon, blood pressure (BP), heart rate (HR) and GI symptoms were assessed over 270 min. Although fat and protein preloads did not alter PE of either solids or liquids, the CAT of solids, but not liquids, was longer than that after the water preload (fat 68 ± 5 min and protein 71 ± 6 min vs. water 46 ± 5 min; P = 0.02). BSL elevated promptly after the meal on all days (P area under the curve (AUC(0-75 min)), 18.7 ± 18.2 vs. 107.2 ± 30.4 and 76.1 ± 19.3 mmol/L/min; P < 0.05). Compared to water preload, the protein and fat preloads were associated with greater increases in plasma insulin, GLP-1 and glucagon concentrations, a reduction in BP, and greater increases in HR, fullness, bloating and nausea. Plasma 3-OMG levels were lower after the protein than after the water and fat preloads (P < 0.001). Given its effects to attenuate post-prandial glycaemia, reduce intestinal glucose absorption and potentiate the "incretin response", without inducing more adverse post-prandial GI symptom, protein preload may prove clinically useful in RYGB patients and warrant further evaluation, particularly in those with type 2 diabetes (T2DM) and/or dumping syndrome.

  20. Gluconeogenesis continues in premature infants receiving total parenteral nutrition

    Science.gov (United States)

    To determine the contribution of total gluconeogenesis, to glucose production in preterm infants receiving total parenteral nutrition (TPN) providing glucose exceeding normal infant glucose turnover rate, eight infants (0.955 +/- 0.066 kg, 26.5 - 0.5 wks, 4-1 d) were studied while receiving routine ...

  1. Guar gum effects on food intake, blood serum lipids and glucose levels of Wistar rats.

    Science.gov (United States)

    Frias, A C; Sgarbieri, V C

    1998-01-01

    The effects of guar gum derived from the endosperm of Cyamopsis tetragonoloba (75% soluble fiber, 7.6% insoluble fiber, 2.16% crude protein, 0.78% total lipids, 0.54% ash and 9.55% moisture) on food intake, levels of blood serum cholesterol, triacylglycerols, glucose and LDL and HDL-cholesterol were studied. The effects of guar gum on indices of protein absorption and utilization were also investigated. Diets containing 0%, 10% and 20% (w/w) guar gum or 10% and 20% cellulose powder (reference) were fed to normal rats for 60 days. The rats fed the guar gum diets showed significantly (p Guar gum decreased blood serum glucose only during the first month of the experiment, and no changes in the indices of protein absorption and utilization were found. The guar gum caused a 10% increase in the small intestine length and a 25% retardation in the intestinal transit. The results of this research suggested that guar gum could potentially be effective in the treatment of hypercholesterolemia and obesity in humans.

  2. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Campbell Lucy J

    2012-08-01

    Full Text Available Abstract Background Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART. Tenofovir (TFV in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. Methods In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR. Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI or TFV and a protease-inhibitor (TFV/PI. Results Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g (p = 0.003. In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77 and eGFR 2 (OR 3.54, 95 % CI 1.61, 7.80 were independently associated with upper quartile (UQ RBPCR. RBPCR correlated well to CCR (r2 = 0.71, but not to NGALCR, PCR or ACR. Conclusions In HIV positive patients, proteinuria was predominantly of

  3. Variation in C-reactive protein following weight loss in obese insulin resistant postmenopausal women: is there an independent contribution of lean body mass?

    Science.gov (United States)

    Barsalani, R; Riesco, É; Perreault, K; Imbeault, P; Brochu, M; Dionne, I J

    2015-03-01

    We showed that obese insulin resistant postmenopausal women are characterized by higher lean body mass and elevated C-reactive protein. Although counterintuitive, we hypothesized that losses in muscle mass following caloric restriction and increase in muscle quality will be associated with improvements in glucose homeostasis through decreases in C-reactive protein. To determine 1) if improvements in C-reactive protein concentrations occurs through losses in lean body mass; and 2) if decreases in C-reactive protein levels contribute to improvements in insulin sensitivity. 50 postmenopausal women (body mass index>26 kg/m(²)) with impaired glucose disposal (program. Outcome measures were: Glucose disposal rate: M value (by hyperinsulinemic-euglycemic clamp), body composition (total, trunk, and appendicluar). LBM and FM by DXA), LBM index (LBM (kg)/height (m(2)), body fat distribution (VAT and SAT by CT scan) and plasma high-sensitive C-reactive protein (hsCRP) and interleukin-6 (Il-6). Significant correlations were observed between Δ hsCRP levels with Δ Il-6 (r=0.33, p≤0.05), Δ total LBM index (r=0.44, p≤0.01), Δ trunk LBM (r=0.38, p≤0.01) Δ SAT (r=0.35, p≤0.05) and ∆ glucose disposal rate (r=- 0.44, p≤0.01). After including all the correlated variables in Stepwise linear regression model, Δ LBM index was the only independent predictor of the reduction in hsCRP levels (R(2)=0.20, p≤0.01). Losses in total lean body mass are independently associated with improvements in inflammatory state (CRP levels) in obese postmenopausal women with impaired glucose disposal. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    International Nuclear Information System (INIS)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H.

    1990-01-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters

  5. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24 -  CD44 + and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Transcript levels of members of the SLC2 and SLC5 families of glucose transport proteins in eel swimbladder tissue: the influence of silvering and the influence of a nematode infection.

    Science.gov (United States)

    Schneebauer, Gabriel; Mauracher, David; Fiechtner, Birgit; Pelster, Bernd

    2018-04-01

    The rate of glucose metabolism has been shown to be correlated to glucose uptake in swimbladder gas gland cells. Therefore, it is assumed that in the European eel silvering, i.e., the preparation of the eel for the spawning migration to the Sargasso Sea, coincides with an enhanced capacity for glucose uptake. To test this hypothesis expression of all known glucose transport proteins has been assessed at the transcript level in yellow and in silver eels, and we also included Anguillicola crassus infected swimbladders. Glucose uptake by rete mirabile endothelial cells could be crucial for the countercurrent exchange capacity of the rete. Therefore, this tissue was also included in our analysis. The results revealed expression of ten different members of the slc2 family of glucose transporters, of four slc5 family members, and of kiaa1919 in gas gland tissue. Glucose transporters of the slc2 family were expressed at very high level, and slc2a1b made up about 80% of all slc2 family members, irrespective of the developmental state or the infection status of the eel. Overall, the slc5 family contributed to only about 8% of all detected glucose transport transcripts in gas gland tissue, and the slc2 family to more than 85%. In rete capillaries, the contribution of sodium-dependent glucose transporters was significantly higher, leaving only 66% for the slc2 family of glucose transporters. Neither silvering nor the infection status had a significant effect on the expression of glucose transporters in swimbladder gas gland tissue, suggesting that glucose metabolism of eel gas gland cells may not be related to transcriptional changes of glucose transport proteins.

  7. Yeast Interacting Proteins Database: YGL237C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote... expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein

  8. Yeast Interacting Proteins Database: YKL002W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote...xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp

  9. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    Science.gov (United States)

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.

  10. suPAR associates to glucose metabolic aberration during glucose stimulation in HIV-infected patients on HAART

    DEFF Research Database (Denmark)

    Andersen, Ove; Eugen-Olsen, Jesper; Kofoed, Kristian

    2008-01-01

    extend these findings by investigating the association of suPAR to glucose metabolic insufficiency during an oral glucose challenge (OGTT). METHODS: In 16 HIV-infected patients with lipodystrophy and 15 HIV-infected patients without lipodystrophy, glucose tolerance, insulin sensitivity (ISI......PAR correlated inversely with ISI(composite) and positively with 2h plasma glucose, fasting insulin secretion, fasting intact proinsulin and FFA level during the OGTT (all P...-RNA, duration of HIV infection), and dyslipidemia (plasma total cholesterol, triglyceride and free fatty acid level during the OGTT) were included, suPAR remained a significant marker of glucose tolerance and insulin sensitivity. Plasma suPAR exhibited a small CV (11%) during the 3h OGTT. CONCLUSIONS: su...

  11. Glucose-induced effects and joker function of glucose: endocrine or genotoxic prevalence?

    Science.gov (United States)

    Berstein, L M; Vasilyev, D A; Poroshina, T E; Kovalenko, I G

    2006-10-01

    The steady increase in chronic "glycemic load" is characteristic for modern times. Among myriad of glucose functions, two principals can be emphasized: first, endocrine (in particular, ability to induce insulin secretion) and second, DNA-damaging related to formation of reactive oxygen species (ROS). It was suggested by us earlier that a shift in the ratio of mentioned functions reflects a possible "joker" role of glucose as an important modifier of human pathology. Therefore, we embarked on a study to investigate an individual effect of peroral glucose challenge on serum insulin level and ROS generation by mononuclears (luminol-dependent/latex-induced chemiluminescence) in 20 healthy people aged between 28-75. Concentrations of glucose, blood lipids, carbonylated proteins, malondialdehyde, leptin and TNF-alpha were determined as well. On the basis of received data two separate groups could be distinguished: one (n=8), in which glucose stimulation of ROS generation by mononuclears was increased and relatively prevailed over induction of insulin secretion (state of the so called glucose-induced genotoxicity, GIGT), and another (n=12), in which signs of GIGT were not revealed. People who belonged to the first group were characterized with a tendency to lower body mass index, blood leptin and cholesterol and to higher TNF-alpha concentration. Thus, if joker function of glucose is realized in "genotoxic mode", the phenotype (and probably genotype) of subjects may be rather distinctive to the one discovered in glucose-induced "endocrine prevalence". Whether such changes may serve as a pro-mutagenic or pro-endocrine basis for the rise of different chronic diseases or, rather, different features/aggressiveness of the same disease warrants further study.

  12. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women.

    Science.gov (United States)

    Tsuboi, Ayaka; Minato, Satomi; Yano, Megumu; Takeuchi, Mika; Kitaoka, Kaori; Kurata, Miki; Yoshino, Gen; Wu, Bin; Kazumi, Tsutomu; Fukuo, Keisuke

    2018-01-01

    Inflammatory markers are elevated in insulin resistance (IR) and diabetes. We tested whether serum orosomucoid (ORM) is associated with postload glucose, β-cell dysfunction and IR inferred from plasma insulin kinetics during a 75 g oral glucose tolerance test (OGTT). 75 g OGTTs were performed with multiple postload glucose and insulin measurements over a 30-120 min period in 168 non-obese Japanese women (aged 18-24 years). OGTT responses, serum adiponectin and high-sensitivity C reactive protein (hsCRP) were cross-sectionally analyzed by analysis of variance and then Bonferroni's multiple comparison procedure. Stepwise multivariate linear regression analyses were used to identify most important determinants of ORM. Of 168 women, 161 had normal glucose tolerance. Postload glucose levels and the area under the glucose curve (AUCg) increased in a stepwise fashion from the first through the third ORM tertile. In contrast, there was no or modest, if any, association with fat mass index, trunk/leg fat ratio, adiponectin, hsCRP, postload insulinemia, the Matsuda index and homeostasis model assessment IR. In multivariable models, which incorporated the insulinogenic index, the Matsuda index and HOMA-IR, 30 min glucose (standardized β: 0.517) and AUCg (standardized β: 0.495) explained 92.8% of ORM variations. Elevated circulating orosomucoid was associated with elevated 30 min glucose and glucose excursion in non-obese young Japanese women independently of adiposity, IR, insulin secretion, adiponectin and other investigated markers of inflammation. Although further research is needed, these results may suggest a clue to identify novel pathways that may have utility in monitoring dysglycemia within normal glucose tolerance.

  13. Expression and Purification of Rat Glucose Transporter 1 in Pichia pastoris.

    Science.gov (United States)

    Venskutonytė, Raminta; Elbing, Karin; Lindkvist-Petersson, Karin

    2018-01-01

    Large amounts of pure and homogenous protein are a prerequisite for several biochemical and biophysical analyses, and in particular if aiming at resolving the three-dimensional protein structure. Here we describe the production of the rat glucose transporter 1 (GLUT1), a membrane protein facilitating the transport of glucose in cells. The protein is recombinantly expressed in the yeast Pichia pastoris. It is easily maintained and large-scale protein production in shaker flasks, as commonly performed in academic research laboratories, results in relatively high yields of membrane protein. The purification protocol describes all steps needed to obtain a pure and homogenous GLUT1 protein solution, including cell growth, membrane isolation, and chromatographic purification methods.

  14. Puerarin reduces apoptosis in rat hippocampal neurons culturea in high glucose medium by modulating the p38 mitogen activated protein kinase and c-Jun N-terminal kinase signaling pathways.

    Science.gov (United States)

    Xu, Xiaohan; Wang, Jingbo; Zhang, Hong; Tian, Guoqing; Liu, Yuqin

    2016-02-01

    To investigate the neuroprotective etfect of puerarin on rat hippocampal neurons cultured in high glucose medium, and to examine the role of the p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways in this effect. Primary cultures of hippocampal neurons were prepared from newborn Sprague Dawley rats. Neuron-specific enolase immunocytochemistry was used to identify neurons. The neurons were cultured with normal medium (control group) or with high-glucose medium (high-glucose group), and puerarin (puerarin group), a p38 MAPK inhibitor (SB239063; p38 MAPK inhibitor group) or a JNK inhibitor (SP600125; JNK inhibitor group) were added. After 72 h of treatment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was performed to detect apoptosis, and western blotting was used to assess protein levels of p-p38, p38, p-JNK and JNK. In the high-glucose group, the neuronal apoptosis rate and the p-p38/p38 and p-JNK/JNK ratios were higher than in the control group. The p38 MAPK and JNK inhibitors prevented this increase in the apoptosis rate. The apoptosis rates in the puerarin group, the p38 MAPK inhibitor group and the JNK inhibitor group were significantly decreased compared with the high-glucose group. Moreover, protein levels of p-p38 and p-JNK were significantly reduced, and the p-p38/p38 and p-JNK/JNK ratios were decreased in the puerarin group compared with the high-glucose group. In addition, compared with the high-glucose group, p-p38 levels and the p-p38/p38 ratio were reduced in the p38 MAPK inhibitor group, and p-JNK levels and the p-JNK/JNK ratio were decreased in the JNK inhibitor group. Puerarin attenuates neuronal apoptosis induced by high glucose by reducing the phosphorylation of p38 and JNK.

  15. Photochemical immobilization of protein on the inner wall of a microchannel and Its application in a glucose sensor

    International Nuclear Information System (INIS)

    Nakajima, Hizuru; Ishino, Satomi; Masuda, Hironori; Nakagama, Tatsuro; Shimosaka, Takuya; Uchiyama, Katsumi

    2006-01-01

    A new protein immobilization technique has been developed for patterning enzymes in a specific position inside a microchannel. First, bovine serum albumin (BSA) was adsorbed onto the internal surface of a polydimethylsiloxane microchannel. The microchannel was then filled with the conjugate solution of a photoreactive cross-linker, 4-azido-2,3,5,6-tetrafluorobenzoic acid succinimidyl ester (ATFB-SE), and an enzyme, horseradish peroxidase (HRP). An irradiation by a He-Cd laser activated the azido group of the conjugates and these conjugates became covalently attached to the adsorbed BSA on the microchannel. The enzyme turnover was observed from only the HRP zone. This technique was successfully applied to the enzymatic glucose sensor. Glucose oxidase (GOD) and HRP were sequentially patterned in a single microchannel, i.e., the HRP zone was located downstream from the GOD zone. The calibration curve of a glucose standard solution was linear over the range of 0-128 μM with a correlation coefficient of 0.993. Compared to the traditional method using a 96-well microtiter plate, the present technique on the microchip shortened the reaction time from 30 min to 4.8 s, i.e., to 1/375

  16. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes.

    Directory of Open Access Journals (Sweden)

    Anke Tönjes

    Full Text Available AIM: Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D. It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT, impaired fasting glucose (IFG, impaired glucose tolerance (IGT or T2D. METHODS: Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35, IGT (n = 45, or NGT (n = 43. Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL-6, retinol-binding protein 4 (RBP4, monocyte chemoattractant protein (MCP-1, vaspin, progranulin, and soluble leptin receptor (sOBR were measured by ELISAs. RESULTS: Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group. CONCLUSION: Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.

  17. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  18. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender.

