WorldWideScience

Sample records for glucose minimal model

  1. Stable-label intravenous glucose tolerance test minimal model

    International Nuclear Information System (INIS)

    Avogaro, A.; Bristow, J.D.; Bier, D.M.; Cobelli, C.; Toffolo, G.

    1989-01-01

    The minimal model approach to estimating insulin sensitivity (Sl) and glucose effectiveness in promoting its own disposition at basal insulin (SG) is a powerful tool that has been underutilized given its potential applications. In part, this has been due to its inability to separate insulin and glucose effects on peripheral uptake from their effects on hepatic glucose inflow. Prior enhancements, with radiotracer labeling of the dosage, permit this separation but are unsuitable for use in pregnancy and childhood. In this study, we labeled the intravenous glucose tolerance test (IVGTT) dosage with [6,6- 2 H 2 ]glucose, [2- 2 H]glucose, or both stable isotopically labeled glucose tracers and modeled glucose kinetics in six postabsorptive, nonobese adults. As previously found with the radiotracer model, the tracer-estimated S*l derived from the stable-label IVGTT was greater than Sl in each case except one, and the tracer-estimated SG* was less than SG in each instance. More importantly, however, the stable-label IVGTT estimated each parameter with an average precision of +/- 5% (range 3-9%) compared to average precisions of +/- 74% (range 7-309%) for SG and +/- 22% (range 3-72%) for Sl. In addition, because of the different metabolic fates of the two deuterated tracers, there were minor differences in basal insulin-derived measures of glucose effectiveness, but these differences were negligible for parameters describing insulin-stimulated processes. In conclusion, the stable-label IVGTT is a simple, highly precise means of assessing insulin sensitivity and glucose effectiveness at basal insulin that can be used to measure these parameters in individuals of all ages, including children and pregnant women

  2. Optimal blood glucose level control using dynamic programming based on minimal Bergman model

    Science.gov (United States)

    Rettian Anggita Sari, Maria; Hartono

    2018-03-01

    The purpose of this article is to simulate the glucose dynamic and the insulin kinetic of diabetic patient. The model used in this research is a non-linear Minimal Bergman model. Optimal control theory is then applied to formulate the problem in order to determine the optimal dose of insulin in the treatment of diabetes mellitus such that the glucose level is in the normal range for some specific time range. The optimization problem is solved using dynamic programming. The result shows that dynamic programming is quite reliable to represent the interaction between glucose and insulin levels in diabetes mellitus patient.

  3. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study.

    Science.gov (United States)

    Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N

    1994-09-01

    An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.

  4. Application of the Oral Minimal Model to Korean Subjects with Normal Glucose Tolerance and Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Min Hyuk Lim

    2016-06-01

    Full Text Available BackgroundThe oral minimal model is a simple, useful tool for the assessment of β-cell function and insulin sensitivity across the spectrum of glucose tolerance, including normal glucose tolerance (NGT, prediabetes, and type 2 diabetes mellitus (T2DM in humans.MethodsPlasma glucose, insulin, and C-peptide levels were measured during a 180-minute, 75-g oral glucose tolerance test in 24 Korean subjects with NGT (n=10 and T2DM (n=14. The parameters in the computational model were estimated, and the indexes for insulin sensitivity and β-cell function were compared between the NGT and T2DM groups.ResultsThe insulin sensitivity index was lower in the T2DM group than the NGT group. The basal index of β-cell responsivity, basal hepatic insulin extraction ratio, and post-glucose challenge hepatic insulin extraction ratio were not different between the NGT and T2DM groups. The dynamic, static, and total β-cell responsivity indexes were significantly lower in the T2DM group than the NGT group. The dynamic, static, and total disposition indexes were also significantly lower in the T2DM group than the NGT group.ConclusionThe oral minimal model can be reproducibly applied to evaluate β-cell function and insulin sensitivity in Koreans.

  5. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    DEFF Research Database (Denmark)

    Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg

    2018-01-01

    AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...

  6. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System

    OpenAIRE

    Kuranuki, Sachi; Sato, Toshiyuki; Okada, Seiki; Hosoya, Samiko; Seko, Akinobu; Sugihara, Kaya; Nakamura, Teiji

    2013-01-01

    Objective: To develop a minimally invasive interstitial fluid extraction technology (MIET) to monitor postprandial glucose area under the curve (AUC) without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Methods: Interstitial fluid glucose AUC (IG-AUC) following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the are...

  7. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  8. Evaluation of postprandial glucose excursion using a novel minimally invasive glucose area-under-the-curve monitoring system.

    Science.gov (United States)

    Kuranuki, Sachi; Sato, Toshiyuki; Okada, Seiki; Hosoya, Samiko; Seko, Akinobu; Sugihara, Kaya; Nakamura, Teiji

    2013-01-01

    To develop a minimally invasive interstitial fluid extraction technology (MIET) to monitor postprandial glucose area under the curve (AUC) without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Interstitial fluid glucose AUC (IG-AUC) following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the areas, and calculating IG-AUC based on glucose levels in the hydrogels. Glycemic index (GI) was determined using IG-AUC and reference AUC measured by blood sampling. IG-AUC strongly correlated with reference AUC (R = 0.91), and GI determined using IG-AUC showed good correlation with that determined by reference AUC (R = 0.88). IG-AUC obtained by MIET can accurately predict the postprandial glucose excursion without blood sampling. In addition, feasibility of GI measurement by MIET was confirmed.

  9. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System

    Directory of Open Access Journals (Sweden)

    Sachi Kuranuki

    2013-01-01

    Full Text Available Objective: To develop a minimally invasive interstitial fluid extraction technology (MIET to monitor postprandial glucose area under the curve (AUC without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Methods: Interstitial fluid glucose AUC (IG-AUC following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the areas, and calculating IG-AUC based on glucose levels in the hydrogels. Glycemic index (GI was determined using IG-AUC and reference AUC measured by blood sampling. Results: IG-AUC strongly correlated with reference AUC (R = 0.91, and GI determined using IG-AUC showed good correlation with that determined by reference AUC (R = 0.88. Conclusions: IG-AUC obtained by MIET can accurately predict the postprandial glucose excursion without blood sampling. In addition, feasibility of GI measurement by MIET was confirmed.

  10. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Uemura, Mei

    2017-01-01

    Background: Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting h...

  11. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Mei Uemura; Yutaka Yano; Toshinari Suzuki; Taro Yasuma; Toshiyuki Sato; Aya Morimoto; Samiko Hosoya; Chihiro Suminaka; Hiromu Nakajima; Esteban C. Gabazza; Yoshiyuki Takei

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hy...

  12. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. A Mechanistic Model of Intermittent Gastric Emptying and Glucose-Insulin Dynamics following a Meal Containing Milk Components.

    Directory of Open Access Journals (Sweden)

    Priska Stahel

    Full Text Available To support decision-making around diet selection choices to manage glycemia following a meal, a novel mechanistic model of intermittent gastric emptying and plasma glucose-insulin dynamics was developed. Model development was guided by postprandial timecourses of plasma glucose, insulin and the gastric emptying marker acetaminophen in infant calves fed meals of 2 or 4 L milk replacer. Assigning a fast, slow or zero first-order gastric emptying rate to each interval between plasma samples fit acetaminophen curves with prediction errors equal to 9% of the mean observed acetaminophen concentration. Those gastric emptying parameters were applied to glucose appearance in conjunction with minimal models of glucose disposal and insulin dynamics to describe postprandial glycemia and insulinemia. The final model contains 20 parameters, 8 of which can be obtained by direct measurement and 12 by fitting to observations. The minimal model of intestinal glucose delivery contains 2 gastric emptying parameters and a third parameter describing the time lag between emptying and appearance of glucose in plasma. Sensitivity analysis of the aggregate model revealed that gastric emptying rate influences area under the plasma insulin curve but has little effect on area under the plasma glucose curve. This result indicates that pancreatic responsiveness is influenced by gastric emptying rate as a consequence of the quasi-exponential relationship between plasma glucose concentration and pancreatic insulin release. The fitted aggregate model was able to reproduce the multiple postprandial rises and falls in plasma glucose concentration observed in calves consuming a normal-sized meal containing milk components.

  14. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  15. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    Science.gov (United States)

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  16. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    Science.gov (United States)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  17. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders

    2015-01-01

    of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global......The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function...... these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.Journal of Cerebral Blood Flow & Metabolism advance online publication, 8 October 2014; doi:10...

  18. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    Science.gov (United States)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  19. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  20. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  1. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    Science.gov (United States)

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  2. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  3. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  4. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  5. Glucose transport machinery reconstituted in cell models.

    Science.gov (United States)

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  6. Glucose reactivity with filling materials as a limitation for using the glucose leakage model

    NARCIS (Netherlands)

    Shemesh, H.; Souza, E.M.; Wu, M.K.; Wesselink, P.R.

    2008-01-01

    Aim To evaluate the reactivity of different endodontic materials and sealers with glucose and to asses the reliability of the glucose leakage model in measuring penetration of glucose through these materials. Methodology Ten uniform discs (radius 5 mm, thickness 2 mm) were made of each of the

  7. Minimal and non-minimal standard models: Universality of radiative corrections

    International Nuclear Information System (INIS)

    Passarino, G.

    1991-01-01

    The possibility of describing electroweak processes by means of models with a non-minimal Higgs sector is analyzed. The renormalization procedure which leads to a set of fitting equations for the bare parameters of the lagrangian is first reviewed for the minimal standard model. A solution of the fitting equations is obtained, which correctly includes large higher-order corrections. Predictions for physical observables, notably the W boson mass and the Z O partial widths, are discussed in detail. Finally the extension to non-minimal models is described under the assumption that new physics will appear only inside the vector boson self-energies and the concept of universality of radiative corrections is introduced, showing that to a large extent they are insensitive to the details of the enlarged Higgs sector. Consequences for the bounds on the top quark mass are also discussed. (orig.)

  8. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Analytical modeling of glucose biosensors based on carbon nanotubes.

    Science.gov (United States)

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-15

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.

  10. A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes.

    Science.gov (United States)

    Sakaguchi, Kazuhiko; Hirota, Yushi; Hashimoto, Naoko; Ogawa, Wataru; Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Maekawa, Yasunori; Nakajima, Hiromu

    2012-06-01

    Recent studies have highlighted the importance of managing postprandial hyperglycemia, but adequate monitoring of postprandial glucose remains difficult because of wide variations in levels. We have therefore developed a minimally invasive system to monitor postprandial glucose area under the curve (AUC). This system involves no blood sampling and uses interstitial fluid glucose (IG) AUC (IG-AUC) as a surrogate marker of postprandial glucose. This study aimed to evaluate the usefulness of this system by comparing data with the findings of oral glucose tolerance tests (OGTTs) in subjects with and without diabetes. The glucose AUC monitoring system was validated by OGTTs in 37 subjects with and 10 subjects without diabetes. A plastic microneedle array was stamped on the forearm to extract IG. A hydrogel patch was then placed on the pretreated area to accumulate IG. Glucose and sodium ion concentrations in the hydrogel were measured to calculate IG-AUC at 2-h postload glucose. Plasma glucose (PG) levels were measured every 30 min to calculate reference PG-AUC. IG-AUC correlated strongly with reference PG-AUC (r=0.93) over a wide range. The level of correlation between IG-AUC and maximum PG level was also high (r=0.86). The painless nature of the technique was confirmed by the response of patients to questionnaires. The glucose AUC monitoring system using IG provided good estimates of reference PG-AUC and maximum PG level during OGTTs in subjects with and without diabetes. This system provides easy-to-use monitoring of glucose AUC, which is a good indicator of postprandial glucose.

  11. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    Science.gov (United States)

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.

  12. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw......, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20......-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis...

  13. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    International Nuclear Information System (INIS)

    Levy, J.C.; Brown, G.; Matthews, D.R.; Turner, R.C.

    1989-01-01

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose [27 mumol.kg ideal body wt (IBW)-1.min-1] glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively)

  14. Effect of cholera toxin administered supraspinally or spinally on the blood glucose level in pain and d-glucose fed animal models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-04-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

  15. Discussion on the establishment of blood glucose fluctuation animal models

    OpenAIRE

    Chun-Liu Gai; Jing-Ru Zhao; Xiao-Long Chen

    2014-01-01

    AIM: To provide the experimental basis for the in vivo study of blood glucose fluctuation injury mechanism, through intraperitoneal injection of glucose to establish blood glucose fluctuation animal models and to simulate blood glucose fluctuation of patients with diabetes.METHODS: Rats were randomly divided into four groups: normal control group(NC), normal fluctuation group(NF), diabetes mellitus group(DM)and diabetes fluctuation group(DF). Diabetic models were induced through intraperitone...

  16. Using LSTMs to learn physiological models of blood glucose behavior.

    Science.gov (United States)

    Mirshekarian, Sadegh; Bunescu, Razvan; Marling, Cindy; Schwartz, Frank

    2017-07-01

    For people with type 1 diabetes, good blood glucose control is essential to keeping serious disease complications at bay. This entails carefully monitoring blood glucose levels and taking corrective steps whenever they are too high or too low. If blood glucose levels could be accurately predicted, patients could take proactive steps to prevent blood glucose excursions from occurring. However, accurate predictions require complex physiological models of blood glucose behavior. Factors such as insulin boluses, carbohydrate intake, and exercise influence blood glucose in ways that are difficult to capture through manually engineered equations. In this paper, we describe a recursive neural network (RNN) approach that uses long short-term memory (LSTM) units to learn a physiological model of blood glucose. When trained on raw data from real patients, the LSTM networks (LSTMs) obtain results that are competitive with a previous state-of-the-art model based on manually engineered physiological equations. The RNN approach can incorporate arbitrary physiological parameters without the need for sophisticated manual engineering, thus holding the promise of further improvements in prediction accuracy.

  17. Minimal model holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Gopakumar, Rajesh

    2013-01-01

    We review the duality relating 2D W N minimal model conformal field theories, in a large-N ’t Hooft like limit, to higher spin gravitational theories on AdS 3 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  18. Inflationary models with non-minimally derivative coupling

    International Nuclear Information System (INIS)

    Yang, Nan; Fei, Qin; Gong, Yungui; Gao, Qing

    2016-01-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL. (paper)

  19. Rational Design of Glucose-Responsive Insulin Using Pharmacokinetic Modeling.

    Science.gov (United States)

    Bakh, Naveed A; Bisker, Gili; Lee, Michael A; Gong, Xun; Strano, Michael S

    2017-11-01

    A glucose responsive insulin (GRI) is a therapeutic that modulates its potency, concentration, or dosing of insulin in relation to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. Current GRI design lacks a theoretical basis on which to base fundamental design parameters such as glucose reactivity, dissociation constant or potency, and in vivo efficacy. In this work, an approach to mathematically model the relevant parameter space for effective GRIs is induced, and design rules for linking GRI performance to therapeutic benefit are developed. Well-developed pharmacokinetic models of human glucose and insulin metabolism coupled to a kinetic model representation of a freely circulating GRI are used to determine the desired kinetic parameters and dosing for optimal glycemic control. The model examines a subcutaneous dose of GRI with kinetic parameters in an optimal range that results in successful glycemic control within prescribed constraints over a 24 h period. Additionally, it is demonstrated that the modeling approach can find GRI parameters that enable stable glucose levels that persist through a skipped meal. The results provide a framework for exploring the parameter space of GRIs, potentially without extensive, iterative in vivo animal testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Search for Minimal Standard Model and Minimal Supersymmetric Model Higgs Bosons in e+ e- Collisions with the OPAL detector at LEP

    International Nuclear Information System (INIS)

    Ganel, Ofer

    1993-06-01

    When LEP machine was turned on in August 1989, a new era had opened. For the first time, direct, model-independent searches for Higgs boson could be carried out. The Minimal Standard Model Higgs boson is expected to be produced in e + e - collisions via the H o Z o . The Minimal Supersymmetric Model Higgs boson are expected to be produced in the analogous e + e - -> h o Z o process or in pairs via the process e + e - -> h o A o . In this thesis we describe the search for Higgs bosons within the framework of the Minimal Standard Model and the Minimal Supersymmetric Model, using the data accumulated by the OPAL detector at LEP in the 1989, 1990, 1991 and part of the 1992 running periods at and around the Z o pole. An MInimal Supersymmetric Model Higgs boson generator is described as well as its use in several different searches. As a result of this work, the Minimal Standard Model Higgs boson mass is bounded from below by 54.2 GeV/c 2 at 95% C.L. This is, at present, the highest such bound. A novel method of overcoming the m τ and m s dependence of Minimal Supersymmetric Higgs boson production and decay introduced by one-loop radiative corrections is used to obtain model-independent exclusion. The thesis describes also an algorithm for off line identification of calorimeter noise in the OPAL detector. (author)

  1. Brain glucose metabolism in an animal model of depression.

    Science.gov (United States)

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-04

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  2. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...... as parameter uncertainty. Markov chain Monte Carlo methods are used, combining Metropolis Hastings, reversible jump and simulated tempering updates to provide rapidly mixing chains so as to provide robust inference. We demonstrate the methodology for both healthy and type II diabetic populations concluding...... that whilst both populations are well modelled by a common insulin model, their glucose dynamics differ considerably....

  3. Kinetic and stoichiometric modelling of acidogenic fermentation of glucose and fructose

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Villasenor, J.; Infantes, D.

    2011-01-01

    In this work, a model based on Monod equation for the description of the acidogenic fermentation of glucose and fructose as the main substrates contained in the winery wastewater was developed. The data used for calibration and validation of the model parameters were obtained from an acidogenic mixed culture fermenting glucose and fructose in a batch reactor at 35 o C and pH 5. The calibrated model accurately describes the experimental results from biomass growth, substrate consumption and fermentation products generation. The results showed that the microorganisms growth rate and biomass yield were higher when glucose was used as substrate: μ max-Glucose = 0.163 h -1 , μ max-Fructose = 0.108 h -1 , Y x-Glucose = 0.027 g VSS per mmol Glucose and Y x-Fructose 0.017 g VSS per mmol Fructose. Regarding to the fermentation products, the acetic acid was the main fermentation product obtained in both fermentations, followed by lactic and butyric acid. Comparing glucose and fructose fermentations, the main difference was the yield of butyric acid in both fermentations, 0.249 mol per mol Glucose and 0.131 mol per mol Fructose since the other acids concentration were quite similar. In the case of the H 2 production, it was 0.76 mol H 2 per mol Glucose while 0.85 was the yield in fructose fermentation. -- Highlights: → Acidogenic fermentation of glucose and fructose was studied. → A model describing the kinetics and stoichiometry of the fermentation was developed. → The model developed predicted accurately the substrate, products and biomass profiles along the fermentation process. → The microorganisms growth rate was higher in the glucose fermentation. → The fructose fermentation presented higher hydrogen yields.

  4. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    Science.gov (United States)

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-04

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Glucose effectiveness is a critical pathogenic factor leading to glucose intolerance and type 2 diabetes: An ignored hypothesis.

    Science.gov (United States)

    Alford, F P; Henriksen, J E; Rantzau, C; Beck-Nielsen, H

    2018-02-16

    Although the ability of glucose to mediate its own in vivo metabolism is long documented, the quantitative measurement of whole body glucose-mediated glucose disposal at basal insulin levels (glucose effectiveness [GE]), followed the introduction of the Minimal Model intravenous glucose tolerance test technique. A literature review, combined with our own studies, of the role of GE in glucose metabolism in normal and "at risk" individuals, was undertaken to determine GE's contribution to glucose homeostasis. GE accounts for ~45% to 65% of glucose disposal in man. A negative association between GE and insulin meditated glucose disposal (Si), is present in normal subjects without a family history of type 2 diabetes mellitus but is absent in normoglycaemic "at risk" relatives with a positive family history of diabetes mellitus. Intracellular GE disposal is mediated by mass action of glucose through the skeletal muscle membrane via facilitated Glut 4 transporters. However, GE is frequently forgotten as a significant contributor to the development of glucose intolerance in "at risk" individuals. Only limited studies have examined the role of a lower GE in such normoglycemic subjects with preexisting mild insulin resistance and β-cell dysfunction. These studies demonstrate that in "at risk" individuals, an initial low GE is a key contributor and predictor of future glucose intolerance, whereas an initial raised GE is protective against future glucose intolerance. In "at risk" individuals, a low GE and genetically determined vulnerable β-cell function are more critical determinants of future glucose intolerance than their preexisting insulin-resistant state. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake

    Science.gov (United States)

    Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-01-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. PMID:24876585

  8. Minimal conformal model

    Energy Technology Data Exchange (ETDEWEB)

    Helmboldt, Alexander; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    The gauge hierarchy problem is one of the crucial drawbacks of the standard model of particle physics (SM) and thus has triggered model building over the last decades. Its most famous solution is the introduction of low-scale supersymmetry. However, without any significant signs of supersymmetric particles at the LHC to date, it makes sense to devise alternative mechanisms to remedy the hierarchy problem. One such mechanism is based on classically scale-invariant extensions of the SM, in which both the electroweak symmetry and the (anomalous) scale symmetry are broken radiatively via the Coleman-Weinberg mechanism. Apart from giving an introduction to classically scale-invariant models, the talk presents our results on obtaining a theoretically consistent minimal extension of the SM, which reproduces the correct low-scale phenomenology.

  9. Blood glucose level reconstruction as a function of transcapillary glucose transport.

    Science.gov (United States)

    Koutny, Tomas

    2014-10-01

    A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Vahidi, O; Kwok, K E; Gopaluni, R B; Knop, F K

    2016-09-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main drawback of the former model was its restriction on the route of glucose entrance to the body which was limited to the intravenous glucose injection. To handle the oral glucose intake, we have added a model of glucose absorption in the gastrointestinal tract to the former model to address the resultant variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization problem. The results show acceptable precision of the estimated model parameters and demonstrate the capability of the model in accurate prediction of the body response during the clinical studies.

  11. Perturbed Yukawa textures in the minimal seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Thomas; Schmitz, Kai [Max Planck Institute for Nuclear Physics (MPIK),69117 Heidelberg (Germany)

    2017-03-29

    We revisit the minimal seesaw model, i.e., the type-I seesaw mechanism involving only two right-handed neutrinos. This model represents an important minimal benchmark scenario for future experimental updates on neutrino oscillations. It features four real parameters that cannot be fixed by the current data: two CP-violating phases, δ and σ, as well as one complex parameter, z, that is experimentally inaccessible at low energies. The parameter z controls the structure of the neutrino Yukawa matrix at high energies, which is why it may be regarded as a label or index for all UV completions of the minimal seesaw model. The fact that z encompasses only two real degrees of freedom allows us to systematically scan the minimal seesaw model over all of its possible UV completions. In doing so, we address the following question: suppose δ and σ should be measured at particular values in the future — to what extent is one then still able to realize approximate textures in the neutrino Yukawa matrix? Our analysis, thus, generalizes previous studies of the minimal seesaw model based on the assumption of exact texture zeros. In particular, our study allows us to assess the theoretical uncertainty inherent to the common texture ansatz. One of our main results is that a normal light-neutrino mass hierarchy is, in fact, still consistent with a two-zero Yukawa texture, provided that the two texture zeros receive corrections at the level of O(10 %). While our numerical results pertain to the minimal seesaw model only, our general procedure appears to be applicable to other neutrino mass models as well.

  12. Modelling of glucose-insulin-glucagon pharmacodynamics in man

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, A.

    The purpose is to build a simulation model of the glucoregulatory system in man. We estimate individual human parameters of a physiological glucose-insulin-glucagon model. We report posterior probability distributions and correlations of model parameters....

  13. Analytical model for real time, noninvasive estimation of blood glucose level.

    Science.gov (United States)

    Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti

    2014-01-01

    The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.

  14. Minimal Self-Models and the Free Energy Principle

    Directory of Open Access Journals (Sweden)

    Jakub eLimanowski

    2013-09-01

    Full Text Available The term "minimal phenomenal selfhood" describes the basic, pre-reflective experience of being a self (Blanke & Metzinger, 2009. Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005; Grafton, 2009. A recent account of minimal phenomenal selfhood (MPS, Metzinger, 2004a centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP, Friston, 2010 is a novel unified theory of cortical function that builds upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the free energy principle and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds.

  15. The dispersionless Lax equations and topological minimal models

    International Nuclear Information System (INIS)

    Krichever, I.

    1992-01-01

    It is shown that perturbed rings of the primary chiral fields of the topological minimal models coincide with some particular solutions of the dispersionless Lax equations. The exact formulae for the tree level partition functions, of A n topological minimal models are found. The Virasoro constraints for the analogue of the τ-function of the dispersionless Lax equation corresponding to these models are proved. (orig.)

  16. Engineering glucose oxidase to minimize the influence of oxygen on sensor response

    International Nuclear Information System (INIS)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2014-01-01

    Glucose oxidase (GOx) is an important industrial enzyme and is recognized as the gold standard for monitoring blood glucose. However, due to its inherent oxidase property, the presence of oxygen affects electrochemical measurements of venous blood glucose employing artificial electron mediators. We therefore attempted to engineer Penicillium amagasakiense-derived GOx into a dehydrogenase by focusing on the amino acid residues predicted to interact with oxygen. Our rational amino acid substitution approach resulted in the construction of the Ser114Ala/Phe355Leu mutant, which has an 11-fold decrease in oxidase activity and 2.8-fold increase in dehydrogenase activity compared with wild-type GOx. As a result, the dehydrogenase/oxidase activity ratio of the engineered enzyme was 32-fold greater than that of the wild-type enzyme. The enzyme sensor constructed with Ser114Ala/Phe355Leu was considerably less affected by oxygen than the wild-type GOx-based sensor at lower glucose concentrations

  17. A Generalized Random Regret Minimization Model

    NARCIS (Netherlands)

    Chorus, C.G.

    2013-01-01

    This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM

  18. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  19. The minimal curvaton-Higgs model

    International Nuclear Information System (INIS)

    Enqvist, Kari; Lerner, Rose N.; Helsinki Univ. and Helsinki Institute of Physics; Takahashi, Tomo

    2013-10-01

    We present the first full study of the minimal curvaton-Higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m σ ≥8 x 10 4 GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10 -3 and 10 -2 , depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f NL is observed in the near future then m σ 9 GeV, depending on Hubble scale during inflation. In a thermal dark matter model, the lower bound on m σ can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  20. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Alskär, Oskar; Bagger, Jonatan I; Røge, Rikke M.

    2016-01-01

    The integrated glucose-insulin (IGI) model is a previously published semimechanistic model that describes plasma glucose and insulin concentrations after glucose challenges. The aim of this work was to use knowledge of physiology to improve the IGI model's description of glucose absorption and ga...... model provides a better description and improves the understanding of dynamic glucose tests involving oral glucose....... and gastric emptying after tests with varying glucose doses. The developed model's performance was compared to empirical models. To develop our model, data from oral and intravenous glucose challenges in patients with type 2 diabetes and healthy control subjects were used together with present knowledge...... glucose absorption was superior to linear absorption regardless of the gastric emptying model applied. The semiphysiological model developed performed better than previously published empirical models and allows better understanding of the mechanisms underlying glucose absorption. In conclusion, our new...

  1. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Vahidi, O; Kwok, K E; Gopaluni, R B

    2016-01-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main...... variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data...... obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization...

  2. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    OpenAIRE

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensor...

  3. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    Science.gov (United States)

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has

  4. Fusion algebras of logarithmic minimal models

    International Nuclear Information System (INIS)

    Rasmussen, Joergen; Pearce, Paul A

    2007-01-01

    We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are typically reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra p ≠ 1 is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for (p, p') = (2, 5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c p,p' (minimal) models defined algebraically

  5. The minimal curvaton-Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Kari [Helsinki Univ. and Helsinki Institute of Physics (Finland). Physics Dept.; Lerner, Rose N. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Helsinki Univ. and Helsinki Institute of Physics (Finland). Physics Dept.; Takahashi, Tomo [Saga Univ. (Japan). Dept. of Physics

    2013-10-15

    We present the first full study of the minimal curvaton-Higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m{sub {sigma}}{>=}8 x 10{sup 4} GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10{sup -3} and 10{sup -2}, depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f{sub NL} is observed in the near future then m{sub {sigma}}model, the lower bound on m{sub {sigma}} can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  6. Null-polygonal minimal surfaces in AdS4 from perturbed W minimal models

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji

    2012-11-01

    We study the null-polygonal minimal surfaces in AdS 4 , which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4) 4 /U(1) n-5 generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS 3 case.

  7. Strong Sector in non-minimal SUSY model

    Directory of Open Access Journals (Sweden)

    Costantini Antonio

    2016-01-01

    Full Text Available We investigate the squark sector of a supersymmetric theory with an extended Higgs sector. We give the mass matrices of stop and sbottom, comparing the Minimal Supersymmetric Standard Model (MSSM case and the non-minimal case. We discuss the impact of the extra superfields on the decay channels of the stop searched at the LHC.

  8. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  9. The regulatory system for diabetes mellitus: Modeling rates of glucose infusions and insulin injections

    Science.gov (United States)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2016-08-01

    Novel mathematical models with open and closed-loop control for type 1 or type 2 diabetes mellitus were developed to improve understanding of the glucose-insulin regulatory system. A hybrid impulsive glucose-insulin model with different frequencies of glucose infusions and insulin injections was analyzed, and the existence and uniqueness of the positive periodic solution for type 1 diabetes, which is globally asymptotically stable, was studied analytically. Moreover, permanence of the system for type 2 diabetes was demonstrated which showed that the glucose concentration level is uniformly bounded above and below. To investigate how to prevent hyperinsulinemia and hyperglycemia being caused by this system, we developed a model involving periodic intakes of glucose with insulin injections applied only when the blood glucose level reached a given critical glucose threshold. In addition, our numerical analysis revealed that the period, the frequency and the dose of glucose infusions and insulin injections are crucial for insulin therapies, and the results provide clinical strategies for insulin-administration practices.

