WorldWideScience

Sample records for glucose fdg uptake

  1. Effects of blood glucose level on FDG uptake by liver: a FDG-PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kazuo, E-mail: kkubota@cpost.plala.or.j [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Watanabe, Hiroshige; Murata, Yuji [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Yukihiro, Masashi; Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Hori, Ai [Department of Epidemiology and International Health, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Shibuya, Hitoshi [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2011-04-15

    In FDG-PET for abdominal malignancy, the liver may be assumed as an internal standard for grading abnormal FDG uptake both in early images and in delayed images. However, physiological variables of FDG uptake by the liver, especially the effects of blood glucose level, have not yet been elucidated. Methods: FDG-PET studies of 70 patients examined at 50 to 70 min after injection (60{+-}10 min: early images) and of 68 patients examined at 80 to 100 min after injection (90{+-}10 min: delayed images) were analyzed for liver FDG uptake. Patients having lesions in the liver, spleen and pancreas; patients having bulk tumor in other areas; and patients early after chemotherapy or radiotherapy were excluded; also, patients with blood glucose level over 125 mg/dl were excluded. Results: Mean standardized uptake value (SUV) of the liver, blood glucose level and sex showed no significant differences between early images and delayed images. However, liver SUV in the delayed image showed a larger variation than that in the early image and showed significant correlation to blood glucose level. The partial correlation coefficient between liver SUV and blood glucose level in the delayed image with adjustment for sex and age was 0.73 (P<.0001). Multivariate regression coefficient (95% confidence interval) of blood glucose was 0.017 (0.013-0.021). Conclusion: Blood glucose level is an important factor affecting the normal liver FDG uptake in nondiabetic patients. In the case of higher glucose level, liver FDG uptake is elevated especially in the delayed image. This may be due to the fact that the liver is the key organ responsible for glucose metabolism through gluconeogenesis and glycogen storage.

  2. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions

    International Nuclear Information System (INIS)

    Zhao, Songji; Tsukamoto, Eriko; Kato, Takashi; Tamaki, Nagara; Kuge, Yuji; Hikosaka, Kenji; Mochizuki, Takafumi; Hosokawa, Masuo; Kohanawa, Masashi

    2001-01-01

    Fluorine-18 2-deoxy-2-fluoro-D-glucose (FDG) accumulation in tumours has been well investigated, but much less is known regarding FDG accumulation in inflammatory lesions. In this study, we determined the effects of hypo- and hyperglycaemia on FDG uptake in inflammatory lesions of infectious and non-infectious origin and compared them with those in malignant tumours in rats, to provide a biological basis for differentiating malignant lesions from benign lesions by means of FDG-PET. Rats were inoculated with a suspension of allogenic hepatoma cells (KDH-8) or Staphylococcus aureus, or with turpentine oil into the left calf muscle. Two weeks after KDH-8 inoculation and 1 week after S. aureus and turpentine oil inoculations, the rats were divided into three subgroups: insulin-loaded (2 U/kg body weight, i.p.), glucose-loaded (1.2 g/kg body weight, p.o.) and control groups. Radioactivity in tissues was determined 1 h after i.v. injection of FDG. Intraperitoneal injection of insulin and oral administration of glucose induced hypoglycaemia and hyperglycaemia, respectively. In the control animals, tumours showed a level of FDG uptake which was 2.2 and 3.0 times higher than the levels in the inflammatory lesions induced by S. aureus and turpentine oil, respectively (P<0.0001). There was no significant difference in the level of FDG uptake between the two inflammatory lesions of infectious and non-infectious origin. Insulin loading significantly decreased the level of FDG uptake in tumours and in both types of inflammatory lesion to approximately one-half of the control values (P=0.001 in the tumour group and P<0.0001 in the two inflammatory lesion groups). In the glucose-loaded group, the level of FDG uptake in both types of inflammatory lesion decreased significantly to 50%-61% of the control value (P=0.0002 in the S.aureus group and P<0.0001 in the turpetine group), while the tumour uptake did not decrease significantly (86% of the control value) (P=NS). It is concluded

  3. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    Science.gov (United States)

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  4. Appropriate uptake period for myocardial PET imaging with 18F-FDG after oral glucose loading

    International Nuclear Information System (INIS)

    Brink, I.; Hentschell, M.; Hoegerle, S.; Moser, E.; Nitzsche, E.U.; Mix, M.; Schindler, T.