    Science.gov (United States)

    Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P

    2015-03-01

    The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  19. The role of O-linked GlcNAc modification on the glucose response of ChREBP

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Haruhiko [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Fujiwara, Noriko, E-mail: noriko-f@hyo-med.ac.jp [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Noguchi, Takahiro; Eguchi, Hironobu; Yoshihara, Daisaku [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Uyeda, Kosaku [Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, TX 75390-9038 (United States); Suzuki, Keiichiro [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2010-11-26

    Research highlights: {yields} The O-linked GlcNAc modification is crucial for the glucose response. {yields} Mlx is required for nuclear localization and transcription activity of ChREBP. {yields} The presence of Mlx stabilizes ChREBP protein. -- Abstract: The carbohydrate response element-binding protein (ChREBP) functions as a transcription factor in mediating the glucose-activated gene expression of multiple liver enzymes, which are responsible for converting excess carbohydrate to storage fat. ChREBP is translocated into the nucleus in response to high glucose levels, and then up-regulates transcriptional activity. Although this glucose activation of ChREBP is generally observed only in liver cells, overexpression of wild type max-like protein X (Mlx), but not an inactive mutant Mlx, resulted in the exhibition of the ChREBP functions also in a human kidney cell line. Because high glucose conditions induce the glycosylation of cellular proteins, the effect of O-linked GlcNAc modification on ChREBP functions was examined. Treatment with an O-GlcNAcase inhibitor (PUGNAc), which increases the O-linked GlcNAc modification of cellular proteins, caused an increase in the glucose response of ChREBP. In contrast, treatment with a glutamine fructose amidotransferase inhibitor (DON), which decreases O-GlcNAcylation by inhibiting the hexosamine biosynthetic pathway, completely blocked the glucose response of ChREBP. These results suggest that the O-linked glycosylation of ChREBP itself or other proteins that regulate ChREBP is essential for the production of functional ChREBP.

  20. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  1. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  2. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hübscher, Volker; Mudholkar, Kaivalya; Chiabudini, Marco; Fitzke, Edith; Wölfle, Tina; Pfeifer, Dietmar; Drepper, Friedel; Warscheid, Bettina; Rospert, Sabine

    2016-07-08

    Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Analysis of secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  4. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients.

    Science.gov (United States)

    Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew

    2018-04-28

    Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in type 2 diabetic men

    NARCIS (Netherlands)

    Manders, R.J.; Koopman, R.; Sluijsmans, W.E.; Berg, R. van den; Verbeek, K.; Saris, W.H.; Wagenmakers, A.J.; Loon, L.J. van

    2006-01-01

    This study examined postprandial plasma insulin and glucose responses after co-ingestion of an insulinotropic protein (Pro) hydrolysate with and without additional free leucine with a single bolus of carbohydrate (Cho). Male patients with long-standing Type 2 diabetes (n = 10) and healthy controls

  6. TXNIP regulates peripheral glucose metabolism in humans

    DEFF Research Database (Denmark)

    Parikh, Hemang; Carlsson, Emma; Chutkow, William A

    2007-01-01

    combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated...... expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin......-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM....

  7. Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose.

    Science.gov (United States)

    Sun, Xiao-Jing; Zhao, Lei; Zhao, Na; Pan, Xiao-Li; Fei, Guo-Qiang; Jin, Li-Rong; Zhong, Chun-Jiu

    2012-10-01

    To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. HEK293 APPsw cells were cultured with different concentrations of glucose for different times. The Aβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.

  8. Yeast Interacting Proteins Database: YOR358W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act...rotein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator o

  9. iTRAQ-based proteomic profile analysis of ISKNV-infected CPB cells with emphasizing on glucose metabolism, apoptosis and autophagy pathways.

    Science.gov (United States)

    Wu, Shiwei; Yu, Lujun; Fu, Xiaozhe; Yan, Xi; Lin, Qiang; Liu, Lihui; Liang, Hongru; Li, Ningqiu

    2018-05-04

    Infectious spleen and kidney necrosis virus (ISKNV) has caused significant losses in the cultured mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie interaction between ISKNV and hosts are not fully understood. In this study, the proteomic profile of CPB cells at progressive time points after ISKNV infection was analyzed by isobaric tags for relative and absolute quantitation (iTRAQ). A total of 2731 proteins corresponding to 6363 novel peptides (false discovery rate analysis of several proteins as G6PDH, β-tubulin and RPL11 were done to validate iTRAQ data. Among those differentially expressed proteins, several glucose metabolism-related enzymes, including glucose-6-phosphate dehydrogenase (G6PDH), pyruvate dehydrogenase phosphatase (PDP) and fumarate hydratase (FH), were up-regulated, while pyruvate dehydrogenase kinase (PDK) and enolase (ENO) were down-regulated at 24 h poi, suggesting that ISKNV enhanced glucose metabolism in CPB cells in early-stage infection. Simultaneously, expression of apoptosis-related proteins including Caspase 8, phosphoinositide 3-kinases (PI3Ks), and regulatory-associated protein of mTOR-like isoform X3 changed upon ISKNV infection, indicating that ISKNV induced apoptosis of CPB cells. Autophagy-related proteins including LC3 and PI3Ks were up-regulated at 24 h poi, indicating that ISKNV induced autophagy of CPB cells in early-stage infection. These findings may improve the understanding of ISKNV and host interaction and help clarify its pathogenesis mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  10. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  11. Effects of dietary glucose and sodium chloride on intestinal glucose absorption of common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Qin, Chaobin; Yang, Liping; Zheng, Wenjia; Yan, Xiao; Lu, Ronghua; Xie, Dizhi; Nie, Guoxing

    2018-01-08

    The co-transport of sodium and glucose is the first step for intestinal glucose absorption. Dietary glucose and sodium chloride (NaCl) may facilitate this physiological process in common carp (Cyprinus carpio L.). To test this hypothesis, we first investigated the feeding rhythm of intestinal glucose absorption. Carps were fed to satiety once a day (09:00 a.m.) for 1 month. Intestinal samples were collected at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00. Result showed that food intake greatly enhanced sodium/glucose cotransporter 1 (SGLT1) and glucose transporter type 2 (GLUT2) expressions, and improved glucose absorption, with highest levels at 09:00 a.m.. Then we designed iso-nitrogenous and iso-energetic diets with graded levels of glucose (10%, 20%, 30%, 40% and 50%) and NaCl (0%, 1%, 3% and 5%), and submitted to feeding trial for 10 weeks. The expressions of SGLT1 and GLUT2, brush border membrane vesicles (BBMVs) glucose transport and intestinal villus height were determined after the feeding trial. Increasing levels of dietary glucose and NaCl up-regulated mRNA and protein levels of SGLT1 and GLUT2, enhanced BBMVs glucose transport in the proximal, mid and distal intestine. As for histological adaptive response, however, high-glucose diet prolonged while high-NaCl diet shrank intestinal villus height. Furthermore, we also found that higher mRNA levels of SGLT1 and GLUT2, higher glucose transport capacity of BBMVs, and higher intestinal villus were detected in the proximal and mid intestine, compared to the distal part. Taken together, our study indicated that intestinal glucose absorption in carp was primarily occurred in the proximal and mid intestine, and increasing levels of dietary glucose and NaCl enhanced intestinal glucose absorption in carp. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation.

    Science.gov (United States)

    Panickar, Kiran S; Nonner, Doris; White, Michael G; Barrett, John N

    2008-09-01

    Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.

  13. The UPR reduces glucose metabolism via IRE1 signaling.

    Science.gov (United States)

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets

    Directory of Open Access Journals (Sweden)

    Lei Long

    2015-12-01

    Full Text Available The object of this study was to explore the regulatory mechanism of octacosanol to the body of animals and the effects of octacosanol on blood hormone levels and gene expressions of glucose transporter protein (GLUT-4 and adenosine monophosphate protein kinase (AMPK in liver and muscle tissue of weaning piglets. A total of 105 crossbred piglets ([Yorkshire × Landrace] × Duroc with an initial BW of 5.70 ± 1.41 kg (21 d of age were used in a 6-wk trial to evaluate the effects of octacosanol and tiamulin supplementation on contents of triiodothyronine (T3, thyroxine (T4, growth hormone (GH, glucagon (GU and adrenaline (AD in blood and gene expressions of GLUT-4 and AMPK in liver and muscle. Piglets were randomly distributed into 3 dietary treatments on the basis of BW and sex. Each treatment had 7 replicate pens with 5 piglets per pen. Treatments were as followed: control group, tiamulin group and octacosanol group. The results showed that compared with control group and tiamulin group, octacosanol greatly promoted the secretion of T3, GH, GU and AD (P  0.05. Results of the present study has confirmed that octacosanol affects energy metabolism of body by regulating secretion of blood hormones and related gene expression in tissue of weaning piglets, which can reduce stress response and has an impact on performance.

  15. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection

    International Nuclear Information System (INIS)

    Wu Ping; Shao Qian; Hu Yaojuan; Jin Juan; Yin Yajing; Zhang Hui; Cai Chenxin

    2010-01-01

    The direct electrochemistry of glucose oxidase (GOx) integrated with graphene was investigated. The voltammetric results indicated that GOx assembled on graphene retained its native structure and bioactivity, exhibited a surface-confined process, and underwent effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.68 s -1 . This work also developed a novel approach for glucose detection based on the electrocatalytic reduction of oxygen at the GOx-graphene/GC electrode. The assembled GOx could electrocatalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction current decreased, which could be used for glucose detection with a high sensitivity (ca. 110 ± 3 μA mM -1 cm -2 ), a wide linear range (0.1-10 mM), and a low detection limit (10 ± 2 μM). The developed approach can efficiently exclude the interference of commonly coexisting electroactive species due to the use of a low detection potential (-470 mV, versus SCE). Therefore, this study has not only successfully achieved DET reaction of GOx assembled on graphene, but also established a novel approach for glucose detection and provided a general route for fabricating graphene-based biosensing platform via assembling enzymes/proteins on graphene surface.

  16. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression

    DEFF Research Database (Denmark)

    Fred, Rikard G; Bang-Berthelsen, Claus H; Mandrup-Poulsen, Thomas

    2010-01-01

    BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3......'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY...... for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB...

  17. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  18. Orosomucoid binds insulin and IGF1 and reduces hormone stimulated protein synthesis and glucose metabolism in C2C12 myotubes

    Science.gov (United States)

    Previous research has indicated that orosomuciod (ORM1) may enhance insulin response in 3T3-L1 adipocytes. The present study was undertaken to determine if ORM1 can modify muscle metabolism by examining glucose oxidation and protein synthesis in the C2C12 muscle cell line. Cells were used for expe...

  19. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    Science.gov (United States)

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Glucose metabolism in diabetic blood vessels

    International Nuclear Information System (INIS)

    Brown, B.J.; Crass, M.F. III

    1986-01-01

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U -14 C. Norepinephrine (NE) (10 -6 M) and/or insulin (I) (150 μU/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and 14 CO 2 and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose

  1. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  2. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... C-reactive protein and TC (R = 0.19), TG (R = 0.29), BMI (R = 0.32), glucose (R = 0.11), and uric acid (R = 0.14) (all P

  3. Use of refractometry for determination of psittacine plasma protein concentration.

    Science.gov (United States)

    Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L

    2008-12-01

    Previous studies have demonstrated both poor and good correlation of total protein concentrations in various avian species using refractometry and biuret methodologies. The purpose of the current study was to compare these 2 techniques of total protein determination using plasma samples from several psittacine species and to determine the effect of cholesterol and other solutes on refractometry results. Total protein concentration in heparinized plasma samples without visible lipemia was analyzed by refractometry and an automated biuret method on a dry reagent analyzer (Ortho 250). Cholesterol, glucose, and uric acid concentrations were measured using the same analyzer. Results were compared using Deming regression analysis, Bland-Altman bias plots, and Spearman's rank correlation. Correlation coefficients (r) for total protein results by refractometry and biuret methods were 0.49 in African grey parrots (n=28), 0.77 in Amazon parrots (20), 0.57 in cockatiels (20), 0.73 in cockatoos (36), 0.86 in conures (20), and 0.93 in macaws (38) (Prefractometry in Amazon parrots, conures, and macaws (n=25 each, PRefractometry can be used to accurately measure total protein concentration in nonlipemic plasma samples from some psittacine species. Method and species-specific reference intervals should be used in the interpretation of total protein values.

  4. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  5. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  6. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  7. [A comparison of post-surgical plasma glucose levels in patients on fluids with different glucose concentrations].

    Science.gov (United States)

    Martínez Carapeto, Isabel; López Castilla, José Domingo; Fresneda Gutiérrez, Reyes

    2017-11-11

    To compare plasma glucose levels and incidence of hyperglycaemia in the post-operative period after general surgery using fluids with different glucose. A randomised, open-label, non-blind, clinical trial was conducted on patients admitted to Paediatric Intensive Care Unit after elective surgery. The inclusion criteria were from 6 months to 14 years of age, with a weight greater than 6kg, onset glucose level >60mg/dL, and a signed informed consent, with no oral intake and maintenance intravenous fluid therapy using fluids with 3.3% or 5% glucose. Plasma glucose levels were measured before surgery, on admission, and 8, 24, and 48h, with the mean glucose levels and incidence of hyperglycaemia (glucose level >150mg/dL) in both groups being compared. A total of 60 patients received glucose/saline 1/3 (51mEq/L sodium and 33g/L glucose), and 70 glucose/saline 5/0.9% (154mEq/L sodium and 50g/L glucose). Mean glucose levels were higher in the group receiving glucose 5%, with no statistical difference. There was no significant difference in the incidence of hyperglycaemia; 8h: 26% in the 3.3% group vs. 21.3% in the 5% group (P=.63); 24h: 20% vs. 22.7% (P=.8); and 48h: 19% vs. 23.1% (P=.78). The use of fluids with 3.3% glucose in the post-operative period of general surgery maintains mean glucose levels in a similar range to that of patients receiving fluids with 5% glucose, with no difference in the incidence of hyperglycaemia. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  8. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    Science.gov (United States)

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 m

  9. Glucose production and storage in hepatocytes isolated from normal versus diabetic rats

    International Nuclear Information System (INIS)

    Olivieri, M.C.; Dragland-Meserve, C.J.; Parker Botelho, L.H.

    1987-01-01

    The rates of glucose production and storage were compared in hepatocytes isolated from normal versus insulin-resistant diabetic rats. A single low-dose (40 mg/kg) IV injection of streptozotocin to 250 g rats resulted in a Type II diabetic animal model which was hyperglycemic with normal insulin levels. Addition of 8 mM 14 C-lactate and 2 mM pyruvate to hepatocytes resulted in a linear increase in total glucose production ( 14 C-glucose and unlabeled glucose) and incorporation into glycogen measured over 120 min. The rate of gluconeogenesis was estimated from the production of 14 C-glucose and the rate of glycogenolysis was estimated from the production of unlabeled glucose in cells incubated in the presence or absence of 14 C-labelled substrate. There was not significant difference in total glucose production in hepatocytes isolated from normal versus diabetic rats, however, the contribution from gluconeogenesis versus glycogenolysis was significantly different. Following a 1 h incubation of cells from normal rats, 42% of the total glucose production was due to gluconeogenesis and 58% was due to glycogenolysis. In cells from diabetic rats, 83% of total glucose production was from gluconeogenesis and 17% from glycogenolysis. Also, incubation with 14 C-lactate/pyruvate resulted in a 3.3-fold increase in 14 C-glucose incorporation into glycogen in hepatocytes isolated from normal rats compared to diabetic rats. These data suggest that alterations occur in the rate-limiting enzymes responsible for glucose production and storage in hepatocytes isolated from a rat model of insulin-resistant Type II diabetes

  10. Sweet taste signaling functions as a hypothalamic glucose sensor

    Directory of Open Access Journals (Sweden)

    Xueying Ren

    2009-06-01

    Full Text Available Brain glucosensing is essential for normal body glucose homeostasis and neuronal function. However, the exact signaling mechanisms involved in the neuronal sensing of extracellular glucose levels remain poorly understood. Of particular interest is the identification of candidate membrane molecular sensors allowing neurons to change firing rates independently of intracellular glucose metabolism. Here we describe for the first time the expression of the taste receptor genes Tas1r1, Tas1r2 and Tas1r3, and their associated G-protein genes, in the mammalian brain. Neuronal expression of taste genes was detected in different nutrient-sensing forebrain regions, including the paraventricular and arcuate nuclei of the hypothalamus, the CA fields and dentate gyrus of the hippocampus, the habenula, and cortex. Expression was also observed in the intra-ventricular epithelial cells of the choroid plexus. These same regions were found to express the corresponding gene products that form the heterodimeric T1R2/T1R3 and T1R1/T1R3 sweet and L-amino acid taste G-protein coupled receptors, respectively. These regions were also found to express the taste G-protein α-Gustducin. Moreover, in vivo studies in mice demonstrate that the hypothalamic expression of taste-related genes is regulated by the nutritional state of the animal, with food deprivation significantly increasing expression levels of Tas1r1 and Tas1r2 in hypothalamus, but not in cortex. Furthermore, exposing mouse hypothalamic cells to a low-glucose medium, while maintaining normal L-amino acid concentrations, specifically resulted in higher expression levels of the sweet-associated gene Tas1r2. This latter effect was reversed by adding the non-metabolizable artificial sweetener sucralose to the low-glucose medium, indicating that taste-like signaling in hypothalamic neurons does not require intracellular glucose oxidation. Our findings suggest that the G-protein coupled sweet receptor T1R2/T1R3 is a

  11. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed ...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin.......Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed...... in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...