  10. Minimal dilaton model

    Directory of Open Access Journals (Sweden)

    Oda Kin-ya

    2013-05-01

    Full Text Available Both the ATLAS and CMS experiments at the LHC have reported the observation of the particle of mass around 125 GeV which is consistent to the Standard Model (SM Higgs boson, but with an excess of events beyond the SM expectation in the diphoton decay channel at each of them. There still remains room for a logical possibility that we are not seeing the SM Higgs but something else. Here we introduce the minimal dilaton model in which the LHC signals are explained by an extra singlet scalar of the mass around 125 GeV that slightly mixes with the SM Higgs heavier than 600 GeV. When this scalar has a vacuum expectation value well beyond the electroweak scale, it can be identified as a linearly realized version of a dilaton field. Though the current experimental constraints from the Higgs search disfavors such a region, the singlet scalar model itself still provides a viable alternative to the SM Higgs in interpreting its search results.

  11. Endogenous glucose production from infancy to adulthood: a non-linear regression model

    NARCIS (Netherlands)

    Huidekoper, Hidde H.; Ackermans, Mariëtte T.; Ruiter, An F. C.; Sauerwein, Hans P.; Wijburg, Frits A.

    2014-01-01

    To construct a regression model for endogenous glucose production (EGP) as a function of age, and compare this with glucose supplementation using commonly used dextrose-based saline solutions at fluid maintenance rate in children. A model was constructed based on EGP data, as quantified by

  12. Matrix factorizations, minimal models and Massey products

    International Nuclear Information System (INIS)

    Knapp, Johanna; Omer, Harun

    2006-01-01

    We present a method to compute the full non-linear deformations of matrix factorizations for ADE minimal models. This method is based on the calculation of higher products in the cohomology, called Massey products. The algorithm yields a polynomial ring whose vanishing relations encode the obstructions of the deformations of the D-branes characterized by these matrix factorizations. This coincides with the critical locus of the effective superpotential which can be computed by integrating these relations. Our results for the effective superpotential are in agreement with those obtained from solving the A-infinity relations. We point out a relation to the superpotentials of Kazama-Suzuki models. We will illustrate our findings by various examples, putting emphasis on the E 6 minimal model

  13. A mathematical model for predicting glucose levels in critically-ill patients: the PIGnOLI model

    Directory of Open Access Journals (Sweden)

    Zhongheng Zhang

    2015-06-01

    Full Text Available Background and Objectives. Glycemic control is of paramount importance in the intensive care unit. Presently, several BG control algorithms have been developed for clinical trials, but they are mostly based on experts’ opinion and consensus. There are no validated models predicting how glucose levels will change after initiating of insulin infusion in critically ill patients. The study aimed to develop an equation for initial insulin dose setting.Methods. A large critical care database was employed for the study. Linear regression model fitting was employed. Retested blood glucose was used as the independent variable. Insulin rate was forced into the model. Multivariable fractional polynomials and interaction terms were used to explore the complex relationships among covariates. The overall fit of the model was examined by using residuals and adjusted R-squared values. Regression diagnostics were used to explore the influence of outliers on the model.Main Results. A total of 6,487 ICU admissions requiring insulin pump therapy were identified. The dataset was randomly split into two subsets at 7 to 3 ratio. The initial model comprised fractional polynomials and interactions terms. However, this model was not stable by excluding several outliers. I fitted a simple linear model without interaction. The selected prediction model (Predicting Glucose Levels in ICU, PIGnOLI included variables of initial blood glucose, insulin rate, PO volume, total parental nutrition, body mass index (BMI, lactate, congestive heart failure, renal failure, liver disease, time interval of BS recheck, dextrose rate. Insulin rate was significantly associated with blood glucose reduction (coefficient: −0.52, 95% CI [−1.03, −0.01]. The parsimonious model was well validated with the validation subset, with an adjusted R-squared value of 0.8259.Conclusion. The study developed the PIGnOLI model for the initial insulin dose setting. Furthermore, experimental study is

  14. Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.

    Science.gov (United States)

    Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi

    2012-04-01

    Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Null-polygonal minimal surfaces in AdS{sub 4} from perturbed W minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ito, Katsushi [Tokyo Institute of Technology (Japan). Dept. of Physics; Satoh, Yuji [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics

    2012-11-15

    We study the null-polygonal minimal surfaces in AdS{sub 4}, which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4){sub 4}/U(1){sup n-5} generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS{sub 3} case.

  16. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    Science.gov (United States)

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  17. Strategies for glucose control in people with type 1 diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Finan, Daniel Aaron; Jørgensen, John Bagterp

    2011-01-01

    the patient. We minimize the risk of hypoglycemia by introducing a time-varying glucose setpoint based on the announced meal size and the physiological model of the patient. The simulation results are based on a virtual patient simulated by the Hovorka model. They include the cases where the insulin...... sensitivity changes, and mismatches in meal estimation. They demonstrate that the designed controller is able to achieve offset-free control when the insulin sensitivity change, and that having a time-varying reference signal enables more robust control of blood glucose in the cases where the meal size......In this paper we apply a robust feedforward-feedback control strategy to people with type 1 diabetes. The feedforward controller consists of a bolus calculator which compensates the disturbance coming from meals. The feedback controller is based on a linearized description of the model describing...

  18. Mathematical modeling of the glucose-insulin system

    DEFF Research Database (Denmark)

    Palumbo, Pasquale; Ditlevsen, Susanne; Bertuzzi, Alessandro

    2013-01-01

    of pancreatic insulin production, with a oarser/finer level of detail ranging over cellular and subcellular scales, to short-term organ/tissue models accounting for the intra-venous and the oral glucose tolerance tests as well as for the euglycemic hyperinsulinemic clamp, to total-body, long-term diabetes...

  19. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    Science.gov (United States)

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  20. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  1. Glucose metabolism during rotational shift-work in healthcare workers.

    Science.gov (United States)

    Sharma, Anu; Laurenti, Marcello C; Dalla Man, Chiara; Varghese, Ron T; Cobelli, Claudio; Rizza, Robert A; Matveyenko, Aleksey; Vella, Adrian

    2017-08-01

    Shift-work is associated with circadian rhythm disruption and an increased risk of obesity and type 2 diabetes. We sought to determine the effect of rotational shift-work on glucose metabolism in humans. We studied 12 otherwise healthy nurses performing rotational shift-work using a randomised crossover study design. On each occasion, participants underwent an isotope-labelled mixed meal test during a simulated day shift and a simulated night shift, enabling simultaneous measurement of glucose flux and beta cell function using the oral minimal model. We sought to determine differences in fasting and postprandial glucose metabolism during the day shift vs the night shift. Postprandial glycaemic excursion was higher during the night shift (381±33 vs 580±48 mmol/l per 5 h, pshift. While insulin action did not differ between study days, the beta cell responsivity to glucose (59±5 vs 44±4 × 10 -9  min -1 ; pshift. Impaired beta cell function during the night shift may result from normal circadian variation, the effect of rotational shift-work or a combination of both. As a consequence, higher postprandial glucose concentrations are observed during the night shift.

  2. Model-Based Quantification of the Systemic Interplay between Glucose and Fatty Acids in the Postprandial State.

    Science.gov (United States)

    Sips, Fianne L P; Nyman, Elin; Adiels, Martin; Hilbers, Peter A J; Strålfors, Peter; van Riel, Natal A W; Cedersund, Gunnar

    2015-01-01

    In metabolic diseases such as Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, the systemic regulation of postprandial metabolite concentrations is disturbed. To understand this dysregulation, a quantitative and temporal understanding of systemic postprandial metabolite handling is needed. Of particular interest is the intertwined regulation of glucose and non-esterified fatty acids (NEFA), due to the association between disturbed NEFA metabolism and insulin resistance. However, postprandial glucose metabolism is characterized by a dynamic interplay of simultaneously responding regulatory mechanisms, which have proven difficult to measure directly. Therefore, we propose a mathematical modelling approach to untangle the systemic interplay between glucose and NEFA in the postprandial period. The developed model integrates data of both the perturbation of glucose metabolism by NEFA as measured under clamp conditions, and postprandial time-series of glucose, insulin, and NEFA. The model can describe independent data not used for fitting, and perturbations of NEFA metabolism result in an increased insulin, but not glucose, response, demonstrating that glucose homeostasis is maintained. Finally, the model is used to show that NEFA may mediate up to 30-45% of the postprandial increase in insulin-dependent glucose uptake at two hours after a glucose meal. In conclusion, the presented model can quantify the systemic interactions of glucose and NEFA in the postprandial state, and may therefore provide a new method to evaluate the disturbance of this interplay in metabolic disease.

  3. Two-Higgs-doublet models with Minimal Flavour Violation

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2010-01-01

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the ΔF = 2 transitions, namely the large CP-violating phase in B s mixing and the tension between ε K and S ψKS .

  4. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    Science.gov (United States)

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Computer Simulation Model to Train Medical Personnel on Glucose Clamp Procedures.

    Science.gov (United States)

    Maghoul, Pooya; Boulet, Benoit; Tardif, Annie; Haidar, Ahmad

    2017-10-01

    A glucose clamp procedure is the most reliable way to quantify insulin pharmacokinetics and pharmacodynamics, but skilled and trained research personnel are required to frequently adjust the glucose infusion rate. A computer environment that simulates glucose clamp experiments can be used for efficient personnel training and development and testing of algorithms for automated glucose clamps. We built 17 virtual healthy subjects (mean age, 25±6 years; mean body mass index, 22.2±3 kg/m 2 ), each comprising a mathematical model of glucose regulation and a unique set of parameters. Each virtual subject simulates plasma glucose and insulin concentrations in response to intravenous insulin and glucose infusions. Each virtual subject provides a unique response, and its parameters were estimated from combined intravenous glucose tolerance test-hyperinsulinemic-euglycemic clamp data using the Bayesian approach. The virtual subjects were validated by comparing their simulated predictions against data from 12 healthy individuals who underwent a hyperglycemic glucose clamp procedure. Plasma glucose and insulin concentrations were predicted by the virtual subjects in response to glucose infusions determined by a trained research staff performing a simulated hyperglycemic clamp experiment. The total amount of glucose infusion was indifferent between the simulated and the real subjects (85±18 g vs. 83±23 g; p=NS) as well as plasma insulin levels (63±20 mU/L vs. 58±16 mU/L; p=NS). The virtual subjects can reliably predict glucose needs and plasma insulin profiles during hyperglycemic glucose clamp conditions. These virtual subjects can be used to train personnel to make glucose infusion adjustments during clamp experiments. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  6. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    Science.gov (United States)

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  7. Model-Based Quantification of the Systemic Interplay between Glucose and Fatty Acids in the Postprandial State.

    Directory of Open Access Journals (Sweden)

    Fianne L P Sips

    Full Text Available In metabolic diseases such as Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, the systemic regulation of postprandial metabolite concentrations is disturbed. To understand this dysregulation, a quantitative and temporal understanding of systemic postprandial metabolite handling is needed. Of particular interest is the intertwined regulation of glucose and non-esterified fatty acids (NEFA, due to the association between disturbed NEFA metabolism and insulin resistance. However, postprandial glucose metabolism is characterized by a dynamic interplay of simultaneously responding regulatory mechanisms, which have proven difficult to measure directly. Therefore, we propose a mathematical modelling approach to untangle the systemic interplay between glucose and NEFA in the postprandial period. The developed model integrates data of both the perturbation of glucose metabolism by NEFA as measured under clamp conditions, and postprandial time-series of glucose, insulin, and NEFA. The model can describe independent data not used for fitting, and perturbations of NEFA metabolism result in an increased insulin, but not glucose, response, demonstrating that glucose homeostasis is maintained. Finally, the model is used to show that NEFA may mediate up to 30-45% of the postprandial increase in insulin-dependent glucose uptake at two hours after a glucose meal. In conclusion, the presented model can quantify the systemic interactions of glucose and NEFA in the postprandial state, and may therefore provide a new method to evaluate the disturbance of this interplay in metabolic disease.

  8. A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells.

    Science.gov (United States)

    de Los Ángeles Fernandez, Maria; de Los Ángeles Sanromán, Maria; Marks, Stanislaw; Makinia, Jacek; Gonzalez Del Campo, Araceli; Rodrigo, Manuel; Fernandez, Francisco Jesus

    2016-01-01

    In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol(-1) glucose) and lactic acid (with a yield of 1.36molmol(-1) glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Toda theories, W-algebras, and minimal models

    International Nuclear Information System (INIS)

    Mansfield, P.; Spence, B.

    1991-01-01

    We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.)

  10. Accuracy of a Fourth-Generation Subcutaneous Continuous Glucose Sensor.

    Science.gov (United States)

    Christiansen, Mark P; Garg, Satish K; Brazg, Ronald; Bode, Bruce W; Bailey, Timothy S; Slover, Robert H; Sullivan, Ashley; Huang, Suiying; Shin, John; Lee, Scott W; Kaufman, Francine R

    2017-08-01

    This study evaluated the accuracy and performance of a fourth-generation subcutaneous glucose sensor (Guardian ™ Sensor 3) in the abdomen and arm. Eighty-eight subjects (14-75 years of age, mean ± standard deviation [SD] of 42.0 ± 19.1 years) with type 1 or type 2 diabetes participated in the study. Subjects wore two sensors in the abdomen that were paired with either a MiniMed ™ 640G insulin pump, or an iPhone ® or iPod ® touch ® running a glucose monitoring mobile application (Guardian Connect system) and a third sensor in the arm, which was connected to a glucose sensor recorder (GSR). Subjects were also asked to undergo in-clinic visits of 12-14 h on study days 1, 3, and 7 for frequent blood glucose sample testing using a Yellow Springs Instrument (YSI) reference. The overall mean absolute relative difference (MARD ± SD) between abdomen sensor glucose (SG) and YSI reference values was 9.6% ± 9.0% and 9.4% ± 9.8% for the MiniMed 640G insulin pump and Guardian Connect system, respectively; and 8.7% ± 8.0% between arm SG and YSI reference values. The percentage of SG values within 20% agreement of the YSI reference value (for YSI >80 mg/dL) was 90.7% with the MiniMed 640G insulin pump, 91.8% with the Guardian Connect system, and 93.1% for GSR-connected arm sensors. Mean functional sensor life, when calibrating 3-4 times/day, was 145.9 ± 39.3 h for sensors paired with the MiniMed 640G insulin pump, 146.1 ± 41.6 h for sensors paired with the Guardian Connect system, and 147.6 ± 40.4 h for sensors connected to the GSR. Responses to survey questions regarding sensor comfort and ease of use were favorable. The Guardian Sensor 3 glucose sensor, whether located in abdomen or the arm, provided accurate glucose readings when compared with the YSI reference and demonstrated functional life commensurate with the intended 7-day use. ClinicalTrials.gov : NCT02246582.

  11. A Disposable Tear Glucose Biosensor—Part 2: System Integration and Model Validation

    Science.gov (United States)

    La Belle, Jeffrey T.; Bishop, Daniel K.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.

    2010-01-01

    Background We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. Methods An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 μM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 μM glucose. Results From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 μM and a lower limit of detection was calculated at 43.4 μM. A linear dynamic range was demonstrated from 0 to 1000 μM with an R2 of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 μM glucose. Conclusion With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. PMID:20307390

  12. A disposable tear glucose biosensor-part 2: system integration and model validation.

    Science.gov (United States)

    La Belle, Jeffrey T; Bishop, Daniel K; Vossler, Stephen R; Patel, Dharmendra R; Cook, Curtiss B

    2010-03-01

    We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 microM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 microM glucose. From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 microM and a lower limit of detection was calculated at 43.4 microM. A linear dynamic range was demonstrated from 0 to 1000 microM with an R(2) of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 microM glucose. With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. (c) 2010 Diabetes Technology Society.

  13. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Science.gov (United States)

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  14. Model Arrhenius untuk Pendugaan Laju Respirasi Brokoli Terolah Minimal

    Directory of Open Access Journals (Sweden)

    Nurul Imamah

    2016-04-01

    Full Text Available Minimally processed broccoli are perishable product because it still has some metabolism process during the storage period. One of the metabolism process is respiration. Respiration rate is varied depend on the commodity and storage temperature. The purpose of this research are: to review the respiration pattern of minimally processed broccoli during storage period, to study the effect of storage temperature to respiration rate, and to review the correlation between respiration rate and temperature based on Arrhenius model. Broccoli from farming organization “Agro Segar” was processed minimally and then measure the respiration rate. Closed system method is used to measure O2 and CO2 concentration. Minimally processed broccoli is stored at a temperature of 0oC, 5oC, 10oC and 15oC. The experimental design used was completely randomized design of the factors to analyze the rate of respiration. The result shows that broccoli is a climacteric vegetable. It is indicated by the increasing of O2 consumption and CO2 production during senescence phase. The respiration rate increase as high as the increasing of temperature storage. Models Arrhenius can describe correlation between respiration rate and temperature with R2 = 0.953-0.947. The constant value of activation energy (Eai and pre-exponential factor (Roi from Arrhenius model can be used to predict the respiration rate of minimally processed broccoli in every storage temperature

  15. Model for Simulating Fasting Glucose in Type 2 Diabetes and the Effect of Adherence to Treatment

    DEFF Research Database (Denmark)

    Aradóttir, Tinna Björk; Boiroux, Dimitri; Bengtsson, Henrik

    2017-01-01

    trial results where a dose guidance algorithm was used. We investigate sources of variance and through simulations evaluate the contribution of adherence to variance and dose guidance quality. The results suggest that the model for simulation of T2D patients is sufficient for simulating fasting glucose......The primary goal of this paper is to predict fasting glucose levels in type 2 diabetes (T2D) in long-acting insulin treatment. The paper presents a model for simulating insulin-glucose dynamics in T2D patients. The model combines a physiological model of type 1 diabetes (T1D) and an endogenous...... insulin production model in T2D. We include a review of sources of variance in fasting glucose values in long-acting insulin treatment, with respect to dose guidance algorithms. We use the model to simulate fasting glucose levels in T2D long-acting insulin treatment and compare the results with clinical...

  16. On the possibility of nonfat frying using molten glucose.

    Science.gov (United States)

    Al-Khusaibi, Mohammed; Ahmad Tarmizi, Azmil Haizam; Niranjan, Keshavan

    2015-01-01

    Fried products impose a health concerns due to considerable amount of oil they contain. Production of snack foods with minimal oil content and good management of oil during frying to minimize the production of toxic compounds continue to be challenging aims. This paper aims to investigate the possibility of producing a fat-free food snack by replacing frying oil with a nonfat medium. Glucose was melted and its temperature was then brought to 185 °C and used to fry potato strips, to obtain a product referred here as glucose fries. The resulting product was compared with French fries prepared conventionally under conditions that resulted in similar final moisture content. The resulting products were also examined for crust formation, texture parameters, color development and glucose content. Stereo microscope images showed that similar crusts were formed in the glucose fries and French fries. Texture parameters were found to be similar for both products at 5 and 2 mm penetration depth. The maximum hardness at 2 mm penetration depth was also similar for both products, but different from cooked potato. The color development that characterized French fries was also observed in glucose fries. The glucose content in glucose fries was found to be twice the content of French fries, which is to be expected because glucose absorbed or adhered to the surface. In conclusion, glucose fries, with similar texture and color characteristics to that of French fries, can be prepared by using a nonfat frying medium. © 2014 Institute of Food Technologists®

  17. Modular invariance of N=2 minimal models

    International Nuclear Information System (INIS)

    Sidenius, J.

    1991-01-01

    We prove modular covariance of one-point functions at one loop in the diagonal N=2 minimal superconformal models. We use the recently derived general formalism for computing arbitrary conformal blocks in these models. Our result should be sufficient to guarantee modular covariance at arbitrary genus. It is thus an important check on the general formalism which is not manifestly modular covariant. (orig.)

  18. Effects of turtle oil on insulin sensitivity and glucose metabolism in insulin resistant cell model

    International Nuclear Information System (INIS)

    Bai Jing; Tian Yaping; Guo Duo

    2007-01-01

    To evaluate the effects of turtle oil on insulin sensitivity and glucose metabolism in an insulin-resistant (IR) cell model which was established by the way of high concentration of insulin induction with HepG 2 cell in vitro culture. The IR cells were treated by turtle oil, the glucose consumption and 3 H-D-glucose incorporation rate in IR cells were detected by the way of glucose oxidase and 3 H-D-glucose incorporation assay respectively. The state of cell proliferation was tested by MTT method. The results showed that the incorporation rate of 3 H-D-glucose in IR cells was significantly lower than that in the control cells(P 3 H-D-glucose incorporation rate in either IR cells or control cells was increased with the increase of insulin concentration. Moreover, the 3 H-D-glucose incorporation rate of IR cells increased slower than that of control cells. The MTT assay showed that turtle oil can promote the proliferation of IR cell and control cell. The glucose uptake and glucose consumption in IR cell which treated with turtle oil was significantly increase than that in the control cells (P<0.05). Turtle oil can improve the insulin sensitivity and glucose metabolism in the IR cell model. (authors)

  19. A random regret minimization model of travel choice

    NARCIS (Netherlands)

    Chorus, C.G.; Arentze, T.A.; Timmermans, H.J.P.

    2008-01-01

    Abstract This paper presents an alternative to Random Utility-Maximization models of travel choice. Our Random Regret-Minimization model is rooted in Regret Theory and provides several useful features for travel demand analysis. Firstly, it allows for the possibility that choices between travel

  20. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  1. Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations.

    Science.gov (United States)

    Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P

    2011-08-01

    To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  3. Predicting Plasma Glucose From Interstitial Glucose Observations Using Bayesian Methods

    DEFF Research Database (Denmark)

    Hansen, Alexander Hildenbrand; Duun-Henriksen, Anne Katrine; Juhl, Rune

    2014-01-01

    One way of constructing a control algorithm for an artificial pancreas is to identify a model capable of predicting plasma glucose (PG) from interstitial glucose (IG) observations. Stochastic differential equations (SDEs) make it possible to account both for the unknown influence of the continuous...... glucose monitor (CGM) and for unknown physiological influences. Combined with prior knowledge about the measurement devices, this approach can be used to obtain a robust predictive model. A stochastic-differential-equation-based gray box (SDE-GB) model is formulated on the basis of an identifiable...

  4. Robust blood-glucose control using Mathematica.

    Science.gov (United States)

    Kovács, Levente; Paláncz, Béla; Benyó, Balázs; Török, László; Benyó, Zoltán

    2006-01-01

    A robust control design on frequency domain using Mathematica is presented for regularization of glucose level in type I diabetes persons under intensive care. The method originally proposed under Mathematica by Helton and Merino, --now with an improved disturbance rejection constraint inequality--is employed, using a three-state minimal patient model. The robustness of the resulted high-order linear controller is demonstrated by nonlinear closed loop simulation in state-space, in case of standard meal disturbances and is compared with H infinity design implemented with the mu-toolbox of Matlab. The controller designed with model parameters represented the most favorable plant dynamics from the point of view of control purposes, can operate properly even in case of parameter values of the worst-case scenario.

  5. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Ilieva, N.

    1987-01-01

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  6. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  7. Validation of different measures of insulin sensitivity of glucose metabolism in dairy cows using the hyperinsulinemic euglycemic clamp test as the gold standard.

    Science.gov (United States)

    De Koster, J; Hostens, M; Hermans, K; Van den Broeck, W; Opsomer, G

    2016-10-01

    The aim of the present research was to compare different measures of insulin sensitivity in dairy cows at the end of the dry period. To do so, 10 clinically healthy dairy cows with a varying body condition score were selected. By performing hyperinsulinemic euglycemic clamp (HEC) tests, we previously demonstrated a negative association between the insulin sensitivity and insulin responsiveness of glucose metabolism and the body condition score of these animals. In the same animals, other measures of insulin sensitivity were determined and the correlation with the HEC test, which is considered as the gold standard, was calculated. Measures derived from the intravenous glucose tolerance test (IVGTT) are based on the disappearance of glucose after an intravenous glucose bolus. Glucose concentrations during the IVGTT were used to calculate the area under the curve of glucose and the clearance rate of glucose. In addition, glucose and insulin data from the IVGTT were fitted in the minimal model to derive the insulin sensitivity parameter, Si. Based on blood samples taken before the start of the IVGTT, basal concentrations of glucose, insulin, NEFA, and β-hydroxybutyrate were determined and used to calculate surrogate indices for insulin sensitivity, such as the homeostasis model of insulin resistance, the quantitative insulin sensitivity check index, the revised quantitative insulin sensitivity check index and the revised quantitative insulin sensitivity check index including β-hydroxybutyrate. Correlation analysis revealed no association between the results obtained by the HEC test and any of the surrogate indices for insulin sensitivity. For the measures derived from the IVGTT, the area under the curve for the first 60 min of the test and the Si derived from the minimal model demonstrated good correlation with the gold standard. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  9. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  10. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.

    Science.gov (United States)

    Guerra, Stefania; Facchinetti, Andrea; Sparacino, Giovanni; Nicolao, Giuseppe De; Cobelli, Claudio

    2012-06-01

    Minimally invasive continuous glucose monitoring (CGM) sensors can greatly help diabetes management. Most of these sensors consist of a needle electrode, placed in the subcutaneous tissue, which measures an electrical current exploiting the glucose-oxidase principle. This current is then transformed to glucose levels after calibrating the sensor on the basis of one, or more, self-monitoring blood glucose (SMBG) samples. In this study, we design and test a real-time signal-enhancement module that, cascaded to the CGM device, improves the quality of its output by a proper postprocessing of the CGM signal. In fact, CGM sensors measure glucose in the interstitium rather than in the blood compartment. We show that this distortion can be compensated by means of a regularized deconvolution procedure relying on a linear regression model that can be updated whenever a pair of suitably sampled SMBG references is collected. Tests performed both on simulated and real data demonstrate a significant accuracy improvement of the CGM signal. Simulation studies also demonstrate the robustness of the method against departures from nominal conditions, such as temporal misplacement of the SMBG samples and uncertainty in the blood-to-interstitium glucose kinetic model. Thanks to its online capabilities, the proposed signal-enhancement algorithm can be used to improve the performance of CGM-based real-time systems such as the hypo/hyper glycemic alert generators or the artificial pancreas.

  11. Model-Based Closed-Loop Glucose Control in Type 1 Diabetes: The DiaCon Experience

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific......Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient...... crossover studies. Study 1 compared CL with open-loop (OL) control. Study 2 compared glucose control after CL initiation in the euglycemic (CL-Eu) and hyperglycemic (CL-Hyper) ranges, respectively. Patients were studied from 22:00–07:00 on two separate nights. Results: Each study included six T1DM patients...

  12. The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.

    Science.gov (United States)

    Eberle, Claudia; Ament, Christoph

    2011-01-01

    Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    Science.gov (United States)

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  14. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  15. Random defect lines in conformal minimal models

    International Nuclear Information System (INIS)

    Jeng, M.; Ludwig, A.W.W.

    2001-01-01

    We analyze the effect of adding quenched disorder along a defect line in the 2D conformal minimal models using replicas. The disorder is realized by a random applied magnetic field in the Ising model, by fluctuations in the ferromagnetic bond coupling in the tricritical Ising model and tricritical three-state Potts model (the phi 12 operator), etc. We find that for the Ising model, the defect renormalizes to two decoupled half-planes without disorder, but that for all other models, the defect renormalizes to a disorder-dominated fixed point. Its critical properties are studied with an expansion in ε∝1/m for the mth Virasoro minimal model. The decay exponents X N =((N)/(2))1-((9(3N-4))/(4(m+1) 2 ))+O((3)/(m+1)) 3 of the Nth moment of the two-point function of phi 12 along the defect are obtained to 2-loop order, exhibiting multifractal behavior. This leads to a typical decay exponent X typ =((1)/(2))1+((9)/((m+1) 2 ))+O((3)/(m+1)) 3 . One-point functions are seen to have a non-self-averaging amplitude. The boundary entropy is larger than that of the pure system by order 1/m 3 . As a byproduct of our calculations, we also obtain to 2-loop order the exponent X-tilde N =N1-((2)/(9π 2 ))(3N-4)(q-2) 2 +O(q-2) 3 of the Nth moment of the energy operator in the q-state Potts model with bulk bond disorder

  16. Minimal models for axion and neutrino

    Directory of Open Access Journals (Sweden)

    Y.H. Ahn

    2016-01-01

    Full Text Available The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are realized, one has different predictions on the color and electromagnetic anomalies which could be tested in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw models which are minimally extended from the (non- supersymmetric Standard Model and thus set up different benchmark points on the axion–photon–photon coupling in comparison with the standard KSVZ and DFSZ models.

  17. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    Science.gov (United States)

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  18. Periodical cicadas: A minimal automaton model

    Science.gov (United States)

    de O. Cardozo, Giovano; de A. M. M. Silvestre, Daniel; Colato, Alexandre

    2007-08-01

    The Magicicada spp. life cycles with its prime periods and highly synchronized emergence have defied reasonable scientific explanation since its discovery. During the last decade several models and explanations for this phenomenon appeared in the literature along with a great deal of discussion. Despite this considerable effort, there is no final conclusion about this long standing biological problem. Here, we construct a minimal automaton model without predation/parasitism which reproduces some of these aspects. Our results point towards competition between different strains with limited dispersal threshold as the main factor leading to the emergence of prime numbered life cycles.