    2003-01-01

    Aim: Identification of a rationale for the appropriate uptake period for myocardial 18 F-FDG-PET imaging of patients with and without diabetes mellitus. Methods: In a subset of 27 patients, static 2D-PET examination was performed of patients with chronic coronary artery disease and known myocardial infarction. The patients fasted (at least 4 h) before examination. 18 F-FDG (330 ± 20 MBq) was injected intravenously. The image quality was semiquantitativly determined by ROI-analysis and the myocardium-to-blood pool activity ratio (M/B) was calculated. I.) Scans 30, 60, and 90 min p. i. of 10 non-diabetic patients (60 g oral glucose loading one hour before FDG-injection, low-dose intravenous insulin bolus if necessary). II.) Scans 30, 60, and 90 min p. i. of 10 patients with known non-insulin dependent diabetes (20 g glucose, insulin bolus). III.) Scans 90 min p. i. of 7 patients with known non-insulin dependent diabetes and elevated fasting serum glucose level (140-200 mg/dl; insulin bolus, no glucose). Results: I.) The M/B ratio significantly increases in non-diabetic patients with the uptake time (30 min 1.95 ± 0.20; 60 min 2.96 ± 0.36; 90 min 3.78 ± 0.43). II.) In patients with non-insulin dependent diabetes the M/B ratio also significantly increases with uptake time. Compared to non-diabetic patients group II reached smaller M/B values (30 min 1.56 ± 0.10; 60 min 2.15 ± 0.14; 90 min 2.71 ± 0.19). III.) In the group of patients with elevated fasting serum glucose level (who only got insulin but no glucose loading) the M/B activity ratio 90 min p. i. was clearly inferior compared with diabetic patients after oral glucose loading and insulin administration (M/B 2.71 ± 0.19 versus 2.16 ± 0.07). Conclusions: In static myocardial viability PET studies with 18 F-FDG an uptake time of 90 min yields image quality superior to that obtained after shorter uptake time. (orig.) [de

  5. Quantification of tumour {sup 18}F-FDG uptake: Normalise to blood glucose or scale to liver uptake?

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); University of Sussex, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A.M. [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); Bush, Janice [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom)

    2015-09-15

    To compare normalisation to blood glucose (BG) with scaling to hepatic uptake for quantification of tumour {sup 18}F-FDG uptake using the brain as a surrogate for tumours. Standardised uptake value (SUV) was measured over the liver, cerebellum, basal ganglia, and frontal cortex in 304 patients undergoing {sup 18}F-FDG PET/CT. The relationship between brain FDG clearance and SUV was theoretically defined. Brain SUV decreased exponentially with BG, with similar constants between cerebellum, basal ganglia, and frontal cortex (0.099-0.119 mmol/l{sup -1}) and similar to values for tumours estimated from the literature. Liver SUV, however, correlated positively with BG. Brain-to-liver SUV ratio therefore showed an inverse correlation with BG, well-fitted with a hyperbolic function (R = 0.83), as theoretically predicted. Brain SUV normalised to BG (nSUV) displayed a nonlinear correlation with BG (R = 0.55); however, as theoretically predicted, brain nSUV/liver SUV showed almost no correlation with BG. Correction of brain SUV using BG raised to an exponential power of 0.099 mmol/l{sup -1} also eliminated the correlation between brain SUV and BG. Brain SUV continues to correlate with BG after normalisation to BG. Likewise, liver SUV is unsuitable as a reference for tumour FDG uptake. Brain SUV divided by liver SUV, however, shows minimal dependence on BG. (orig.)

  6. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut

    International Nuclear Information System (INIS)

    Groot, Michel de; Meeuwis, Antoi P.W.; Kok, Peter J.M.; Corstens, Frans H.M.; Oyen, Wim J.G.