  12. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    Science.gov (United States)

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  13. Normal values of urine total protein- and albumin-to-creatinine ratios in term newborns.

    Science.gov (United States)

    El Hamel, Chahrazed; Chianea, Thierry; Thon, Séverine; Lepichoux, Anne; Yardin, Catherine; Guigonis, Vincent

    2017-01-01

    It is important to have an accurate assessment of urinary protein when glomerulopathy or kidney injury is suspected. Currently available normal values for the neonate population have limited value, in part because they are based on small populations and obsolete creatinine assays. We have performed a prospective study with the aim to update the normal upper values of the urinary total protein-to-creatinine and albumin-to-creatinine ratios in term newborns. Urine samples were collected from 277 healthy, full-term newborns within the first 48 hours (D0-1) and between 72 and 120 h of life (D3-4). Total protein, albumin, creatinine and osmolality were measured and the upper limit of normal (upper-limit) values determined. At D0-1 and D3-4, the upper-limit values for the total protein-to-creatinine ratio were 1431 and 1205 mg/g (162 and 136 g/mol) and those for the albumin-to-creatinine ratio were 746 and 301 mg/g (84 and 34 g/mol), respectively. The upper-limit values were significantly higher at D0-1 than at D3-4 only for the albumin-to-creatinine ratio. This study determined the upper limit of normal values for urinary total protein-to-creatinine and albumin-to-creatinine ratios in the largest population of newborns studied to date. These values can therefore be considered as the most clinically relevant data currently available for the detection and diagnosis of glomerular injury in daily clinical practice in this population.

  14. A Computer-Based Glucose Management System Reduces the Incidence of Forgotten Glucose Measurements: A Retrospective Observational Study.

    Science.gov (United States)

    Okura, Tsuyoshi; Teramoto, Kei; Koshitani, Rie; Fujioka, Yohei; Endo, Yusuke; Ueki, Masaru; Kato, Masahiko; Taniguchi, Shin-Ichi; Kondo, Hiroshi; Yamamoto, Kazuhiro

    2018-04-17

    Frequent glucose measurements are needed for good blood glucose control in hospitals; however, this requirement means that measurements can be forgotten. We developed a novel glucose management system using an iPod ® and electronic health records. A time schedule system for glucose measurement was developed using point-of-care testing, an iPod ® , and electronic health records. The system contains the glucose measurement schedule and an alarm sounds if a measurement is forgotten. The number of times measurements were forgotten was analyzed. Approximately 7000 glucose measurements were recorded per month. Before implementation of the system, the average number of times measurements were forgotten was 4.8 times per month. This significantly decreased to 2.6 times per month after the system started. We also analyzed the incidence of forgotten glucose measurements as a proportion of the total number of measurements for each period and found a significant difference between the two 9-month periods (43/64,049-24/65,870, P = 0.014, chi-squared test). This computer-based blood glucose monitoring system is useful for the management of glucose monitoring in hospitals. Johnson & Johnson Japan.

  15. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    Science.gov (United States)

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  16. Analisis Kadar Protein Total Dan Non Protein Nitrogen Pada Air Dan Daging Buah Kelapa (Cocos Nucifera L.) Dengan Metode Kjeldahl

    OpenAIRE

    Margata, Linda

    2015-01-01

    In Indonesia, coconut palm is one of the big contributors for the economy of the people and nation. As food, coconut water and coconut meat contain some nutrients such as carbohydrates, fats, and also proteins. During maturation, changes in protein content of coconut water and coconut meat may happen. The purpose of this study was to determine the concentration of total protein and non protein nitrogen (NPN) in coconut water and coconut meat, and their changes in young and mature coconuts....

  17. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  18. Glucose transporters are expressed in taste receptor cells.

    Science.gov (United States)

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-08-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. © 2011 The Authors. Journal of Anatomy © 2011

  19. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations

    DEFF Research Database (Denmark)

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N

    2015-01-01

    Context: Bile acids and fibroblast growth factor 19 (FGF19) have been suggested as key mediators of the improvements in glucose metabolism after Roux-en-Y gastric bypass (RYGB). Objective: To describe fasting and postprandial state total bile acid (TBA) and FGF19 concentrations before and after...... (T2D) patients and 12 normal glucose tolerant (NGT) subjects participated in the study. Intervention: A 4-hour liquid meal test was performed before and 1 week, 3 months, and 1 year after RYGB. Main Outcome Measures: We measured fasting and postprandial TBA and FGF19 concentrations. Results: Fasting...... TBA concentrations decreased in NGT subjects (P TBA was decreased in NGT subjects 1 week after RYGB (before surgery, 567...

  20. Konsentrasi Protein Total, Albumin, dan Globulin Anak Kambing Peranakan Etawah Setelah Pemberian Berbagai Sediaan Kolostrum* (TOTAL PROTEIN, ALBUMIN, AND GLOBULIN CONCENTRATIONS ON ETTAWAH CROSSBREED NEONATES FOLLOWING THE ADMINISTRATION OF VARIOUS FORM O

    Directory of Open Access Journals (Sweden)

    Anita Esfandiari

    2014-10-01

    Full Text Available This experiment was conducted to study the profile of total protein, albumin, and globulin concentrationson Ettawah crossbreed neonates after consuming various colostrums. Twenty four healthy neonatal kidswere used in this study. The neonates were divided into four groups. Each group received fresh maternal(goat colostrum, frozen-thawed bovine colostrum, bovine spray dried colostrum, and bovine powdercommercial colostrum, respectively. Colostrums were given at 10% of body weight directly after birth andfollowed by the same amount every 12 hours, for three days. The blood was taken from jugular vein at 0, 12,24, 48, 72, and 168 hours after birth to determine total protein, albumin, and globulin concentrations.Results of this study indicated that the serum total protein and globulin concentration increased andreached the peak at 24 hours after birth. Compared to the concentration at birth, the increase of totalprotein concentration were 62.77%, 59.26%, 48.05%, and 66.67% in fresh maternal (goat, frozen-thawedbovine, bovine spray dried, and commercial bovine colostrum, respectively. Serum globulin concentrationincreased 4.9, 4.4, 4.8, and 14.6 times in fresh matermnal goat, frozen-thawed bovine, spray dried, andcommercial bovine colostrums respectively, compared to the concentration at birth. In conclusion, theconsumption of various colostrums i.e. fresh maternal goat colostrums, bovine colostrums (frozen-thawed,spray dried and commercial colostrums would increase the concentration of blood total protein and globulin,which both reached the highest concentration at 24 h after birth.

  1. Estimation of gluconeogenesis and glucose utilization in carbohydate deficient growing rats

    International Nuclear Information System (INIS)

    Hill, F.W.; Egtesadi, S.; Rucker, R.B.

    1986-01-01

    A carbohydrate deficient diet based on food grade oleic acid and soybean oil and a minimally adequate level of casein protein was supplemented with graded levels of glucose (0, 4, 10, 65%), and casein protein (12% basal level plus 4, 6, 20%). Weanling rats were fed the respective diets for 28 days. Under anesthesia in fed state, the right jugular vein and left carotid artery were cannulated. NaH 14 CO 3 and 3 H-glucose labelled on C 6 were injected into aorta via carotid and blood samples taken from vena cava via jugular over a period of 30 minutes. Rate of increase of blood 14 C-glucose was the indicator of gluconeogenesis (GLNG). Disappearance of blood 3 H-glucose was the measure of glucose flux. Relative rate of GLNG was very high in basal unsupplemented rats, and glucose flux was very low. Rats growing rapidly with minimum supplementation (4% glucose or 6% casein) showed the lowest relative rate of GLNG and maximum glucose flux, of the order of 10 mg min -1 kg -1 . GLNG increased with higher levels of glucose and casein, but flux did not increase. The fed state glucose flux extrapolated to 24 hour basis was approximately 2X greater than the dietary intake of glucose and its equivalent of glucogenic precursors in rats fed the basal diet and low levels of supplements. Adjustment for lower flux in post absorptive state, based on flux in fasted rats, reduced the differences between observed flux and intake

  2. Fat distribution and glucose intolerance among Greenland inuit

    DEFF Research Database (Denmark)

    Jørgensen, Marit Eika; Borch-Johnsen, Knut; Stolk, Ronald

    2013-01-01

    circumference [WC], and percentage of body fat) and the indices of glucose metabolism (fasting and 2-h glucose levels, insulin resistance per homeostasis model assessment [HOMA-IR], and the insulin sensitivity index [ISI0,120]) among Greenland Inuit. RESEARCH DESIGN AND METHODS A total of 3,108 adult Inuit...... associated with glucose intolerance, fasting and 2-h plasma glucose levels, HOMA-IR, and ISI0,120. VAT was more strongly associated with all outcomes than was SAT. After further adjustment for BMI or WC, VAT was associated with glucose intolerance and insulin resistance, whereas there was a trend toward...

  3. Intravenous supplementation of acetate, glucose or essential amino acids to an energy and protein deficient diet in lactating dairy goats

    DEFF Research Database (Denmark)

    Safayi, S.; Nielsen, M. O.

    2013-01-01

    amino acid supply is suboptimal. Goats were fed a basal diet deficient in energy (90% of requirements) and protein (80% of requirements), and were randomly allocated to 4 treatments in a balanced 4 x 4 Latin square design. The treatments consisted of 4-d continuous intravenous infusions of isoosmotic...... and close to significantly by ACE, but not by GLU treatment. GLU reduced milk protein percentage compared to all other treatments. High milk protein yields on EM and ACE treatments were associated with higher arterial AVD for acetate and oxygen (not significant for ACE), and higher AVD also for beta......In the present experiment we aimed to study, if milk synthesis is more sensitive toward deficiency in supply of amino acids in early (EL) versus late lactation (LL), and if energy yielding substrates in the form of acetate (but not glucose) can contribute to sustain milk (protein) synthesis, when...

  4. Development of a glucose-sensitive drug delivery device: Microencapsulated liposomes and poly(2-ethylacrylic acid)

    Science.gov (United States)

    Kanokpanont, Sorada

    The current study is the development a self-regulated, glucose responsive drug delivery system, using dioleoylphosphatidylcholine (DOPC) liposomes, a pH sensitive polymer, poly (2-ethylacrylic acid)(PEAA), and the feed back reaction of glucose with glucose oxidase enzyme (GO). The thesis investigates the use of PEAR and liposomes to work inside a microcapsule in response to the glucose level of the environment, by following the release of fluorescence probes, 8-aminonapthalene-1,3,6-trisulfonic acid, disodium salt/p-xylene-bis-pyridimuim bromide (ANTS/DPX) and a model protein, myoglobin. The continuing studies of PEAR and liposome interaction indicated an evidence of the previous hypothesis of two-mode release at different pHs. Differential scanning calorimetric studies of DOPC and PEAA complexes revealed the possibility of polymer adsorption to the liposomes in the pH range 5.5--7.0 and insertion in the liposome bilayer at pH pH, PEAR concentration, presence of cholesterol in the liposomes, Ca 2+, and the concentration of sodium alginate. We have also shown possibilities of anchoring PEAR on to liposome by covalent conjugation although this led to inactivation of the polymer. It is also possible to entrap small molecular weight PEAA in liposomes. The evidence of the pH-induced protein release by the interaction of PEAA and liposomes was first demonstrated in this thesis. Kinetic parameters of GO were estimated to use as a basis for determination optimal concentration in the capsules. The pH reduction inside the capsule due to GO reaction showed positive results for the use of GO in a non-buffered system. The procedure of liquid-core alginate capsules was modified to facilitate the pH-responsive release of ANTS/DPX and myoglobin. The capsules responded to high blood glucose concentration by releasing myoglobin within 30 minutes. Although more studies are required to improve the response of the system to the normal blood glucose and to control the total protein

  5. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  7. High dietary protein intake is associated with an increased body weight and total death risk.

    Science.gov (United States)

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    Science.gov (United States)

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia. © 2015 Wiley Publishing Asia Pty Ltd.

  9. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Young [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Miyashita, Michio [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo (Japan); Simon Cho, B.H. [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, Champaign, IL 61820 (United States); Nakamura, Manabu T., E-mail: mtnakamu@illinois.edu [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  10. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    International Nuclear Information System (INIS)

    Koo, Hyun-Young; Miyashita, Michio; Simon Cho, B.H.; Nakamura, Manabu T.

    2009-01-01

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  11. Dietary incorporation of whey proteins and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Kavadi

    2017-09-01

    Full Text Available Background: The present study was planned to investigate the effectiveness of whey protein isolate (WPI of high purity and a galactooligosaccharides (GOS preparation on glucose homeostasis and insulin resistance under high fat diet (45.47% energy from fat fed conditions in C57BL/6 mice. The mRNA expression of genes related to gluconeogenesis was also examined. Methods: Fasting blood glucose level, serum insulin & GLP-1 (ELISA were measured; HOMA-IR determined in different treatment groups. mRNA expression of gluconeogenesis genes in liver and small intestine tissues analysed by qRT-PCR. Results: Dietary incorporation of WPI/GOS alone or in combination was observed to significantly resist (p [J Complement Med Res 2017; 6(3.000: 326-332

  12. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  13. Blood gas sample spiking with total parenteral nutrition, lipid emulsion, and concentrated dextrose solutions as a model for predicting sample contamination based on glucose result.

    Science.gov (United States)

    Jara-Aguirre, Jose C; Smeets, Steven W; Wockenfus, Amy M; Karon, Brad S

    2018-05-01

    Evaluate the effects of blood gas sample contamination with total parenteral nutrition (TPN)/lipid emulsion and dextrose 50% (D50) solutions on blood gas and electrolyte measurement; and determine whether glucose concentration can predict blood gas sample contamination with TPN/lipid emulsion or D50. Residual lithium heparin arterial blood gas samples were spiked with TPN/lipid emulsion (0 to 15%) and D50 solutions (0 to 2.5%). Blood gas (pH, pCO2, pO2), electrolytes (Na+, K+ ionized calcium) and hemoglobin were measured with a Radiometer ABL90. Glucose concentration was measured in separated plasma by Roche Cobas c501. Chart review of neonatal blood gas results with glucose >300 mg/dL (>16.65 mmol/L) over a seven month period was performed to determine whether repeat (within 4 h) blood gas results suggested pre-analytical errors in blood gas results. Results were used to determine whether a glucose threshold could predict contamination resulting in blood gas and electrolyte results with greater than laboratory-defined allowable error. Samples spiked with 5% or more TPN/lipid emulsion solution or 1% D50 showed glucose concentration >500 mg/dL (>27.75 mmol/L) and produced blood gas (pH, pO 2 , pCO 2 ) results with greater than laboratory-defined allowable error. TPN/lipid emulsion, but not D50, produced greater than allowable error in electrolyte (Na + ,K + ,Ca ++ ,Hb) results at these concentrations. Based on chart review of 144 neonatal blood gas results with glucose >250 mg/dL received over seven months, four of ten neonatal intensive care unit (NICU) patients with glucose results >500 mg/dL and repeat blood gas results within 4 h had results highly suggestive of pre-analytical error. Only 3 of 36 NICU patients with glucose results 300-500 mg/dL and repeat blood gas results within 4 h had clear pre-analytical errors in blood gas results. Glucose concentration can be used as an indicator of significant blood sample contamination with either TPN

  14. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  15. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  16. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    Science.gov (United States)

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  17. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  18. Influence of physical and chemical properties of HTSXT-FTIR samples on the quality of prediction models developed to determine absolute concentrations of total proteins, carbohydrates and triglycerides: a preliminary study on the determination of their absolute concentrations in fresh microalgal biomass.