  19. Nanosensors and nanomaterials for monitoring glucose in diabetes.

    Science.gov (United States)

    Cash, Kevin J; Clark, Heather A

    2010-12-01

    Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Here, we discuss developments in the past several years on both nanosensors that directly measure glucose and nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Likelihood analysis of the next-to-minimal supergravity motivated model

    International Nuclear Information System (INIS)

    Balazs, Csaba; Carter, Daniel

    2009-01-01

    In anticipation of data from the Large Hadron Collider (LHC) and the potential discovery of supersymmetry, we calculate the odds of the next-to-minimal version of the popular supergravity motivated model (NmSuGra) being discovered at the LHC to be 4:3 (57%). We also demonstrate that viable regions of the NmSuGra parameter space outside the LHC reach can be covered by upgraded versions of dark matter direct detection experiments, such as super-CDMS, at 99% confidence level. Due to the similarities of the models, we expect very similar results for the constrained minimal supersymmetric standard model (CMSSM).

  1. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  2. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    Science.gov (United States)

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (Pblood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Mathematical Modelling of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide-1 following Ingestion of Glucose

    DEFF Research Database (Denmark)

    Røge, Rikke M; Bagger, Jonatan I; Alskär, Oskar

    2017-01-01

    The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), play an important role in glucose homeostasis by potentiating glucose-induced insulin secretion. Furthermore, GLP-1 has been reported to play a role in glucose homeostasis by inhibiting ...

  4. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.

    2005-01-01

    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  5. Effect of feeding glucose, fructose, and inulin on blood glucose and insulin concentrations in normal ponies and those predisposed to laminitis.

    Science.gov (United States)

    Borer, K E; Bailey, S R; Menzies-Gow, N J; Harris, P A; Elliott, J

    2012-09-01

    Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg·d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to

  6. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  7. Stable 1-Norm Error Minimization Based Linear Predictors for Speech Modeling

    DEFF Research Database (Denmark)

    Giacobello, Daniele; Christensen, Mads Græsbøll; Jensen, Tobias Lindstrøm

    2014-01-01

    In linear prediction of speech, the 1-norm error minimization criterion has been shown to provide a valid alternative to the 2-norm minimization criterion. However, unlike 2-norm minimization, 1-norm minimization does not guarantee the stability of the corresponding all-pole filter and can generate...... saturations when this is used to synthesize speech. In this paper, we introduce two new methods to obtain intrinsically stable predictors with the 1-norm minimization. The first method is based on constraining the roots of the predictor to lie within the unit circle by reducing the numerical range...... based linear prediction for modeling and coding of speech....

  8. Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad

    In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an elevated glucagon level depends on the current insulin concentration and thus...... endogenous glucose production (EGP) can not be modelled without knowledge of the concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP irrespective of glucagon levels. We build a simulation model of the glucose-insulin-glucagon dynamics in man including saturation...... effect of EGP. Ten healthy subjects received a 1 mg subcutaneous (SC) glucagon bolus (GlucaGen®). Plasma samples were collected until 300 minutes post dose and analyzed for glucagon, insulin, and glucose concentrations. All observations were used to fit a physiological model of the glucose...

  9. Model of Oxygen and Glucose Deprivation in PC12 Cells and Detection of HSP70 Protein

    Science.gov (United States)

    He, Jinting; Yang, Le; Shao, Yankun

    2018-01-01

    Objective: PC12 cell was used to set up a ischemia model by OGD and detected HSP70 protein. Methods: Use of PC12 cells induced by NGF stimulation into nerve cells, oxygen and glucose deprivation to build the nerve cells of oxygen and glucose deprivation model; using Western blot analysis of PC12 cells into neuron-like cells and oxygen-glucose deprivation model established. Results: The application of a final concentration of 50 ng / ml of NGF in DMEM complete mediumPC12 cells showed a typical neuronal morphology with the increase in cell culture time. NGF culture time showed a positive correlation, the establishment of oxygen and glucose deprivation (OGD) training environment, the OGD after nerve element appears different degrees of damage, OGD can effectively induce the expression of HSP70. Conclusion: PC12 cell transformed into cells by NGF; the cell model of OGD was established.

  10. Glucose kinetics in infants of diabetic mothers

    International Nuclear Information System (INIS)

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-01-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-[U-13C] glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia

  11. A Model of Self-Monitoring Blood Glucose Measurement Error.

    Science.gov (United States)

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  12. Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model.

    Science.gov (United States)

    Lauretti, E; Li, J-G; Di Meco, A; Praticò, D

    2017-01-31

    Clinical investigations have highlighted a biological link between reduced brain glucose metabolism and Alzheimer's disease (AD). Previous studies showed that glucose deprivation may influence amyloid beta formation in vivo but no data are available on the effect that this condition might have on tau protein metabolism. In the current paper, we investigated the effect of glucose deficit on tau phosphorylation, memory and learning, and synaptic function in a transgenic mouse model of tauopathy, the h-tau mice. Compared with controls, h-tau mice with brain glucose deficit showed significant memory impairments, reduction of synaptic long-term potentiation, increased tau phosphorylation, which was mediated by the activation of P38 MAPK Kinase pathway. We believe our studies demonstrate for the first time that reduced glucose availability in the central nervous system directly triggers behavioral deficits by promoting the development of tau neuropathology and synaptic dysfunction. Since restoring brain glucose levels and metabolism could afford the opportunity to positively influence the entire AD phenotype, this approach should be considered as a novel and viable therapy for preventing and/or halting the disease progression.

  13. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...

  14. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  15. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  16. Static output feedback ℋ ∞ control for a fractional-order glucose-insulin system

    KAUST Repository

    N’Doye, Ibrahima

    2015-05-23

    This paper presents the ℋ∞ static output feedback control of nonlinear fractional-order systems. Based on the extended bounded real lemma, the ℋ∞ control is formulated and sufficient conditions are derived in terms of linear matrix inequalities (LMIs) formulation by using the fractional Lyapunov direct method where the fractional-order α belongs to 0 < α < 1. The control approach is finally applied to the regulation of the glucose level in diabetes type 1 treatment. Therefore, it is attempted to incorporate fractional-order into the mathematical minimal model of glucose-insulin system dynamics and it is still an interesting challenge to show, how the order of a fractional differential system affects the dynamics of the system in the presence of meal disturbance. Numerical simulations are carried out to illustrate our proposed results and show that the nonlinear fractional-order glucose-insulin systems are, at least, as stable as their integer-order counterpart in the presence of exogenous glucose infusion or meal disturbance. © 2015 Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg

  17. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  18. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Martinussen, Christoffer; Bojsen-Moller, Kirstine N; Dirksen, Carsten

    2015-01-01

    effectiveness with Bergman's minimal model. In the fasting state, insulin sensitivity was estimated by HOMA-S and β-cell function by HOMA-β. Moreover, mixed meal tests and OGTTs were performed. In patients with type 2 diabetes, glucose levels normalized after RYGB, first-phase insulin secretion in response...... to iv glucose increased two-fold and HOMA-β improved already 1 week postoperatively, with further enhancements at 3 months. Insulin sensitivity increased in the liver (HOMA-S) at 1 week and at 3 months in peripheral tissues (Si), whereas glucose effectiveness did not improve significantly. During oral...... first-phase insulin secretion to iv glucose and increased HOMA-β. A major role for improved glucose effectiveness after RYGB was not supported by this study....

  19. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis.

    Science.gov (United States)

    Clarke, William L; Anderson, Stacey; Farhy, Leon; Breton, Marc; Gonder-Frederick, Linda; Cox, Daniel; Kovatchev, Boris

    2005-10-01

    To compare the clinical accuracy of two different continuous glucose sensors (CGS) during euglycemia and hypoglycemia using continuous glucose-error grid analysis (CG-EGA). FreeStyle Navigator (Abbott Laboratories, Alameda, CA) and MiniMed CGMS (Medtronic, Northridge, CA) CGSs were applied to the abdomens of 16 type 1 diabetic subjects (age 42 +/- 3 years) 12 h before the initiation of the study. Each system was calibrated according to the manufacturer's recommendations. Each subject underwent a hyperinsulinemic-euglycemic clamp (blood glucose goal 110 mg/dl) for 70-210 min followed by a 1-mg.dl(-1).min(-1) controlled reduction in blood glucose toward a nadir of 40 mg/dl. Arterialized blood glucose was determined every 5 min using a Beckman Glucose Analyzer (Fullerton, CA). CGS glucose recordings were matched to the reference blood glucose with 30-s precision, and rates of glucose change were calculated for 5-min intervals. CG-EGA was used to quantify the clinical accuracy of both systems by estimating combined point and rate accuracy of each system in the euglycemic (70-180 mg/dl) and hypoglycemic (<70 mg/dl) ranges. A total of 1,104 data pairs were recorded in the euglycemic range and 250 data pairs in the hypoglycemic range. Overall correlation between CGS and reference glucose was similar for both systems (Navigator, r = 0.84; CGMS, r = 0.79, NS). During euglycemia, both CGS systems had similar clinical accuracy (Navigator zones A + B, 88.8%; CGMS zones A + B, 89.3%, NS). However, during hypoglycemia, the Navigator was significantly more clinically accurate than the CGMS (zones A + B = 82.4 vs. 61.6%, Navigator and CGMS, respectively, P < 0.0005). CG-EGA is a helpful tool for evaluating and comparing the clinical accuracy of CGS systems in different blood glucose ranges. CG-EGA provides accuracy details beyond other methods of evaluation, including correlational analysis and the original EGA.

  20. Charged and neutral minimal supersymmetric standard model Higgs ...

    Indian Academy of Sciences (India)

    physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.

  1. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1987-01-01

    Tracer methodology has been applied extensively to the estimation of endogenous glucose production (Ra) during euglycemic glucose clamps. The accuracy of this approach has been questioned due to the observation of significantly negative estimates for Ra when insulin levels are high. We performed hyperinsulinemic (300 microU/ml)-euglycemic glucose clamps for 180 min in normal dogs and compared the standard approach, an unlabeled exogenous glucose infusate (cold GINF protocol, n = 12), to a new approach in which a tracer (D-[3- 3 H]glucose) was added to the exogenous glucose used for clamping (hot GINF protocol, n = 10). Plasma glucose, insulin and glucagon concentrations, and glucose infusion rates were similar for the two protocols. Plasma glucose specific activity was 20 +/- 1% of basal (at 120-180 min) in the cold GINF studies, and 44 +/- 3 to 187 +/- 5% of basal in the hot GINF studies. With the one-compartment, fixed pool volume model of Steele, Ra for the cold GINF studies was -2.4 +/- 0.7 mg X min-1 X kg-1 at 25 min and remained significantly negative until 110 min (P less than .05). For the hot GINF studies, Ra was never significantly less than zero (P greater than .05) and was greater than in the cold GINF studies at 20-90 min (P less than .05). There was substantially less between-(78%) and within- (40%) experiment variation for the hot GINF studies compared with the cold GINF studies. An alternate approach (regression method) to the application of the one-compartment model, which allows for a variable and estimable effective distribution volume, yielded Ra estimates that were suppressed 60-100% from basal

  2. Implementation and automated validation of the minimal Z' model in FeynRules

    International Nuclear Information System (INIS)

    Basso, L.; Christensen, N.D.; Duhr, C.; Fuks, B.; Speckner, C.

    2012-01-01

    We describe the implementation of a well-known class of U(1) gauge models, the 'minimal' Z' models, in FeynRules. We also describe a new automated validation tool for FeynRules models which is controlled by a web interface and allows the user to run a complete set of 2 → 2 processes on different matrix element generators, different gauges, and compare between them all. If existing, the comparison with independent implementations is also possible. This tool has been used to validate our implementation of the 'minimal' Z' models. (authors)

  3. Minimal Adequate Model of Unemployment Duration in the Post-Crisis Czech Republic

    Directory of Open Access Journals (Sweden)

    Adam Čabla

    2016-03-01

    Full Text Available Unemployment is one of the leading economic problems in a developed world. The aim of this paper is to identify the differences in unemployment duration in different strata in the post-crisis Czech Republic via building a minimal adequate model, and to quantify the differences. Data from Labour Force Surveys are used and since they are interval censored in nature, proper metodology must be used. The minimal adequate model is built through the accelerated failure time modelling, maximum likelihood estimates and likelihood ratio tests. Variables at the beginning are sex, marital status, age, education, municipality size and number of persons in a household, containing altogether 29 model parameters. The minimal adequate model contains 5 parameters and differences are found between men and women, the youngest category and the rest and the university educated and the rest. The estimated expected values, variances, medians, modes and 90th percentiles are provided for all subgroups.

  4. Effects of glucose on the formation of PhIP in a model system.

    Science.gov (United States)

    Skog, K; Jägerstad, M

    1991-12-01

    The effect of glucose on the formation of the food mutagen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) was studied in a model system. When a mixture of creatine (0.9 mmol), phenylalanine (0.9 mmol) and glucose (0.45 mmol) was heated in diethylene glycol and water (3 ml, 5:1) for 10 min at 180 or 225 degrees C several mutagens were produced. Identification by HPLC, UV absorption spectroscopy and mass spectrometry revealed the presence of PhIP as well as 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and minor amounts of 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline. Heating the system without glucose produced PhIP as a single mutagen, but in considerably lower amount. An inhibiting effect of glucose in high concentrations was demonstrated. When glucose was added in more than or equimolar amounts of the other two reactants, the formation of mutagens was markedly reduced. Tyrosine heated under the same conditions, with creatine and glucose, showed mutagenic activity. However, no PhIP nor any other known food mutagen was identified from the tyrosine mixture.

  5. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  6. From topological strings to minimal models

    International Nuclear Information System (INIS)

    Foda, Omar; Wu, Jian-Feng

    2015-01-01

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  7. From topological strings to minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Royal Parade, Parkville, VIC 3010 (Australia); Wu, Jian-Feng [Department of Mathematics and Statistics, Henan University,Minglun Street, Kaifeng city, Henan (China); Beijing Institute of Theoretical Physics and Mathematics,3rd Shangdi Street, Beijing (China)

    2015-07-24

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  8. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Felix F. Gonzalez-Navarro

    2016-10-01

    Full Text Available Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  9. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    Science.gov (United States)

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  10. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    Science.gov (United States)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to

  11. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  12. Predicting glucose intolerance with normal fasting plasma glucose by the components of the metabolic syndrome

    International Nuclear Information System (INIS)

    Pei, D.; Lin, J.; Kuo, S.; Wu, D.; Li, J.; Hsieh, C.; Wu, C.; Hung, Y.; Kuo, K.

    2007-01-01

    Surprisingly it is estimated that about half of type 2 diabetics remain undetected. The possible causes may be partly attributable to people with normal fasting plasma glucose (FPG) but abnormal postprandial hyperglycemia. We attempted to develop an effective predictive model by using the metabolic syndrome (MeS) components as parameters to identify such persons. All participants received a standard 75 gm oral glucose tolerance test which showed that 106 had normal glucose tolerance, 61 had impaired glucose tolerance and 6 had diabetes on isolated postchallenge hyperglycemia. We tested five models which included various MeS components. Model 0: FPG; Model 1 (Clinical history model): family history (FH), FPG, age and sex; Model 2 (MeS model): Model 1 plus triglycerides, high-density lipoprotein cholesterol, body mass index, systolic blood pressure and diastolic blood pressure; Model 3: Model 2 plus fasting plasma insulin (FPI); Model 4: Model 3 plus homeostasis model assessment of insulin resistance. A receiver-operating characteristic (ROC) curve was used to determine the predictive discrimination of these models. The area under the ROC curve of the Model 0 was significantly larger than the area under the diagonal reference line. All the other 4 models had a larger area under the ROC curve than Model 0. Considering the simplicity and lower cost of Model 2, it would be the best model to use. Nevertheless, Model 3 had the largest area under the ROC curve. We demonstrated that Model 2 and 3 have a significantly better predictive discrimination to identify persons with normal FPG at high risk for glucose intolerance. (author)

  13. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  15. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor

    DEFF Research Database (Denmark)

    Murphy, R; Tura, A; Clark, P M

    2008-01-01

    AIMS/HYPOTHESIS: The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic peptide (GIP) are released from intestinal endocrine cells in response to luminal glucose. Glucokinase is present in these cells and has been proposed as a glucose sensor. The physiological...... role of glucokinase can be tested using individuals with heterozygous glucokinase gene (GCK) mutations. If glucokinase is the gut glucose sensor, GLP-1 and GIP secretion during a 75 g OGTT would be lower in GCK mutation carriers compared with controls. METHODS: We compared GLP-1 and GIP concentrations...... measured at five time-points during a 75 g OGTT in 49 participants having GCK mutations with those of 28 familial controls. Mathematical modelling of glucose, insulin and C-peptide was used to estimate basal insulin secretion rate (BSR), total insulin secretion (TIS), beta cell glucose sensitivity...

  16. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  17. Exercising Tactically for Taming Postmeal Glucose Surges.

    Science.gov (United States)

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  18. Minimal model for spoof acoustoelastic surface states

    Directory of Open Access Journals (Sweden)

    J. Christensen

    2014-12-01

    Full Text Available Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  19. Model-based closed-loop glucose control in type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific parameters......: insulin sensitivity factor, insulin action time, and basal insulin infusion rate. The stochastic part is identical for all patients but identified from data from a single patient. Results of the first clinical feasibility test of the algorithm are presented....

  20. A golden A5 model of leptons with a minimal NLO correction

    International Nuclear Information System (INIS)

    Cooper, Iain K.; King, Stephen F.; Stuart, Alexander J.

    2013-01-01

    We propose a new A 5 model of leptons which corrects the LO predictions of Golden Ratio mixing via a minimal NLO Majorana mass correction which completely breaks the original Klein symmetry of the neutrino mass matrix. The minimal nature of the NLO correction leads to a restricted and correlated range of the mixing angles allowing agreement within the one sigma range of recent global fits following the reactor angle measurement by Daya Bay and RENO. The minimal NLO correction also preserves the LO inverse neutrino mass sum rule leading to a neutrino mass spectrum that extends into the quasi-degenerate region allowing the model to be accessible to the current and future neutrinoless double beta decay experiments

  1. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1988-01-01

    We previously demonstrated that conventional tracer methods applied to euglycemic-hyperinsulinemic glucose clamps result in substantially negative estimates for the rate of endogenous glucose production, particularly during the first half of 180-min clamps. We also showed that addition of tracer to the exogenous glucose infusate resulted in nonnegative endogenous glucose production (Ra) estimates. In this study, we investigated the underlying cause of negative estimates of Ra from conventional clamp/tracer methods and the reason for the difference in estimates when tracer is added to the exogenous glucose infusate. We performed euglycemic-hyperinsulinemic (300-microU/ml) clamps in normal dogs without (cold GINF protocol, n = 6) or with (hot GINF protocol, n = 6) tracer (D-[3-3H]glucose) added to the exogenous glucose infusate. In the hot GINF protocol, sufficient tracer was added to the exogenous glucose infusate such that arterial plasma specific activity (SAa) did not change from basal through the clamp period (P greater than .05). In the cold GINF studies, plasma SAa fell 81 +/- 2% from the basal level by the 3rd h of clamping. We observed a significant, transient, positive venous-arterial difference in specific activity (SAv-SAa difference) during the cold GINF studies. The SAv-SAa difference reached a peak of 27 +/- 6% at 30 min and diminished to a plateau of 7 +/- 1% between 70 and 180 min. We also observed a positive but constant SAv-SAa difference (4.6 +/- 0.2% between 10 and 180 min) during the hot GINF studies

  2. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Science.gov (United States)

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  3. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment

    Science.gov (United States)

    Ackart, David F.; Richardson, Michael A.; DiLisio, James E.; Pulford, Bruce; Basaraba, Randall J.

    2017-01-01

    ABSTRACT Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. PMID:28093504

  4. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment.

    Science.gov (United States)

    Podell, Brendan K; Ackart, David F; Richardson, Michael A; DiLisio, James E; Pulford, Bruce; Basaraba, Randall J

    2017-02-01

    Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. © 2017. Published by

  5. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  6. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test.

    Science.gov (United States)

    Møller, Jonas B; Overgaard, Rune V; Madsen, Henrik; Hansen, Torben; Pedersen, Oluf; Ingwersen, Steen H

    2010-02-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method

  7. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  8. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS: PA increased glucose uptake by approximately 35...

  9. Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Manuel Ernst

    2015-12-18

    It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new

  10. Evolution of a minimal parallel programming model

    International Nuclear Information System (INIS)

    Lusk, Ewing; Butler, Ralph; Pieper, Steven C.

    2017-01-01

    Here, we take a historical approach to our presentation of self-scheduled task parallelism, a programming model with its origins in early irregular and nondeterministic computations encountered in automated theorem proving and logic programming. We show how an extremely simple task model has evolved into a system, asynchronous dynamic load balancing (ADLB), and a scalable implementation capable of supporting sophisticated applications on today’s (and tomorrow’s) largest supercomputers; and we illustrate the use of ADLB with a Green’s function Monte Carlo application, a modern, mature nuclear physics code in production use. Our lesson is that by surrendering a certain amount of generality and thus applicability, a minimal programming model (in terms of its basic concepts and the size of its application programmer interface) can achieve extreme scalability without introducing complexity.

  11. Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics

    Science.gov (United States)

    Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto

    2014-07-01

    One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.

  12. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  13. Lorentz Invariant Spectrum of Minimal Chiral Schwinger Model

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Seung-Kook; Kim, Won-Tae; Park, Young-Jai; Kim, Kee Yong; Kim, Yongduk

    We study the Lorentz transformation of the minimal chiral Schwinger model in terms of the alternative action. We automatically obtain a chiral constraint, which is equivalent to the frame constraint introduced by McCabe, in order to solve the frame problem in phase space. As a result we obtain the Lorentz invariant spectrum in any moving frame by choosing a frame parameter.

  14. The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism.

    Science.gov (United States)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Hélène; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Véronique; Staels, Bart

    2012-07-01

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological stimuli is often lost. Here, we characterize two human hepatocyte cell lines, IHH and HepaRG, by analysing the expression and regulation of genes involved in glucose and lipid metabolism. Our results show that the glycolysis pathway is activated by glucose and insulin in both lines. Gluconeogenesis gene expression is induced by forskolin in IHH cells and inhibited by insulin in both cell lines. The lipogenic pathway is regulated by insulin in IHH cells. Finally, both cell lines secrete apolipoprotein B-containing lipoproteins, an effect promoted by increasing glucose concentrations. These two human cell lines are thus interesting models to study the regulation of glucose and lipid metabolism.

  15. A composite computational model of liver glucose homeostasis. I. Building the composite model.

    Science.gov (United States)

    Hetherington, J; Sumner, T; Seymour, R M; Li, L; Rey, M Varela; Yamaji, S; Saffrey, P; Margoninski, O; Bogle, I D L; Finkelstein, A; Warner, A

    2012-04-07

    A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focusing on the buffering of glucose into glycogen, has been developed. The model exemplifies an 'engineering' approach to modelling in systems biology, and was produced by linking together seven component models of separate aspects of the physiology. The component models use a variety of modelling paradigms and degrees of simplification. Model parameters were determined by an iterative hybrid of fitting to high-scale physiological data, and determination from small-scale in vitro experiments or molecular biological techniques. The component models were not originally designed for inclusion within such a composite model, but were integrated, with modification, using our published modelling software and computational frameworks. This approach facilitates the development of large and complex composite models, although, inevitably, some compromises must be made when composing the individual models. Composite models of this form have not previously been demonstrated.

  16. Minimal models of multidimensional computations.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Fitzgerald

    2011-03-01

    Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.

  17. A Minimal Cognitive Model for Translating and Post-editing

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael

    2017-01-01

    This study investigates the coordination of reading (input) and writing (output) activities in from-scratch translation and post-editing. We segment logged eye movements and keylogging data into minimal units of reading and writing activity and model the process of post-editing and from-scratch t...

  18. Evaluation of a Novel Glucose Area Under the Curve (AUC Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring

    Directory of Open Access Journals (Sweden)

    Satoshi Ugi

    2016-07-01

    Full Text Available BackgroundManagement of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC using minimally invasive interstitial fluid extraction technology (MIET for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration.MethodsTwenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels.ResultsAUC predicted by MIET correlated well with that measured by CGM (r=0.93. Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours, indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours.ConclusionOur system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.

  19. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring.

    Science.gov (United States)

    Ugi, Satoshi; Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-08-01

    Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.

  20. The Glucose-Insulin Control System

    DEFF Research Database (Denmark)

    Hallgreen, Christine Erikstrup; Korsgaard, Thomas Vagn; Hansen, RenéNormann N.

    2008-01-01

    This chapter reviews the glucose-insulin control system. First, classic control theory is described briefly and compared with biological control. The following analysis of the control system falls into two parts: a glucose-sensing part and a glucose-controlling part. The complex metabolic pathways...... are divided into smaller pieces and analyzed via several small biosimulation models that describe events in beta cells, liver, muscle and adipose tissue etc. In the glucose-sensing part, the beta cell are shown to have some characteristics of a classic PID controller, but with nonlinear properties...... control, the analysis shows that the system has many more facets than just keeping the glucose concentration within narrow limits. After glucose enters the cell and is phosphorylated to glucose-6-phosphate, the handling of glucose-6-phosphate is critical for glucose regulation. Also, this handling...

  1. Modelling glucose and water dynamics in human skin

    NARCIS (Netherlands)

    Groenendaal, W.; Schmidt, K.H.; Basum, von G.; Riel, van N.A.W.; Hilbers, P.A.J.

    2008-01-01

    Background: Glucose is heterogeneously distributed in the different physiological compartments in the human skin. Therefore, for the development of a noninvasive measurement method, both a good quantification of the different compartments of human skin and an understanding of glucose transport

  2. An acute rat in vivo screening model to predict compounds that alter blood glucose and/or insulin regulation.

    Science.gov (United States)

    Brott, David A; Diamond, Melody; Campbell, Pam; Zuvich, Andy; Cheatham, Letitia; Bentley, Patricia; Gorko, Mary Ann; Fikes, James; Saye, JoAnne

    2013-01-01

    Drug-induced glucose dysregulation and insulin resistance have been associated with weight gain and potential induction and/or exacerbation of diabetes mellitus in the clinic suggesting they may be safety biomarkers when developing antipsychotics. Glucose and insulin have also been suggested as potential efficacy biomarkers for some oncology compounds. The objective of this study was to qualify a medium throughput rat in vivo acute Intravenous Glucose Tolerance Test (IVGTT) for predicting compounds that will induce altered blood glucose and/or insulin levels. Acute and sub-chronic studies were performed to qualify an acute IVGTT model. Double cannulated male rats (Han-Wistar and Sprague-Dawley) were administered vehicle, olanzapine, aripiprazole or other compounds at t=-44min for acute studies and at time=-44min on the last day of dosing for sub-chronic studies, treated with dextrose (time=0min; i.v.) and blood collected using an automated Culex® system for glucose and insulin analysis (time=-45, -1, 2, 10, 15, 30, 45, 60, 75, 90, 120, 150 and 180min). Olanzapine significantly increased glucose and insulin area under the curve (AUC) values while aripiprazole AUC values were similar to control, in both acute and sub-chronic studies. All atypical antipsychotics evaluated were consistent with literature references of clinical weight gain. As efficacy biomarkers, insulin AUC but not glucose AUC values were increased with a compound known to have insulin growth factor-1 (IGF-1) activity, compared to control treatment. These studies qualified the medium throughput acute IVGTT model to more quickly screen compounds for 1) safety - the potential to elicit glucose dysregulation and/or insulin resistance and 2) efficacy - as a surrogate for compounds affecting the glucose and/or insulin regulatory pathways. These data demonstrate that the same in vivo rat model and assays can be used to predict both clinical safety and efficacy of compounds. © 2013.

  3. Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring

    Directory of Open Access Journals (Sweden)

    Charrise M. Ramkissoon

    2018-03-01

    Full Text Available The artificial pancreas (AP system is designed to regulate blood glucose in subjects with type 1 diabetes using a continuous glucose monitor informed controller that adjusts insulin infusion via an insulin pump. However, current AP developments are mainly hybrid closed-loop systems that include feed-forward actions triggered by the announcement of meals or exercise. The first step to fully closing the loop in the AP requires removing meal announcement, which is currently the most effective way to alleviate postprandial hyperglycemia due to the delay in insulin action. Here, a novel approach to meal detection in the AP is presented using a sliding window and computing the normalized cross-covariance between measured glucose and the forward difference of a disturbance term, estimated from an augmented minimal model using an Unscented Kalman Filter. Three different tunings were applied to the same meal detection algorithm: (1 a high sensitivity tuning, (2 a trade-off tuning that has a high amount of meals detected and a low amount of false positives (FP, and (3 a low FP tuning. For the three tunings sensitivities 99 ± 2%, 93 ± 5%, and 47 ± 12% were achieved, respectively. A sensitivity analysis was also performed and found that higher carbohydrate quantities and faster rates of glucose appearance result in favorable meal detection outcomes.