    2005-01-01

    Increased, non-pathological FDG uptake in myocardium, stomach and bowel is frequently observed while performing clinical positron emission tomography (PET) studies. This ''physiological'' increased FDG uptake is not related to (oncological) disease and is unwanted since it may interfere with correct image reading. We evaluated the role of several patient-related factors that may have an influence on this phenomenon. One hundred and seventy-five non-diabetic patients with malignant diseases, referred to our department for routine whole-body FDG-PET, were retrospectively evaluated. Age, blood glucose levels and duration of the fasting period were recorded. FDG uptake in myocardium, bowel and stomach was visually graded. Statistical analysis showed that increased FDG uptake in myocardium, bowel and stomach was not significantly correlated to blood glucose level, age or duration of fasting. Most patients who underwent repeated PET scans (92 scans in 25 patients), showed no or minor changes in uptake in bowel and stomach on the consecutive scans, while myocardial uptake was more variable. Age, fasting period and blood glucose levels did not influence physiological uptake. However, there seemed to be a patient-specific pattern for stomach and bowel uptake. (orig.)

  7. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization

    International Nuclear Information System (INIS)

    Kaneta, Tomohiro; Hakamatsuka, Takashi; Takanami, Kentaro

    2006-01-01

    Positron emission tomography (PET) with fluorodeoxyglucose (FDG) is widely used for evaluation of cancer and ischemic heart disease. Recently, increased myocardial FDG uptake has been reported to be related to some types of heart disease, such as sarcoidosis. However, the physiological increased FDG uptake in the heart often mimics the abnormal high uptake in these cases. In this study, we investigated the relationships between myocardial uptake and age, blood glucose level, fasting period, and hospitalization status (inpatient vs. outpatient). A total of 159 non-diabetic patients were enrolled in the present study. Patients were imaged on a PET/CT scanner, and a three-dimensional region of interest (ROI) was drawn on the fused PET/CT image to measure the maximum standardized uptake value (SUV max ) of the whole left ventricle. No significant relationships were observed between myocardial uptake and age or fasting period. Blood glucose level showed a significant relationship (p=0.025) with myocardial uptake, but the R-square was extremely small (r 2 =0.03). With an SUV max threshold of 3.0, there was no significant difference between inpatients and outpatients. However, outpatients showed a significantly higher frequency of myocardial uptake over SUV max of 5.0 (x 2 test: p=0.046). It is difficult to predict the degree of physiological uptake in the heart from data regarding age, fasting period, or blood glucose level. Outpatients tend to show higher myocardial uptake than inpatients, which may make it difficult to detect abnormally increased uptake in the heart. A long fasting period, such as overnight fasting, is an inadequate means to reduce the physiological uptake of FDG in the heart. (author)

  8. Comparison of [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect

    International Nuclear Information System (INIS)

    Soo Jung Lim; Jin-Sook Ryu; Heuiran Lee; Seok Young Kim; Seung Jun Oh; Dae Hyuk Moon

    2004-01-01

    [18F]FLT is a new radiopharmaceutical for cell proliferation. We compared [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect. Method: In vitro cancer cell uptake of [18F]FLT was evaluated using SCC7(mouse squamous cell carcinoma). At 24 hours after seeding 1 x 106 cells/well in 6 well plates with RPMI 1640 medium, culture media were changed to medium with glucose free or glucose concentration of 100 mg/dl. Then, [18F]FLT 5 μCi/50 ml was added to each well. After incubation for 30, 60, 90, 120 minutes, cells were washed twice by PBS, and harvested using 0.25% trypsin-EDTA. After centrifugation and counting at gamma counter, cell uptake was calculated by % activity of cellular uptake to total activity of cell and supernatant. For comparison, same tumor cell uptake experiment was performed with [18F]FDG. Results: After incubation with SCC7 cell line for 30, 60, 90, 120 minutes, [18F]FLT showed 1.95%, 2.17%, 2.10% and 2.80% of cell uptake in glucose free media, respectively. The results [18F]FLT uptake in glucose 100 mg/dl media were 1.82%, 1.87%, 1.97%, and 2.94%, respectively. The results of [18F]FDG in glucose free media were 2.50%, 3.47%, 5.04%, and 10.4%, whereas those in glucose 100 mg/dl media were 1.60%, 1.79%, 1.53%, and 1.82%, respectively. Conclusion: In contrast to [18F]FDG, [18F]FLT uptake in cancer cell was not affected by glucose concentration. In physiologic glucose concentration, [18F]FLT uptake in SCC7 cell line was significantly higher than [18F]FDG uptake after 120 minutes incubation. In [18F]FLT PET imaging may not need fasting for preparation before imaging study. (authors)