    Science.gov (United States)

    Serrano León, Esteban; Coat, Rémy; Moutel, Benjamin; Pruvost, Jérémy; Legrand, Jack; Gonçalves, Olivier

    2014-11-01

    Absolute concentrations of total macromolecules (triglycerides, proteins and carbohydrates) in microorganisms can be rapidly measured by FTIR spectroscopy, but caution is needed to avoid non-specific experimental bias. Here, we assess the limits within which this approach can be used on model solutions of macromolecules of interest. We used the Bruker HTSXT-FTIR system. Our results show that the solid deposits obtained after the sampling procedure present physical and chemical properties that influence the quality of the absolute concentration prediction models (univariate and multivariate). The accuracy of the models was degraded by a factor of 2 or 3 outside the recommended concentration interval of 0.5-35 µg spot(-1). Change occurred notably in the sample hydrogen bond network, which could, however, be controlled using an internal probe (pseudohalide anion). We also demonstrate that for aqueous solutions, accurate prediction of total carbohydrate quantities (in glucose equivalent) could not be made unless a constant amount of protein was added to the model solution (BSA). The results of the prediction model for more complex solutions, here with two components: glucose and BSA, were very encouraging, suggesting that this FTIR approach could be used as a rapid quantification method for mixtures of molecules of interest, provided the limits of use of the HTSXT-FTIR method are precisely known and respected. This last finding opens the way to direct quantification of total molecules of interest in more complex matrices.

  19. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    Science.gov (United States)

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations

  20. Protein and fat meal content increase insulin requirement in children with type 1 diabetes – Role of duration of diabetes

    Directory of Open Access Journals (Sweden)

    M. van der Hoogt

    2017-12-01

    Full Text Available Background and objective: Hyperglycaemia remains a challenge in type 1 diabetes since current regimes used to determine meal insulin requirements prove to be ineffective. This is particularly problematic for meals containing high amounts of protein and fat. We aimed to determine the post-prandial glycaemic response and total insulin need for mixed meals, using sensor-augmented insulin pumps in children with type 1 diabetes. Methods: Twenty-two children with type 1 diabetes, aged 4–17 years on insulin pump therapy completed this home-based, cross-over, randomised controlled trial. Two meals with identical carbohydrate content – one with low fat and protein (LFLP and one with high fat and protein (HFHP contents – were consumed using normal insulin boluses. Blood glucose monitoring was done for 10 h post-meal, with correction bolus insulin given two-hourly if required. Results: The HFHP meal required significantly more total insulin (3.48 vs. 2.7 units as a result of increased post-meal correction insulin requirement (1.2 vs. 0.15 units spread over a longer duration (6 vs. 3 h. The HFHP meals significantly increased the time spent above target glucose level. Duration of diabetes and total daily insulin use significantly influenced the post-prandial blood glucose response to the two meals. Conclusion: When consuming carbohydrate-based mixed meals, children with type 1 diabetes on insulin pump therapy, required significantly more insulin over a longer period of time than the insulin requirement calculated using current regimes. This additional amount required is influenced by the duration of diabetes and total daily insulin use. Keywords: Carbohydrate, Protein and fat, Type 1 diabetes, Glucose, Insulin infusion systems

  1. Study of molasses / vinasse waste ratio for single cell protein and total microorganisms

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2006-02-01

    Full Text Available Different molasses/ vinasse ratio were used as substrate to investigate single cell protein and total lipids production by five microorganisms: four yeasts strains: Candida lipolytica, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, a yeast isolated from vinasse lake (denominated LLV98 and a bacterium strain, Corynebacterium glutamicum. The media utilized were: a 50% molasses and 50% vinasse; b 25% molasses and 75% vinasse and c 75% molasses and 25% vinasse. The objective of this work was to study the growth of microorganisms and also evaluate protein and lipids content in the biomass obtained from these by-products. The highest single cell protein production was obtained by S. cerevisiae, 50.35%, followed by R. mucilaginosa, 41.96%. The lowest productions were obtained by C. glutamicum. The higher total lipids productions, more than 26%, were founded in molasses plus vinasse at 50%/50% by S. cerevisiae and C. glutamicum.

  2. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment

    Directory of Open Access Journals (Sweden)

    Hua-Juan Shi

    2018-04-01

    Full Text Available The RNA-binding protein quaking-a (Qkia was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99% among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW], insulin (0.052 mg/kg BW, and glucagon (0.075 mg/kg BW respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41% for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h. Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt

  3. Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ([¹³C]starch and [¹⁵N]protein): effects of gelatinisation of starches and sustained swimming.

    Science.gov (United States)

    Felip, Olga; Ibarz, Antoni; Fernández-Borràs, Jaume; Beltrán, Marta; Martín-Pérez, Miguel; Planas, Josep V; Blasco, Josefina

    2012-03-01

    Here we examined the use of stable isotopes, [¹³C]starch and [¹⁵N]protein, as dietary tracers to study carbohydrate assimilation and distribution and protein utilisation, respectively, by rainbow trout (Oncorhynchus mykiss). The capacity of glucose uptake and use by tissues was studied, first, by varying the digestibility of carbohydrate-rich diets (30 % carbohydrate), using raw starch and gelatinised starch (GS) and, second, by observing the effects of two regimens of activity (voluntary swimming, control; sustained swimming at 1·3 body lengths/s, exercise) on the GS diet. Isotopic ratio enrichment (¹³C and ¹⁵N) of the various tissue components (protein, lipid and glycogen) was measured in the liver, muscles, viscera and the rest of the fish at 11 and 24 h after a forced meal. A level of 30 % of digestible carbohydrates in the food exceeded the capacity of rainbow trout to use this nutrient, causing long-lasting hyperglycaemia that raises glucose uptake by tissues, and the synthesis of glycogen and lipid in liver. Total 13C recovered 24 h post-feeding in the GS group was lower than at 11 h, indicating a proportional increase in glucose oxidation, although the deposition of lipids in white muscle (WM) increased. Prolonged hyperglycaemia was prevented by exercise, since sustained swimming enhances the use of dietary carbohydrates, mainly through conversion to lipids in liver and oxidation in muscles, especially in red muscle (RM). Higher recoveries of total 15N for exercised fish at 24 h, mainly into the protein fraction of both RM and WM, provide evidence that sustained swimming improves protein deposition, resulting in an enhancement of the protein-sparing effect.

  4. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production

    DEFF Research Database (Denmark)

    Marzec, Michal; Hawkes, Colin P; Eletto, Davide

    2016-01-01

    IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional...... in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94....... Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone...

  5. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  6. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus

    International Nuclear Information System (INIS)

    Langer, Rupert; Feith, Marcus; Siewert, Joerg Rüdiger; Wester, Hans-Juergen; Hoefler, Heinz

    2008-01-01

    Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no

  7. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP and GRP94 (GP96 in human adenocarcinomas of the esophagus

    Directory of Open Access Journals (Sweden)

    Wester Hans-Juergen

    2008-03-01

    Full Text Available Abstract Background Glucose regulated proteins (GRPs are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP and GRP94 (GP96 in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett adenocarcinomas (n = 137 and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm as compared to more advanced stages (pT2 and pT3 and normal tissue (p = 0.031. Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035. In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07. GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038. For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001 and less lymph node involvement (p = 0.036. Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or p

  8. Effects of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: a single blind randomised controlled trial.

    Science.gov (United States)

    van Til, A J; Naumann, E; Cox-Claessens, I J H M; Kremer, S; Boelsma, E; de van der Schueren, M A E

    2015-05-01

    To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults. A single blind randomised controlled trial. Rehabilitation centre. Older adults (≥ 55 years) admitted to a rehabilitation centre after hospital discharge (n=34). Participants received a high protein diet (protein enriched bread and protein enriched drinking yoghurt; n=17) or a regular diet (regular bread and regular drinking yoghurt; n=17) for three consecutive weeks. Total protein intake and protein intake per meal, measured twice weekly over a three weeks period (six measurements per participant). Compared with controls, patients who received the protein enriched products had a significantly higher protein intake (115.3 g/d vs 72.5 g/d, Pconsumption of protein enriched products improves protein distribution over the day.

  9. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  10. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    Science.gov (United States)

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  11. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  12. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  13. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Science.gov (United States)

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  14. Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.

    Science.gov (United States)

    Tanaka, Mizuki; Hiramoto, Tetsuya; Tada, Hinako; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    Aspergillus oryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzae IMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by

  15. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of two doses of glucose and a caffeine–glucose combination on cognitive performance and mood during multi-tasking

    Science.gov (United States)

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-01-01

    Background This study assessed the effects of two doses of glucose and a caffeine–glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Materials and methods Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. Results The caffeine–glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. Conclusion These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. PMID:25196040

  17. Effects of two doses of glucose and a caffeine-glucose combination on cognitive performance and mood during multi-tasking.

    Science.gov (United States)

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-09-01

    This study assessed the effects of two doses of glucose and a caffeine-glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. The caffeine-glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd.

  18. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  19. Activation of the transcription factor carbohydrate-responsive element-binding protein by glucose leads to increased pancreatic beta cell differentiation in rats.

    Science.gov (United States)

    Soggia, A; Flosseau, K; Ravassard, P; Szinnai, G; Scharfmann, R; Guillemain, G

    2012-10-01

    Pancreatic cell development is a tightly controlled process. Although information is available regarding the mesodermal signals that control pancreatic development, little is known about the role of environmental factors such as nutrients, including glucose, on pancreatic development. We previously showed that glucose and its metabolism through the hexosamine biosynthesis pathway (HBP) promote pancreatic endocrine cell differentiation. Here, we analysed the role of the transcription factor carbohydrate-responsive element-binding protein (ChREBP) in this process. This transcription factor is activated by glucose, and has been recently described as a target of the HBP. We used an in vitro bioassay in which pancreatic endocrine and exocrine cells develop from rat embryonic pancreas in a way that mimics in vivo pancreatic development. Using this model, gain-of-function and loss-of-function experiments were undertaken. ChREBP was produced in the endocrine lineage during pancreatic development, its abundance increasing with differentiation. When rat embryonic pancreases were cultured in the presence of glucose or xylitol, the production of ChREBP targets was induced. Concomitantly, beta cell differentiation was enhanced. On the other hand, when embryonic pancreases were cultured with inhibitors decreasing ChREBP activity or an adenovirus producing a dominant-negative ChREBP, beta cell differentiation was reduced, indicating that ChREBP activity was necessary for proper beta cell differentiation. Interestingly, adenovirus producing a dominant-negative ChREBP also reduced the positive effect of N-acetylglucosamine, a substrate of the HBP acting on beta cell differentiation. Our work supports the idea that glucose, through the transcription factor ChREBP, controls beta cell differentiation from pancreatic progenitors.

  20. Glucose-tolerant β-glucosidase retrieved from the metagenome

    Directory of Open Access Journals (Sweden)

    Taku eUchiyama

    2015-06-01

    Full Text Available β-glucosidases (BGLs hydrolyze cellooligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (~mM concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (approximately 10,000 colonies and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7 was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0–6.5 and retained full or 1.5–2-fold enhanced activity in the presence of 0.1–0.5 M glucose. It had a low KM (78 µM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose and high Vmax (91 µmol min-1 mg-1 with p-nitrophenyl β-D-glucoside; 155 µmol min-1 mg-1 with cellobiose among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  1. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources.

    Science.gov (United States)

    Bederman, Ilya R; Foy, Steven; Chandramouli, Visvanathan; Alexander, James C; Previs, Stephen F

    2009-03-06

    The obesity epidemic has generated interest in determining the contribution of various pathways to triglyceride synthesis, including an elucidation of the origin of triglyceride fatty acids and triglyceride glycerol. We hypothesized that a dietary intervention would demonstrate the importance of using glucose versus non-glucose carbon sources to synthesize triglycerides in white adipose tissue. C57BL/6J mice were fed either a low fat, high carbohydrate (HC) diet or a high fat, carbohydrate-free (CF) diet and maintained on 2H2O (to determine total triglyceride dynamics) or infused with [6,6-(2)H]glucose (to quantify the contribution of glucose to triglyceride glycerol). The 2H2O labeling data demonstrate that although de novo lipogenesis contributed approximately 80% versus approximately 5% to the pool of triglyceride palmitate in HC- versus CF-fed mice, the epididymal adipose tissue synthesized approximately 1.5-fold more triglyceride in CF- versus HC-fed mice, i.e. 37+/-5 versus 25+/-3 micromolxday(-1). The [6,6-(2)H]glucose labeling data demonstrate that approximately 69 and approximately 28% of triglyceride glycerol is synthesized from glucose in HC- versus CF-fed mice, respectively. Although these data are consistent with the notion that non-glucose carbon sources (e.g. glyceroneogenesis) can make substantial contributions to the synthesis of triglyceride glycerol (i.e. the absolute synthesis of triglyceride glycerol from non-glucose substrates increased from approximately 8 to approximately 26 micromolxday(-1) in HC- versus CF-fed mice), these observations suggest (i) the importance of nutritional status in affecting flux rates and (ii) the operation of a glycerol-glucose cycle.

  2. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  3. Blood Glucose, Insulin and Inorganic Phosphorus in Healthy and Ketotic Dairy Cows after Intravenous Infusion of Glucose Solution

    Directory of Open Access Journals (Sweden)

    Radojica Djoković

    2009-01-01

    Full Text Available The aim of the present study was to determine the degree of blood glucose utilization by peripheral tissue on the basis of changes in blood concentrations of glucose, insulin and inorganic phosphorus in healthy (n = 10 and ketotic cows (n = 10 after intravenous infusion of glucose solution. Blood samples were taken in both groups of examined cows at the following time intervals: just before (time 0 and 30, 60, 120, 180 and 240 min after intravenous infusion of a total of 500 ml of 50% of glucose solution. Glucose and insulin blood serum values in both groups of cows increased significantly within 30 and 60 min of the experiment (p p p < 0.05 in the blood value of inorganic phosphorus in ketotic cows compared to the healthy ones. This is linked with the active entry of glucose into the glucolytic pathway of peripheral tissues. It can thus be concluded that there is a higher degree of blood glucose utilization by peripheral tissues in ketotic cows.

  4. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose

    DEFF Research Database (Denmark)

    Damholt, A B; Buchan, A M; Kofod, Hans

    1998-01-01

    dependently stimulated the release of GLP-1 and resulted in a 2-fold increase at 100 nM GIP. This effect was fully inhibited by 10 nM somatostatin. However, neither basal or GIP stimulated GLP-1 secretion were affected by ambient glucose concentrations from 5-25 mM. The receptor-independent secretagogues beta...... but not by staurosporine. These results indicate that glucose does not directly stimulate canine L-cells. It is more probable that glucose releases GIP from the upper intestine that in turn stimulates GLP-1 secretion. The ability of GIP to stimulate GLP-1 secretion is probably mediated through activation of protein kinase...

  5. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Science.gov (United States)

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  7. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats.

    Science.gov (United States)

    Vazquez-Anaya, Guillermo; Martinez, Bridget; Soñanez-Organis, José G; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2017-03-01

    Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T 4 ) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T 4 (8.0 µg/100 g BM/day × 5 weeks). T 4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T 4 -treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T 4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T 4 treatment increased the influx of T 4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T 3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis. © 2017 Society for Endocrinology.

  8. Glucose counterregulation in diabetes secondary to chronic pancreatitis

    DEFF Research Database (Denmark)

    Larsen, S; Hilsted, J; Philipsen, E K

    1990-01-01

    Glucose counterregulation and hormonal responses after insulin-induced hypoglycemia were investigated in six patients with diabetes mellitus secondary to chronic pancreatitis, in seven with insulin-dependent (type I) diabetes mellitus, and in seven healthy subjects. Glucose counterregulation...... was identical in type I patients and in the patients with chronic pancreatitis, whereas both groups had impaired glucose recovery compared with the healthy subjects. The patients with chronic pancreatitis had no glucagon response to hypoglycemia, whereas epinephrine increased significantly. In an additional...... experiment, glucose recovery did not occur after hypoglycemia during concomitant beta-adrenoceptor blockade in these patients. In conclusion, glucose counterregulation is preserved but slightly impaired in patients with diabetes secondary to chronic pancreatitis, and the combination of total glucagon...