  4. In vitro evaluation of fluorescence glucose biosensor response.

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  5. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    Directory of Open Access Journals (Sweden)

    Mamdouh Aloraefy

    2014-07-01

    Full Text Available Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  6. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    Science.gov (United States)

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities

    Science.gov (United States)

    Kruse, Sebastian; Hoffmann, Norbert

    2010-09-01

    The phenomenon of mode-coupling instability is one of the most frequently explored mechanisms to explain self-excited oscillation in sliding systems with friction. A mode coupling instability is usually due to the coupling of two modes. However, further modes can have an important influence on the coupling of two modes. This work extends a well-known minimal model to describe mode-coupling instabilities in order to explore the influence of a distant mode on the classical mode-coupling pattern. This work suggests a new minimal model. The model is explored and it is shown that a third mode can have significant influence on the classical mode-coupling instabilities where two modes are coupling. Different phenomena are analysed and it is pointed out that distant modes can only be ignored in very special cases and that the onset friction-induced oscillations can even be very sensitive to minimal variation of a distant mode. Due to the chosen academic minimal-model and the abandonment of a complex Finite-Element model the insight stays rather phenomenological but a better understanding of the mode-coupling mechnanism can be gained.

  8. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women.

    Science.gov (United States)

    Tsuboi, Ayaka; Minato, Satomi; Yano, Megumu; Takeuchi, Mika; Kitaoka, Kaori; Kurata, Miki; Yoshino, Gen; Wu, Bin; Kazumi, Tsutomu; Fukuo, Keisuke

    2018-01-01

    Inflammatory markers are elevated in insulin resistance (IR) and diabetes. We tested whether serum orosomucoid (ORM) is associated with postload glucose, β-cell dysfunction and IR inferred from plasma insulin kinetics during a 75 g oral glucose tolerance test (OGTT). 75 g OGTTs were performed with multiple postload glucose and insulin measurements over a 30-120 min period in 168 non-obese Japanese women (aged 18-24 years). OGTT responses, serum adiponectin and high-sensitivity C reactive protein (hsCRP) were cross-sectionally analyzed by analysis of variance and then Bonferroni's multiple comparison procedure. Stepwise multivariate linear regression analyses were used to identify most important determinants of ORM. Of 168 women, 161 had normal glucose tolerance. Postload glucose levels and the area under the glucose curve (AUCg) increased in a stepwise fashion from the first through the third ORM tertile. In contrast, there was no or modest, if any, association with fat mass index, trunk/leg fat ratio, adiponectin, hsCRP, postload insulinemia, the Matsuda index and homeostasis model assessment IR. In multivariable models, which incorporated the insulinogenic index, the Matsuda index and HOMA-IR, 30 min glucose (standardized β: 0.517) and AUCg (standardized β: 0.495) explained 92.8% of ORM variations. Elevated circulating orosomucoid was associated with elevated 30 min glucose and glucose excursion in non-obese young Japanese women independently of adiposity, IR, insulin secretion, adiponectin and other investigated markers of inflammation. Although further research is needed, these results may suggest a clue to identify novel pathways that may have utility in monitoring dysglycemia within normal glucose tolerance.

  9. Constrained convex minimization via model-based excessive gap

    OpenAIRE

    Tran Dinh, Quoc; Cevher, Volkan

    2014-01-01

    We introduce a model-based excessive gap technique to analyze first-order primal- dual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented Lagrangian, and alternating methods as special cases, where our rates apply.

  10. Minimal extension of the standard model scalar sector

    International Nuclear Information System (INIS)

    O'Connell, Donal; Wise, Mark B.; Ramsey-Musolf, Michael J.

    2007-01-01

    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars

  11. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  12. Use systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans

    Directory of Open Access Journals (Sweden)

    Yasong eLu

    2014-12-01

    Full Text Available In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1 and 2 (SGLT2 along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for removing glucose from the body and improving glycemic control in patients with diabetes. Despite demonstrating high levels (in excess of 80% of inhibition of glucose transport by SGLT2 in vitro, potent SGLT2 inhibitors, e.g., dapagliflozin and canagliflozin, inhibit renal glucose reabsorption by only 30-50% in clinical studies. Hypotheses for this apparent paradox are mostly focused on the compensatory effect of SGLT1. The paradox has been explained and the role of SGLT1 demonstrated in the mouse, but direct data in humans are lacking. To further explore the roles of SGLT1/2 in renal glucose reabsorption in humans, we developed a systems pharmacology model with emphasis on SGLT1/2 mediated glucose reabsorption and the effects of SGLT2 inhibition. The model was calibrated using robust clinical data in the absence or presence of dapagliflozin (DeFronzo et al. data (2013, and evaluated against clinical data from the literature (Mogensen, 1971;Wolf et al., 2009;Polidori et al., 2013. The model adequately described all four data sets. Simulations using the model clarified the operating characteristics of SGLT1/2 in humans in the healthy and diabetic state with or without SGLT2 inhibition. The modeling and simulations support our proposition that the apparent moderate, 30-50% inhibition of renal glucose reabsorption observed with potent SGLT2 inhibitors is a combined result of two physiological determinants: SGLT1 compensation and residual SGLT2 activity. This model will enable in silico inferences and predictions related to

  13. Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care.

    Science.gov (United States)

    Dal, Jakob; List, Edward O; Jørgensen, Jens Otto L; Berryman, Darlene E

    2016-01-01

    Patients with active acromegaly are frequently insulin resistant, glucose intolerant, and at risk for developing overt type 2 diabetes. At the same time, these patients have a relatively lean phenotype associated with mobilization and oxidation of free fatty acids. These features are reversed by curative surgical removal of the growth hormone (GH)-producing adenoma. Mouse models of acromegaly share many of these characteristics, including a lean phenotype and proneness to type 2 diabetes. There are, however, also species differences with respect to oxidation rates of glucose and fat as well as the specific mechanisms underlying GH-induced insulin resistance. The impact of acromegaly treatment on insulin sensitivity and glucose tolerance depends on the treatment modality (e.g. somatostatin analogs also suppress insulin secretion, whereas the GH antagonist restores insulin sensitivity). The interplay between animal research and clinical studies has proven useful in the field of acromegaly and should be continued in order to understand the metabolic actions of GH. © 2015 S. Karger AG, Basel.

  14. Fasting gall bladder volume and lithogenicity in relation to glucose tolerance, total and intra-abdominal fat masses in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Hendel, H W; Højgaard, L; Andersen, T

    1998-01-01

    OBJECTIVE: To investigate whether total body fat mass or fat distribution and associated metabolic disturbances in glucose and lipid metabolism influence the well known gallstone pathogenetic factors in obese subjects in order to explain why some obese subjects develop gallstones and some do not...... with a specific radioimmunoassay. Insulin sensitivity was measured by the Minimal Model and glucose tolerance by an oral glucose tolerance test (OGTT). Serum lipid concentrations were measured by standard methods. RESULTS: The gallbladder volume in the fasting state increased with increasing intra-abdominal fat...... mass (P=0.006) and was increased in subjects with impaired glucose tolerance (41 vs 27 ml, P=0.001). The lithogenic index was > 1 in all subjects and correlated with total fat mass (P=0.04). CONCLUSION: Gallstone pathogenesis in obesity seems to be influenced by the total body fat mass and its regional...

  15. Neutral Higgs bosons in the standard model and in the minimal ...

    Indian Academy of Sciences (India)

    assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.

  16. A minimal supersymmetric model of particle physics and the early universe

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-11-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  17. A minimal supersymmetric model of particle physics and the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-11-15

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  18. A Minimal Supersymmetric Model of Particle Physics and the Early Universe

    CERN Document Server

    Buchmüller, W; Kamada, K; Schmitz, K

    2014-01-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local $B$$-$$L$, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken $B$$-$$L$ symmetry, which ends in tachyonic preheating, i.e.\\ the decay of the false vacuum, followed by a matter dominated phase with heavy $B$$-$$L$ Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of g...

  19. Minimal $R+R^2$ Supergravity Models of Inflation Coupled to Matter

    CERN Document Server

    Ferrara, S

    2014-01-01

    The supersymmetric extension of "Starobinsky" $R+\\alpha R^2$ models of inflation is particularly simple in the "new minimal" formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the "new minimal" completion of the $R+\\alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetri...

  20. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  1. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  2. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach

    OpenAIRE

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-01-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctu...

  3. Energetics of glucose metabolism: a phenomenological approach to metabolic network modeling.

    Science.gov (United States)

    Diederichs, Frank

    2010-08-12

    A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca(2+)] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O(2) consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output.

  4. Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Hagdrup, Morten; Mahmoudi, Zeinab

    2016-01-01

    This paper addresses model identification of continuous-discrete nonlinear models for people with type 1 diabetes using sampled data from a continuous glucose monitor (CGM). We compare five identification techniques: least squares, weighted least squares, Huber regression, maximum likelihood...... with extended Kalman filter and maximum likelihood with unscented Kalman filter. We perform the identification on a 24-hour simulation of a stochastic differential equation (SDE) version of the Medtronic Virtual Patient (MVP) model including process and output noise. We compare the fits with the actual CGM......, such as parameter tracking, population modeling and handling of outliers....

  5. A chemo-electro-mechanical model for simulation of responsive deformation of glucose-sensitive hydrogels with the effect of enzyme catalysis

    Science.gov (United States)

    Li, Hua; Luo, Rongmo; Birgersson, Erik; Lam, Khin Yong

    2009-02-01

    A multi-effect-coupling glucose-stimulus (MECglu) model is developed and solved numerically for the swelling behavior of soft smart hydrogels responding to changes in the environmental glucose concentration. The model considers the effect of the glucose oxidation reaction catalyzed by enzymes including glucose oxidase and catalase. It is composed of the Nernst-Planck equation for the mobile species in the solvent, the Poisson equation for the electric potential, and a nonlinear mechanical equation for the large deformations of the hydrogel that arise due to the conversion of chemical energy to mechanical. Based on the theory of the chemo-electro-mechanical-coupled fields, the formulation of the fixed charge groups bound onto the cross-linked polymer network is associated with the change of the ambient solution pH. The MECglu model is validated by comparison between the steady-state computation and experimental equilibrium swelling curves, and good agreement is obtained. A parameter study is then conducted by steady-state simulations to ascertain the impact of various solvent parameters on the responsive swelling behavior of the hydrogel. One key parameter is the glucose concentration, which is varied within the range of practical physiological glucose concentrations from 0 to 16.5 mM (300 mg/ml) to support the design and optimization of an insulin delivery system based on a glucose-sensitive hydrogel with immobilized glucose oxidase and catalase. The influence of oxygen and glucose concentrations in the solvent is then further studied for the distributive profiles of reacting and diffusive species concentrations, the electric potential, the displacement, as well as the swelling ratio of the glucose-sensitive hydrogel.

  6. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  7. A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity.

    Science.gov (United States)

    Zheng, Chao; Dalla Man, Chiara; Cobelli, Claudio; Groop, Leif; Zhao, Hongyu; Bale, Allen E; Shaw, Melissa; Duran, Elvira; Pierpont, Bridget; Caprio, Sonia; Santoro, Nicola

    2015-05-01

    To explore the role of MTNR1B rs10830963 and G6PC2 rs560887 variants in the pathogenesis of impaired fasting glucose (IFG) in obese adolescents. A total of 346 Caucasians, 218 African-Americans, and 217 Hispanics obese children and adolescents underwent an oral glucose tolerance test (OGTT) and 518 underwent the evaluation of insulin secretion by the oral minimal model (OMM). Also, 274 subjects underwent a second OGTT after 3.0 ± 2.1 years. The MTNR1B rs10830963 variant was associated with higher fasting glucose levels and lower dynamic beta-cell response in Caucasians and Hispanics (P fasting glucose levels (P  0.10). It has been shown for the first time in obese youth that the MTNR1B variant is associated with an increased risk of IFG. © 2015 The Obesity Society.

  8. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes.

    Directory of Open Access Journals (Sweden)

    Veera R Konda

    Full Text Available AIMS/HYPOTHESIS: We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity. METHODS: KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR; lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO mice and Zucker Diabetic Fatty (ZDF rats after oral administration. RESULTS: KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501. CONCLUSION: These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.

  9. Flocking with minimal cooperativity: the panic model.

    Science.gov (United States)

    Pilkiewicz, Kevin R; Eaves, Joel D

    2014-01-01

    We present a two-dimensional lattice model of self-propelled spins that can change direction only upon collision with another spin. We show that even with ballistic motion and minimal cooperativity, these spins display robust flocking behavior at nearly all densities, forming long bands of stripes. The structural transition in this system is not a thermodynamic phase transition, but it can still be characterized by an order parameter, and we demonstrate that if this parameter is studied as a dynamical variable rather than a steady-state observable, we can extract a detailed picture of how the flocking mechanism varies with density.

  10. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    of glucose and lipid metabolism in a HF-diet-fed rat model.

  11. Cross-Validation of a Glucose-Insulin-Glucagon Pharmacodynamics Model for Simulation using Data from Patients with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Ranjan, Ajenthen; Møller, Jan Kloppenborg

    2017-01-01

    three PD model test fits in each of the seven subjects. Thus, we successfully validated the PD model by leave-one-out cross-validation in seven out of eight T1D patients. Conclusions: The PD model accurately simulates glucose excursions based on plasma insulin and glucagon concentrations. The reported...... for concentrations of glucagon, insulin, and glucose. We fitted pharmacokinetic (PK) models to insulin and glucagon data using maximum likelihood and maximum a posteriori estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to glucose data. The PD model included multiplicative effects of insulin...... and glucagon on EGP. Bias and precision of PD model test fits were assessed by mean predictive error (MPE) and mean absolute predictive error (MAPE). Results: Assuming constant variables in a subject across nonoutlier visits and using thresholds of ±15% MPE and 20% MAPE, we accepted at least one and at most...

  12. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance.

    Science.gov (United States)

    Li, Weiping; Li, Qifu

    2012-01-01

    To clarify the necessity of improving glucose metabolism in polycystic ovary syndrome (PCOS) women as early as possible, 111 PCOS women with normal glucose tolerance and 92 healthy age-matched controls were recruited to investigate glucose levels distribution, insulin sensitivity and β cell function. 91 PCOS women and 33 controls underwent hyperinsulinemic-euglycemic clamp to assess their insulin sensitivity, which was expressed as M value. β cell function was estimated by homeostatic model assessment (HOMA)-β index after adjusting insulin sensitivity (HOMA-βad index). Compared with lean controls, lean PCOS women had similar fasting plasma glucose (FPG), higher postprandial plasma glucose (PPG) (6.03±1.05 vs. 5.44±0.97 mmol/L, PPCOS women had higher levels of both FPG (5.24±0.58 vs. 4.90±0.39, PPCOS women separately, and the cutoff of BMI indicating impaired β cell function of PCOS women was 25.545kg/m². In conclusion, insulin resistance and dysregulation of glucose metabolism were common in Chinese PCOS women with normal glucose tolerance. BMI ≥ 25.545kg/m² indicated impaired β cell function in PCOS women with normal glucose tolerance.

  13. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation.

    Science.gov (United States)

    Novak, Matthew T; Yuan, Fan; Reichert, William M

    2010-10-01

    Little is known mechanistically about why implanted glucose sensors lag behind blood glucose levels in both the time to peak sensor response and the magnitude of peak sensor response. A mathematical model of glucose transport from capillaries through surrounding tissue to the sensor surface was constructed to address how different aspects of the tissue affect glucose transport to an implanted sensor. Physiologically relevant values of capsule diffusion coefficient, capsule porosity, cellular glucose consumption, capsule thickness, and subcutaneous vessel density were used as inputs to create simulated sensor traces that mimic experimental instances of time lag and concentration attenuation relative to a given blood glucose profile. Using logarithmic sensitivity analysis, each parameter was analyzed to study the effect of these variables on both lag and attenuation. Results identify capsule thickness as the strongest determinant of sensor time lag, while subcutaneous vessel density and capsule porosity had the largest effects on attenuation of glucose that reaches the sensor surface. These findings provide mechanistic insight for the rational design of sensor modifications that may alleviate the deleterious consequences of tissue effects on implanted sensor performance.

  14. Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans

    Science.gov (United States)

    Lu, Yasong; Griffen, Steven C.; Boulton, David W.; Leil, Tarek A.

    2014-01-01

    In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for removing glucose from the body and improving glycemic control in patients with diabetes. Despite demonstrating high levels (in excess of 80%) of inhibition of glucose transport by SGLT2 in vitro, potent SGLT2 inhibitors, e.g., dapagliflozin and canagliflozin, inhibit renal glucose reabsorption by only 30–50% in clinical studies. Hypotheses for this apparent paradox are mostly focused on the compensatory effect of SGLT1. The paradox has been explained and the role of SGLT1 demonstrated in the mouse, but direct data in humans are lacking. To further explore the roles of SGLT1/2 in renal glucose reabsorption in humans, we developed a systems pharmacology model with emphasis on SGLT1/2 mediated glucose reabsorption and the effects of SGLT2 inhibition. The model was calibrated using robust clinical data in the absence or presence of dapagliflozin (DeFronzo et al., 2013), and evaluated against clinical data from the literature (Mogensen, 1971; Wolf et al., 2009; Polidori et al., 2013). The model adequately described all four data sets. Simulations using the model clarified the operating characteristics of SGLT1/2 in humans in the healthy and diabetic state with or without SGLT2 inhibition. The modeling and simulations support our proposition that the apparent moderate, 30–50% inhibition of renal glucose reabsorption observed with potent SGLT2 inhibitors is a combined result of two physiological determinants: SGLT1 compensation and residual SGLT2 activity. This model will enable in silico inferences and predictions related to SGLT1

  15. Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans.

    Science.gov (United States)

    Lu, Yasong; Griffen, Steven C; Boulton, David W; Leil, Tarek A

    2014-01-01

    In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for removing glucose from the body and improving glycemic control in patients with diabetes. Despite demonstrating high levels (in excess of 80%) of inhibition of glucose transport by SGLT2 in vitro, potent SGLT2 inhibitors, e.g., dapagliflozin and canagliflozin, inhibit renal glucose reabsorption by only 30-50% in clinical studies. Hypotheses for this apparent paradox are mostly focused on the compensatory effect of SGLT1. The paradox has been explained and the role of SGLT1 demonstrated in the mouse, but direct data in humans are lacking. To further explore the roles of SGLT1/2 in renal glucose reabsorption in humans, we developed a systems pharmacology model with emphasis on SGLT1/2 mediated glucose reabsorption and the effects of SGLT2 inhibition. The model was calibrated using robust clinical data in the absence or presence of dapagliflozin (DeFronzo et al., 2013), and evaluated against clinical data from the literature (Mogensen, 1971; Wolf et al., 2009; Polidori et al., 2013). The model adequately described all four data sets. Simulations using the model clarified the operating characteristics of SGLT1/2 in humans in the healthy and diabetic state with or without SGLT2 inhibition. The modeling and simulations support our proposition that the apparent moderate, 30-50% inhibition of renal glucose reabsorption observed with potent SGLT2 inhibitors is a combined result of two physiological determinants: SGLT1 compensation and residual SGLT2 activity. This model will enable in silico inferences and predictions related to SGLT1/2 modulation.

  16. On SW-minimal models and N=1 supersymmetric quantum Toda-field theories

    International Nuclear Information System (INIS)

    Mallwitz, S.

    1994-04-01

    Integrable N=1 supersymmetric Toda-field theories are determined by a contragredient simple Super-Lie-Algebra (SSLS) with purely fermionic lowering and raising operators. For the SSLA's Osp(3/2) and D(2/1;α) we construct explicitly the higher spin conserved currents and obtain free field representations of the super W-algebras SW(3/2,2) and SW(3/2,3/2,2). In constructing the corresponding series of minimal models using covariant vertex operators, we find a necessary restriction on the Cartan matrix of the SSLA, also for the general case. Within this framework, this restriction claims that there be a minimum of one non-vanishing element on the diagonal of the Cartan matrix. This condition is without parallel in bosonic conformal field theory. As a consequence only two series of SSLA's yield minimal models, namely Osp(2n/2n-1) and Osp(2n/2n+1). Subsequently some general aspects of degenerate representations of SW-algebras, notably the fusion rules, are investigated. As an application we discuss minimal models of SW(3/2, 2), which were constructed with independent methods, in this framework. Covariant formulation is used throughout this paper. (orig.)

  17. Phenomenological study of in the minimal model at LHC

    Indian Academy of Sciences (India)

    K M Balasubramaniam

    2017-10-05

    Oct 5, 2017 ... Phenomenological study of Z in the minimal B − L model at LHC ... The phenomenological study of neutral heavy gauge boson (Z. B−L) of the ...... JHEP10(2015)076, arXiv:1506.06767 [hep-ph] ... [15] ATLAS Collaboration: G Aad et al, Phys. Rev. D 90(5) ... [19] C W Chiang, N D Christensen, G J Ding and T.

  18. Predictions for mt and MW in minimal supersymmetric models

    International Nuclear Information System (INIS)

    Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.

    2009-12-01

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)

  19. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    2005-01-01

    -posed estimation problem, where the reconstruction most often has been done by non-linear least squares techniques separately for each entity. The minmal model was originally specified for a single individual and does not combine several individuals with the advantage of estimating the metabolic portrait...... to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem...

  20. A portable measuring system for a competitive binding glucose biosensor

    Science.gov (United States)

    Colvin, Lydia E.; Means, A. Kristen; Grunlan, Melissa A.; Coté, Gerard L.

    2018-02-01

    Central to minimizing the long- and short-term complications associated with diabetes is careful monitoring and maintenance of blood glucose at normal levels. Towards replacing conventionally used finger-prick glucose testing, indwelling continuous glucose monitors (CGMs) based on amperometric electrodes have been introduced to the market. Envisioned to lead to a CGM with an increased lifetime, we report herein a fluorescently-labeled competitive binding assay contained within a hydrogel membrane whose glucose response is measured via a novel portable system. The optical system design included a laser source, bifurcated fiber, laser filter and simple fiber coupled spectrometer to obtain the change in FRET pair ratio of the assay. Glucose response of the assay in free solution was measured using this system across the physiologic range (0-200 mg/dL). The FRET pair ratio signal was seen to increase with glucose and the standard error of calibration was 22.42 mg/dL with a MARD value of 14.85%. When the assay was contained within the hydrogel membrane's central cavity and similarly analyzed, the standard error increased but the assay maintained its reversibility.

  1. Development and testing of a fluorescence biosensor for glucose sensing

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  2. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet

    Science.gov (United States)

    Burgeiro, Ana; Cerqueira, Manuela G.; Varela-Rodríguez, Bárbara M.; Nunes, Sara; Neto, Paula; Pereira, Frederico C.; Reis, Flávio; Carvalho, Eugénia

    2017-01-01

    Glucotoxicity and lipotoxicity are key features of type 2 diabetes mellitus, but their molecular nature during the early stages of the disease remains to be elucidated. We aimed to characterize glucose and lipid metabolism in insulin-target organs (liver, skeletal muscle, and white adipose tissue) in a rat model treated with a high-sucrose (HSu) diet. Two groups of 16-week-old male Wistar rats underwent a 9-week protocol: HSu diet (n = 10)—received 35% of sucrose in drinking water; Control (n = 12)—received vehicle (water). Body weight, food, and beverage consumption were monitored and glucose, insulin, and lipid profiles were measured. Serum and liver triglyceride concentrations, as well as the expression of genes and proteins involved in lipid biosynthesis were assessed. The insulin-stimulated glucose uptake and isoproterenol-stimulated lipolysis were also measured in freshly isolated adipocytes. Even in the absence of obesity, this rat model already presented the main features of prediabetes, with fasting normoglycemia but reduced glucose tolerance, postprandial hyperglycemia, compensatory hyperinsulinemia, as well as decreased insulin sensitivity (resistance) and hypertriglyceridemia. In addition, impaired hepatic function, including altered gluconeogenic and lipogenic pathways, as well as increased expression of acetyl-coenzyme A carboxylase 1 and fatty acid synthase in the liver, were observed, suggesting that liver glucose and lipid dysmetabolism may play a major role at this stage of the disease. PMID:28635632

  3. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  4. Hipoinsulinemia em alcoolistas com hepatopatia mínima Hypoinsulinemia in alcoholics with minimal hepatopaty

    Directory of Open Access Journals (Sweden)

    M.M. das Neves

    2000-03-01

    Full Text Available OBJETIVO: Em alcoolistas portadores de lesões hepáticas mínimas avaliar os níveis de glicose e insulina séricas após estímulo com glicose intravenosa. MÉTODOS: Em oito etilistas, portadores de alterações hepáticas mínimas, caracteriza por biópsia hepática, e em 26 controles sadios não-alcoólicos, foram estudados os níveis glicêmicos e insulinêmicos (RIE nos tempos 1, 3, 5, e 10 minutos após estímulo com glicose intravenosa (0.5g/Kg de peso. RESULTADOS: As médias da insulina sérica dos tempos 1, 3 minutos e resposta integrada total (RIT-10min após estímulo foram menores no grupo alcoolista em relação ao controle (p The chronic pancreatitis (CP may evolve with low insulin levels and develop clinical picture of diabetes mellitus. Low seric levels of insulin and C peptide after stimulus has also been described in asymptomatic alcoholics even with normal glicemic curves. It is known that the chronic alcoholism is the main etiological factor of CP and hepatic diseases, and that the insulin produced by the pancreas is metabolized mainly by the liver. High levels of periferic insulin are described in hepatic cirrhosis due to decrease of hepatic metabolization alone or associated to increase of periferic resistence. AIM: In alcoholics with minimal hepatic lesions to evaluate the seric insulin and glucose levels after stimulus with intravenous glucose. METHODS: In 8 alcoholic patients with minimal hepatic lesions characterized by hepatic biopsy, and 26 non-alcoholics, healthy controls, it was studied the serum glucose and insulin levels in basal time, 1, 3, 5, and 10 minutes after stimulus with intravenous glucose (0.5 g/kg. RESULTS: The insulin means in time 1, 3 minutes and total integrated response after stimulus were lower (p < 0.05 in alcoholic group than in control, even with normal glucose curves. CONCLUSION: Alcoholics with minimal hepatic lesions showed low seric insulin levels after glucose stimulus, similar to former

  5. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  6. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  7. Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model

    International Nuclear Information System (INIS)

    Paschoal, Ricardo C.; Helayel Neto, Jose A.

    2003-01-01

    The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effective described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field nominally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1) D Dirac's equation is derived. (author)

  8. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test.

    Science.gov (United States)

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko; Polotsky, Vsevolod Y

    2017-04-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (S I ), insulin independent glucose disposal [glucose effectiveness (S G )], and the insulin response to glucose (AIR G ) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased S G but did not affect S I and AIR G Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased S G , whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose

  9. Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

    OpenAIRE

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad; Bysted, Britta V.; Knudsen, Carsten B.; Madsen, Henrik; Jørgensen, John Bagterp

    2016-01-01

    In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an elevated glucagon level depends on the current insulin concentration and thus endogenous glucose production (EGP) can not be modelled without knowledge of the concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP irrespective of glu...

  10. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  11. Diagnostic Accuracies of Glycated Hemoglobin, Fructosamine, and Homeostasis Model Assessment of Insulin Resistance in Predicting Impaired Fasting Glucose, Impaired Glucose Tolerance, or New Onset Diabetes After Transplantation.

    Science.gov (United States)

    Rosettenstein, Kerri; Viecelli, Andrea; Yong, Kenneth; Nguyen, Hung Do; Chakera, Aron; Chan, Doris; Dogra, Gursharan; Lim, Ee Mun; Wong, Germaine; Lim, Wai H

    2016-07-01

    New onset diabetes after transplantation (NODAT) is associated with a 3-fold greater risk of cardiovascular disease events, with early identification and treatment potentially attenuating this risk. The optimal screening test to identify those with NODAT remains unclear, and the aim of this study was to examine the diagnostic accuracies of 4 screening tests in identifying impaired fasting glucose, impaired glucose tolerance (IGT), and NODAT. This is a single-center prospective cohort study of 83 nondiabetic kidney transplant recipients between 2008 and 2011. Oral glucose tolerance test was considered the gold standard in identifying IFG/IGT or NODAT. Diagnostic accuracies of random blood glucose, glycated hemoglobin (HBA1c), fructosamine, and Homeostasis Model Assessment-Insulin Resistance in predicting IFG/IGT or NODAT were assessed using the area under the receiver operating characteristic curve. Forty (48%) recipients had IFG/IGT or NODAT. Compared with HBA1c with adjusted area under the curve (AUC) of 0.88 (95% confidence interval [95% CI], 0.77-0.93), fructosamine was the most accurate test with adjusted AUC of 0.92 (95% CI, 0.83-0.96). The adjusted AUCs of random blood glucose and Homeostasis Model Assessment-Insulin Resistance in identifying IFG/IGT were between 0.81 and 0.85. Restricting to identifying IGT/NODAT using 2-hour oral glucose tolerance test (n = 66), fructosamine was the most accurate diagnostic test with adjusted AUC of 0.93 (95% CI, 0.84-0.99), but not statistically different to HBA1c with adjusted AUC of 0.88 (95% CI, 0.76-0.96). Although HBA1c is an acceptable and widely used screening test in detecting IFG/IGT or NODAT, fructosamine may be a more accurate diagnostic test but this needs to be further examined in larger cohorts.

  12. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    Science.gov (United States)

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  13. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    Science.gov (United States)

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Science.gov (United States)

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3

  15. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Directory of Open Access Journals (Sweden)

    Marie Thérèse Besson

    Full Text Available Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93. We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD, the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to

  16. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Science.gov (United States)

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  17. Using Glucose Tolerance Tests to Model Insulin Secretion and Clearance

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2005-04-01

    Full Text Available The purpose of the studies described in this paper is to develop theoretically and to validate experimentally mathematical compartment models which can be used to predict plasma insulin levels in patients with diabetes mellitus (DM. In the case of Type 2 Diabetes Mellitus (T2DM, the C-peptide levels in the plasma were measured as part of routine glucose tolerance tests in order to estimate the prehepatic insulin secretion rates. In the case of Type 1 Diabetes Mellitus (T1DM, a radioactive labelled insulin was used to measure the absorption rate of insulin after a subcutaneous injection of insulin. Both models gave close fits between theoretical estimates and experimental data, and, unlike other models, it is not necessary to seed these models with initial estimates.