  9. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  10. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice

    International Nuclear Information System (INIS)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M.; Wang, Yong; Wollert, Kai C.

    2015-01-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial 18 F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial 18 F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial 18 F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In contrast to

  11. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for {sup 18}F-FDG imaging of myocardial inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M. [Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Wang, Yong; Wollert, Kai C. [Hanover Medical School, Department of Cardiology and Angiology, Hanover (Germany)

    2015-04-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial {sup 18}F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial {sup 18}F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial {sup 18}F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In

  12. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes.

    Science.gov (United States)

    Kim, Gyuri; Jo, Kwanhyeong; Kim, Kwang Joon; Lee, Yong-ho; Han, Eugene; Yoon, Hye-jin; Wang, Hye Jin; Kang, Eun Seok; Yun, Mijin

    2015-11-04

    The heart requires constant sources of energy mostly from free fatty acids (FFA) and glucose. The alteration in myocardial substrate metabolism occurs in the heart of diabetic patients, but its specific association with other metabolic variables remains unclear. We aimed to evaluate glucose uptake in hearts of subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes mellitus (T2DM) using [(18)F]-fluorodeoxyglucose-positron emission tomography ((18)FDG-PET) in association with visceral and subcutaneous adiposity, and metabolic laboratory parameters. A total of 346 individuals (NGT, n = 76; prediabetes, n = 208; T2DM, n = 62) in a health promotion center of a tertiary hospital were enrolled. The fasting myocardial glucose uptake, and visceral and subcutaneous fat areas were evaluated using (18)FDG-PET and abdominal computed tomography, respectively. Myocardial glucose uptake was significantly decreased in subjects with T2DM compared to the NGT or prediabetes groups (p for trend = 0.001). Multivariate linear regression analyses revealed that visceral fat area (β = -0.22, p = 0.018), fasting FFA (β = -0.39, p < 0.001), and uric acid levels (β = -0.21, p = 0.007) were independent determinants of myocardial glucose uptake. Multiple logistic analyses demonstrated that decreased myocardial glucose uptake (OR 2.32; 95% CI 1.02-5.29, p = 0.045) and visceral fat area (OR 1.02, 95% CI 1.01-1.03, p = 0.018) were associated with T2DM. Our findings indicate visceral adiposity is strongly associated with the alteration of myocardial glucose uptake evaluated by (18)FDG-PET, and its association further relates to T2DM.

  13. Non-invasive Estimation of Metabolic Uptake Rate of Glucose using F18-FDG PET and Linear Transformation of Outputs

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, M.; Auerback, P.

    For quantitative analysis and kinetic modeling of dynamic PET-data an input function is needed. Normally this is obtained by arterial blood sampling, potentially an unpleasant experience for the patient and laborious for the staff. Aim: To validate methods for determination of the metabolic uptake...... rate (Km) of glucose from dynamic FDG-PET scans using Image Derived Input Functions (IDIF) without blood sampling. Method: We performed 24 dynamic FDG-PET scans of the thigh of 14 healthy young male volunteers during a hyperinsulinemic isoglycemic clamp. Ten of the subjects were scanned twice 11 weeks...... artery diameter in the material, the method should also be applicable to women and people of other ages, but used with caution in the elderly due to variance in intramuscular adipose distribution. If only Km and no other kinetic parameters are needed, the described method with transformation...

  14. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells. The role of proliferation rate, viability, glucose transporter expression and hexokinase activity

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Bisse, E.; Epting, T.; Engelhardt, R.