  9. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy

    Science.gov (United States)

    2007-03-30

    Tymoczko et al. 2002). Both cardiac muscle and brain contain the necessary enzymes to metabolize either glucose or ketone bodies . The enzymes... metabolic phenotype of astrocytes and neurons in vitro; and to determine whether antipsychotic drug administration affects glucose metabolites in...Cortical Astrocytes and Neurons 20 Abstract 21 v Introduction ~ 22 Results 24 Enriched Astrocyte and Neuronal Cultures Display Unique Metabolic

  10. Isolated total RNA and protein are preserved after thawing for more than twenty-four hours

    Science.gov (United States)

    de Oliveira, Ivone Braga; Ramos, Débora Rothstein; Lopes, Karen Lucasechi; de Souza, Regiane Machado; Heimann, Joel Claudio; Furukawa, Luzia Naôko Shinohara

    2012-01-01

    OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of β-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues. PMID:22473407

  11. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  12. Nonsuppressed Glucagon After Glucose Challenge as a Potential Predictor for Glucose Tolerance.

    Science.gov (United States)

    Wagner, Róbert; Hakaste, Liisa H; Ahlqvist, Emma; Heni, Martin; Machann, Jürgen; Schick, Fritz; Van Obberghen, Emmanuel; Stefan, Norbert; Gallwitz, Baptist; Tuomi, Tiinamaija; Häring, Hans-Ulrich; Groop, Leif; Fritsche, Andreas

    2017-05-01

    Glucagon levels are classically suppressed after glucose challenge. It is still not clear as to whether a lack of suppression contributes to hyperglycemia and thus to the development of diabetes. We investigated the association of postchallenge change in glucagon during oral glucose tolerance tests (OGTTs), hypothesizing that higher postchallenge glucagon levels are observed in subjects with impaired glucose tolerance (IGT). Glucagon levels were measured during OGTT in a total of 4,194 individuals without diabetes in three large European cohorts. Longitudinal changes in glucagon suppression were investigated in 50 participants undergoing a lifestyle intervention. Only 66-79% of participants showed suppression of glucagon at 120 min (fold change glucagon 120/0 change glucagon 120/0 ≥1). Participants with nonsuppressed glucagon 120 had a lower risk of IGT in all cohorts (odds ratio 0.44-0.53, P change glucagon 120/0 was associated with an improvement in insulin sensitivity ( P = 0.003). We characterize nonsuppressed glucagon 120 during the OGTT. Lower glucagon suppression after oral glucose administration is associated with a metabolically healthier phenotype, suggesting that it is not an adverse phenomenon. © 2017 by the American Diabetes Association.

  13. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  14. Interrelationship of growth hormone, glucose and lipid metabolism ...

    African Journals Online (AJOL)

    After an overnight fast (10-12 hours), blood was taken from the subjects into heparinised tubes, centrifuged at 5,000rpm for 5 minutes and the plasma separated. Fasting plasma glucose (FBS)was determined by glucose oxidase method,, total cholesterol ,LDL, HDL and, Triglyceride were determined by enzymatic methods.

  15. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  16. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome.

    Science.gov (United States)

    Guevara-Cruz, Martha; Tovar, Armando R; Aguilar-Salinas, Carlos A; Medina-Vera, Isabel; Gil-Zenteno, Lidia; Hernández-Viveros, Isaac; López-Romero, Patricia; Ordaz-Nava, Guillermo; Canizales-Quinteros, Samuel; Guillen Pineda, Luz E; Torres, Nimbe

    2012-01-01

    Metabolic syndrome (MetS) is a health problem throughout the world and is associated with cardiovascular disease and diabetes. Thus, the purpose of the present work was to evaluate the effects of a dietary pattern (DP; soy protein, nopal, chia seed, and oat) on the biochemical variables of MetS, the AUC for glucose and insulin, glucose intolerance (GI), the relationship of the presence of certain polymorphisms related to MetS, and the response to the DP. In this randomized trial, the participants consumed their habitual diet but reduced by 500 kcal for 2 wk. They were then assigned to the placebo (P; n = 35) or DP (n = 32) group and consumed the reduced energy diet plus the P or DP beverage (235 kcal) minus the energy provided by these for 2 mo. All participants had decreases in body weight (BW), BMI, and waist circumference during the 2-mo treatment (P < 0.0001); however, only the DP group had decreases in serum TG, C-reactive protein (CRP), and AUC for insulin and GI after a glucose tolerance test. Interestingly, participants in the DP group with MetS and the ABCA1 R230C variant had a greater decrease in BW and an increase in serum adiponectin concentration after 2 mo of dietary treatment than those with the ABCA1 R230R variant. The results from this study suggest that lifestyle interventions involving specific DP for the treatment of MetS could be more effective if local foods and genetic variations of the population are considered.

  17. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    Directory of Open Access Journals (Sweden)

    Hong SU

    2013-03-01

    Full Text Available Objective  To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3 and Ac-H4 in human renal mesangial cell (HMCs as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods  The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, high glucose group (HG, 25mmol/L D-glucose×2d, memory groups (M1, M2, M3, 25mmol/L D-glucose×2days + 5.5mmol/L D-glucose×3d, 6d or 9d, persisting normal glucose group (NG, 5.5mmol/L D-glucose×9d. ② Advanced glycation end products memory model: normal glucose group (NG, 5.5mmol/ L D-glucose×2d, NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250µg/ml AGEs×2d; AGEs memory group (AGEs-M, 5.5mmol/L D-glucose + 250µg/ml AGEs×2d + 5.5mmol/L D-glucose×3d; BSA control group (NG+BSA, 5.5mmol/L D-glucose + 250µg/ml BSA×2d. ③ H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, NG+H2O2 group (H2O2, 5.5mmol/L D-glucose +100µmol/L H2O2×30min; H2O2 memory group [(5.5mmol/ L D-glucose + 100µmol/L H2O2×30min + 5.5mmol/L D-glucose×3d]; normal glucose control group (NG3, 5.5mmol/L D-glucose×3d. ④ Transfection with PKCβ2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d; high glucose group (HG, 25mmol/L D-glucose×2d; memory group (M, 25mmol/L D-glucose×2d + 5.5mmol/L D-glucose×3d; Ad5-null memory group (HN, 25mmol/L D-glucose + Ad5-null×2d + 5.5mmol/L D-glucose×3d; PKCβ2 memory group (PO, 25mmol/L D-glucose + Ad5-PKCβ2×2d + 5.5mmol/L D-glucose×3d; inhibitor of PKCβ2 memory group (PI, 25mmol/L D-glucose×2d + 10µmol/L CGP53353 + 5.5mmol/L D-glucose×3d. The expression of intracellular reactive oxygen species (ROS was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKCβ2 proteins were

  18. Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment

    Directory of Open Access Journals (Sweden)

    Tetsuya Okuda

    2017-02-01

    Full Text Available Protein modification by O-linked N-acetylglucosamine (O-GlcNAcylation is one of the post transcriptional modifications occurring on cellular proteins. This paper provides a data set relating to the O-GlcNAcylation of cellular proteins detected by RL2 and CTD110.6 antibodies, which are commonly used for detection of protein O-GlcNAcylation, in 2-deoxy-d-glucose (2DG-treated human teratocarcinoma NCCIT cells in support of the research article entitled “A novel, promoter-based, target-specific assay identifies 2-deoxy-d-glucose as an inhibitor of globotriaosylceramide biosynthesis” (Okuda et al., 2009 [1]. The main article described a suppressive effect of 2DG on an Sp1 target gene in NCCIT cells and discussed the relationship between the effect of 2DG and O-GlcNAcylation status of Sp1. The data in this paper complements this relationship by Western blotting and clearly showed that the 2DG treatment increased O-GlcNAcylation of cellular proteins in NCCIT cells, whereas the RL2 and CTD110.6 epitopes were detected in a different manner. The RL2 epitope was detected on Sp1 during 2DG treatment, and the level was transiently increased at 24 h. In contrast, the CTD110.6 epitope became detectable on Sp1 over 72 h after 2DG treatment, and then the other proteins containing CTD110.6 epitopes also appeared in the cell lysates and the anti-Sp1 antibody precipitates.

  19. Associations of total, dairy, and meat protein with markers for bone turnover in healthy, prepubertal boys

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Hoppe, Camilla; Michaelsen, Kim Fleischer

    2007-01-01

    intake was estimated from a 3-d weighed food record. sIGF-I and its binding protein-3 were assessed (immunoassay) in a subgroup of 56 boys. All statistical models included effects of age, BMI, and energy intake. Dairy protein was negatively associated with sOC (P ¼ 0.05) but not significantly associated......We previously reported that high intake of milk, but not meat, equal in protein content, increased serum insulin-like growth factor-I (sIGF-I) in prepubertal boys. sIGF-I plays a key role in bone metabolism. Therefore, the aim of this cross-sectional study was to investigate associations of total.......04) but not significantly associated with sOC and sCTX. Free sIGF-I was positively associated with total (P , 0.01) and dairy (P ¼ 0.06) protein but not with meat protein. Our results indicate that dairy and meat protein may exhibit a distinct regulatory effect on different markers for bone turnover. Future studies should...

  20. Glucose production and gluconeogenesis in adults with cerebral malaria

    NARCIS (Netherlands)

    van Thien, H.; Ackermans, M. T.; Dekker, E.; Thanh Chien, V. O.; Le, T.; Endert, E.; Kager, P. A.; Romijn, J. A.; Sauerwein, H. P.

    2001-01-01

    Hypoglycaemia is an important complication in severe malaria, ascribed to an inhibition of gluconeogenesis. However, the only data available suggested that in severe malaria, total glucose production is increased. We measured glucose production and gluconeogenesis after an overnight fast in all

  1. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  2. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  3. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal

    Directory of Open Access Journals (Sweden)

    Fanny Theytaz

    2014-07-01

    Full Text Available Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G or 13C-labelled fructose, lipids and protein, but without glucose (Fr, or protein and lipids alone (ProLip. After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4% and 13CO2 production (36.6% ± 1.9% were higher (p < 0.05 than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG. This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  4. Concentration of total protein and degree of acidity (pH of saliva when fasting and after breakfasting

    Directory of Open Access Journals (Sweden)

    Gemella Nur Illahi

    2016-04-01

    Full Text Available Background: While fasting, the mouth does not work to eat and drink so that the salivary glands become less active so saliva production decreased and there was a change in eating timewhich is relation to the mastication process that impact on changes in the degree of acidity (pH Objectives: To determine the concentration of total protein and the degree of acidity (pH of saliva when fasting and after breakfasting. Materials and Methods: The study was observational analytic design with longitudinal (follow up study conducted in the Hj. Halima Dg. Sikati Dental Hospital inKandea in July 2015, the sampling method was purposive sampling. Population was 35 clinical students at the Department of Dental Public Health, Faculty of Dentistry Hasanuddin University with a total sample of 16 students who fit the criteria of the study subjects. To calculate the total protein of saliva concentration using Kyltecautoanalyzerand pH meter to measure the acidity of saliva. Data was analyzed was using SPSS version 17.0 (paired t-test, p <0.05. Results: The mean of total protein (% while fasting by 0135% ± 0.026 and the mean total protein (% after breakfasting at 0.179% ± 0.035, while the average degree of acidity (pH during fasting at 7.26 ± 0:24 and the average degree of acidity (pH after breakfasting at 7.66 ± 0.23 with p-value (0.000. Conclusions: An increase in the total protein concentration and acidity (pH after breakfasting.

  5. High sensitivity C-reactive protein and its relationship with impaired glucose regulation in lean patients with polycystic ovary syndrome.

    Science.gov (United States)

    Kim, Ji Won; Han, Ji Eun; Kim, You Shin; Won, Hyung Jae; Yoon, Tae Ki; Lee, Woo Sik

    2012-04-01

    The polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder, also associated with the metabolic syndrome. Serum high sensitivity C-reactive protein (hs-CRP), a marker of low-grade chronic inflammation is a potent predictor of cardiovascular events, closely linked to metabolic syndrome features and higher in patients with PCOS. However, hs-CRP in lean patients with PCOS has not been fully evaluated and few data are available. We aimed to investigate the relation between glucose intolerance and hs-CRP levels in lean patients with PCOS, and to evaluate the possible relationship between hs-CRP and PCOS by evaluating PCOS-related metabolic abnormalities in Korean women. We consecutively recruited 115 lean (BMI PCOS and 103 lean healthy controls. The PCOS group was divided two groups: impaired glucose regulation (IGR) and normal glucose tolerance group (NGT). In lean patients with PCOS, hs-CRP level was higher in the IGR group than in the NGT group (0.60 ± 1.37 versus 0.18 ± 0.46, p(Bonf) = 0.023) and other metabolic risk factors were also higher in the IGR group than in the NGT group. And there were close relationships between hs-CRP level and metabolic risk factor, such as 2 h postprandial insulin level in the lean patients with PCOS.

  6. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L

    2005-01-01

    Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.

  7. Sleep Control, GPCRs, and Glucose Metabolism.

    Science.gov (United States)

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. Copyright © 2016. Published by Elsevier Ltd.

  8. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    Science.gov (United States)

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  9. Peculiarities of glucose and glycerol metabolism in Nocardia vaccinii IMB B-7405

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-04-01

    Full Text Available It has been established that in cells of Nocardia vaccinii IMB B-7405 (surfactant producer glucose catabolism is performed through pentose phosphate cycle as well as through gluconate (activi­ty of NAD+-dependent glucose-6- phosphate dehydrogenase and FAD+-dependent glucose dehydrogenase 835 ± 41 and 698 ± 35 nmol∙min-1∙mg-1 of protein respectively. 6-Phosphogluconate formed in the gluconokinase reaction is involved in the pentose phosphate cycle (activity of constitutive NADP+-dependent 6-phosphogluconate dehydrogenase 357 ± 17 nmol∙min-1∙mg-1 of protein. Glyce­rol catabolism to dihydroxyacetonephosphate (the intermediate of glycolysis may be performed in two ways: through glycerol-3-phosphate (glycerol kinase activity 244 ± 12 nmol∙min-1∙mg-1 of protein and through dihydroxyacetone. Replenishment of the C4-dicarboxylic acids pool in N. vaccinii IMV B-7405 grown on glucose and glycerol occurs in the phosphoenolpyruvate(PEPcarboxylase reaction (714–803 nmol∙min-1∙mg-1 of protein. 2-Oxoglutara­te was involved in tricarboxylic acid cycle by alternate pathway with the participation of 2-oxoglutarate synthase. The observed activity of both key enzymes of gluconeogenesis (PEP- carboxykinase and PEP-synthase, trehalose phosphate synthase and NADP+-dependent glutamate dehydrogenase confirmed the ability of IMV B-7405 strain to the synthesis of surface active glyco- and aminolipids, respectively.

  10. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  11. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  12. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    Science.gov (United States)

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Inhibitory effects and mechanism of 25-OH-PPD on glomerular mesangial cell proliferation induced by high glucose.

    Science.gov (United States)

    Yu, Junxian; Liu, Chunna; Li, Zhe; Zhang, Chao; Wang, Zheng; Liu, Xinyu

    2016-06-01

    To investigate the protective effects and potential mechanism of the compound 25-OH-PPD (PPD) on the glomerular mesangial cells (GMC) under high glucose condition. The hypertrophic GMC cells were established by DMEM containing glucose and randomly divided into five groups, including the normal control group (Control), the high glucose model group (HG, 25 mmolL(-1)), the PPD low dose group (1μmolL(-1), PPD-L), the PPD middle dose group (5μmolL(-1), PPD -M) and the PPD high dose group (10μmolL(-1), UCN-H). The GMC were incubated for 48h under different treatment factors. Total protein content was determined by Lowry method. The diameter of the single GMC and volume were measured by computer photograph analysis system. The GMC cell viability was analyzed by MTT assay. The level of malondialdehyde (MDA), the content of glutathione (GSH) and superoxide dismutase (SOD) activity were measured by ELISA. [Ca(2+)]і transient was measured by Till image system and by cell-loading Fura-2/AM. The expression of COX-1 and COX-2 were also determined using ELISA method. The viability of GMC and the total protein content were decreased in HG group, different dosage PPD group could increase these indexes (PPPD could reduce the MDA and enhance GSH and SOD (PPPD-L, PPD-M or PPD-H), the [Ca(2+)]і transient was reduced (PPPD groups. The protective effects of PPD on GMC from HG-induced hypertrophy may be associated with the inhibition of [Ca(2+)]і transient and decreasing expression of COX-1 via the oxidative-stress injure pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Molecular cloning and characterization of glucose transporter 1 ...