  18. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  19. Surface states of a system of Dirac fermions: A minimal model

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  20. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  1. Performance of a new test strip for freestyle blood glucose monitoring systems.

    Science.gov (United States)

    Lock, John Paul; Brazg, Ronald; Bernstein, Robert M; Taylor, Elizabeth; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Chen, Ting; Welsh, Zoë; Amor, Walter; Bhogal, Claire; Ng, Ronald

    2011-01-01

    a new strip, designed to enhance the ease of use and minimize interference of non-glucose sugars, has been developed to replace the current FreeStyle (Abbott Diabetes Care, Alameda, CA) blood glucose test strip. We evaluated the performance of this new strip. laboratory evaluation included precision, linearity, dynamic range, effects of operating temperature, humidity, altitude, hematocrit, interferents, and blood reapplication. System accuracy, lay user performance, and ease of use for finger capillary blood testing and accuracy for venous blood testing were evaluated at clinics. Lay users also compared the speed and ease of use between the new strip and the current FreeStyle strip. for glucose concentrations blood glucose results obtained by lay users fell within ± 5, 10, and 15 mg/dL, respectively, of the reference. For glucose concentrations ≥75 mg/dL, 68%, 95%, 99%, and 99% of the lay user results fell within  ±  5%, 10%, 15%, and 20%, respectively, of the reference. Comparable accuracy was obtained in the venous blood study. Lay users found the new test strip easy to use and faster and easier to use than the current FreeStyle strip. The new strip maintained accuracy under various challenging conditions, including high concentrations of various interferents, sample reapplication up to 60 s, and extremes in hematocrit, altitude, and operating temperature and humidity. our results demonstrated excellent accuracy of the new FreeStyle test strip and validated the improvements in minimizing interference and enhancing ease of use.

  2. First Clinical Experience with Retrospective Flash Glucose Monitoring (FGM) Analysis in South Africa: Characterizing Glycemic Control with Ambulatory Glucose Profile.

    Science.gov (United States)

    Distiller, Larry A; Cranston, Iain; Mazze, Roger

    2016-11-01

    In 2014, an innovative blinded continuous glucose monitoring system was introduced with automated ambulatory glucose profile (AGP) reporting. The clinical use and interpretation of this new technology has not previously been described. Therefore we wanted to understand its use in characterizing key factors related to glycemic control: glucose exposure, variability, and stability, and risk of hypoglycemia in clinical practice. Clinicians representing affiliated diabetes centers throughout South Africa were trained and subsequently were given flash glucose monitoring readers and 2-week glucose sensors to use at their discretion. After patient use, sensor data were collected and uploaded for AGP reporting. Complete data (sensor AGP with corresponding clinical information) were obtained for 50 patients with type 1 (70%) and type 2 diabetes (30%), irrespective of therapy. Aggregated analysis of AGP data comparing patients with type 1 versus type 2 diabetes, revealed that despite similar HbA1c values between both groups (8.4 ± 2 vs 8.6 ± 1.7%, respectively), those with type 2 diabetes had lower mean glucose levels (9.2 ± 3 vs 10.3 mmol/l [166 ± 54 vs 185 mg/dl]) and lower indices of glucose variability (3.0 ± 1.5 vs 5.0 ± 1.9 mmol/l [54 ± 27 vs 90 ± 34.2 mg/dl]). This highlights key areas for future focus. Using AGP, the characteristics of glucose exposure, variability, stability, and hypoglycemia risk and occurrence were obtained within a short time and with minimal provider and patient input. In a survey at the time of the follow-up visit, clinicians indicated that aggregated AGP data analysis provided important new clinical information and insights. © 2016 Diabetes Technology Society.

  3. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    Porto, Stefano

    2015-06-01

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  4. A minimal spatial cell lineage model of epithelium: tissue stratification and multi-stability

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2018-05-01

    A minimal model which includes spatial and cell lineage dynamics for stratified epithelia is presented. The dependence of tissue steady state on cell differentiation models, cell proliferation rate, cell differentiation rate, and other parameters are studied numerically and analytically. Our minimal model shows some important features. First, we find that morphogen or mechanical stress mediated interaction is necessary to maintain a healthy stratified epithelium. Furthermore, comparing with tissues in which cell differentiation can take place only during cell division, tissues in which cell division and cell differentiation are decoupled can achieve relatively higher degree of stratification. Finally, our model also shows that in the presence of short-range interactions, it is possible for a tissue to have multiple steady states. The relation between our results and tissue morphogenesis or lesion is discussed.

  5. Moderate glucose supply reduces hemolysis during systemic inflammation

    Directory of Open Access Journals (Sweden)

    Jägers J

    2018-03-01

    -induced increase in systemic blood pressure. Excessive but not moderate glucose supply increased blood glucose level and enhanced tissue injury. Glucose supply did not reduce LPS-induced alterations in coagulation, but significantly reduced hemolysis induced by LPS.Conclusion: Intravenous glucose infusion can diminish LPS-related changes in hemodynamics, glucose metabolism, and, more interestingly, LPS-induced hemolysis. Since cell-free hemoglobin is known to be a predictor for patient’s survival, a reduction of hemolysis by 35% only by the addition of a small amount of glucose is another step to minimize mortality during systemic inflammation. Keywords: lipopolysaccharide, sepsis, erythrocytes, red blood cells, cell-free hemoglobin, glucose metabolism

  6. Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1 on Postprandial Blood Glucose Level in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Emmanouil Apostolidis

    2013-07-01

    Full Text Available This research investigated the effect of enzymatically digested low molecular weight (MW chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; 10,000 Da. The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax for GO2KA1 was significantly delayed (0.9 h compared to control (0.5 h. These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.

  7. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  8. Validity of the reduced-sample insulin modified frequently-sampled intravenous glucose tolerance test using the nonlinear regression approach.

    Science.gov (United States)

    Sumner, Anne E; Luercio, Marcella F; Frempong, Barbara A; Ricks, Madia; Sen, Sabyasachi; Kushner, Harvey; Tulloch-Reid, Marshall K

    2009-02-01

    The disposition index, the product of the insulin sensitivity index (S(I)) and the acute insulin response to glucose, is linked in African Americans to chromosome 11q. This link was determined with S(I) calculated with the nonlinear regression approach to the minimal model and data from the reduced-sample insulin-modified frequently-sampled intravenous glucose tolerance test (Reduced-Sample-IM-FSIGT). However, the application of the nonlinear regression approach to calculate S(I) using data from the Reduced-Sample-IM-FSIGT has been challenged as being not only inaccurate but also having a high failure rate in insulin-resistant subjects. Our goal was to determine the accuracy and failure rate of the Reduced-Sample-IM-FSIGT using the nonlinear regression approach to the minimal model. With S(I) from the Full-Sample-IM-FSIGT considered the standard and using the nonlinear regression approach to the minimal model, we compared the agreement between S(I) from the Full- and Reduced-Sample-IM-FSIGT protocols. One hundred African Americans (body mass index, 31.3 +/- 7.6 kg/m(2) [mean +/- SD]; range, 19.0-56.9 kg/m(2)) had FSIGTs. Glucose (0.3 g/kg) was given at baseline. Insulin was infused from 20 to 25 minutes (total insulin dose, 0.02 U/kg). For the Full-Sample-IM-FSIGT, S(I) was calculated based on the glucose and insulin samples taken at -1, 1, 2, 3, 4, 5, 6, 7, 8,10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 minutes. For the Reduced-Sample-FSIGT, S(I) was calculated based on the time points that appear in bold. Agreement was determined by Spearman correlation, concordance, and the Bland-Altman method. In addition, for both protocols, the population was divided into tertiles of S(I). Insulin resistance was defined by the lowest tertile of S(I) from the Full-Sample-IM-FSIGT. The distribution of subjects across tertiles was compared by rank order and kappa statistic. We found that the rate of failure of resolution of S(I) by

  9. Amperometric Bioelectronic Tongue for glucose determination

    Directory of Open Access Journals (Sweden)

    Yazan Al-Issa

    2015-03-01

    Full Text Available An amperometric Bioelectronic Tongue is reported for glucose determination that contains eight sensor electrodes constructed using different metal electrodes (Pt, Au, oxidoreductase enzymes (glucose oxidase, ascorbate oxidase, uricase, and membrane coatings (Nafion, chitosan. The response to varying concentrations of glucose, ascorbic acid, uric acid, and acetaminophen was tested for two models, concentration determination by current density measurements at individual electrodes and concentration determination by a linear regression model for the entire electrode array. The reduced chi-squared for the full array model was found to be about one order of magnitude lower than that for the individual-electrode model. Discrimination of glucose from chemical interference by the other three species is accomplished through a combination of enzyme catalysis, metal electrocatalysis, and membrane surface charge. The benefit of incorporating enzyme electrodes into the sensor array is illustrated by the lower correlation coefficients between different enzyme electrodes relative to non-enzyme coated electrodes. This approach can be more generally applied to detection of other substrates of oxidoreductase enzymes.

  10. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  11. Minimal time spiking in various ChR2-controlled neuron models.

    Science.gov (United States)

    Renault, Vincent; Thieullen, Michèle; Trélat, Emmanuel

    2018-02-01

    We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of these affine systems for the first spike from equilibrium. We apply tools of geometric optimal control theory to study singular extremals, and we implement a direct method to compute optimal controls. When the system is too large to theoretically investigate the existence of singular optimal controls, we observe numerically the optimal bang-bang controls.

  12. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  13. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    DEFF Research Database (Denmark)

    Gejl, Michael; Egefjord, Lærke; Lerche, Susanne

    2012-01-01

    Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...... in the actions of GLUT1 and glucose metabolism: GLP-1 ensures less fluctuation of brain glucose levels in response to alterations in plasma glucose, which may prove to be neuroprotective during hyperglycemia....

  14. Overnight glucose control in people with type 1 diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Duun-Henriksen, Anne Katrine; Schmidt, Signe

    2018-01-01

    This paper presents an individualized model predictive control (MPC) algorithm for overnight blood glucose stabilization in people with type 1 diabetes (T1D). The MPC formulation uses an asymmetric objective function that penalizes low glucose levels more heavily. We compute the model parameters...... algorithm uses frequent glucose measurements from a continuous glucose monitor (CGM) and its decisions are implemented by a continuous subcutaneous insulin infusion (CSII) pump. We provide guidelines for tuning the control algorithm and computing the Kalman gain in the linear state space model in innovation...

  15. Effect of Cholera Toxin Administered Supraspinally or Spinally on the Blood Glucose Level in Pain and D-Glucose Fed Animal Models

    OpenAIRE

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-01-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to...

  16. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  17. Minimal Z′ models and the 125 GeV Higgs boson

    International Nuclear Information System (INIS)

    Basso, L.

    2013-01-01

    The 1-loop renormalization group equations for the minimal Z ′ models encompassing a type-I seesaw mechanism are studied in the light of the 125 GeV Higgs boson observation. This model is taken as a benchmark for the general case of singlet extensions of the standard model. The most important result is that negative scalar mixing angles are favored with respect to positive values. Further, a minimum value for the latter exists, as well as a maximum value for the masses of the heavy neutrinos, depending on the vacuum expectation value of the singlet scalar

  18. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  19. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  20. Estimation of gluconeogenesis and glucose utilization in carbohydate deficient growing rats

    International Nuclear Information System (INIS)

    Hill, F.W.; Egtesadi, S.; Rucker, R.B.

    1986-01-01

    A carbohydrate deficient diet based on food grade oleic acid and soybean oil and a minimally adequate level of casein protein was supplemented with graded levels of glucose (0, 4, 10, 65%), and casein protein (12% basal level plus 4, 6, 20%). Weanling rats were fed the respective diets for 28 days. Under anesthesia in fed state, the right jugular vein and left carotid artery were cannulated. NaH 14 CO 3 and 3 H-glucose labelled on C 6 were injected into aorta via carotid and blood samples taken from vena cava via jugular over a period of 30 minutes. Rate of increase of blood 14 C-glucose was the indicator of gluconeogenesis (GLNG). Disappearance of blood 3 H-glucose was the measure of glucose flux. Relative rate of GLNG was very high in basal unsupplemented rats, and glucose flux was very low. Rats growing rapidly with minimum supplementation (4% glucose or 6% casein) showed the lowest relative rate of GLNG and maximum glucose flux, of the order of 10 mg min -1 kg -1 . GLNG increased with higher levels of glucose and casein, but flux did not increase. The fed state glucose flux extrapolated to 24 hour basis was approximately 2X greater than the dietary intake of glucose and its equivalent of glucogenic precursors in rats fed the basal diet and low levels of supplements. Adjustment for lower flux in post absorptive state, based on flux in fasted rats, reduced the differences between observed flux and intake

  1. Mixed model of dietary fat effect on postprandial glucose-insulin metabolism from carbohydrates in type 1 diabetes.

    Science.gov (United States)

    Yamamoto Noguchi, Claudia Cecilia; Kunikane, Noriaki; Hashimoto, Shogo; Furutani, Eiko

    2015-08-01

    In this study we introduce an extension of a previously developed model of glucose-insulin metabolism in type 1 diabetes (T1D) from carbohydrates that includes the effect of dietary fat on postprandial glycemia. We include two compartments that represent plasma triglyceride and nonesterified fatty acid (NEFA) concentration, in addition to a mathematical representation of delayed gastric emptying and insulin resistance, which are the most well-known effects of dietary fat metabolism. Simulation results show that postprandial glucose as well as lipid levels in our model approximates clinical data from T1D patients.

  2. Steam consumption minimization model in a multiple evaporation effect in a sugar plant

    International Nuclear Information System (INIS)

    Villada, Fernando; Valencia, Jaime A; Moreno, German; Murillo, J. Joaquin

    1992-01-01

    In this work, a mathematical model to minimize the steam consumption in a multiple effect evaporation system is shown. The model is based in the dynamic programming technique and the results are tested in a Colombian sugar mill

  3. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  4. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  5. A minimal unified model of disease trajectories captures hallmarks of multiple sclerosis

    KAUST Repository

    Kannan, Venkateshan; Kiani, Narsis A.; Piehl, Fredrik; Tegner, Jesper

    2017-01-01

    Multiple Sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) causing demyelination and neurodegeneration leading to accumulation of neurological disability. Here we present a minimal, computational model involving

  6. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats.

    Science.gov (United States)

    Islam, Md Shahidul; Indrajit, Mitesh

    2012-01-01

    The present study was conducted to examine the antidiabetic effects of xylitol in a type 2 diabetes rat model. Six-week-old male Sprague-Dawley rats were randomly divided into 3 groups: normal control (NC), diabetic control (DBC) and xylitol (XYL). Diabetes was induced only in the DBC and XYL animal groups by feeding them a 10% fructose solution for 2 weeks followed by an injection (i.p.) of streptozotocin (40 mg/kg body weight). One week after the streptozotocin injection, the animals with a nonfasting blood glucose level of >300 mg/dl were considered to be diabetic. The XYL group was fed further with a 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 5 weeks of intervention, food and fluid intake, body weight, blood glucose, serum fructosamine and most of the serum lipids were significantly decreased, and serum insulin concentration and glucose tolerance ability was significantly increased in the XYL group compared to the DBC group. Liver weight, liver glycogen and serum triglycerides were not influenced by feeding with xylitol. The data of this study suggest that xylitol can be used not only as a sugar substitute but also as a supplement to antidiabetic food and other food products. Copyright © 2012 S. Karger AG, Basel.

  7. Job shop scheduling model for non-identic machine with fixed delivery time to minimize tardiness

    Science.gov (United States)

    Kusuma, K. K.; Maruf, A.

    2016-02-01

    Scheduling non-identic machines problem with low utilization characteristic and fixed delivery time are frequent in manufacture industry. This paper propose a mathematical model to minimize total tardiness for non-identic machines in job shop environment. This model will be categorized as an integer linier programming model and using branch and bound algorithm as the solver method. We will use fixed delivery time as main constraint and different processing time to process a job. The result of this proposed model shows that the utilization of production machines can be increase with minimal tardiness using fixed delivery time as constraint.

  8. CP asymmetry in tau slepton decay in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Yang Weimin; Du Dongsheng

    2002-01-01

    We investigate CP violation asymmetry in the decay of a tau slepton into a tau neutrino and a chargino in the minimal supersymmetric standard model. The new source of CP violation is the complex mixing in the tau slepton sector. The rate asymmetry between the decays of the tau slepton and its CP conjugate process can be of the order of 10 -3 in some region of the parameter space of the minimal supergravity scenario, which will possibly be detectable in near-future collider experiments

  9. The minimal linear σ model for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

    2016-01-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

  10. The glucose enzyme electrode: is simple peroxide detection at a needle sensor acceptable?

    Science.gov (United States)

    Vadgama, P; Mullen, W; Churchouse, S; Battersby, C

    1988-01-01

    Needle type devices have been fabricated based on Pt anodes (to detect H2O2) mounted with stainless steel needles to act as the reference. Coating of these devices with glucose oxidase allowed glucose measurement, but with high dependence on stirring and background pO2 levels as well as a restricted glucose assay range. By wet dipcoating of microporous polyurethane or the application of preformed porous membranes, the linear range has been extended up to 70 mM glucose, to give minimal pO2 dependence and insensitivity to stirring. With incorporation of polyethersulphone membranes, blood measurement was possible with high selectivity (y = 0.954x + 0.202, r = 0.991, n = 48). This establishes that simple peroxide detection at a needle sensor is acceptable, and can now be focussed on increasing biocompatibility.

  11. Glucose intolerance in a xenotransplantation model

    DEFF Research Database (Denmark)

    Dahl, Kirsten; Buschard, Karsten; Gram, Dorte X.

    2006-01-01

    Xenotransplantation holds the promise of replacing failing human organs with organs of animal origin. Transplantation of pancreatic islets from pigs to humans might restore glucose homeostasis and offer diabetic patients considerable improvement in their quality of life. The alpha-gal epitope...... beta-cell function (p islet xenotransplantation....

  12. Solar system tests for realistic f(T) models with non-minimal torsion-matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou [Shanghai Normal University, Shanghai United Center for Astrophysics (SUCA), Shanghai (China)

    2017-08-15

    In the previous paper, we have constructed two f(T) models with non-minimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era, and the present accelerating expansion. Meantime, the significant advantage of these models is that they could avoid the cosmological constant problem of ΛCDM. However, the non-minimal coupling between matter and torsion will affect the tests of the Solar system. In this paper, we study the effects of the Solar system in these models, including the gravitation redshift, geodetic effect and perihelion precession. We find that Model I can pass all three of the Solar system tests. For Model II, the parameter is constrained by the uncertainties of the planets' estimated perihelion precessions. (orig.)

  13. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  14. Triviality bound on lightest Higgs mass in next to minimal supersymmetric model

    International Nuclear Information System (INIS)

    Choudhury, S.R.; Mamta; Dutta, Sukanta

    1998-01-01

    We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)

  15. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    Science.gov (United States)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  16. Accuracy and precision evaluation of seven self-monitoring blood glucose systems.

    Science.gov (United States)

    Kuo, Chih-Yi; Hsu, Cheng-Teng; Ho, Cheng-Shiao; Su, Ting-En; Wu, Ming-Hsun; Wang, Chau-Jong

    2011-05-01

    Self-monitoring blood glucose (SMBG) systems play a critical role in management of diabetes. SMBG systems should at least meet the minimal requirement of the World Health Organization's ISO 15197:2003. For tight glycemic control, a tighter accuracy requirement is needed. Seven SMBG systems were evaluated for accuracy and precision: Bionime Rightest(™) GM550 (Bionime Corp., Dali City, Taiwan), Accu-Chek(®) Performa (Roche Diagnostics, Indianapolis, IN), OneTouch(®) Ultra(®)2 (LifeScan Inc., Milpitas, CA), MediSense(®) Optium(™) Xceed (Abbott Diabetes Care Inc., Alameda, CA), Medisafe (TERUMO Corp., Tokyo, Japan), Fora(®) TD4227 (Taidac Technology Corp., Wugu Township, Taiwan), and Ascensia Contour(®) (Bayer HealthCare LLC, Mishawaka, IN). The 107 participants (44 men and 63 women) were between 23 and 91 years old. The analytical results of seven SMBG systems were compared with those of plasma analyzed with the hexokinase method (Olympus AU640, Olympus America Inc., Center Valley, PA). The imprecision of the seven blood glucose meters ranged from 1.1% to 4.7%. Three of the seven blood glucose meters (42.9%) fulfilled the minimum accuracy criteria of ISO 15197:2003. The mean absolute relative error value for each blood glucose meter was calculated and ranged from 6.5% to 12.0%. More than 40% of evaluated SMBG systems meet the minimal accuracy criteria requirement of ISO 15197:2003. However, considering tighter criteria for accuracy of ±15%, only the Bionime Rightest GM550 meets this requirement. Because SMBG systems play a critical role in management of diabetes, manufacturers have to strive to improve accuracy and precision and to ensure the good quality of blood glucose meters and test strips.

  17. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Knudsen, Carsten; O'Meara, Niall M.

    1995-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  18. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, J.; Knudsen, C.; O'Meara, N.M.

    1996-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  19. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  20. Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.

    Science.gov (United States)

    Biagi, Lyvia; Ramkissoon, Charrise M; Facchinetti, Andrea; Leal, Yenny; Vehi, Josep

    2017-06-12

    Continuous glucose monitors (CGMs) are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL) sensor and compare it with the Dexcom SEVEN PLUS (7P), G4 PLATINUM (G4P), and advanced G4 for Artificial Pancreas studies (G4AP) systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D), in which CGMs were worn in parallel and blood glucose (BG) samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD) of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.

  1. Studies of genetic variability of the glucose transporter 2 promoter in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Møller, A M; Jensen, N M; Pildal, J

    2001-01-01

    This study was performed to test the hypothesis that genetic variation in the promoter of the glucose transporter 2 (GLUT2) might predispose to prediabetic phenotypes or type 2 diabetes. A total of 1611 bp comprising the minimal promoter region of the GLUT2 gene were examined by combined single-s......-tolerant subjects. In conclusion, we found no evidence supporting the hypothesis that genetic variability in the minimal promoter of the GLUT2 is associated with type 2 diabetes or prediabetic phenotypes in the Danish population.......This study was performed to test the hypothesis that genetic variation in the promoter of the glucose transporter 2 (GLUT2) might predispose to prediabetic phenotypes or type 2 diabetes. A total of 1611 bp comprising the minimal promoter region of the GLUT2 gene were examined by combined single...

  2. Minimal but non-minimal inflation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  3. Rheology and density of glucose syrup and honey : Determining their suitability for usage in analogue and fluid dynamic models of geological processes

    NARCIS (Netherlands)

    Schellart, W. P.

    Analogue models of lithospheric deformation and fluid dynamic models of mantle flow mostly use some kind of syrup such as honey or glucose syrup to simulate the low-viscosity sub-lithospheric mantle. This paper describes detailed rheological tests and density measurements of three brands of glucose

  4. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    Science.gov (United States)

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Investigation of a New Spectrophotometric Method for the analysis of carbohydrates using glucose as model

    International Nuclear Information System (INIS)

    Hussain, Z.; Ali, A.; Shah, N.U.; Khan, K.M.

    2013-01-01

    Carbohydrates are biomolecule of significant importance. Its analysis is of prime importance in the clinical investigations, delivery of medicines and quality control operations of food and fuel products. Based on its importance a novel spectrophotometric method was investigated for the trace analysis of carbohydrates using glucose as model carbohydrate. This method is based on glucosazation followed by oxidation of the glucosazone with acidified iron (III) chloride. Oxidation of the glucsazone is necessary for enhancing the color intensity and optimum conditions were investigated for the process. All the absorbance measurements were carried out using 390 nm as gamma max. The ratio of the reactants was 1: 1.5: 0.1 mole for the glucose, phenyl hydrazine and iron (III) chloride. This method was used for the analysis of carbohydrates in real samples from plants, industrial products, blood and urine using glucose as reference. (author)

  6. Defective glycolysis and the use of 2-deoxy-D-glucose in polycystic kidney disease: from animal models to humans.

    Science.gov (United States)

    Magistroni, Riccardo; Boletta, Alessandra

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal disease characterized by bilateral renal cyst formation. ADPKD is one of the most common rare disorders, accounting for ~10% of all patients with end-stage renal disease (ESRD). ADPKD is a chronic disorder in which the gradual expansion of cysts that form in a minority of nephrons eventually causes loss of renal function due to the compression and degeneration of the surrounding normal parenchyma. Numerous deranged pathways have been identified in the cyst-lining epithelia, prompting the design of potential therapies. Several of these potential treatments have proved effective in slowing down disease progression in pre-clinical animal studies, while only one has subsequently been proven to effectively slow down disease progression in patients, and it has recently been approved for therapy in Europe, Canada and Japan. Among the affected cellular functions and pathways, recent investigations have described metabolic derangement in ADPKD as a major trait offering additional opportunities for targeted therapies. In particular, increased aerobic glycolysis (the Warburg effect) has been described as a prominent feature of ADPKD kidneys and its inhibition using the glucose analogue 2-deoxy-D-glucose (2DG) proved effective in slowing down disease progression in preclinical models of the disease. At the same time, previous clinical experiences have been reported with 2DG, showing that this compound is well tolerated in humans with minimal and reversible side effects. In this work, we review the literature and speculate that 2DG could be a good candidate for a clinical trial in humans affected by ADPKD.

  7. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  8. The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor.

    Directory of Open Access Journals (Sweden)

    Juliana Maynard

    Full Text Available The phosphatidyl inositol 3 kinase (PI3K, AKT and mammalian target of rapamycin (mTOR signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed.Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835.Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake for AZD8835 with a decrease in 18

  9. Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose

    NARCIS (Netherlands)

    Grasman, Johan; Callender, Hannah L.; Mensink, Marco; Pietropaolo, Massimo

    2017-01-01

    A differential equation model is formulated that describes the dynamics of glucose concentration in blood circulation. The model accounts for the intake of food, expenditure of calories and the control of glucose levels by insulin and glucagon. These and other hormones affect the blood glucose level

  10. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    Science.gov (United States)

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  11. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    Science.gov (United States)

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes

  12. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  13. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  14. BRST cohomology ring in 2D gravity coupled to minimal models

    International Nuclear Information System (INIS)

    Kanno, H.; Sarmadi, M.H.

    1992-08-01

    The ring structure of Lian-Zuckerman states for (q,p) minimal models coupled to gravity is shown to be R=R 0 xC[w,w -1 ] where R 0 is the ring of ghost number zero operators generated by two elements and w is an operator of ghost number -1. Some examples are discussed in detail. For these models the currents are also discussed and their algebra is shown to contain the Virasoro algebra. (author). 21 refs

  15. A Novel EPO Receptor Agonist Improves Glucose Tolerance via Glucose Uptake in Skeletal Muscle in a Mouse Model of Diabetes

    Directory of Open Access Journals (Sweden)

    Michael S. Scully

    2011-01-01

    Full Text Available Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of 14C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude.

  16. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  17. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    Science.gov (United States)

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  18. "Smart tattoo" glucose biosensors and effect of coencapsulated anti-inflammatory agents.

    Science.gov (United States)

    Srivastava, Rohit; Jayant, Rahul Dev; Chaudhary, Ayesha; McShane, Michael J

    2011-01-01

    Minimally invasive glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring. In the present study, we developed a novel nanoengineered microsphere formulation comprising alginate microsphere glucose sensors and anti-inflammatory-drug-loaded alginate microspheres. The formulation was prepared and characterized for size, shape, in vitro drug release, biocompatibility, and in vivo acceptability. Glucose oxidase (GOx)- and Apo-GOx-based glucose sensors were prepared and characterized. Sensing was performed both in distilled water and simulated interstitial body fluid. Layer-by-layer self-assembly techniques were used for preventing drug and sensing chemistry release. Finally, in vivo studies, involving histopathologic examination of subcutaneous tissue surrounding the implanted sensors using Sprague-Dawley rats, were performed to test the suppression of inflammation and fibrosis associated with glucose sensor implantation. The drug formulation showed 100% drug release with in 30 days with zero-order release kinetics. The GOx-based sensors showed good enzyme retention and enzyme activity over a period of 1 month. Apo-GOx-based visible and near-infrared sensors showed good sensitivity and analytical response range of 0-50 mM glucose, with linear range up to 12 mM glucose concentration. In vitro cell line studies proved biocompatibility of the material used. Finally, both anti-inflammatory drugs were successful in controlling the implant-tissue interface by suppressing inflammation at the implant site. The incorporation of anti-inflammatory drug with glucose biosensors shows promise in improving sensor biocompatibility, thereby suggesting potential application of alginate microspheres as "smart tattoo" glucose sensors with increased functional longevity. © 2010 Diabetes Technology Society.

  19. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast.

    Directory of Open Access Journals (Sweden)

    Antoine E Roux

    2009-03-01

    Full Text Available Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Galpha subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Deltagit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.

  20. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    Science.gov (United States)

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  1. Human TP53 polymorphism (rs1042522) modelled in mouse does not affect glucose metabolism and body composition.