    African Journals Online (AJOL)

    Glucose transporter type-1 (glut1) and citrate synthase plays crucial role in glucose transport and regulation of tricarboxylic acid cycle (TCA) cycle in mammalian energy metabolism. The present study was aimed to clone and characterize glut1 and citrate synthase cDNA in water buffalo (Bubalus bubalis). Total of 90 ...

  15. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  16. Short-term consumption of a plant protein diet does not improve glucose homeostasis of young C57BL/6J mice.

    Science.gov (United States)

    Lamming, Dudley W; Baar, Emma L; Arriola Apelo, Sebastian I; Tosti, Valeria; Fontana, Luigi

    2017-12-07

    Recently, it has become apparent that dietary macronutrient composition has a profound impact on metabolism, health and even lifespan. Work from many laboratories now suggest that dietary protein quality - the precise amino acid composition of the diet, as well as possibly the source of dietary protein - may also be critical in regulating the impact of diet on health. Perhaps in part due to the naturally low methionine content of plants, vegan diets are associated with a decreased risk of diabetes and improved insulin sensitivity, but this association is confounded by the lower overall protein intake of vegans. Here, we test the effect of consuming isocaloric rodent diets with similar amino acid profiles derived from either plant protein or dairy protein. We find that male C57BL/6J mice consuming either diet have similar glycemic control, as assessed by glucose, insulin, and pyruvate tolerance tests, and have similar overall body composition. We conclude that short-term feeding of plant protein has no positive or negative effect on the metabolic health of young male C57BL/6J mice, and suggest that dietary interventions that alter either dietary protein levels or the levels of specific essential amino acids are more likely to improve metabolic health than alterations in dietary protein source.

  17. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Gou, Hongju; Zhang, Qianqian; Li, Jiangchao; Qi, Cuiling; He, Xiaodong; Wu, Pingxiang; Wang, Lijing

    2013-11-01

    Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to an AP-1 binding site at -1,029 in the FN gene promoter upon high glucose stimulation, and the binding were disrupted by andrographolide treatment. These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. © 2013 Wiley Periodicals, Inc.

  18. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  19. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  20. Lipogenesis and glucose production in dwarf carrier and normal lines of chicks

    International Nuclear Information System (INIS)

    Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.

    1986-01-01

    Diets containing 13, 16, 19, or 23% protein and 70% carbohydrate calories were fed to dwarf heterozygote (dw) and normal (Dw) chickens to determine the effects of age (weeks) and protein on intermediary metabolism. In vitro lipogenesis (IVL) was determined by the incorporation of acetate (10 and 20 mM 2 14 C-Acet/2hr) into hepatic fatty acids. Net glucose production (NGP) was determined as the difference in media glucose in the presence or absence of 10 mM pyruvate. Values were expressed per unit of relative liver size (μmoles/100 g BWt). Serum insulin (INS; ng/ml) was determined by homologous radioimmunoassay. Results indicate that although INS was greater in Dw than in dw, this difference was not reflected in a decreased rate of glucose production to accompany the difference in IVL between the two lines. Moreover, an increase in dietary protein resulted in a decrease in IVL but an increase in INS

  1. A role for polyamines in glucose-stimulated insulin-gene expression.

    Science.gov (United States)

    Welsh, N

    1990-01-01

    The aim of the present study was to evaluate the possible role for polyamines in the glucose regulation of the metabolism of insulin mRNA of pancreatic islet cells. For this purpose islets were prepared from adult mice and cultured for 2 days in culture medium RPMI 1640 containing 3.3 mM- or 16.7 mM-glucose with or without the addition of the inhibitors of polyamine biosynthesis difluoromethylornithine (DFMO) and ethylglyoxal bis(guanylhydrazone) (EGBG). Culture at the high glucose concentration increased the islet contents of both insulin mRNA and polyamines. The synthesis of total RNA, total islet polyamines and polyamines associated with islet nuclei was also increased. When the combination of DFMO and EGBG was added in the presence of 16.7 mM-glucose, low contents of insulin mRNA, spermine and spermidine were observed. Total islet polyamine synthesis was also depressed by DFMO + EGBG, unlike islet biosynthesis of polyamines associated with nuclei, which was not equally decreased by the polyamine-synthesis inhibitors. Total RNA synthesis and turnover was not affected by DFMO + EGBG. Finally, actinomycin D attenuated the glucose-induced enhancement of insulin mRNA, and cycloheximide counteracted the insulin-mRNA attenuation induced by inhibition of polyamine synthesis. It is concluded that the glucose-induced increase in insulin mRNA is paralleled by increased contents and rates of polyamine biosynthesis and that an attenuation of the increase in polyamines prevents the increase in insulin mRNA. In addition, the results are compatible with the view that polyamines exert their effects on insulin mRNA mainly by increasing the stability of this messenger. PMID:2241922

  2. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha

    National Research Council Canada - National Science Library

    Puigserver, Pere

    2007-01-01

    ... hepatic glucose production. This investigation has a define scope to specifically test how these proteins control the acetylation status of PGC-1alpha and what is the functional effect in blood glucose levels...

  3. Alanine aminotransferase is associated with an adverse nocturnal blood glucose profile in individuals with normal glucose regulation.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available OBJECTIVE: Although the association between alanine aminotransferase (ALT levels and risk of type 2 diabetes is well-studied, the effects of slightly increased ALT levels within the normal range on the temporal normal glucose profile remains poorly understood. METHODS: A total of 322 Chinese subjects without impaired glucose tolerance or previous diagnoses of diabetes were recruited for study from 10 hospitals in urban areas across China. All subjects wore a continuous glucose monitoring (CGM system for three consecutive days. The diurnal (06∶00-20∶00 and nocturnal (20∶00-06∶00 mean blood glucose (MBG levels were calculated. Subjects were stratified by ALT quartile level and correlation analyses were performed. RESULTS: The median ALT level was 17 IU/L, and subjects with ALT ≥17 IU/L had higher nocturnal MBG level than those with ALT 0.05. Multivariate stepwise regression analysis of elevated nocturnal MBG identified increased HOMA-IR, elevated ALT levels, and decreased homeostatic model assessment of ß-cell function as independent factors (all, P<0.05. CONCLUSIONS: Mildly elevated ALT levels, within the normal range, are associated with unfavorable nocturnal glucose profiles in Chinese subjects with normal glucose regulation.

  4. A comparative study of serum uric acid, glucose, calcium and magnesium in pre-eclampsia and normal pregnancy

    Directory of Open Access Journals (Sweden)

    Arun Dhungana

    2017-09-01

    Full Text Available Background: Preeclampsia is associated with liver function abnormalities and renal function impairment. The objective of this study is to compare serum uric acid, glucose, calcium and magnesium in pre-eclampsia with normal pregnancy. Materials and Methods: Normal pregnant women and pre eclamptic women of age group 20-40 years were included. Serum magnesium, calcium, glucose, uric acid were analyzed.Results: Mean serum magnesium level in preeclampsia (1.83 ± 0.21mg/dl was lesser in comparison to normal pregnant women (2.03 ± 0.16 mg/dl. Serum calcium level was lower (8.10 ±0.56mg/dl than control (9.59 ±0.62 mg/dl with p<0.001. Uric acid, glucose and lactate dehydrogenase in preeclamptic women was significantly higher than that in normal pregnant women (6.14 ± 0.85 vs.4.01 ± 0.62, p=<0.001, (94.17± 18.65 vs.86.34 ± 10.19, p=0.033 and ( 466.80 ± 97.29 vs. 194.22 ± 39.76, p=<0.001 respectively.Conclusion: There were significant changes in serum magnesium, uric acid, calcium, glucose, lactate dehydrogenase and total protein in pregnant women.

  5. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis.

    Science.gov (United States)

    Clarke, William L; Anderson, Stacey; Farhy, Leon; Breton, Marc; Gonder-Frederick, Linda; Cox, Daniel; Kovatchev, Boris

    2005-10-01

    To compare the clinical accuracy of two different continuous glucose sensors (CGS) during euglycemia and hypoglycemia using continuous glucose-error grid analysis (CG-EGA). FreeStyle Navigator (Abbott Laboratories, Alameda, CA) and MiniMed CGMS (Medtronic, Northridge, CA) CGSs were applied to the abdomens of 16 type 1 diabetic subjects (age 42 +/- 3 years) 12 h before the initiation of the study. Each system was calibrated according to the manufacturer's recommendations. Each subject underwent a hyperinsulinemic-euglycemic clamp (blood glucose goal 110 mg/dl) for 70-210 min followed by a 1-mg.dl(-1).min(-1) controlled reduction in blood glucose toward a nadir of 40 mg/dl. Arterialized blood glucose was determined every 5 min using a Beckman Glucose Analyzer (Fullerton, CA). CGS glucose recordings were matched to the reference blood glucose with 30-s precision, and rates of glucose change were calculated for 5-min intervals. CG-EGA was used to quantify the clinical accuracy of both systems by estimating combined point and rate accuracy of each system in the euglycemic (70-180 mg/dl) and hypoglycemic (<70 mg/dl) ranges. A total of 1,104 data pairs were recorded in the euglycemic range and 250 data pairs in the hypoglycemic range. Overall correlation between CGS and reference glucose was similar for both systems (Navigator, r = 0.84; CGMS, r = 0.79, NS). During euglycemia, both CGS systems had similar clinical accuracy (Navigator zones A + B, 88.8%; CGMS zones A + B, 89.3%, NS). However, during hypoglycemia, the Navigator was significantly more clinically accurate than the CGMS (zones A + B = 82.4 vs. 61.6%, Navigator and CGMS, respectively, P < 0.0005). CG-EGA is a helpful tool for evaluating and comparing the clinical accuracy of CGS systems in different blood glucose ranges. CG-EGA provides accuracy details beyond other methods of evaluation, including correlational analysis and the original EGA.

  6. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  7. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  8. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    Science.gov (United States)

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  9. The association between Western and Prudent dietary patterns and fasting blood glucose levels in type 2 diabetes and normal glucose metabolism in older Australian adults.

    Science.gov (United States)

    Walsh, Erin I; Jacka, Felice N; Butterworth, Peter; Anstey, Kaarin J; Cherbuin, Nicolas

    2017-06-01

    High blood glucose and type 2 diabetes are associated with a range of adverse health and cognitive outcomes. One factor that contributes to high blood glucose and type 2 diabetes is dietary intake. This study investigated the relationship between dietary patterns, fasting blood glucose and diabetes status in a sample of 209 participants aged 60-65. Blood plasma glucose was measured from venous blood samples. Individual Prudent and Western dietary patterns were estimated from a self-completed food frequency questionnaire. The relationship between dietary patterns, diabetes, and blood glucose was assessed via general linear model analyses controlling for age, sex, height, and total caloric intake. Results indicated that there was no association between Prudent diet and fasting blood glucose levels, or type 2 diabetes. In contrast, an individual in the upper tertile for Western dietary score had a significantly higher risk of having diabetes than an individual in the lower tertile for Western dietary score. However, there was no significant association between Western diet and fasting blood glucose. Western diet may be associated with type 2 diabetes through mechanisms beyond impacting blood plasma glucose directly. The fact that the association between Western diet and type 2 diabetes remained even when total caloric intake was controlled for highlights the need for policy and population health interventions targeting the reduction of unhealthy food consumption.

  10. Enzymic construction of maltosaccharide chains on a heart protein

    International Nuclear Information System (INIS)

    Kay, M.J.; Kirkman, B.R.; Lomako, J.; Rodriguez, I.R.; Tandecarz, J.S.; Fliesler, S.J.; Whelan, W.J.

    1987-01-01

    The authors have reported that when 100,000 g pellets of rabbit-heart and rabbit-muscle homogenates are incubated with UDP( 14 C)glucose, the sugar is incorporated into a protein with Mr 40 KDa. They suggested that these in vitro observations corresponded to the initial stage in the synthesis of glycogen on a protein that they have named glycogenin and which in rabbit muscle appears to be covalently linked to the glycogen via tyrosine residues. The following new observations support the role of a protein as the precursor of glycogen and suggest that glycogen-free glycogenin is present in heart tissue. (1) The ( 14 C)glucose residues added to the heart protein can be removed with glycogenolytic enzymes that hydrolyse 1,4-alpha-glucosidic bonds and therefore constitute synthetic maltosaccharide chains. (2) The newly added glucose residues appear to be attached to pre-existing glucose residues on the protein. Chain elongation does not proceed beyond a few glucose residues. (3) The further relevance of these observations to glycogen synthesis shown by a Western blot in which the radioglucosylated heart protein was found to cross-react with polyclonal antibody to glycogenin obtained from rabbit-muscle glycogen

  11. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  12. Multiple Linear Regression and Artificial Neural Network to Predict Blood Glucose in Overweight Patients.

    Science.gov (United States)

    Wang, J; Wang, F; Liu, Y; Xu, J; Lin, H; Jia, B; Zuo, W; Jiang, Y; Hu, L; Lin, F

    2016-01-01

    Overweight individuals are at higher risk for developing type II diabetes than the general population. We conducted this study to analyze the correlation between blood glucose and biochemical parameters, and developed a blood glucose prediction model tailored to overweight patients. A total of 346 overweight Chinese people patients ages 18-81 years were involved in this study. Their levels of fasting glucose (fs-GLU), blood lipids, and hepatic and renal functions were measured and analyzed by multiple linear regression (MLR). Based the MLR results, we developed a back propagation artificial neural network (BP-ANN) model by selecting tansig as the transfer function of the hidden layers nodes, and purelin for the output layer nodes, with training goal of 0.5×10(-5). There was significant correlation between fs-GLU with age, BMI, and blood biochemical indexes (P<0.05). The results of MLR analysis indicated that age, fasting alanine transaminase (fs-ALT), blood urea nitrogen (fs-BUN), total protein (fs-TP), uric acid (fs-BUN), and BMI are 6 independent variables related to fs-GLU. Based on these parameters, the BP-ANN model was performed well and reached high prediction accuracy when training 1 000 epoch (R=0.9987). The level of fs-GLU was predictable using the proposed BP-ANN model based on 6 related parameters (age, fs-ALT, fs-BUN, fs-TP, fs-UA and BMI) in overweight patients. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Secretomic Insight into Glucose Metabolism of Aspergillus brasiliensis in Solid-State Fermentation.

    Science.gov (United States)

    Volke-Sepulveda, Tania; Salgado-Bautista, Daniel; Bergmann, Carl; Wells, Lance; Gutierrez-Sanchez, Gerardo; Favela-Torres, Ernesto

    2016-10-07

    The genus Aspergillus is ubiquitous in nature and includes various species extensively exploited industrially due to their ability to produce and secrete a variety of enzymes and metabolites. Most processes are performed in submerged fermentation (SmF); however, solid-state fermentation (SSF) offers several advantages, including lower catabolite repression and substrate inhibition and higher productivity and stability of the enzymes produced. This study aimed to explain the improved metabolic behavior of A. brasiliensis ATCC9642 in SSF at high glucose concentrations through a proteomic approach. Online respirometric analysis provided reproducible samples for secretomic studies when the maximum CO 2 production rate occurred, ensuring consistent physiological states. Extracellular extracts from SSF cultures were treated by SDS-PAGE, digested with trypsin, and analyzed by LC-MS/MS. Of 531 sequences identified, 207 proteins were analyzed. Twenty-five were identified as the most abundant unregulated proteins; 87 were found to be up-regulated and 95 were down-regulated with increasing glucose concentration. Of the regulated proteins, 120 were enzymes, most involved in the metabolism of carbohydrates (51), amino acids (23), and nucleotides (9). This study shows the high protein secretory activity of A. brasiliensis under SSF conditions. High glucose concentration favors catabolic activities, while some stress-related proteins and those involved in proteolysis are down-regulated.

  14. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism f...... down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients....