    Science.gov (United States)

    Reiling, Erwin; Speksnijder, Ewoud N; Pronk, Amanda C M; van den Berg, Sjoerd A A; Neggers, Silvia J W; Rietbroek, Ilma; van Steeg, Harry; Dollé, Martijn E T

    2014-02-13

    Variation in TP53 has been associated with cancer. The pro-allele of a TP53 polymorphism in codon 72 (rs1042522) has been associated with longevity. Recently, we showed that the same allele might be involved in preservation of glucose metabolism, body composition and blood pressure during ageing. Here, we assessed glucose tolerance and body composition in mice carrying the human polymorphism. Our data do not support the previous findings in humans, suggesting that this polymorphism does not play a major role in development of glucose metabolism and body composition during ageing. Alternatively, the mouse model may not be suitable to validate these rs1042522-associated traits up to the age tested.

  2. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  3. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore

    2016-01-01

    of glucose has been proposed as an indicator of consciousness [2 and 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4 and 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect...

  4. Non-minimal inflation revisited

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Shafizadeh, Somayeh

    2010-01-01

    We reconsider an inflationary model that inflaton field is non-minimally coupled to gravity. We study the parameter space of the model up to the second (and in some cases third) order of the slow-roll parameters. We calculate inflation parameters in both Jordan and Einstein frames, and the results are compared in these two frames and also with observations. Using the recent observational data from combined WMAP5+SDSS+SNIa datasets, we study constraints imposed on our model parameters, especially the non-minimal coupling ξ.

  5. On the topology of the inflaton field in minimal supergravity models

    Science.gov (United States)

    Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.

    2014-04-01

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  6. On the Topology of the Inflaton Field in Minimal Supergravity Models

    CERN Document Server

    Ferrara, Sergio; Sorin, Alexander S

    2014-01-01

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R+R^2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the SU(1,1)/U(1) space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  7. Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy.

    Science.gov (United States)

    Erickson, Melissa L; Little, Jonathan P; Gay, Jennifer L; McCully, Kevin K; Jenkins, Nathan T

    2017-08-01

    Metformin is used clinically to reduce fasting glucose with minimal effects on postprandial glucose. Postmeal exercise reduces postprandial glucose and may offer additional glucose-lowering benefit beyond that of metformin alone, yet controversy exists surrounding exercise and metformin interactions. It is currently unknown how postmeal exercise and metformin monotherapy in combination will affect postprandial glucose. Thus, we examined the independent and combined effects of postmeal exercise and metformin monotherapy on postprandial glucose. A randomized crossover design was used to assess the influence of postmeal exercise on postprandial glucose excursions in 10 people treated with metformin monotherapy (57 ± 10 yr, HbA 1C  = 6.3 ± 0.6%). Each participant completed the following four conditions: sedentary and postmeal exercise (5 × 10-min bouts of treadmill walking at 60% V̇o 2max ) with metformin and sedentary and postmeal exercise without metformin. Peak postprandial glucose within a 2-h time window and 2-h total area under the curve was assessed after a standardized breakfast meal, using continuous glucose monitoring. Postmeal exercise significantly blunted 2-h peak ( P = 0.001) and 2-h area under the curve ( P = 0.006), with the lowest peak postprandial glucose excursion observed with postmeal exercise and metformin combined ( P exercise: 9.7 ± 2.3, washout/sedentary: 13.3 ± 3.2, washout/exercise: 11.1 ± 3.4 mmol/l). Postmeal exercise and metformin in combination resulted in the lowest peak postprandial glucose excursion compared with either treatment modality alone. Exercise timed to the postprandial phase may be important for optimizing glucose control during metformin monotherapy. NEW & NOTEWORTHY The interactive effects of metformin and exercise on key physiological outcomes remain an area of controversy. Findings from this study show that the combination of metformin monotherapy and moderate-intensity postmeal exercise led to

  8. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    Directory of Open Access Journals (Sweden)

    Sathananthan M

    2014-07-01

    Full Text Available Matheni Sathananthan,1 Sayeed Ikramuddin,2 James M Swain,3,6 Meera Shah,1 Francesca Piccinini,4 Chiara Dalla Man,4 Claudio Cobelli,4 Robert A Rizza,1 Michael Camilleri,5 Adrian Vella1 1Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA; 2Division of General Surgery, University of Minnesota, Minneapolis, MN, USA; 3Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA; 4Department of Information Engineering, University of Padua, Padua, Italy; 5Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; 6Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA Purpose: Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods: We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB. Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA to measure gastrointestinal transit. Insulin action and ß-cell responsivity indices were estimated using the minimal model. Results: Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose

  9. Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici.

    Science.gov (United States)

    Zhang, An; Sun, Jianxin; Wang, Zhongqiang; Yang, Shang-Tian; Zhou, Haiying

    2015-01-01

    The effects of CO2 on propionic acid production and cell growth in glycerol or glucose fermentation were investigated in this study. In glycerol fermentation, the volumetric productivity of propionic acid with CO2 supplementation reached 2.94g/L/day, compared to 1.56g/L/day without CO2. The cell growth using glycerol was also significantly enhanced with CO2. In addition, the yield and productivity of succinate, the main intermediate in Wood-Werkman cycle, increased 81% and 280%, respectively; consistent with the increased activities of pyruvate carboxylase and propionyl CoA transferase, two key enzymes in the Wood-Werkman cycle. However, in glucose fermentation CO2 had minimal effect on propionic acid production and cell growth. The carbon flux distributions using glycerol or glucose were also analyzed using a stoichiometric metabolic model. The calculated maintenance coefficient (mATP) increased 100%, which may explain the increase in the productivity of propionic acid in glycerol fermentation with CO2 supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Matching allele dynamics and coevolution in a minimal predator-prey replicator model

    International Nuclear Information System (INIS)

    Sardanyes, Josep; Sole, Ricard V.

    2008-01-01

    A minimal Lotka-Volterra type predator-prey model describing coevolutionary traits among entities with a strength of interaction influenced by a pair of haploid diallelic loci is studied with a deterministic time continuous model. We show a Hopf bifurcation governing the transition from evolutionary stasis to periodic Red Queen dynamics. If predator genotypes differ in their predation efficiency the more efficient genotype asymptotically achieves lower stationary concentrations

  11. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  12. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  13. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  14. On exotic supersymmetries of the φ1,3 deformation of minimal models

    International Nuclear Information System (INIS)

    Kadiri, A.; Saidi, E.H.; Zerouaoui, S.J.; Sedra, M.B.

    1994-07-01

    Using algebraic and field theoretical methods, we study the fractional spin symmetries of the φ 1,3 deformation of minimal models. The particular example of the D=2 three state tricritical Potts model is examined in detail. Various models based on subalgebras and appropriate discrete automorphism groups of the two dimensional fractional spin algebra are obtained. General features such as superspace and superfield representations, the U q (sl 2 ) symmetry, the spontaneous exotic supersymmetry breaking, relations with the N=2 Landau Ginzburg models as well as other things are discussed. (author). 24 refs

  15. Scattering matrices for Φ1,2 perturbed conformal minimal models in absence of kink states

    International Nuclear Information System (INIS)

    Koubek, A.; Martins, M.J.; Mussardo, G.

    1991-05-01

    We determine the spectrum and the factorizable S-matrices of the massive excitations of the nonunitary minimal models M 2,2n+1 perturbed by the operator Φ 1,2 . These models present no kinks as asymptotic states, as follows from the reduction of the Zhiber-Mikhailov-Shabat model with respect to the quantum group SL(2) q found by Smirnov. We also give the whole set of S-matrices of the nonunitary minimal model M 2,9 perturbed by the operator Φ 1,4 , which is related to a RSOS reduction for the Φ 1.2 operator of the unitary model M 8,9 . The thermodynamical Bethe ansatz and the truncated conformal space approach are applied to these scattering theories in order to support their interpretation. (orig.)

  16. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    Science.gov (United States)

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  17. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría

    2016-01-01

    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  18. A non-minimally coupled quintom dark energy model on the warped DGP brane

    International Nuclear Information System (INIS)

    Nozari, K; Azizi, T; Setare, M R; Behrouz, N

    2009-01-01

    We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.

  19. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    Science.gov (United States)

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Minimal representations of supersymmetry and 1D N-extended σ-models

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2008-01-01

    We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)

  1. Parallel-Batch Scheduling with Two Models of Deterioration to Minimize the Makespan

    Directory of Open Access Journals (Sweden)

    Cuixia Miao

    2014-01-01

    Full Text Available We consider the bounded parallel-batch scheduling with two models of deterioration, in which the processing time of the first model is pj=aj+αt and of the second model is pj=a+αjt. The objective is to minimize the makespan. We present O(n log n time algorithms for the single-machine problems, respectively. And we propose fully polynomial time approximation schemes to solve the identical-parallel-machine problem and uniform-parallel-machine problem, respectively.

  2. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  3. Correlation Functions in Holographic Minimal Models

    CERN Document Server

    Papadodimas, Kyriakos

    2012-01-01

    We compute exact three and four point functions in the W_N minimal models that were recently conjectured to be dual to a higher spin theory in AdS_3. The boundary theory has a large number of light operators that are not only invisible in the bulk but grow exponentially with N even at small conformal dimensions. Nevertheless, we provide evidence that this theory can be understood in a 1/N expansion since our correlators look like free-field correlators corrected by a power series in 1/N . However, on examining these corrections we find that the four point function of the two bulk scalar fields is corrected at leading order in 1/N through the contribution of one of the additional light operators in an OPE channel. This suggests that, to correctly reproduce even tree-level correlators on the boundary, the bulk theory needs to be modified by the inclusion of additional fields. As a technical by-product of our analysis, we describe two separate methods -- including a Coulomb gas type free-field formalism -- that ...

  4. Glucose Sensing Using Functionalized Amorphous In-Ga-Zn-O Field-Effect Transistors.

    Science.gov (United States)

    Du, Xiaosong; Li, Yajuan; Motley, Joshua R; Stickle, William F; Herman, Gregory S

    2016-03-01

    Recent advances in glucose sensing have focused on the integration of sensors into contact lenses to allow noninvasive continuous glucose monitoring. Current technologies focus primarily on enzyme-based electrochemical sensing which requires multiple nontransparent electrodes to be integrated. Herein, we leverage amorphous indium gallium zinc oxide (IGZO) field-effect transistors (FETs), which have found use in a wide range of display applications and can be made fully transparent. Bottom-gated IGZO-FETs can have significant changes in electrical characteristics when the back-channel is exposed to different environments. We have functionalized the back-channel of IGZO-FETs with aminosilane groups that are cross-linked to glucose oxidase and have demonstrated that these devices have high sensitivity to changes in glucose concentrations. Glucose sensing occurs through the decrease in pH during glucose oxidation, which modulates the positive charge of the aminosilane groups attached to the IGZO surface. The change in charge affects the number of acceptor-like surface states which can deplete electron density in the n-type IGZO semiconductor. Increasing glucose concentrations leads to an increase in acceptor states and a decrease in drain-source conductance due to a positive shift in the turn-on voltage. The functionalized IGZO-FET devices are effective in minimizing detection of interfering compounds including acetaminophen and ascorbic acid. These studies suggest that IGZO FETs can be effective for monitoring glucose concentrations in a variety of environments, including those where fully transparent sensing elements may be of interest.

  5. On the topology of the inflaton field in minimal supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044, Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Fré, Pietro [Dipartimento di Fisica, Università di Torino, INFN - Sezione di Torino,via P. Giuria 1, I-10125 Torino (Italy); Sorin, Alexander S. [Bogoliubov Laboratory of Theoretical Physics,and Veksler and Baldin Laboratory of High Energy Physics,Joint Institute for Nuclear Research,141980 Dubna, Moscow Region (Russian Federation)

    2014-04-14

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R+R{sup 2} supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the ((SU(1,1))/(U(1))) space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  6. Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups

    DEFF Research Database (Denmark)

    Hilgert, Joachim; Kobayashi, Toshiyuki; Möllers, Jan

    2012-01-01

    For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g......_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which...... intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function....

  7. Estimation of glucose kinetics in fetal-maternal studies: Potential errors, solutions, and limitations

    International Nuclear Information System (INIS)

    Menon, R.K.; Bloch, C.A.; Sperling, M.A.

    1990-01-01

    We investigated whether errors occur in the estimation of ovine maternal-fetal glucose (Glc) kinetics using the isotope dilution technique when the Glc pool is rapidly expanded by exogenous (protocol A) or endogenous (protocol C) Glc entry and sought possible solutions (protocol B). In protocol A (n = 8), after attaining steady-state Glc specific activity (SA) by [U-14C]glucose (period 1), infusion of Glc (period 2) predictably decreased Glc SA, whereas. [U-14C]glucose concentration unexpectedly rose from 7,208 +/- 367 (means +/- SE) in period 1 to 8,558 +/- 308 disintegrations/min (dpm) per ml in period 2 (P less than 0.01). Fetal endogenous Glc production (EGP) was negligible during period 1 (0.44 +/- 1.0), but yielded a physiologically impossible negative value of -2.1 +/- 0.72 mg.kg-1.min-1 during period 2. When the fall in Glc SA during Glc infusion was prevented by addition of [U-14C]glucose admixed with the exogenous Glc (protocol B; n = 7), EGP was no longer negative. In protocol C (n = 6), sequential infusions of four increasing doses of epinephrine serially decreased SA, whereas tracer Glc increased from 7,483 +/- 608 to 11,525 +/- 992 dpm/ml plasma (P less than 0.05), imposing an obligatory underestimation of EGP. Thus a tracer mixing problem leads to erroneous estimations of fetal Glc utilization and Glc production via the three-compartment model in sheep when the Glc pool is expanded exogenously or endogenously. These errors can be minimized by maintaining the Glc SA relatively constant

  8. On radiative gauge symmetry breaking in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.; Zwirner, F.

    1990-01-01

    We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)

  9. Is non-minimal inflation eternal?

    International Nuclear Information System (INIS)

    Feng, Chao-Jun; Li, Xin-Zhou

    2010-01-01

    The possibility that the non-minimal coupling inflation could be eternal is investigated. We calculate the quantum fluctuation of the inflaton in a Hubble time and find that it has the same value as that in the minimal case in the slow-roll limit. Armed with this result, we have studied some concrete non-minimal inflationary models including the chaotic inflation and the natural inflation, in which the inflaton is non-minimally coupled to the gravity. We find that the non-minimal coupling inflation could be eternal in some parameter spaces.

  10. Mean activity coefficient measurement and thermodynamic modelling of the ternary mixed electrolyte (MgCl_2 + glucose + water) system at T = 298.15 K

    International Nuclear Information System (INIS)

    Rouhi, Azam; Bagherinia, Mohammad Ali

    2015-01-01

    Highlights: • The main goal of the work is to provide precise thermodynamic data for the system. • The method used was potentiometric method. • Pitzer ion interaction model and modified TCPC model were used. • The mass fractions of glucose were (0, 10, 20, 30 and 40)%. • The ionic strengths were from 0.0010 to 6.0000 mol · kg"−"1. - Abstract: In this work, the mean activity coefficients of MgCl_2 in pure water and (glucose + water) mixture solvent were determined using a galvanic cell without liquid junction potential of type: (Mg"2"+ + ISE)|MgCl_2 (m), glucose (wt.%), H_2O (100 wt.%)|AgCl|Ag. The measurements were performed at T = 298.15 K. Total ionic strengths were from (0.0010 to 6.0000) mol · kg"−"1. The various (glucose + water) mixed solvents contained (0, 10, 20, 30 and 40)% mass fractions percentage of glucose respectively. The mean activity coefficients measured were correlated with Pitzer ion interaction model and the Pitzer adjustable parameters were determined. Then these parameters were used to calculate the thermodynamics properties for under investigated system. The results showed that Pitzer ion interaction model can satisfactory describe the investigated system. The modified three-characteristic-parameter correlation (TCPC) model was applied to correlate the experimental activity coefficient data for under investigation electrolyte system, too.

  11. Random regret minimization : Exploration of a new choice model for environmental and resource economics

    NARCIS (Netherlands)

    Thiene, M.; Boeri, M.; Chorus, C.G.

    2011-01-01

    This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the

  12. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  13. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test

    DEFF Research Database (Denmark)

    Montelius, Caroline; Szwiec, Katarzyna; Kardas, Marek

    2014-01-01

    BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose...... metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (1 g/kg d-glucose) was performed. The experiment was designed as a cross-over study......, either with or without addition of 0.5 g/kg body weight of thylakoid powder. RESULTS: The supplementation of thylakoids to the oral glucose tolerance test resulted in decreased blood glucose concentrations during the first hour, increased plasma cholecystokinin concentrations during the first two hours...

  14. Fat distribution and glucose intolerance among Greenland inuit

    DEFF Research Database (Denmark)

    Jørgensen, Marit Eika; Borch-Johnsen, Knut; Stolk, Ronald

    2013-01-01

    circumference [WC], and percentage of body fat) and the indices of glucose metabolism (fasting and 2-h glucose levels, insulin resistance per homeostasis model assessment [HOMA-IR], and the insulin sensitivity index [ISI0,120]) among Greenland Inuit. RESEARCH DESIGN AND METHODS A total of 3,108 adult Inuit...... associated with glucose intolerance, fasting and 2-h plasma glucose levels, HOMA-IR, and ISI0,120. VAT was more strongly associated with all outcomes than was SAT. After further adjustment for BMI or WC, VAT was associated with glucose intolerance and insulin resistance, whereas there was a trend toward...

  15. Model-Based Analysis and Efficient Operation of a Glucose Isomerization Reactor Plant

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Madsen, Ulrich; Pedersen, Sven

    2015-01-01

    efficiency. The objective of this study is the application of the developed framework on an industrial case study of a glucose isomerization (GI) reactor plant that is part of a corn refinery, with the objective to improve the productivity of the process. Therefore, a multi-scale reactor model...... is developedfor use as a building block for the GI reactor plant simulation. An optimal operation strategy is proposed on the basis of the simulation results...

  16. An AdS3 dual for minimal model CFTs

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Gopakumar, Rajesh

    2011-01-01

    We propose a duality between the 2d W N minimal models in the large N't Hooft limit, and a family of higher spin theories on AdS 3 . The 2d conformal field theories (CFTs) can be described as Wess-Zumino-Witten coset models, and include, for N=2, the usual Virasoro unitary series. The dual bulk theory contains, in addition to the massless higher spin fields, two complex scalars (of equal mass). The mass is directly related to the 't Hooft coupling constant of the dual CFT. We give convincing evidence that the spectra of the two theories match precisely for all values of the 't Hooft coupling. We also show that the renormalization group flows in the 2d CFT agree exactly with the usual AdS/CFT prediction of the gravity theory. Our proposal is in many ways analogous to the Klebanov-Polyakov conjecture for an AdS 4 dual for the singlet sector of large N vector models.

  17. A minimal model for multiple epidemics and immunity spreading.

    Science.gov (United States)

    Sneppen, Kim; Trusina, Ala; Jensen, Mogens H; Bornholdt, Stefan

    2010-10-18

    Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.

  18. Mixed-order phase transition in a minimal, diffusion-based spin model.

    Science.gov (United States)

    Fronczak, Agata; Fronczak, Piotr

    2016-07-01

    In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.

  19. Predictive Control of the Blood Glucose Level in Type I Diabetic Patient Using Delay Differential Equation Wang Model.

    Science.gov (United States)

    Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin

    2017-01-01

    Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies.

  20. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Science.gov (United States)

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  1. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  2. Functional expression of sodium-glucose transporters in cancer

    Science.gov (United States)

    Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.

    2015-01-01

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  3. Overnight glucose control in people with type 1 diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Duun-Henriksen, Anne Katrine; Schmidt, Signe

    2018-01-01

    This paper presents an individualized model predictive control (MPC) algorithm for overnight blood glucose stabilization in people with type 1 diabetes (T1D). The MPC formulation uses an asymmetric objective function that penalizes low glucose levels more heavily. We compute the model parameters...

  4. Use of a real time continuous glucose monitoring system as an educational tool for patients with gestational diabetes.

    Science.gov (United States)

    Alfadhli, Eman; Osman, Eman; Basri, Taghreed

    2016-01-01

    Women with gestational diabetes mellitus (GDM) are required to control their blood glucose shortly after GDM diagnosis to minimize adverse pregnancy outcomes. A real time-continuous glucose monitoring system (RT-CGMS) provides the patient with continuous information about the alterations in levels of the blood glucose. This visibility may empower the patient to modify her lifestyle and engage in therapeutic management. The aim of this study was to determine whether a single application of RT-CGMS to pregnant women shortly after GDM diagnosis is useful as an educational and motivational tool. This study was a prospective open label randomized controlled study conducted at Maternity and Children Hospital, Medina, Saudi Arabia. A total of 130 pregnant women with GDM were randomised to either blood glucose self-monitor alone (SMBG group) (n = 62) or in addition to SMBG, patients wore a Guardian(®) REAL-Time Continuous Glucose Monitoring System (Medtronic MiniMed) once for 3-7 days, within 2 weeks of GDM diagnosis (RT-CGMS group) (n = 68). The primary outcomes were maternal glycemic control and pregnancy outcomes. Secondary outcomes were the changes in parameters of glucose variability, which includes mean sensor readings, standard deviation (SD) of blood glucose, and area under the curve for hyper and hypoglycaemia at the end of the RT-CGMS application. HbA1c, mean fasting and postprandial glucose levels were similar in both groups at the end of the pregnancy. Pregnancy outcomes were comparable. However, there was significant improvement in the parameters of glucose variability on the last day of sensor application; both mean glucose and the SD of mean glycaemia were reduced significantly; P = 0.016 and P = 0.034, respectively. The area under the curve for hyper and hypoglycaemia were improved, however, the results were not statistically significant. Although a single application of RT-CGMS shortly after GDM diagnosis is helpful as an educational tool, it

  5. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  6. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  7. Impaired glucose tolerance in first-episode drug-naïve patients with schizophrenia: relationships with clinical phenotypes and cognitive deficits.

    Science.gov (United States)

    Chen, D C; Du, X D; Yin, G Z; Yang, K B; Nie, Y; Wang, N; Li, Y L; Xiu, M H; He, S C; Yang, F D; Cho, R Y; Kosten, T R; Soares, J C; Zhao, J P; Zhang, X Y

    2016-11-01

    Schizophrenia patients have a higher prevalence of type 2 diabetes mellitus with impaired glucose tolerance (IGT) than normals. We examined the relationship between IGT and clinical phenotypes or cognitive deficits in first-episode, drug-naïve (FEDN) Han Chinese patients with schizophrenia. A total of 175 in-patients were compared with 31 healthy controls on anthropometric measures and fasting plasma levels of glucose, insulin and lipids. They were also compared using a 75 g oral glucose tolerance test and the homeostasis model assessment of insulin resistance (HOMA-IR). Neurocognitive functioning was assessed using the MATRICS Consensus Cognitive Battery (MCCB). Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). Of the patients, 24.5% had IGT compared with none of the controls, and they also had significantly higher levels of fasting blood glucose and 2-h glucose after an oral glucose load, and were more insulin resistant. Compared with those patients with normal glucose tolerance, the IGT patients were older, had a later age of onset, higher waist or hip circumference and body mass index, higher levels of low-density lipoprotein and triglycerides and higher insulin resistance. Furthermore, IGT patients had higher PANSS total and negative symptom subscale scores, but no greater cognitive impairment except on the emotional intelligence index of the MCCB. IGT occurs with greater frequency in FEDN schizophrenia, and shows association with demographic and anthropometric parameters, as well as with clinical symptoms but minimally with cognitive impairment during the early course of the disorder.

  8. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  9. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons.

    Science.gov (United States)

    Bak, Lasse K; Obel, Linea F; Walls, Anne B; Schousboe, Arne; Faek, Sevan A A; Jajo, Farah S; Waagepetersen, Helle S

    2012-04-05

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate-aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.

  10. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model

    International Nuclear Information System (INIS)

    Chorus, Caspar G.; Koetse, Mark J.; Hoen, Anco

    2013-01-01

    This paper presents a utility-based and a regret-based model of consumer preferences for alternative fuel vehicles, based on a large-scale stated choice-experiment held among company car leasers in The Netherlands. Estimation and application of random utility maximization and random regret minimization discrete choice models shows that while the two models achieve almost identical fit with the data and differ only marginally in terms of predictive ability, they generate rather different choice probability-simulations and policy implications. The most eye-catching difference between the two models is that the random regret minimization model accommodates a compromise-effect, as it assigns relatively high choice probabilities to alternative fuel vehicles that perform reasonably well on each dimension instead of having a strong performance on some dimensions and a poor performance on others. - Highlights: • Utility- and regret-based models of preferences for alternative fuel vehicles. • Estimation based on stated choice-experiment among Dutch company car leasers. • Models generate rather different choice probabilities and policy implications. • Regret-based model accommodates a compromise-effect

  11. Mechanism-based population modelling for assessment of L-cell function based on total GLP-1 response following an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Møller, Jonas B.; Jusko, William J.; Gao, Wei

    2011-01-01

    was to build a mechanism-based population model that describes the time course of total GLP-1 and provides indices for capability of secretion in each subject. The goal was thus to model the secretion of GLP-1, and not its effect on insulin production. Single 75 g doses of glucose were administered orally......GLP-1 is an insulinotropic hormone that synergistically with glucose gives rise to an increased insulin response. Its secretion is increased following a meal and it is thus of interest to describe the secretion of this hormone following an oral glucose tolerance test (OGTT). The aim of this study....... The individual estimates of absorption rate constants were used in the model for GLP-1 secretion. Estimation of parameters was performed using the FOCE method with interaction implemented in NONMEM VI. The final transit/indirect-response model obtained for GLP-1 production following an OGTT included two...

  12. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    NARCIS (Netherlands)

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de

  13. Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling.

    Science.gov (United States)

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2010-12-01

    In this article, we examined theoretically the role of human cerebral glycogen in buffering the metabolic requirement of a 360-second brain stimulation, expanding our previous modeling study of neurometabolic coupling. We found that glycogen synthesis and degradation affects the relative amount of glucose taken up by neurons versus astrocytes. Under conditions of 175:115 mmol/L (∼1.5:1) neuronal versus astrocytic activation-induced Na(+) influx ratio, ∼12% of astrocytic glycogen is mobilized. This results in the rapid increase of intracellular glucose-6-phosphate level on stimulation and nearly 40% mean decrease of glucose flow through hexokinase (HK) in astrocytes via product inhibition. The suppression of astrocytic glucose phosphorylation, in turn, favors the channeling of glucose from interstitium to nearby activated neurons, without a critical effect on the concurrent intercellular lactate trafficking. Under conditions of increased neuronal versus astrocytic activation-induced Na(+) influx ratio to 190:65 mmol/L (∼3:1), glycogen is not significantly degraded and blood glucose is primarily taken up by neurons. These results support a role for astrocytic glycogen in preserving extracellular glucose for neuronal utilization, rather than providing lactate to neurons as is commonly accepted by the current 'thinking paradigm'. This might be critical in subcellular domains during functional conditions associated with fast energetic demands.

  14. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  15. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  16. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models. Evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG

    International Nuclear Information System (INIS)

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke

    2017-01-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316, 243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  17. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik Lauritz; Granby, Kit

    2007-01-01

    Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33......Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33...

  18. Phenomenological study of the minimal R-symmetric supersymmetric standard model

    International Nuclear Information System (INIS)

    Diessner, Philip

    2016-01-01

    The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement

  19. Phenomenological study of the minimal R-symmetric supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Diessner, Philip

    2016-10-20

    The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement

  20. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  1. Impact of the reg1 mutation glycocen accumulation and glucose consumption rates in Saccharomyces cerevisiae cells based on a macrokinetic model

    Directory of Open Access Journals (Sweden)

    Rocha-Leão M.H.M.

    2003-01-01

    Full Text Available In S. cerevisiae, catabolite repression controls glycogen accumulation and glucose consumption. Glycogen is responsible for stress resistance, and its accumulation in derepression conditions results in a yeast with good quality. In yeast cells, catabolite repression also named glucose effect takes place at the transcriptional levels, decreasing enzyme respiration and causing the cells to enter a fermentative metabolism, low cell mass yield and yeast with poor quality. Since glucose is always present in molasses the glucose effect occurs in industrial media. A quantitative characterization of cell growth, substrate consumption and glycogen formation was undertaken based on an unstructured macrokinetic model for a reg1/hex2 mutant, capable of the respiration while growing on glucose, and its isogenic repressible strain (REG1/HEX2. The results show that the estimated value to maximum specific glycogen accumulation rate (muG,MAX is eight times greater in the reg1/hex2 mutant than its isogenic strain, and the glucose affinity constant (K SS is fifth times greater in reg1/hex2 mutant than in its isogenic strain with less glucose uptake by the former channeling glucose into cell mass growth and glycogen accumulation simultaneously. This approach may be one more tool to improve the glucose removal in yeast production. Thus, disruption of the REG1/HEX2 gene may constitute an important strategy for producing commercial yeast.

  2. Simulated lumbar minimally invasive surgery educational model with didactic and technical components.

    Science.gov (United States)

    Chitale, Rohan; Ghobrial, George M; Lobel, Darlene; Harrop, James

    2013-10-01

    The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. To confirm the importance of establishing an educational curriculum for teaching minimally invasive techniques of pedicle screw placement using a computer-enhanced physical model of percutaneous pedicle screw placement with simultaneous didactic and technical components. A 2-hour educational curriculum was created to educate neurosurgical residents on anatomy, pathophysiology, and technical aspects associated with image-guided pedicle screw placement. Predidactic and postdidactic practical and written scores were analyzed and compared. Scores were calculated for each participant on the basis of the optimal pedicle screw starting point and trajectory for both fluoroscopy and computed tomographic navigation. Eight trainees participated in this module. Average mean scores on the written didactic test improved from 78% to 100%. The technical component scores for fluoroscopic guidance improved from 58.8 to 52.9. Technical score for computed tomography-navigated guidance also improved from 28.3 to 26.6. Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.