  15. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  16. The effects of hypoglycin on glucose metabolism in the rat

    International Nuclear Information System (INIS)

    Osmundsen, H.; Billington, D.; Taylor, J.R.; Sherratt, H.S.A.

    1978-01-01

    The kinetics of glucose metabolism were evaluated in rats deprived of food 15 to 21 h after the administration of hypoglycaemic doses of hypoglycin (100 mg/kg body wt.) by following changes in the specific radioactivities of 14 C and 3 H in blood glucose after an intravenous dose of [U- 14 C,2- 3 H]glucose. During this time, recycling of glucose through the Cori cycle was virtually abolished, the rate of irreversible disposal of glucose and its total body mass were both decreased by about 70%, whereas there was little effect on the mean transit time for glucose. It was concluded that hypoglycaemia is due to inhibition of gluconeogenesis. (author)

  17. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    Science.gov (United States)

    Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A

    2012-01-01

    Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, pfactor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  18. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses--A Case-Control Study.

    Science.gov (United States)

    Gao, Ting; Jin, Kairui; Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. A total of 460 permanent residents of the Fengxian District, aged 40-60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18-28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism.

  19. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  20. Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes

    OpenAIRE

    Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.

    2009-01-01

    OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein?coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP de...

  1. Humoral and cellular immune responses to glucose regulated protein 78 - a novel Leishmania donovani antigen

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Ismail, Ahmed; Gaafar, Ameera

    2002-01-01

    The recently cloned glucose regulated protein 78 (GRP78) of Leishmania donovani has been suggested as a new and promising Leishmania vaccine candidate. We assessed antibody and T-cell reactivity to GRP78 in an enzyme-linked immunosorbent assay (ELISA) and in lymphoproliferative assays. Serological...... with a positive leishmanin skin test showed antibody reactivity to recombinant GRP78 (rGRP78). In lymphoproliferative assays, 9 of 13 isolates of peripheral blood mononuclear cells (PBMC) from individuals previously infected with L. donovani and one of three individuals previously infected with L. major showed...... in an area endemic for malaria but free of leishmaniasis and plasma from healthy Danes was negative in the assay. GRP78 antibody was detected in 10% and 5% of plasma samples from Sudanese and Ghanaian malaria patients, respectively, whereas 35% of plasma samples from otherwise healthy Sudanese individuals...

  2. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  3. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2015-12-05

    Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Post-operative substrate utilisation and gas exchange using two different TPN-systems: glucose versus fat

    DEFF Research Database (Denmark)

    Henneberg, S; Eklund, A; Stjernström, H

    1985-01-01

    Twenty patients were studied over the first 4 post-operative days following abdominal aortic surgery. Ten patients had 93% of their non-protein energy as glucose and insulin was given to keep blood glucose below 10 mmol/l. The other 10 patients had 80% of non-protein energy as fat (Intralipid...... indirect calorimetry data and nitrogen excretion. Metabolism in the early post-operative phase was found to adapt to the nutrition regimen given even though the composition was extreme either in fat or carbohydrate content. The glucose-insulin regimen had a better nitrogen sparing effect and based...

  5. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4 Protein Translocation

    Directory of Open Access Journals (Sweden)

    Abu Sadat Md Sayem

    2018-01-01

    Full Text Available Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4 from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.

  6. Effects of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: A single blind randomised controlled trial

    NARCIS (Netherlands)

    van Til, A.J.; Naumann, E.; Cox-Claessens, I.J.H.M.; Kremer, S.; Boelsma, E.; van Bokhorst-de van der Schueren, M.A.E.

    2015-01-01

    Objectives: To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults.Design: A single blind randomised controlled trial.Setting: Rehabilitation

  7. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.

    Science.gov (United States)

    Ye, Tian; Elbing, Karin; Hohmann, Stefan

    2008-09-01

    It recently became apparent that the highly conserved Snf1p protein kinase plays roles in controlling different cellular processes in the yeast Saccharomyces cerevisiae, in addition to its well-known function in glucose repression/derepression. We have previously reported that Snf1p together with Gis4p controls ion homeostasis by regulating expression of ENA1, which encodes the Ena1p Na(+) extrusion system. In this study we found that Snf1p is rapidly phosphorylated when cells are exposed to NaCl and this phosphorylation is required for the role of Snf1p in Na(+) tolerance. In contrast to activation by low glucose levels, the salt-induced phosphorylation of Snf1p promoted neither phosphorylation nor nuclear export of the Mig1p repressor. The mechanism that prevents Mig1p phosphorylation by active Snf1p under salt stress does not involve either hexokinase PII or the Gis4p regulator. Instead, Snf1p may mediate upregulation of ENA1 expression via the repressor Nrg1p. Activation of Snf1p in response to glucose depletion requires any of the three upstream protein kinases Sak1p, Tos3p and Elm1p, with Sak1p playing the most prominent role. The same upstream kinases were required for salt-induced Snf1p phosphorylation, and also under these conditions Sak1p played the most prominent role. Unexpectedly, however, it appears that Elm1p plays a dual role in acquisition of salt tolerance by activating Snf1p and in a presently unknown parallel pathway. Together, these results indicate that under salt stress Snf1p takes part in a different pathway from that during glucose depletion and this role is performed together as well as in parallel with its upstream kinase Elm1p. Snf1p appears to be part of a wider functional network than previously anticipated and the full complexity of this network remains to be elucidated.

  8. Influence of casein and glucose or starch supplementation in the ...

    African Journals Online (AJOL)

    protein has been shown on a number of occasions (Egan,. 1965; Kempton ... rumen-protected protein or to the inevitable energy increment. In the present investigation, care was taken to balance treatments on an isocaloric basis with glucose or starch. ..... nutrition of young grazing cattle and their subsequent productivity.

  9. Regulatory cascade of neuronal loss and glucose metabolism.

    Science.gov (United States)

    Hassan, Mubashir; Sehgal, Sheikh A; Rashid, Sajid

    2014-01-01

    During recent years, numerous lines of research including proteomics and molecular biology have highlighted multiple targets and signaling pathways involved in metabolic abnormalities and neurodegeneration. However, correlation studies of individual neurodegenerative disorders (ND) including Alzheimer, Parkinson, Huntington and Amyotrophic lateral sclerosis in association with Diabetes type 2 Mellitus (D2M) are demanding tasks. Here, we report a comprehensive mechanistic overview of major contributors involved in process-based co-regulation of D2M and NDs. D2M is linked with Alzheimer's disease through deregulation of calcium ions thereby leading to metabolic fluctuations of glucose and insulin. Parkinson-associated proteins disturb insulin level through ATP-sensitive potassium ion channels and extracellular signal-regulated kinases to enhance glucose level. Similarly, proteins which perturb carbohydrate metabolism for disturbing glucose homeostasis link Huntington, Amyotrophic lateral sclerosis and D2M. Other misleading processes which interconnect D2M and NDs include oxidative stress, mitochondrial dysfunctions and microRNAs (miRNA29a/b and miRNA-9). Overall, the collective listing of pathway-specific targets would help in establishing novel connections between NDs and D2M to explore better therapeutic interventions.

  10. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  11. Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    James R. Krycer

    2017-12-01

    Full Text Available Insulin triggers an extensive signaling cascade to coordinate adipocyte glucose metabolism. It is considered that the major role of insulin is to provide anabolic substrates by activating GLUT4-dependent glucose uptake. However, insulin stimulates phosphorylation of many metabolic proteins. To examine the implications of this on glucose metabolism, we performed dynamic tracer metabolomics in cultured adipocytes treated with insulin. Temporal analysis of metabolite concentrations and tracer labeling revealed rapid and distinct changes in glucose metabolism, favoring specific glycolytic branch points and pyruvate anaplerosis. Integrating dynamic metabolomics and phosphoproteomics data revealed that insulin-dependent phosphorylation of anabolic enzymes occurred prior to substrate accumulation. Indeed, glycogen synthesis was activated independently of glucose supply. We refer to this phenomenon as metabolic priming, whereby insulin signaling creates a demand-driven system to “pull” glucose into specific anabolic pathways. This complements the supply-driven regulation of anabolism by substrate accumulation and highlights an additional role for insulin action in adipocyte glucose metabolism.

  12. Glucose absorption in acute peritoneal dialysis.

    Science.gov (United States)

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  13. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography.

    Science.gov (United States)

    Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H

    2010-10-01

    The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.

  14. The relationships between common measures of glucose meter performance.

    Science.gov (United States)

    Wilmoth, Daniel R

    2012-09-01

    Glucose meter performance is commonly measured in several different ways, including the relative bias and coefficient of variation (CV), the total error, the mean absolute relative deviation (MARD), and the size of the interval around the reference value that would be necessary to contain a meter measurement at a specified probability. This fourth measure is commonly expressed as a proportion of the reference value and will be referred to as the necessary relative deviation. A deeper understanding of the relationships between these measures may aid health care providers, patients, and regulators in comparing meter performances when different measures are used. The relationships between common measures of glucose meter performance were derived mathematically. Equations are presented for calculating the total error, MARD, and necessary relative deviation using the reference value, relative bias, and CV when glucose meter measurements are normally distributed. When measurements are also unbiased, the CV, total error, MARD, and necessary relative deviation are linearly related and are therefore equivalent measures of meter performance. The relative bias and CV provide more information about meter performance than the other measures considered but may be difficult for some audiences to interpret. Reporting meter performance in multiple ways may facilitate the informed selection of blood glucose meters. © 2012 Diabetes Technology Society.

  15. A cell-based fluorescent glucose transporter assay for SGLT2 inhibitor discovery

    Directory of Open Access Journals (Sweden)

    Yi Huan

    2013-04-01

    Full Text Available The sodium/glucose cotransporter 2 (SGLT2 is responsible for the majority of glucose reabsorption in the kidney, and currently, SGLT2 inhibitors are considered as promising hypoglycemic agents for the treatment of type 2 diabetes mellitus. By constructing CHO cell lines that stably express the human SGLT2 transmembrane protein, along with a fluorescent glucose transporter assay that uses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]2-deoxyglucose (2-NBDG as a glucose analog, we have developed a nonradioactive, cell-based assay for the discovery and characterization of SGLT2 inhibitors.

  16. Glucose, epithelium, and enteric nervous system: dialogue in the dark.

    Science.gov (United States)

    Pfannkuche, H; Gäbel, G

    2009-06-01

    The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.

  17. Effect of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: a single blind randomised controlled trial

    NARCIS (Netherlands)

    Til, van A.J.; Naumann, E.; Cox-Claessens, I.J.H.M.; Kremer, S.; Boelsma, E.; Schueren, van der D.E.

    2015-01-01

    Objectives To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults. Design A single blind randomised controlled trial. Setting Rehabilitation centre.

  18. Regulation of gonadotropin-releasing hormone neurons by glucose

    Science.gov (United States)

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  19. Eugenosedin-A improves glucose metabolism and inhibits MAPKs expression in streptozotocin/nicotinamide-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Kuo-Ping Shen

    2018-03-01

    Full Text Available This study examined the effects of eugenosedin-A (Eu-A in a streptozotocin (STZ/nicotinamide-induced rat model of type II diabetes mellitus (T2DM. Six-week-old Sprague–Dawley rats were randomly divided into three groups: (1 RD group, normal rats fed a regular diet (RD, (2 DM group, T2DM rats fed a high-fat diet, and (3 Eu-A group, T2DM rats fed a high fat diet plus oral Eu-A (5 mg/kg/day. After 30 days, the DM group had higher body weight, higher blood glucose and lower insulin levels than the RD group. The DM group also had increased protein expression of glycogen synthase kinase (GSK in liver and skeletal muscle and decreased protein expression of insulin receptor (IR, insulin receptor substrate-1 (IRS-1, IRS-2, AMP-activated protein kinase (AMPK, glucose transporter-4 (GLUT-4, glucokinase (GCK, and peroxisome proliferator-activated receptor γ (PPAR-γ. STZ/nicotinamide-induced T2DM increased the expression of mitogen-activated protein kinases (MAPKs: p38, ERK, JNK and inflammatory p65 protein. In the Eu-A treated T2DM rats, however, blood glucose was attenuated and the insulin concentration stimulated. Changes in IR, IRS-1 and IRS-2 proteins as well as AMPK, GLUT-4, GCK, GSK, PPAR-γ, MAPKs, and inflammatory p65 proteins were ameliorated. These results suggested that Eu-A alleviates STZ/nicotinamide-induced hyperglycemia by improving insulin levels and glucose metabolism, and inhibiting the MAPKs- and p65-mediated inflammatory pathway.

  20. Role of Fatty Acid-Binding Protein 2 Ala54Thr Genotype on Weight Loss and Cardiovascular Risk Factors after a High-Protein/Low-Carbohydrate versus a Standard Hypocaloric Diet during 9 Months.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; de la Fuente, Beatriz; Primo, David; Romero, Enrique

    2015-01-01

    It has been found that the expression of fatty acid-binding protein 2 gene mRNA is under dietary control. The polymorphism Ala54Thr of this protein was associated with high insulin resistance. The aim of our study was to investigate the influence of Thr54 polymorphism on metabolic response, weight loss and serum adipokine levels secondary to high-protein/low-carbohydrate vs. standard hypocaloric diets during 9 months. A population of 193 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high-protein/low-carbohydrate vs. diet S: standard diet). With both diets and in both genotype groups, body mass index, weight, fat mass, waist circumference, systolic blood pressure and leptin levels decreased. With both diets and only in wild genotype (diet HP vs. diet S), glucose (-6.2 ± 2.1 vs. -4.9 ± 2.0 mg/dl; p diet HP than HS. With both diets and only in the wild genotype, total cholesterol and LDL-total cholesterol levels decreased. Carriers of Thr54 allele have a different metabolic response after weight loss than wild type non-A carriers obese, with a lack of decrease of LDL-cholesterol, glucose, insulin levels and HOMA-R. © 2015 S. Karger AG, Basel.

  1. Continuous tissue glucose monitoring correlates with measurement of intermittent capillary glucose in patients with distributive shock.

    Science.gov (United States)

    Ballesteros, D; Martínez, Ó; Blancas Gómez-Casero, R; Martín Parra, C; López Matamala, B; Estébanez, B; Chana, M

    2015-10-01

    Intermittent glycemic measurements in patients admitted to the intensive care unit (ICU) can result in episodes of severe hypoglycemia or in a poor control of glycemia range. We designed a study to assess accuracy and reliability of continuous monitoring of tissue glucose for patients with distributive shock. Consecutive patients admitted to the ICU with a diagnosis of distributive shock and the need of insulin infusion for glycemic control were included in the study. These patients were implanted a Continuous Glucose Control Monitoring System (CGMS) with the sensor inserted subcutaneously into the abdominal wall. CGMS values were recorded every 5min. Capillary glucose (CG) was monitored for adjusting insulin perfusion according to the ICU protocol. Correlation between both methods was assessed. A total of 11,673 CGMS and 348 CG values were recorded. In five patients, CGMS failed to detect tissue glucose. A glucose value <3.33mmol/l (<60mg/dl) was observed in 3.6% of CGMS and in 0.29% CG values. 295 pairs of measurements were included in the statistical analysis for correlation assessment. The intraclass correlation coefficient was 0.706. The Pearson correlation coefficient was 0.71 (p<0.0001, 95% CI 0.65-0.76). The mean of differences between both measurement methods was 0.22mmol/l (3.98mg/dl) (95% CI 0.66-7.31). When the Continuous Glucose Control Monitoring System (CGMS) is able to obtain data (75% of the patients), there is correlation between the values obtained by this method and capillary blood glucose in patients with distributive shock. CGMS can detect more episodes of glycemic excursions outside the normal range than intermittent capillary glucose monitoring. Variables that may impair glucose metabolism and peripheral soft tissues perfusion could impair CGMS measurements. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  2. Glucose balance and muscle glycogen during TPN in the early post-operative phase

    DEFF Research Database (Denmark)

    Henneberg, S; Stjernström, H; Essén-Gustavsson, B

    1985-01-01

    In order to study how muscle glycogen is influenced by different nutritional regimens in the early post-operative period we took muscle biopsies from 20 patients preoperatively and on the fourth post-operative day after abdominal aortic surgery. Ten patients received 93% of non-protein energy......-production) were performed and from these data glucose balance was calculated as the difference between glucose intake and glucose expenditure. Muscle biopsies were analysed for glycogen, adenosine triphosphate, glucose-6-phosphate, lactate and citrate. We found that it was possible to maintain muscle...... glycogen stores at pre-operative levels with a glucose-insulin regimen. With the fat regimen there was a 31% decrease in muscle glycogen and two patients had a negative glucose balance despite the fact that 150 g of glucose were given. Average glucose balance throughout the study correlated positively...