  3. A minimal model for multiple epidemics and immunity spreading.

    Directory of Open Access Journals (Sweden)

    Kim Sneppen

    Full Text Available Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.

  4. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Science.gov (United States)

    Rybynok, V. O.; Kyriacou, P. A.

    2007-10-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  5. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Energy Technology Data Exchange (ETDEWEB)

    Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)

    2007-10-15

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  6. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    International Nuclear Information System (INIS)

    Rybynok, V O; Kyriacou, P A

    2007-01-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media

  7. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Friedberg-Lee symmetry and minimal seesaw model

    International Nuclear Information System (INIS)

    He Xiaogang; Liao Wei

    2009-01-01

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.

  9. Simultaneous measurement of glucose transport and utilization in the human brain

    OpenAIRE

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose tra...

  10. Viability of minimal left–right models with discrete symmetries

    Directory of Open Access Journals (Sweden)

    Wouter Dekens

    2014-12-01

    Full Text Available We provide a systematic study of minimal left–right models that are invariant under P, C, and/or CP transformations. Due to the high amount of symmetry such models are quite predictive in the amount and pattern of CP violation they can produce or accommodate at lower energies. Using current experimental constraints some of the models can already be excluded. For this purpose we provide an overview of the experimental constraints on the different left–right symmetric models, considering bounds from colliders, meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. It turns out that all left–right models with P, C, and/or CP symmetry have a high degree of fine-tuning, unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric under both P and C are not in accordance with present observations, whereas the models with either P, C, or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the models measurements of B-meson observables at LHCb and B-factories will be especially important, while measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.

  11. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach

    Directory of Open Access Journals (Sweden)

    Dai Owaki

    2017-06-01

    Full Text Available Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Understanding this mechanism will help us to elucidate the fundamental control principle of animals' agile locomotion and to realize robots with legs that are truly adaptive and could not be developed solely by conventional control theories. This study aims at providing a “minimal" model of the interlimb coordination mechanism underlying hexapedal locomotion, in the hope that a single control principle could satisfactorily reproduce various aspects of insect locomotion. To this end, we introduce a novel concept we named “Tegotae,” a Japanese concept describing the extent to which a perceived reaction matches an expectation. By using the Tegotae-based approach, we show that a surprisingly systematic design of local sensory feedback mechanisms essential for the interlimb coordination can be realized. We also use a hexapod robot we developed to show that our mathematical model of the interlimb coordination mechanism satisfactorily reproduces various insects' gait patterns.

  12. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  13. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  14. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  15. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  16. Effect of different glucose supply conditions on neuronal energy metabolism

    OpenAIRE

    Zheng, Hongwen; Wang, Rubin; Qu, Jingyi

    2016-01-01

    The glucose-excited neurons in brain can sense blood glucose levels and reflect different firing states, which are mainly associated with regulation of blood glucose and energy demand in the brain. In this paper, a new model of glucose-excited neuron in hypothalamus is proposed. The firing properties and energy consumption of this type of neuron under conditions of different glucose levels are simulated and analyzed. The results show that the firing rate and firing duration of the neuron both...

  17. Preserving Duodenal-Jejunal (Foregut) Transit Does Not Impair Glucose Tolerance and Diabetes Remission Following Gastric Bypass in Type 2 Diabetes Sprague-Dawley Rat Model.

    Science.gov (United States)

    Dolo, Ponnie R; Yao, Libin; Li, Chao; Zhu, Xiaocheng; Shi, Linsen; Widjaja, Jason

    2017-11-02

    Possible mechanisms underlying diabetes remission following Roux-en-Y gastric bypass (RYGB) include eradication of putative factor(s) with duodenal-jejunal bypass. The objective of this study is to observe the effects of duodenal-jejunal transit on glucose tolerance and diabetes remission in gastric bypass rat model. In order to verify the effect of duodenal-jejunal transit on glucose tolerance and diabetes remission in gastric bypass, 22 type 2 diabetes Sprague-Dawley rat models established through high-fat diet and low-dose streptozotocin (STZ) administered intraperitoneally were assigned to one of three groups: gastric bypass with duodenal-jejunal transit (GB-DJT n = 8), gastric bypass without duodenal-jejunal transit (RYGB n = 8), and sham (n = 6). Body weight, food intake, blood glucose, as well as meal-stimulated insulin, and incretin hormone responses were assessed to ascertain the effect of surgery in all groups. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted three and 7 weeks after surgery. Comparing our GB-DJT to the RYGB group, we saw no differences in the mean decline in body weight, food intake, and blood glucose 8 weeks after surgery. GB-DJT group exhibited immediate and sustained glucose control throughout the study. Glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) levels were also significantly increased from preoperative level in the GB-DJT group (p transit does not impede glucose tolerance and diabetes remission after gastric bypass in type-2 diabetes Sprague-Dawley rat model.

  18. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    International Nuclear Information System (INIS)

    Larin, K V; Tuchin, V V

    2008-01-01

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  19. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    International Nuclear Information System (INIS)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  20. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study.

    Science.gov (United States)

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.

  1. Alanine aminotransferase is associated with an adverse nocturnal blood glucose profile in individuals with normal glucose regulation.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available OBJECTIVE: Although the association between alanine aminotransferase (ALT levels and risk of type 2 diabetes is well-studied, the effects of slightly increased ALT levels within the normal range on the temporal normal glucose profile remains poorly understood. METHODS: A total of 322 Chinese subjects without impaired glucose tolerance or previous diagnoses of diabetes were recruited for study from 10 hospitals in urban areas across China. All subjects wore a continuous glucose monitoring (CGM system for three consecutive days. The diurnal (06∶00-20∶00 and nocturnal (20∶00-06∶00 mean blood glucose (MBG levels were calculated. Subjects were stratified by ALT quartile level and correlation analyses were performed. RESULTS: The median ALT level was 17 IU/L, and subjects with ALT ≥17 IU/L had higher nocturnal MBG level than those with ALT 0.05. Multivariate stepwise regression analysis of elevated nocturnal MBG identified increased HOMA-IR, elevated ALT levels, and decreased homeostatic model assessment of ß-cell function as independent factors (all, P<0.05. CONCLUSIONS: Mildly elevated ALT levels, within the normal range, are associated with unfavorable nocturnal glucose profiles in Chinese subjects with normal glucose regulation.

  2. Low blood glucose precipitates spike-and-wave activity in genetically predisposed animals.

    Science.gov (United States)

    Reid, Christopher A; Kim, Tae Hwan; Berkovic, Samuel F; Petrou, Steven

    2011-01-01

    Absence epilepsies are common, with a major genetic contribution to etiology. Certain environmental factors can influence absence occurrence but a complete understanding of absence precipitation is lacking. Herein we investigate if lowering blood glucose increases spike-wave activity in mouse models with varying seizure susceptibility. Three mouse models were used: an absence seizure model based on the knockin of a human GABA(A) γ2(R43Q) mutation (DBA(R43Q)), the spike-wave discharge (SWD)-prone DBA/2J strain, and the seizure resistant C57Bl/6 strain. Electrocorticography (ECoG) studies were recorded to determine SWDs during hypoglycemia induced by insulin or overnight fasting. An insulin-mediated reduction in blood glucose levels to 4 mm (c.a. 40% reduction) was sufficient to double SWD occurrence in the DBA(R43Q) model and in the SWD-prone DBA/2J mouse strain. Larger reductions in blood glucose further increased SWDs in both these models. However, even with large reductions in blood glucose, no discharges were observed in the seizure-resistant C57Bl/6 mouse strain. Injection of glucose reversed the impact of insulin on SWDs in the DBA(R43Q) model, supporting a reduction in blood glucose as the modulating influence. Overnight fasting reduced blood glucose levels to 4.5 mm (c.a. 35% reduction) and, like insulin, caused a doubling in occurrence of SWDs. Low blood glucose can precipitate SWDs in genetically predisposed animal models and should be considered as a potential environmental risk factor in patients with absence epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  3. Esscher transforms and the minimal entropy martingale measure for exponential Lévy models

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Sgarra, C.

    In this paper we offer a systematic survey and comparison of the Esscher martingale transform for linear processes, the Esscher martingale transform for exponential processes, and the minimal entropy martingale measure for exponential lévy models and present some new results in order to give...

  4. Non-minimally coupled tachyon and inflation

    International Nuclear Information System (INIS)

    Piao Yunsong; Huang Qingguo; Zhang Xinmin; Zhang Yuanzhong

    2003-01-01

    In this Letter, we consider a model of tachyon with a non-minimal coupling to gravity and study its cosmological effects. Regarding inflation, we show that only for a specific coupling of tachyon to gravity this model satisfies observations and solves various problems which exist in the single and multi tachyon inflation models. But noting in the string theory the coupling coefficient of tachyon to gravity is of order g s , which in general is very small, we can hardly expect that the non-minimally coupling of tachyon to gravity could provide a reasonable tachyon inflation scenario. Our work may be a meaningful try for the cosmological effect of tachyon non-minimally coupled to gravity

  5. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    Science.gov (United States)

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  6. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    2017-06-01

    Full Text Available A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systematically investigated. The selective detection of glucose among other monosaccharides, such as fructose, mannose and galactose indicated that the sensing film has excellent selectivity. The prepared sensor was successfully applied for glucose sample detection of glucose concentration in artificial tears. Keywords: Glucose sensor, Glucose oxidase, Fluorescence, Oxygen film, Diabetes

  7. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    Science.gov (United States)

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  8. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  9. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  10. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    Science.gov (United States)

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  11. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  12. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    Science.gov (United States)

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Precision electroweak tests of the minimal and flipped SU(5) supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Pois, H.; Yuan, K. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States))

    1993-10-01

    We explore the one-loop electroweak radiative corrections in the minimal SU(5) and the no-scale flipped SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the [epsilon][sub 1,2,3] parameters. Experimentally, [epsilon][sub 1,2,3] are obtained from a global fit to the CERN LEP observables, and [ital M][sub [ital W

  14. Adjunctive therapy for glucose control in patients with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Harris K

    2018-04-01

    Full Text Available Kira Harris,1,2 Cassie Boland,1,3 Lisa Meade,1,4 Dawn Battise1,5 1Pharmacy Practice Faculty, Wingate University School of Pharmacy, Wingate, NC, USA; 2Clinical Pharmacy Specialist – Novant Health Family Medicine Residency Program, Cornelius, NC, USA; 3Clinical Pharmacy Specialist – Novant Health Cotswold Family Medicine – Arboretum, Charlotte, NC, USA; 4Clinical Pharmacy Specialist – Piedmont HealthCare Endocrinology, Statesville, NC, USA; 5Clinical Pharmacy Specialist – Cabarrus Family Medicine – Harrisburg, Harrisburg, NC, USA Abstract: Type 1 diabetes mellitus (T1DM is characterized by relative or absolute insulin deficiency. Despite treatment with insulin therapy, glycemic goals are not always met, and insulin therapy is sometimes limited by adverse effects, including hypoglycemia and weight gain. Several adjunctive therapies have been evaluated in combination with insulin in patients with T1DM to improve glycemic control while minimizing adverse effects. Pramlintide, an amylin analog, can improve glycemic control, primarily through lowering postprandial blood glucose levels. Patients may experience weight loss and an increased risk of hypoglycemia and require additional mealtime injections. Metformin provides an inexpensive, oral treatment option and may reduce blood glucose, especially in overweight or obese patients with minimal risk of hypoglycemia. Metformin may be more effective in patients with impaired insulin sensitivity. Glucagon-like peptide-1 receptor agonists reduce primarily postprandial blood glucose and insulin dose and promote weight loss. They are expensive, cause transient nausea, may increase risk of hypoglycemia and require additional injections. Sodium–glucose transport-2 inhibitors improve glycemic control, promote weight loss and have low risk of hypoglycemia with appropriate insulin adjustment; however, these agents may increase the risk of diabetic ketoacidosis in patients with T1DM. Patient

  15. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    Science.gov (United States)

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    Science.gov (United States)

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  17. Hybrid neural network model for simulating sorbitol synthesis by glucose-fructose oxidoreductase in Zymomonas mobilis CP4

    Directory of Open Access Journals (Sweden)

    Bravo S.

    2004-01-01

    Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.

  18. Higgs decays to dark matter: Beyond the minimal model

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Ritz, Adam

    2011-01-01

    We examine the interplay between Higgs mediation of dark-matter annihilation and scattering on one hand and the invisible Higgs decay width on the other, in a generic class of models utilizing the Higgs portal. We find that, while the invisible width of the Higgs to dark matter is now constrained for a minimal singlet scalar dark matter particle by experiments such as XENON100, this conclusion is not robust within more generic examples of Higgs mediation. We present a survey of simple dark matter scenarios with m DM h /2 and Higgs portal mediation, where direct-detection signatures are suppressed, while the Higgs width is still dominated by decays to dark matter.

  19. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  20. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  1. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  2. Simultaneous measurement of glucose transport and utilization in the human brain

    Science.gov (United States)

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  3. A predictive model of suitability for minimally invasive parathyroid surgery in the treatment of primary hyperparathyroidism [corrected].

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2012-05-01

    Improved preoperative localizing studies have facilitated minimally invasive approaches in the treatment of primary hyperparathyroidism (PHPT). Success depends on the ability to reliably select patients who have PHPT due to single-gland disease. We propose a model encompassing preoperative clinical, biochemical, and imaging studies to predict a patient\\'s suitability for minimally invasive surgery.

  4. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  5. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

    OpenAIRE

    Holness, M J; Sugden, M C

    1987-01-01

    The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

  6. Glucose homeostasis in mice is transglutaminase 2 independent.

    Directory of Open Access Journals (Sweden)

    Siiri E Iismaa

    Full Text Available Transglutaminase type 2 (TG2 has been reported to be a candidate gene for maturity onset diabetes of the young (MODY because three different mutations that impair TG2 transamidase activity have been found in 3 families with MODY. TG2 null (TG2(-/- mice have been reported to be glucose intolerant and have impaired glucose-stimulated insulin secretion (GSIS. Here we rigorously evaluated the role of TG2 in glucose metabolism using independently generated murine models of genetic TG2 disruption, which show no compensatory enhanced expression of other TGs in pancreatic islets or other tissues. First, we subjected chow- or fat-fed congenic SV129 or C57BL/6 wild type (WT and TG2(-/- littermates, to oral glucose gavage. Blood glucose and serum insulin levels were similar for both genotypes. Pancreatic islets isolated from these animals and analysed in vitro for GSIS and cholinergic potentiation of GSIS, showed no significant difference between genotypes. Results from intraperitoneal glucose tolerance tests (GTTs and insulin tolerance tests (ITTs were similar for both genotypes. Second, we directly investigated the role of TG2 transamidase activity in insulin secretion using a coisogenic model that expresses a mutant form of TG2 (TG2(R579A, which is constitutively active for transamidase activity. Intraperitoneal GTTs and ITTs revealed no significant differences between WT and TG2(R579A/R579A mice. Given that neither deletion nor constitutive activation of TG2 transamidase activity altered basal responses, or responses to a glucose or insulin challenge, our data indicate that glucose homeostasis in mice is TG2 independent, and question a link between TG2 and diabetes.

  7. Multiple travelling-wave solutions in a minimal model for cell motility

    KAUST Repository

    Kimpton, L. S.

    2012-07-11

    Two-phase flow models have been used previously to model cell motility. In order to reduce the complexity inherent with describing the many physical processes, we formulate a minimal model. Here we demonstrate that even the simplest 1D, two-phase, poroviscous, reactive flow model displays various types of behaviour relevant to cell crawling. We present stability analyses that show that an asymmetric perturbation is required to cause a spatially uniform, stationary strip of cytoplasm to move, which is relevant to cell polarization. Our numerical simulations identify qualitatively distinct families of travellingwave solutions that coexist at certain parameter values. Within each family, the crawling speed of the strip has a bell-shaped dependence on the adhesion strength. The model captures the experimentally observed behaviour that cells crawl quickest at intermediate adhesion strengths, when the substrate is neither too sticky nor too slippy. © The Author 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  8. Flaxion: a minimal extension to solve puzzles in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo, Kashiwa 277-8583 (Japan)

    2017-01-23

    We propose a minimal extension of the standard model which includes only one additional complex scalar field, flavon, with flavor-dependent global U(1) symmetry. It not only explains the hierarchical flavor structure in the quark and lepton sector (including neutrino sector), but also solves the strong CP problem by identifying the CP-odd component of the flavon as the QCD axion, which we call flaxion. Furthermore, the flaxion model solves the cosmological puzzles in the standard model, i.e., origin of dark matter, baryon asymmetry of the universe, and inflation. We show that the radial component of the flavon can play the role of inflaton without isocurvature nor domain wall problems. The dark matter abundance can be explained by the flaxion coherent oscillation, while the baryon asymmetry of the universe is generated through leptogenesis.

  9. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.

    Science.gov (United States)

    Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan

    2017-08-08

    Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

  10. Local cerebral glucose utilization in the beagle puppy model of intraventricular hemorrhage

    International Nuclear Information System (INIS)

    Ment, L.R.; Stewart, W.B.; Duncan, C.C.

    1982-01-01

    Local cerebral glucose utilization has been measured by means of carbon-14( 14 C)-autoradiography with 2-deoxyglucose in the newborn beagle puppy model of intraventricular hemorrhage. Our studies demonstrate gray matter/white matter differentiation of uptake of 14 C-2-deoxyglucose in the control pups, as would be expected from adult animal studies. However, there is a marked homogeneity of 14 C-2-deoxyglucose uptake in all brain regions in the puppies with intraventricular hemorrhage, possibly indicating a loss of the known coupling between cerebral blood flow and metabolism in this neuropathological condition

  11. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Science.gov (United States)

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  12. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    OpenAIRE

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de beta-oxidatie (levert energie voor de gluconeogenese) en scheidt triglycerides uit in de circulatie in ‘very low density lipoprotein’ (VLDL) deeltjes. Insuline remt de glucoseproductie door de lev...

  13. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  14. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  15. Neuroscience of glucose homeostasis

    NARCIS (Netherlands)

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose

  16. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...... significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between...

  17. A Disposable Tear Glucose Biosensor-Part 4: Preliminary Animal Model Study Assessing Efficacy, Safety, and Feasibility.

    Science.gov (United States)

    La Belle, Jeffrey T; Engelschall, Erica; Lan, Kenneth; Shah, Pankti; Saez, Neil; Maxwell, Stephanie; Adamson, Teagan; Abou-Eid, Michelle; McAferty, Kenyon; Patel, Dharmendra R; Cook, Curtiss B

    2014-01-01

    A prototype tear glucose (TG) sensor was tested in New Zealand white rabbits to assess eye irritation, blood glucose (BG) and TG lag time, and correlation with BG. A total of 4 animals were used. Eye irritation was monitored by Lissamine green dye and analyzed using image analysis software. Lag time was correlated with an oral glucose load while recording TG and BG readings. Correlation between TG and BG were plotted against one another to form a correlation diagram, using a Yellow Springs Instrument (YSI) and self-monitoring of blood glucose as the reference measurements. Finally, TG levels were calculated using analytically derived expressions. From repeated testing carried over the course of 12 months, little to no eye irritation was detected. TG fluctuations over time visually appeared to trace the same pattern as BG with an average lag times of 13 minutes. TG levels calculated from the device current measurements ranged from 4 to 20 mg/dL and correlated linearly with BG levels of 75-160 mg/dL (TG = 0.1723 BG = 7.9448 mg/dL; R 2 = .7544). The first steps were taken toward preliminary development of a sensor for self-monitoring of tear glucose (SMTG). No conjunctival irritation in any of the animals was noted. Lag time between TG and BG was found to be noticeable, but a quantitative modeling to correlate lag time in this study is unnecessary. Measured currents from the sensors and the calculated TG showed promising correlation to BG levels. Previous analytical bench marking showed BG and TG levels consistent with other literature. © 2014 Diabetes Technology Society.

  18. AKA-TPG: a program for kinetic and epidemiological analysis of data from labeled glucose investigations using the two-pool model and database technology

    DEFF Research Database (Denmark)

    Boston, Raymond C; Stefanovski, Darko; Henriksen, Jan E

    2007-01-01

    of technical reasons have deterred researchers from performing TPG analysis. METHODS AND RESULTS: In this paper, we describe AKA-TPG, a new program that combines automatic kinetic analysis of the TPG model data with database technologies. AKA-TPG enables researchers who have no expertise in modeling to quickly...... fit the TPG model to individual FSHGT data sets consisting of plasma concentrations of unlabeled glucose, labeled glucose, and insulin. Most importantly, because the entire process is automated, parameters are almost always identified, and parameter estimates are accurate and reproducible. AKA...

  19. Sterile neutrino in a minimal three-generation see-saw model

    Indian Academy of Sciences (India)

    Sterile neutrino in a minimal three-generation see-saw model. Table 1. Relevant right-handed fermion and scalar fields and their transformation properties. Here we have defined Y. I3R· (B–L)/2. SU´2µL ¢U´1µI3R ¢U´1µB L. SU´2µL ¢UY ´1µ. Le ·Lµ Lτ. Seµ. 2R ν R. (1,1/2, 1). (1,0). 1. 1 ν·R. (1,1/2, 1). (1,0). 1. 1. ντR. (1, 1/2, 1).

  20. A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong

    2018-04-12

    Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.

  1. Fasting plasma glucose and serum uric acid levels in a general Chinese population with normal glucose tolerance: A U-shaped curve.

    Directory of Open Access Journals (Sweden)

    Yunyang Wang

    Full Text Available Although several epidemiological studies assessed the relationship between fasting plasma glucose (FPG and serum uric acid (SUA levels, the results were inconsistent. A cross-sectional study was conducted to investigate this relationship in Chinese individuals with normal glucose tolerance.A total of 5,726 women and 5,457 men with normal glucose tolerance were enrolled in the study. All subjects underwent a 75-g oral glucose tolerance test. Generalized additive models and two-piecewise linear regression models were applied to assess the relationship.A U-shaped relationship between FPG and SUA was observed. After adjusting for potential confounders, the inflection points of FPG levels in the curves were 4.6 mmol/L in women and 4.7 mmol/L in men respectively. SUA levels decreased with increasing fasting plasma glucose concentrations before the inflection points (regression coefficient [β] = -36.4, P < 0.001 for women; β = -33.5, P < 0.001 for men, then SUA levels increased (β = 17.8, P < 0.001 for women; β = 13.9, P < 0.001 for men. Additionally, serum insulin levels were positively associated with FPG and SUA (P < 0.05.A U-shaped relationship between FPG and SUA levels existed in Chinese individuals with normal glucose tolerance. The association is partly mediated through serum insulin levels.

  2. Blood glucose level prediction based on support vector regression using mobile platforms.

    Science.gov (United States)

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  3. Neurophysiological model of tinnitus: dependence of the minimal masking level on treatment outcome.

    Science.gov (United States)

    Jastreboff, P J; Hazell, J W; Graham, R L

    1994-11-01

    Validity of the neurophysiological model of tinnitus (Jastreboff, 1990), outlined in this paper, was tested on data from multicenter trial of tinnitus masking (Hazell et al., 1985). Minimal masking level, intensity match of tinnitus, and the threshold of hearing have been evaluated on a total of 382 patients before and after 6 months of treatment with maskers, hearing aids, or combination devices. The data has been divided into categories depending on treatment outcome and type of approach used. Results of analysis revealed that: i) the psychoacoustical description of tinnitus does not possess a predictive value for the outcome of the treatment; ii) minimal masking level changed significantly depending on the treatment outcome, decreasing on average by 5.3 dB in patients reporting improvement, and increasing by 4.9 dB in those whose tinnitus remained the same or worsened; iii) 73.9% of patients reporting improvement had their minimal masking level decreased as compared with 50.5% for patients not showing improvement, which is at the level of random change; iv) the type of device used has no significant impact on the treatment outcome and minimal masking level change; v) intensity match and threshold of hearing did not exhibit any significant changes which can be related to treatment outcome. These results are fully consistent with the neurophysiological interpretation of mechanisms involved in the phenomenon of tinnitus and its alleviation.

  4. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  5. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.

    Science.gov (United States)

    Fidler, Trevor P; Middleton, Elizabeth A; Rowley, Jesse W; Boudreau, Luc H; Campbell, Robert A; Souvenir, Rhonda; Funari, Trevor; Tessandier, Nicolas; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-09-01

    On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions. © 2017 American Heart Association, Inc.

  6. Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

    Directory of Open Access Journals (Sweden)

    Christoph Niederalt

    2017-04-01

    Full Text Available In vivo [6,6-2H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day versus long (7-day 2H2-glucose studies and very-long (9-week 2H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a “square pulse” (Sq pulse. Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the “square pulse” approach—recently suggested as the most plausible hypothesis—only explain a component of the discrepancy in published T cell proliferation rate estimates.

  7. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    Science.gov (United States)

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological

  8. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    Science.gov (United States)

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion

  9. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system.

    Science.gov (United States)

    Arriola Apelo, Sebastian I; Neuman, Joshua C; Baar, Emma L; Syed, Faizan A; Cummings, Nicole E; Brar, Harpreet K; Pumper, Cassidy P; Kimple, Michelle E; Lamming, Dudley W

    2016-02-01

    Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Validation of a Simulation Model Describing the Glucose-Insulin-Glucagon Pharmacodynamics in Patients with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Ranjan, Ajenthen; Møller, Jan Kloppenborg

    Currently, no consensus exists on a model describing endogenous glucose production (EGP) as a function of glucagon concentrations. Reliable simulations to determine the glucagon dose preventing or treating hypoglycemia or to tune a dual-hormone artificial pancreas control algorithm need a validat...

  11. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    OpenAIRE

    Tsonyo Slavov; Olympia Roeva

    2011-01-01

    This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP) control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For...

  12. Cooperation between brain and islet in glucose homeostasis and diabetes

    Science.gov (United States)

    Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David

    2014-01-01

    Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279

  13. Flattening the inflaton potential beyond minimal gravity

    Directory of Open Access Journals (Sweden)

    Lee Hyun Min

    2018-01-01

    Full Text Available We review the status of the Starobinsky-like models for inflation beyond minimal gravity and discuss the unitarity problem due to the presence of a large non-minimal gravity coupling. We show that the induced gravity models allow for a self-consistent description of inflation and discuss the implications of the inflaton couplings to the Higgs field in the Standard Model.

  14. No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels

    DEFF Research Database (Denmark)

    Scott, Robert A; Chu, Audrey Y; Grarup, Niels

    2012-01-01

    to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were......Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact...... dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (ß = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were...

  15. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.

    Science.gov (United States)

    Hanly, Timothy J; Henson, Michael A

    2011-02-01

    Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.

  16. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  17. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  18. Glucose-mediated catalysis of Au nanoparticles in microgels.

    Science.gov (United States)

    Wu, Qingshi; Cheng, Han; Chang, Aiping; Xu, Wenting; Lu, Fan; Wu, Weitai

    2015-11-18

    The catalytic activity of Au nanoparticles in phenylboronic acid-containing polymer microgels can be tuned through the swelling-deswelling transition of the microgels in response to changes in glucose concentration. Upon adding glucose, the model catalytic reduction of hydrophilic 4-nitrophenol is accelerated, while the reduction of relatively more hydrophobic nitrobenzene slows down.

  19. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  20. Correlation of Salivary Glucose Level with Blood Glucose Level in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Arati S. Panchbhai

    2012-07-01

    Full Text Available Objectives: There is alarming rise in number of people with diabetes mellitus over these years. If glucose in saliva is linked to glucose in blood it can be used to detect diabetes mellitus at an early stage. The present study is undertaken with the aim to assess the correlation of salivary glucose level with blood glucose level in people with diabetes mellitus. Material and Methods: For investigations, 2 sets of samples of people with diabetes and the age and sex matched non-diabetic subjects were recruited. The salivary glucose was analyzed in unstimulated whole saliva samples using glucose oxidase method. Pearson’s correlation coefficient test was applied to assess the correlation between salivary glucose level and blood glucose level. Results: The significant (P < 0.05 positive correlation of salivary glucose level and fasting blood glucose level was observed in people with uncontrolled diabetes in both the sets of samples.Conclusions: Although study suggests some potential for saliva as a marker in monitoring of diabetes mellitus, there are many aspects that need clarification before we reach to a conclusion.

  1. One loop corrections to the lightest Higgs mass in the minimal η model with a heavy Z'

    International Nuclear Information System (INIS)

    Comelli, D.

    1992-06-01

    We have evaluated the one loop correction to the bound on the lightest Higgs mass valid in the minimal, E 6 based, supersymmetric η model in the presence of a 'heavy' Z', M z' ≥1 TeV. The dominant contribution from the fermion sfermion sector increases the 108 GeV tree level value by an amount that depends on the top mass in a way that is largely reminescent of minimal SUSY models. For M t ≤150 GeV, Msub(t tilde)=1 TeV, the 'light' Higgs mass is always ≤130 GeV. (orig.)

  2. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Science.gov (United States)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  3. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    International Nuclear Information System (INIS)

    Meshram, N. D.; Dahikar, P. B.

    2014-01-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  4. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Energy Technology Data Exchange (ETDEWEB)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com [Mathuradas Mohota College of Sciences, Nagpur-440009 (India); Dahikar, P. B., E-mail: pbdahikar@rediffmail.com [Kamla Nehru Mahavidyalaya, Sakkardara Square, Nagpur-440009 (India)

    2014-10-15

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  5. Involvement of F-Actin in Chaperonin-Containing t-Complex 1 Beta Regulating Mouse Mesangial Cell Functions in a Glucose-Induction Cell Model

    Directory of Open Access Journals (Sweden)

    Jin-Shuen Chen

    2011-01-01

    Full Text Available The aim of this study is to investigate the role of chaperonin-containing t-complex polypeptide 1 beta (CCT2 in the regulation of mouse mesangial cell (mMC contraction, proliferation, and migration with filamentous/globular-(F/G- actin ratio under high glucose induction. A low CCT2 mMC model induced by treatment of small interference RNA was established. Groups with and without low CCT2 induction examined in normal and high (H glucose conditions revealed the following major results: (1 low CCT2 or H glucose showed the ability to attenuate F/G-actin ratio; (2 groups with low F/G-actin ratio all showed less cell contraction; (3 suppression of CCT2 may reduce the proliferation and migration which were originally induced by H glucose. In conclusion, CCT2 can be used as a specific regulator for mMC contraction, proliferation, and migration affected by glucose, which mechanism may involve the alteration of F-actin, particularly for cell contraction.

  6. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    Science.gov (United States)

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  7. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    membrane to transport glucose into cells, and GLUT8 from cytosol to rough endoplasmic reticulum to recover redundant glucose to cytosol after protein glycosylation. In autoimmune diseases, the enhanced glucose uptake was found in inflamed peripheral tissue, mainly due to proliferating fibroblasts and activated macrophages. In our experimental model of rheumatoid arthritis (adjuvant arthritis), enhanced 2-deoxy-2[F-18]fluoro-D-glucose was found in the hippocampus and amygdala two days after the induction of the disease which, similarly as in the peripheral joints, can be ascribed to the activated macrophages. The knowledge on the glucose transport and the role of glucose transporters in the brain during systemic autoimmune inflammation is still incomplete and needs further investigations.

  8. Comparison of two models of intrauterine growth restriction for early catch-up growth and later development of glucose intolerance and obesity in rats.

    Science.gov (United States)

    Shahkhalili, Yasaman; Moulin, Julie; Zbinden, Irene; Aprikian, Olivier; Macé, Katherine

    2010-01-01

    Two models of intrauterine growth restriction, maternal food restriction (FR), and dexamethasone (DEX) exposure were compared for early postnatal catch-up growth and later development of glucose intolerance and obesity in Sprague-Dawley rats. Mated dams were randomly divided into three groups at 10 days gestational age. Group FR was food restricted (50% of nongestating rats) during the last 11 days of gestation; Group DEX received DEX injections during the last week of gestation, and Group CON, the control group, had no intervention. Birth weight, catch-up growth, body weight, and food intake were measured in male offspring for 22 wk. Body composition, blood glucose, and plasma insulin in response to a glucose load were assessed at 8, 16, and 22 wk. Pups from both FR and DEX dams had similarly lower birth weights than CON (22% and 25%, P growth, which occurred during the suckling period, was much more rapid in FR than DEX offspring (6 vs. 25 days, 95% CI). Postweaning, there were no significant differences between groups in food intake, body weight, body fat, and plasma insulin, but baseline plasma glucose at 22 wk and 2-h glucose area-under-the-curve at 8 and 22 wk were greater only in FR vs. CON offspring (P restriction is a more sensitive model than DEX exposure for studies aimed at investigating the link between low birth weight, early postnatal catch-up growth, and later development of glucose intolerance.

  9. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Catherine S.; Berends, Rebecca F. [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom); Flint, David J. [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE (United Kingdom); Martin, Patricia E.M., E-mail: Patricia.Martin@gcu.ac.uk [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom)

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.

  10. Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform

    CERN Document Server

    Gato-Rivera, Beatriz

    1992-01-01

    A direct relation between the conformal formalism for 2d-quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the $W^{(l)}$-constrained KP hierarchy to the $(p^\\prime,p)$ minimal model, with the tau function being given by the correlator of a product of (dressed) $(l,1)$ (or $(1,l)$) operators, provided the Miwa parameter $n_i$ and the free parameter (an abstract $bc$ spin) present in the constraints are expressed through the ratio $p^\\prime/p$ and the level $l$.

  11. Pathophysiological Characteristics Underlying Different Glucose Response Curves

    DEFF Research Database (Denmark)

    Hulman, Adam; Witte, Daniel R; Vistisen, Dorte

    2018-01-01

    different glucose curve patterns and studied their stability and reproducibility over 3 years of follow-up. RESEARCH DESIGN AND METHODS: We analyzed data from participants without diabetes from the observational cohort from the European Group for the Study of Insulin Resistance: Relationship between Insulin...... and secretion. The glucose patterns identified at follow-up were similar to those at baseline, suggesting that the latent class method is robust. We integrated our classification model into an easy-to-use online application that facilitates the assessment of glucose curve patterns for other studies. CONCLUSIONS...... Sensitivity and Cardiovascular Disease study; participants had a five-time point OGTT at baseline (n = 1,443) and after 3 years (n = 1,045). Measures of insulin sensitivity and secretion were assessed at baseline with a euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance test. Heterogeneous...

  12. Signals of non-minimal Higgs sectors at future colliders

    International Nuclear Information System (INIS)

    Akeroyd, A.G.

    1996-08-01

    This thesis concerns study of extended Higgs sectors at future colliders. Such studies are well motivated since enlarged Higgs models are a necessity in many extensions of the Standard Model (SM), although these structures may be considered purely in the context of the SM, to be called the 'non-minimal SM'. The continuous theme of the thesis is the task of distinguishing between the (many) theoretically sound non-minimal Higgs sectors at forthcoming colliders. If a Higgs boson is found it is imperative to know from which model it originates. In particular, the possible differences between the Higgs sectors of the Minimal Supersymmetric Standard Model (MSSM) and the non-minimal SM are highlighted. (author)

  13. Minimal Z' models: present bounds and early LHC reach

    International Nuclear Information System (INIS)

    Salvioni, Ennio; Zwirner, Fabio; Villadoro, Giovanni

    2009-01-01

    We consider 'minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb -1 , taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10 TeV, the LHC will start probing a wider range of Z' masses and couplings, although several hundred pb -1 will be needed to explore the regions of couplings favored by grand unification and to overcome the Tevatron bounds in the mass region around 250 GeV.

  14. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  15. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    International Nuclear Information System (INIS)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-01-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled [ 14 C]glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-[1,2- 14 C]choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis

  16. Glucose metabolism disorder in obese children assessed by continuous glucose monitoring system.

    Science.gov (United States)

    Zou, Chao-Chun; Liang, Li; Hong, Fang; Zhao, Zheng-Yan

    2008-02-01

    Continuous glucose monitoring system (CGMS) can measure glucose levels at 5-minute intervals over a few days, and may be used to detect hypoglycemia, guide insulin therapy, and control glucose levels. This study was undertaken to assess the glucose metabolism disorder by CGMS in obese children. Eighty-four obese children were studied. Interstitial fluid (ISF) glucose levels were measured by CGMS for 24 hours covering the time for oral glucose tolerance test (OGTT). Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), type 2 diabetic mellitus (T2DM) and hypoglycemia were assessed by CGMS. Five children failed to complete CGMS test. The glucose levels in ISF measured by CGMS were highly correlated with those in capillary samples (r=0.775, Pobese children who finished the CGMS, 2 children had IFG, 2 had IGT, 3 had IFG + IGT, and 2 had T2DM. Nocturnal hypoglycemia was noted during the overnight fasting in 11 children (13.92%). Our data suggest that glucose metabolism disorder including hyperglycemia and hypoglycemia is very common in obese children. Further studies are required to improve the precision of the CGMS in children.

  17. Neutron electric dipole moment in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.

    1995-01-01

    The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)

  18. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  19. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Møller, Jonas Bech; Overgaard, R.V.; Madsen, Henrik

    2010-01-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of ...... obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice....

  20. A minimal unified model of disease trajectories captures hallmarks of multiple sclerosis

    KAUST Repository

    Kannan, Venkateshan

    2017-03-29

    Multiple Sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) causing demyelination and neurodegeneration leading to accumulation of neurological disability. Here we present a minimal, computational model involving the immune system and CNS that generates the principal subtypes of the disease observed in patients. The model captures several key features of MS, especially those that distinguish the chronic progressive phase from that of the relapse-remitting. In addition, a rare subtype of the disease, progressive relapsing MS naturally emerges from the model. The model posits the existence of two key thresholds, one in the immune system and the other in the CNS, that separate dynamically distinct behavior of the model. Exploring the two-dimensional space of these thresholds, we obtain multiple phases of disease evolution and these shows greater variation than the clinical classification of MS, thus capturing the heterogeneity that is manifested in patients.

  1. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  2. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  3. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  4. Dark matter constraints in the minimal and nonminimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Stephan, A.

    1998-01-01

    We determine the allowed parameter space and the particle spectra of the minimal SUSY standard model (MSSM) and nonminimal SUSY standard model (NMSSM) imposing correct electroweak gauge symmetry breaking and recent experimental constraints. The parameters of the models are evolved with the SUSY renormalization group equations assuming universality at the grand unified scale. Applying the new unbounded from below constraints we can exclude the lightest SUSY particle singlinos and light scalar and pseudoscalar Higgs singlets of the NMSSM. This exclusion removes the experimental possibility to distinguish between the MSSM and NMSSM via the recently proposed search for an additional cascade produced in the decay of the B-ino into the LSP singlino. Furthermore, the effects of the dark matter condition for the MSSM and NMSSM are investigated and the differences concerning the parameter space, the SUSY particle, and Higgs sector are discussed. thinsp copyright 1998 The American Physical Society

  5. Phenomenology of minimal Z’ models: from the LHC to the GUT scale

    Directory of Open Access Journals (Sweden)

    Accomando Elena

    2016-01-01

    Full Text Available We consider a class of minimal abelian extensions of the Standard Model with an extra neutral gauge boson Z′ at the TeV scale. In these scenarios an extended scalar sector and heavy right-handed neutrinos are naturally envisaged. We present some of their striking signatures at the Large Hadron Collider, the most interesting arising from a Z′ decaying to heavy neutrino pairs as well as a heavy scalar decaying to two Standard Model Higgses. Using renormalisation group methods, we characterise the high energy behaviours of these extensions and exploit the constraints imposed by the embedding into a wider GUT scenario.

  6. Neutral current in reduced minimal 3-3-1 model

    International Nuclear Information System (INIS)

    Vu Thi Ngoc Huyen; Hoang Ngoc Long; Tran Thanh Lam; Vo Quoc Phong

    2014-01-01

    This work is devoted for gauge boson sector of the recently proposed model based on SU(3) C ⊗SU(3) L ⊗ U(1) X group with minimal content of leptons and Higgs. The limits on the masses of the bilepton gauge bosons and on the mixing angle among the neutral ones are deduced. Using the Fritzsch anzats on quark mixing, we show that the third family of quarks should be different from the first two. We obtain a lower bound on mass of the new heavy neutral gauge boson as 4.032 TeV. Using data on branching decay rates of the Z boson, we can fix the limit to the Z and Z' mixing angle φ as - 0.001 ≤ φ ≤ 0.0003. (author)

  7. Neutrino CP violation and sign of baryon asymmetry in the minimal seesaw model

    Science.gov (United States)

    Shimizu, Yusuke; Takagi, Kenta; Tanimoto, Morimitsu

    2018-03-01

    We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NOνA data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.

  8. Discrete Blood Glucose Control in Diabetic Göttingen Minipigs

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2016-07-01

    Full Text Available Despite continuous research effort, patients with type 1 diabetes mellitus (T1D experience difficulties in daily adjustments of their blood glucose concentrations. New technological developments in the form of implanted intravenous infusion pumps and continuous blood glucose sensors might alleviate obstacles for the automatic adjustment of blood glucose concentration. These obstacles consist, for example, of large time-delays and insulin storage effects for the subcutaneous/interstitial route. Towards the goal of an artificial pancreas, we present a novel feedback controller approach that combines classical loop-shaping techniques with gain-scheduling and modern H ∞ -robust control approaches. A disturbance rejection design is proposed in discrete frequency domain based on the detailed model of the diabetic Göttingen minipig. The model is trimmed and linearised over a large operating range of blood glucose concentrations and insulin sensitivity values. Controller parameters are determined for each of these operating points. A discrete H ∞ loop-shaping compensator is designed to increase robustness of the artificial pancreas against general coprime factor uncertainty. The gain scheduled controller uses subcutaneous insulin injection as a control input and determines the controller input error from intravenous blood glucose concentration measurements, where parameter scheduling is achieved by an estimator of the insulin sensitivity parameter. Thus, only one controller stabilises a family of animal models. The controller is validated in silico with a total number of five Göttingen Minipig models, which were previously obtained by experimental identification procedures. Its performance is compared with an experimentally tested switching PI-controller.

  9. Modelling the Relative Contribution of Fasting and Post-Prandial Plasma Glucose to HbA1c in Healthy and Type 2 Diabetic Subjects

    Science.gov (United States)

    Ollerton, Richard L.; Luzio, Steven D.; Owens, David R.

    2004-01-01

    Glycated haemoglobin (HbA1c) is regarded as the gold standard of glucose homeostasis assessment in diabetes. There has been much discussion in recent medical literature of experimental results concerning the relative contribution of fasting and post-prandial glucose levels to the value of HbA1c. A mathematical model of haemoglobin glycation is…

  10. Predictions for m{sub t} and M{sub W} in minimal supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Cavanaugh, R. [Fermi National Accelerator Lab., Batavia, IL (United States); Illinois Univ., Chicago, IL (United States). Dept. of Physics; Roeck, A. de [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Universitaire Instelling Antwerpen, Wilrijk (Belgium); Ellis, J.R. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Flaecher, H. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Heinemeyer, S. [Instituto de Fisica de Cantabria, Santander (Spain); Isidori, G. [INFN, Laboratori Nazionali di Frascati (Italy); Technische Univ. Muenchen (Germany). Inst. for Advanced Study; Olive, K.A. [Minnesota Univ., Minnesota, MN (United States). William I. Fine Theoretical Physics Institute; Ronga, F.J. [ETH Zuerich (Switzerland). Institute for Particle Physics; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-12-15

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m{sub t}, and the W boson mass, m{sub W}. We find that the supersymmetric predictions for both m{sub t} and m{sub W}, obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)

  11. Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes

    Science.gov (United States)

    Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi

    2014-07-01

    While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.

  12. First Clinical Experience with Retrospective Flash Glucose Monitoring (FGM) Analysis in South Africa

    Science.gov (United States)

    Distiller, Larry A.; Cranston, Iain; Mazze, Roger

    2016-01-01

    Background: In 2014, an innovative blinded continuous glucose monitoring system was introduced with automated ambulatory glucose profile (AGP) reporting. The clinical use and interpretation of this new technology has not previously been described. Therefore we wanted to understand its use in characterizing key factors related to glycemic control: glucose exposure, variability, and stability, and risk of hypoglycemia in clinical practice. Methods: Clinicians representing affiliated diabetes centers throughout South Africa were trained and subsequently were given flash glucose monitoring readers and 2-week glucose sensors to use at their discretion. After patient use, sensor data were collected and uploaded for AGP reporting. Results: Complete data (sensor AGP with corresponding clinical information) were obtained for 50 patients with type 1 (70%) and type 2 diabetes (30%), irrespective of therapy. Aggregated analysis of AGP data comparing patients with type 1 versus type 2 diabetes, revealed that despite similar HbA1c values between both groups (8.4 ± 2 vs 8.6 ± 1.7%, respectively), those with type 2 diabetes had lower mean glucose levels (9.2 ± 3 vs 10.3 mmol/l [166 ± 54 vs 185 mg/dl]) and lower indices of glucose variability (3.0 ± 1.5 vs 5.0 ± 1.9 mmol/l [54 ± 27 vs 90 ± 34.2 mg/dl]). This highlights key areas for future focus. Conclusions: Using AGP, the characteristics of glucose exposure, variability, stability, and hypoglycemia risk and occurrence were obtained within a short time and with minimal provider and patient input. In a survey at the time of the follow-up visit, clinicians indicated that aggregated AGP data analysis provided important new clinical information and insights. PMID:27154973

  13. A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Directory of Open Access Journals (Sweden)

    Ahmad Zeraatkar Moghaddam

    2012-01-01

    Full Text Available This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model.

  14. Modelling the glucose-insulin-glucagon dynamics after subcutaneous administration of native glucagon and a novel glucagon analogue in dogs

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Boye Knudsen, Carsten; Jørgensen, John Bagterp

    Zealand Pharma has invented a glucagon analogue, ZP-GA-1, with increased stability in liquid formulation for treatment of hypoglycemia. A pharmacodynamic (PD) model is needed to compare ZP-GA-1 with marketed glucagon. We aim to develop a model of the complex glucose-insulin-glucagon dynamics based...... on physiology and data....

  15. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  16. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  17. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    OpenAIRE

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2016-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model ...

  18. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    Science.gov (United States)

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Yun, Jumi; Kim, Jong Gu [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Bae, Tae-Sung [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Korea Basic Science Institute (KBSI), Jeonju 561-756 (Korea, Republic of); Lee, Young-Seak, E-mail: youngslee@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-01-15

    Glucose-sensing electrodes were constructed from carbon fibers by electrospinning and heat treatment. By controlling the pore size, the specific surface area and pore volume of the electrospun carbon fibers were increased for efficient immobilization of the glucose oxidase. Carbon nanotubes were embedded as an electrically conductive additive to improve the electrical property of the porous carbon fibers. In addition, the surface of the porous carbon fibers was modified with hydrophilic functional groups by direct oxyfluorination to increase the affinity between the hydrophobic carbon surface and the hydrophilic glucose oxidase molecules. The porosity of the carbon fibers was improved significantly with approximately 28- and 35-fold increases in the specific surface area and pore volume, respectively. The number of chemical bonds between carbon and oxygen were increased with higher oxygen content during oxyfluorination based on the X-ray photoelectron spectroscopy results. Glucose sensing was carried out by current voltagram and amperometric methods. A high-performance glucose sensor was obtained with high sensitivity and rapid response time as a result of carbon nanotube addition, physical activation and surface modification. The mechanism of the highly sensitive prepared glucose sensor was modeled by an enzyme kinetics study using the Michaelis-Menten equation.

  20. How can we measure insulin sensitivity?

    International Nuclear Information System (INIS)

    Hovorka, R.

    1999-01-01

    Insulin resistance is common in general population and prevalent in patients with obesity and Type 2 diabetes. Insulin sensitivity, reciprocal to insulin resistance, can be measured with a variety of experimental methods ranging from the 'gold' standard glucose clamp to the simple HOMA assessment. Each method has its merit and is applicable under different circumstances. Adoption of glucose tracers in the experimental protocols and more specifically in glucose clamp and minimal model allows hepatic vs. peripheral insulin sensitivity to be discriminated and estimated separately. The objective of this review is to give an account of the minimal modelling approach and provide summary information about other measurement methods together with information about reproducibility of the most popular methods, the minimal model and the glucose clamp techniques. (author)

  1. Underestimation of glucose turnover measured with [6-3H]- and [6,6-2H]- but not [6-14C]glucose during hyperinsulinemia in humans

    International Nuclear Information System (INIS)

    McMahon, M.M.; Schwenk, W.F.; Haymond, M.W.; Rizza, R.A.

    1989-01-01

    Recent studies indicate that hydrogen-labeled glucose tracers underestimate glucose turnover in humans under conditions of high flux. The cause of this underestimation is unknown. To determine whether the error is time-, pool-, model-, or insulin-dependent, glucose turnover was measured simultaneously with [6-3H]-, [6,6-2H2]-, and [6-14C]glucose during a 7-h infusion of either insulin (1 mU.kg-1.min-1) or saline. During the insulin infusion, steady-state glucose turnover measured with both [6-3H]glucose (8.0 +/- 0.5 mg.kg-1.min-1) and [6,6-2H2]glucose (7.6 +/- 0.5 mg.kg-1.min-1) was lower (P less than .01) than either the glucose infusion rate required to maintain euglycemia (9.8 +/- 0.7 mg.kg-1.min-1) or glucose turnover determined with [6-14C]glucose and corrected for Cori cycle activity (9.8 +/- 0.7 mg.kg-1.min-1). Consequently negative glucose production rates (P less than .01) were obtained with either [6-3H]- or [6,6-2H2]- but not [6-14C]glucose. The difference between turnover estimated with [6-3H]glucose and actual glucose disposal (or 14C glucose flux) did not decrease with time and was not dependent on duration of isotope infusion. During saline infusion, estimates of glucose turnover were similar regardless of the glucose tracer used. High-performance liquid chromatography of the radioactive glucose tracer and plasma revealed the presence of a tritiated nonglucose contaminant. Although the contaminant represented only 1.5% of the radioactivity in the [6-3H]glucose infusate, its clearance was 10-fold less (P less than .001) than that of [6-3H]glucose. This resulted in accumulation in plasma, with the contaminant accounting for 16.6 +/- 2.09 and 10.8 +/- 0.9% of what customarily is assumed to be plasma glucose radioactivity during the insulin or saline infusion, respectively (P less than .01)

  2. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    Science.gov (United States)

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2018-01-01

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 7-16, 2018. © 2017 Wiley Periodicals, Inc.

  3. Inverse modelling and pulsating torque minimization of salient pole non-sinusoidal synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2008-01-15

    Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)

  4. Diabetes: Models, Signals and control

    Science.gov (United States)

    Cobelli, C.

    2010-07-01

    Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.

  5. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    Science.gov (United States)

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    Science.gov (United States)

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.

  7. Natural History of Impaired Glucose Tolerance in Japanese Americans: Change in Visceral Adiposity is Associated with Remission from Impaired Glucose Tolerance to Normal Glucose Tolerance.

    Science.gov (United States)

    Onishi, Yukiko; Hayashi, Tomoshige; Sato, Kyoko K; Leonetti, Donna L; Kahn, Steven E; Fujimoto, Wilfred Y; Boyko, Edward J

    2018-05-30

    To describe the roles of intra-abdominal fat and its change in the remission of impaired glucose tolerance (IGT) to normal glucose tolerance (NGT). We followed 157 Japanese Americans with IGT at baseline for 10-11 years without external intervention. We measured intra-abdominal and abdominal subcutaneous fat area (IAFA and ASFA) by computed tomography at baseline and at 5-6 years of follow-up. Change in IAFA and ASFA (ΔIAFA and ΔASFA) were calculated by subtracting baseline fat area from 5-6 year follow-up fat area. Glucose and insulin at fasting and during a 75-g oral glucose tolerance test, insulinogenic index (IGI [Δinsulin/Δglucose (30-0 min)]) and homeostasis model assessment for insulin resistance (HOMA-IR) were measured at baseline. Fourty-four subjects remitted to NGT. Among those with lower IAFA (≤median 91.31 cm 2 ) and the lowest tertile of ΔIAFA, 45% remitted, while with higher IAFA (>91.31 cm 2 ) and the highest tertile of ΔIAFA, only 12.5% remitted. ΔIAFA was significantly associated with remission to NGT (multiple-adjusted odd ratio [1-SD decrease] 1.93, 95% CI 1.10-3.36) independent of IAFA, ASFA, ΔASFA, IGI, HOMA-IR, age, sex, and family history of diabetes. In the natural history of IGT, change in intra-abdominal fat was associated with remission to NGT. Copyright © 2018. Published by Elsevier B.V.

  8. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices

    OpenAIRE

    Mair, B.; Drillich, M.; Klein-J?bstl, D.; Kanz, P.; Borchardt, S.; Meyer, L.; Schwendenwein, I.; Iwersen, M.

    2016-01-01

    Background Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood samp...

  9. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    Science.gov (United States)

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  10. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  11. Higher Endogenous Glucose Production during OGTT vs Isoglycemic Intravenous Glucose Infusion

    DEFF Research Database (Denmark)

    Lund, Asger; Bagger, Jonatan I; Christensen, Mikkel Bring

    2016-01-01

    CONTEXT: Oral glucose ingestion elicits a larger insulin response and delayed suppression of glucagon compared to isoglycemic intravenous (iv) glucose infusion (IIGI). OBJECTIVE: We studied whether these differences translate into effects on endogenous glucose production (EGP) and glucose disposal......); HbA1c 53.8 ± 11.0 mmol/mol; duration of diabetes 9.2 ± 5.0 years) and 10 matched non-diabetic control subjects (age 56.0±10.7 years; BMI 29.8 ± 2.9 kg/m(2); HbA1c 33.8 ± 5.5 mmol/mol) Interventions: Three experimental days: 75 g-oral glucose tolerance test (OGTT), IIGI and IIGI+glucagon (IIGI...

  12. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    Science.gov (United States)

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose

  13. The association between estimated average glucose levels and fasting plasma glucose levels

    Directory of Open Access Journals (Sweden)

    Giray Bozkaya

    2010-01-01

    Full Text Available OBJECTIVE: The level of hemoglobin A1c (HbA1c, also known as glycated hemoglobin, determines how well a patient's blood glucose level has been controlled over the previous 8-12 weeks. HbA1c levels help patients and doctors understand whether a particular diabetes treatment is working and whether adjustments need to be made to the treatment. Because the HbA1c level is a marker of blood glucose for the previous 120 days, average blood glucose levels can be estimated using HbA1c levels. Our aim in the present study was to investigate the relationship between estimated average glucose levels, as calculated by HbA1c levels, and fasting plasma glucose levels. METHODS: The fasting plasma glucose levels of 3891 diabetic patient samples (1497 male, 2394 female were obtained from the laboratory information system used for HbA1c testing by the Department of Internal Medicine at the Izmir Bozyaka Training and Research Hospital in Turkey. These samples were selected from patient samples that had hemoglobin levels between 12 and 16 g/dL. The estimated glucose levels were calculated using the following formula: 28.7 x HbA1c - 46.7. Glucose and HbA1c levels were determined using hexokinase and high performance liquid chromatography (HPLC methods, respectively. RESULTS: A strong positive correlation between fasting plasma glucose levels and estimated average blood glucose levels (r=0.757, p<0.05 was observed. The difference was statistically significant. CONCLUSION: Reporting the estimated average glucose level together with the HbA1c level is believed to assist patients and doctors determine the effectiveness of blood glucose control measures.

  14. Reproducibility and reliability of hypoglycaemic episodes recorded with Continuous Glucose Monitoring System (CGMS) in daily life

    DEFF Research Database (Denmark)

    Høi-Hansen, T; Pedersen-Bjergaard, U; Thorsteinsson, B

    2005-01-01

    AIM: Continuous glucose monitoring may reveal episodes of unrecognized hypoglycaemia. We evaluated reproducibility and reliability of hypoglycaemic episodes recorded in daily life by the Medtronic MiniMed Continuous Glucose Monitoring System (CGMS). METHODS: Twenty-nine adult patients with Type 1...... data were recalibrated generating four different CGMS data sets [left-A (left side of abdomen, calibration set A), left-B, right-A and right-B]. Agreement between CGMS data sets was evaluated during hypoglycaemic events, comparing CGMS readings = 2.2 mmol/l with nadir values from corresponding CGMS...... data sets. CGMS readings were also compared with independent self-monitored blood glucose (SMBG) values. RESULTS: With hypoglycaemia (CGMS readings = 2.2 mmol/l) in calibration set left-A, values below 3.5 mmol/l were present in 99% (95% CI: 95-100%) of samples in left-B, 91% (95% CI: 84...

  15. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    Science.gov (United States)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  16. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  17. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    Science.gov (United States)

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  18. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    Science.gov (United States)

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX

  19. Horizontal, anomalous U(1) symmetry for the more minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Nelson, A.E.; Wright, D.

    1997-01-01

    We construct explicit examples with a horizontal, open-quotes anomalousclose quotes U(1) gauge group, which, in a supersymmetric extension of the standard model, reproduce qualitative features of the fermion spectrum and CKM matrix, and suppress FCNC and proton decay rates without the imposition of global symmetries. We review the motivation for such open-quotes moreclose quotes minimal supersymmetric standard models and their predictions for the sparticle spectrum. There is a mass hierarchy in the scalar sector which is the inverse of the fermion mass hierarchy. We show in detail why ΔS=2 FCNCs are greatly suppressed when compared with naive estimates for nondegenerate squarks. copyright 1997 The American Physical Society

  20. Bihormonal control of blood glucose in people with type 1 diabetes

    DEFF Research Database (Denmark)

    Batora, Vladimir; Tárnik, Marían; Murgaš, Ján

    2015-01-01

    -based activation of glucagon administration. The control algorithm consists of a Kalman filter, an insulin infusion model predictive controller (MPC), a proportional-derivative (PD) controller for glucagon infusion, and a meal time insulin bolus calculator. The PD controller is activated if the Kalman filter...... predicts hypoglycemia. Predictions utilize an ARMAX model describing glucose-insulin and glucose-glucagon dynamics. The model parameters are estimated from basic patient-specific data. A continuous glucose monitor provides feedback. We test the control algorithm using a simulation model with time......-varying parameters available for 3 patients. We consider a simulation scenario where meals are estimated correctly as well as overestimated by 30%. The simulation results demonstrate that during normal operation, the controller only needs insulin and does not need glucagon. During unexpected events, such as insulin...