  3. Response variability to glucose facilitation of cognitive enhancement.

    Science.gov (United States)

    Owen, Lauren; Scholey, Andrew; Finnegan, Yvonne; Sünram-Lea, Sandra I

    2013-11-01

    Glucose facilitation of cognitive function has been widely reported in previous studies (including our own). However, several studies have also failed to detect glucose facilitation. There is sparsity of research examining the factors that modify the effect of glucose on cognition. The aims of the present study were to (1) demonstrate the previously observed enhancement of cognition through glucose administration and (2) investigate some of the factors that may exert moderating roles on the behavioural response to glucose, including glucose regulation, body composition (BC) and hypothalamic–pituitary–adrenal axis response. A total of twenty-four participants took part in a double-blind, placebo-controlled, randomised, repeated-measures study, which examined the effect of 25 and 60 g glucose compared with placebo on cognitive function. At 1 week before the study commencement, all participants underwent an oral glucose tolerance test. Glucose facilitated performance on tasks of numeric and spatial working memory, verbal declarative memory and speed of recognition. Moderating variables were examined using several indices of glucoregulation and BC. Poorer glucoregulation predicted improved immediate word recall accuracy following the administration of 25 g glucose compared with placebo. Those with better glucoregulation showed performance decrements on word recall accuracy following the administration of 25 g glucose compared with placebo. These findings are in line with accumulating evidence that glucose load may preferentially enhance cognition in those with poorer glucoregulation. Furthermore, the finding that individuals with better glucoregulation may suffer impaired performance following a glucose load is novel and requires further substantiation.

  4. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    Science.gov (United States)

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles

    DEFF Research Database (Denmark)

    Knott, Heather M; Brown, Bronwyn E; Davies, Michael Jonathan

    2003-01-01

    by the adduction of glucose or species derived from glucose, such as low-molecular mass aldehydes, to proteins. These reactions can be nonoxidative (glycation) or oxidative (glycoxidation) and result in the conversion of low-density lipoproteins (LDL) to a form that is recognized by the scavenger receptors...... with glucose. These processes are rapid and unaffected by low concentrations of copper ions. In contrast, lipid and protein oxidation are slow processes and occur to a limited extent in the absence of added copper ions. No evidence was obtained for the stimulation of lipid or protein oxidation by glucose...... or methylglyoxal in the presence of copper ions, whereas glycolaldehyde stimulated such reactions to a modest extent. These results suggest that the earliest significant events in this system are metal ion-independent glycation (modification) of the protein component of LDL, whilst oxidative events (glycoxidation...

  6. Glucagon-like peptide-1 inhibits blood-brain glucose transfer in humans

    DEFF Research Database (Denmark)

    Lerche, Susanne; Brock, Birgitte; Rungby, Jørgen

    2008-01-01

    OBJECTIVE: Glucagon-like peptide-1 (GLP-1) has many effects on glucose homeostasis, and GLP-1 receptors are broadly represented in many tissues including the brain. Recent research in rodents suggests a protective effect of GLP-1 on brain tissue. The mechanism is unknown. We therefore tested......-independent effect of GLP-1 on unidirectional glucose transport into the brain during a pituitary-pancreatic normoglycemic (plasma glucose approximately 4.5 mmol/l) clamp with 18-fluoro-deoxy-glucose as tracer. RESULTS: On average, GLP-1 reduced cerebral glucose transport by 27% in total cerebral gray matter (P = 0...... that a hormone involved in postprandial glucose regulation also limits glucose delivery to brain tissue and hence provides a possible regulatory mechanism for the link between plasma glucose and brain glucose. Because GLP-1 reduces glucose uptake across the intact blood-brain barrier at normal glycemia, GLP-1...

  7. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Lear, J.L.

    1989-01-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14 C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14 C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  8. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses—A Case-Control Study

    Science.gov (United States)

    Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Purpose Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. Methods A total of 460 permanent residents of the Fengxian District, aged 40–60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18–28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Results Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Conclusions Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism. PMID:26247824

  9. Glucose tolerance in obese pregnant women determines newborn fat mass

    DEFF Research Database (Denmark)

    Carlsen, Emma Malchau; Renault, Kristina Martha; Nørgaard, Kirsten

    2016-01-01

    INTRODUCTION: Offspring of obese women have both short- and long-term increased morbidities. We investigated the relationship between maternal 2-h plasma glucose level determined by oral glucose tolerance test, degree of obesity, gestational weight gain and total fat, abdominal fat, and fat-free ...

  10. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Ji-Young Yoon

    2017-04-01

    Full Text Available Phloroglucinol is a phenolic compound that is one of the major compounds in Ecklonia cava (brown alga. It has many pharmacological activities, but its anti-diabetic effect is not yet fully explored. In this study, we investigated the effect of phloroglucinol on the control of blood glucose levels and the regulation of hepatic glucose production. Phloroglucinol significantly improved glucose tolerance in male C57BL/6J mice fed a high fat diet (HFD and inhibited glucose production in mouse primary hepatocytes. The expression of phosphoenol pyruvate carboxykinase (PEPCK and glucose-6-phosphatase mRNA and protein (G6Pase, enzymes involved in gluconeogenesis, were inhibited in liver tissue from phloroglucinol-treated mice and in phloroglucinol-treated HepG2 cells. In addition, phloroglucinol treatment increased phosphorylated AMP-activated protein kinase (AMPKα in HepG2 cells. Treatment with compound C, an AMPKα inhibitor, inhibited the increase of phosphorylated AMPKα and the decrease of PEPCK and G6Pase expression caused by phloroglucinol treatment. We conclude that phloroglucinol may inhibit hepatic gluconeogenesis via modulating the AMPKα signaling pathway, and thus lower blood glucose levels.

  11. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers

    Science.gov (United States)

    Yoshioka, Kiriko; Kino, Saiko; Matsuura, Yuji

    2017-04-01

    For non-invasive measurement of blood glucose level, attenuated total reflection (ATR) absorption spectroscopy system using a QCL as a light source was developed. The results of measurement of glucose solutions showed that the system had a sensitivity that was enough for blood glucose measurement. In-vivo measurement using the proposed system based on QCL showed that there was a correlation between absorptions measured with human lips and blood glucose level.

  12. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  13. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome.

    Science.gov (United States)

    Uchiyama, Taku; Yaoi, Katusro; Miyazaki, Kentaro

    2015-01-01

    β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0-6.5 and retained full or 1.5-2-fold enhanced activity in the presence of 0.1-0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high V max (91 μmol min(-1) mg(-1) with p-nitrophenyl β-D-glucoside; 155 μmol min(-1) mg(-1) with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  14. Caveolin-1 and glucose transporter 4 involved in the regulation of glucose-deprivation stress in PC12 cells.

    Science.gov (United States)

    Zhang, Qi-Qi; Huang, Liang; Han, Chao; Guan, Xin; Wang, Ya-Jun; Liu, Jing; Wan, Jing-Hua; Zou, Wei

    2015-08-25

    Recent evidence suggests that caveolin-1 (Cav-1), the major protein constituent of caveolae, plays a prominent role in neuronal nutritional availability with cellular fate regulation besides in several cellular processes such as cholesterol homeostasis, regulation of signal transduction, integrin signaling and cell growth. Here, we aimed to investigate the function of Cav-1 and glucose transporter 4 (GLUT4) upon glucose deprivation (GD) in PC12 cells. The results demonstrated firstly that both Cav-1 and GLUT4 were up-regulated by glucose withdrawal in PC12 cells by using Western blot and laser confocal technology. Also, we found that the cell death rate, mitochondrial membrane potential (MMP) and intracellular free Ca(2+) concentration ([Ca(2+)]i) were also respectively changed followed the GD stress tested by CCK8 and flow cytometry. After knocking down of Cav-1 in the cells by siRNA, the level of [Ca(2+)]i was increased, and MMP was reduced further in GD-treated PC12 cells. Knockdown of Cav-1 or methylated-β-Cyclodextrin (M-β-CD) treatment inhibited the expression of GLUT4 protein upon GD. Additionally, we found that GLUT4 could translocate from cytoplasm to cell membrane upon GD. These findings might suggest a neuroprotective role for Cav-1, through coordination of GLUT4 in GD.

  15. Metabolism of tritiated D-glucose in rat erythrocytes

    International Nuclear Information System (INIS)

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J.

    1991-01-01

    The metabolism of D-[U-14C]glucose, D-[1-14C]glucose, D-[6-14C]glucose, D-[1-3H]glucose, D-[2-3H]glucose, D-[3-3H]glucose, D-[3,4-3H]glucose, D-[5-3H]glucose, and D-[6-3H]glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-[3-3H]glucose and D-[5-3H]glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-[U-14C]glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-[3,4-3H]glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-[6-3H]glucose, a phenomenon possibly attributable to the detritiation of [3-3H]pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-[2-3H]glucose was lower than that from D-[5-3H]glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-[1-3H]glucose largely exceeded that of 14CO2 from D-[1-14C]glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-[1-3H]glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations

  16. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  17. Impact of Diet Composition on Blood Glucose Regulation.

    Science.gov (United States)

    Russell, Wendy R; Baka, Athanasia; Björck, Inger; Delzenne, Nathalie; Gao, Dan; Griffiths, Helen R; Hadjilucas, Ellie; Juvonen, Kristiina; Lahtinen, Sampo; Lansink, Mirian; Loon, Luc Van; Mykkänen, Hannu; Östman, Elin; Riccardi, Gabriele; Vinoy, Sophie; Weickert, Martin O

    2016-01-01

    Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach, it is essential to understand the effect of food on glycemic regulation and on the underlying metabolic derangements. This comprehensive review summarizes the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, nonnutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar, and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.

  18. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    membrane to transport glucose into cells, and GLUT8 from cytosol to rough endoplasmic reticulum to recover redundant glucose to cytosol after protein glycosylation. In autoimmune diseases, the enhanced glucose uptake was found in inflamed peripheral tissue, mainly due to proliferating fibroblasts and activated macrophages. In our experimental model of rheumatoid arthritis (adjuvant arthritis), enhanced 2-deoxy-2[F-18]fluoro-D-glucose was found in the hippocampus and amygdala two days after the induction of the disease which, similarly as in the peripheral joints, can be ascribed to the activated macrophages. The knowledge on the glucose transport and the role of glucose transporters in the brain during systemic autoimmune inflammation is still incomplete and needs further investigations.

  19. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  20. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    of vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle...

  1. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-09-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition.

  2. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    International Nuclear Information System (INIS)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-01-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition

  3. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  4. Triiodothyronine Acutely Stimulates Glucose Transport into L6 Muscle Cells Without Increasing Surface GLUT4, GLUT1, or GLUT3

    Science.gov (United States)

    Teixeira, Silvania Silva; Tamrakar, Akhilesh K.; Goulart-Silva, Francemilson; Serrano-Nascimento, Caroline; Klip, Amira

    2012-01-01

    Background Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T3 and insulin action. Methods Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T3. Results Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T3 treatment; however, in these cells glucose transport was not stimulated by T3. In wild-type L6 cells, although T3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T3 plus insulin. Conclusions These data reveal that T3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT. PMID:22663547

  5. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  6. Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis.

    Science.gov (United States)

    Pendharkar, Sayali A; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S

    2017-08-01

    Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. GRP is significantly increased in patients with AGM after pancreatitis and is associated with increased levels of pro

  7. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats.

    Science.gov (United States)

    Yu, Hao; Zheng, Lingli; Xu, Lina; Yin, Lianhong; Lin, Yuan; Li, Hua; Liu, Kexin; Peng, Jinyong

    2015-02-01

    The aim of the present paper was to investigate the effects and possible mechanisms of the total saponins from Dioscorea nipponica Makino (TSDN) against type 2 diabetes mellitus. Streptozotocin (STZ) with high-fat diet induced type 2 diabetes mellitus (T2DM) rats were treated with TSDN. Some biochemical parameters, target proteins and genes were investigated. The results showed that TSDN decreased the levels of food/water intake, fasting blood glucose and serum lipid parameters, ameliorated oral glucose and insulin tolerance test levels, markedly increased body weight and serum insulin, reduced excess free radicals and affected ossification and renal protection. Histopathological examination indicated that TSDN increased liver glycogen, decreased the production of lipid vacuoles and lightened liver damage. Further investigation showed that TSDN down-regulated the protein expressions of NF-κB, GRP78, ATF6, eIF2 and the levels of MAPK phosphorylation and up-regulated the protein expressions of IRS-1, GLUT-4, p-Akt and p-AMPK. In addition, TSDN obviously decreased the gene expressions of TNF-a, IL-6, PEPCK, G6Pase, GSK-3β and GSK-3β activity, and increased the gene expressions of PFK, PK and GK activity. These findings show the anti-diabetic activity of total saponins from D. nipponica Makino, which should be developed as a new potent drug for treatment of diabetes mellitus in future. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  9. Effect of aflatoxin ingestion on total body water (T OH3 - space), total body solids A KD on some physiological and reproductive characteristics of male albino rats

    International Nuclear Information System (INIS)

    Nowar, M.S.; Eldarawany, A.A.; Habeeb, A.A.

    1992-01-01

    This investigation aimed to study the effects of aflatoxins B 1 +G 1 mixture mainly on total body water (TBW) and on total body solids (TBS) of male albino rats. Some blood components and some reproductive characteristic were also taken into consideration. Two groups, each of 8 male rats were fed the same ration. Rats of one group had been individually ingested daily with a dose of 22 μg B 1 plus 22 μg G 1 for 15 successive weeks. The obtained results showed that aflatoxin administration caused: 1- A decrease in final body weight (FBW), TBW (P<0.01) and TBS (P<0.05). 2- A decrease in serum total proteins (P<0.01), albumin (P<0.05), globulin (P<0.05), glucose (P<0.05) and increase in serum cholesterol, GOT and GPT (P<0.05) activities. 3- A decrease in each of the number of effective matings of males and delivery percentages of females mated with treated males.1 tab

  10. UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

    Science.gov (United States)

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-02-25

    The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Suboptimal nutrient balancing despite dietary choice in glucose-averse German cockroaches, Blattella germanica.

    Science.gov (United States)

    Jensen, Kim; Schal, Coby; Silverman, Jules

    2015-10-01

    Insects have evolved fine-tuned gustatory and post-ingestive physiological mechanisms that enable them to self-select an optimal composition of macronutrients. Their ability to forage optimally among multiple food sources and maximize fitness parameters depends on their ability not only to taste and perceive the nutritional value of potential foods but also to avoid deleterious components; the strength of such avoidance should reflect the severity of the perceived hazard. In German cockroaches (Blattella germanica), glucose aversion has evolved in some populations in response to anthropogenic selection with glucose-containing insecticidal baits. In four feeding treatments, we gave newly eclosed glucose-averse female cockroaches free choice to feed from two artificial, nutritionally complementary foods varying in protein and carbohydrate composition, with glucose or fructose as the sole carbohydrate source in either food. After 6days of feeding, we measured diet consumption and the length of basal oocytes as an estimate of sexual maturation. The females did not compromise on their aversion to glucose in order to balance their protein and carbohydrate intake, and experienced lower sexual maturation rates as a consequence. Nutrient specific hunger via feedback mechanisms, and adjustments to gustatory sensitivity thus do not override the deterrence of glucose, likely due to strong selection against ingesting even small amounts of toxin associated with glucose in baits. In the absence of baits, glucose aversion would be expected to incur a fitness cost compared to wild-type individuals due to lower overall food availability but also to larger difficulty in attaining a nutritionally balanced diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mediation of Endogenous β-Endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jen-Hao Hsu

    2004-01-01

    Full Text Available The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER. The mRNA levels of glucose transporter subtype 4 (GLUT4 in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of

  13. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  14. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  15. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  16. The Role of PAS Kinase in PASsing the Glucose Signal

    Directory of Open Access Journals (Sweden)

    Julianne H. Grose

    2010-06-01

    Full Text Available PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

  17. Asprosin, a fasting-induced glucogenic protein hormone

    Science.gov (United States)

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...

  18. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  19. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  20. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.