    2005-01-01

    Using human (SK-MEL 23, SK-MEL 24 and G361) and murine (B16) melanoma cell lines, the coregulatory potential of the uptake of the positron emission tomography (PET) tracer, [Fluorine-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) has been investigated in relationship to tumor characteristics. Comparative studies among the four melanoma cell lines demonstrated that the lowest FDG uptake in SK-MEL 24 corresponded strongly to the data for DT (population doubling time) and MTT (tetrazolium salt) cell viability as well as hexokinase (HK) activity, but was not related to the glucose transporter 1 (GLUT 1) expression level. Furthermore, the FDG uptake in each melanoma cell line measured by cell cycle kinetics was significantly positively correlated to both the proliferation index (PI=S/G 2 M phase fractions) and the cell viability, though with one exception relating to the proliferation index (PI) of the lowest FDG uptake cell line, SK-MEL 24. No positive correlation was found between the expression of GLUT 1 and FDG uptake in any individual cell line. However, the HK activities in SK-MEL 23 and 24 showed considerable positive relationships with FDG uptake. Our present study suggests that both the proliferation rate and the cell viability of melanoma cells may be key factors for FDG uptake and that HK activity, rather than GLUT 1 expression, seems to be a major factor. (author)

  15. Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, Michala H.; Larsen, Rasmus

    2014-01-01

    We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (Km) from dynamic [18F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low...

  16. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Büsing, Karen A.; Schönberg, Stefan O.; Brade, Joachim; Wasser, Klaus

    2013-01-01

    Introduction: Chronically altered glucose metabolism interferes with 18 F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in 18 F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on 18 F-FDG uptake in tumors and biodistribution in normal organ tissues. Methods: 18 F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index > 25. The maximum standardized uptake value (SUV max ) of normal organs and the main tumor site was measured. Differences in SUV max in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Results: Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV max in muscle cells and fat, whereas the mean cerebral SUV max was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Conclusions: Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases

  17. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    OpenAIRE

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase repor...

  18. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  19. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    Science.gov (United States)

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  20. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    Science.gov (United States)

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured

  1. Factors influencing physiological FDG uptake in the intestine

    International Nuclear Information System (INIS)

    Yasuda, Seiei; Takahashi, Wakoh; Takagi, Shigeharu; Fujii, Hirofumi; Ide, Michiru; Shohtsu, Akira

    1998-01-01

    The intestine is a well-known site of physiological 18 F-fluorodeoxyglucose (FDG) accumulation in positron emission tomography (PET). To identify factors influencing physiological FDG uptake in the intestine, the intensity of FDG uptake was evaluated in a total of 1,068 healthy adults. Non-attenuation-corrected whole-body PET images were obtained for all subjects and visually evaluated. Subjects were then classified into two groups according to the intensity of intestinal FDG uptake. Sex, age, presence or absence of constipation, and serum glucose, hemoglobin A 1 c, and free fatty acid levels were compared between the two groups. High intestinal FDG uptake was observed at an overall rate of 11.0%. Sex (female), age, and bowel condition (constipation) were found to affect intestinal FDG uptake. The factors we identified lead to further questions the relationship between intestinal motility and glucose uptake that warrant further study. (author)

  2. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: A systematic review.

    Directory of Open Access Journals (Sweden)

    Clarice Sprinz

    Full Text Available To perform a systematic review of the effect of blood glucose levels on 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG uptake in normal organs.We searched the MEDLINE, EMBASE and Cochrane databases through 22 April 2017 to identify all relevant studies using the keywords "PET/CT" (positron emission tomography/computed tomography, "standardized uptake value" (SUV, "glycemia," and "normal." Analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations. Maximum and mean SUVs and glycemia were the main parameters analyzed. To objectively measure the magnitude of the association between glycemia and 18F-FDG uptake in different organs, we calculated the effect size (ES and the coefficient of determination (R2 whenever possible.The literature search yielded 225 results, and 14 articles met the inclusion criteria; studies included a total of 2714 (range, 51-557 participants. The brain SUV was related significantly and inversely to glycemia (ES = 1.26; R2 0.16-0.58. Although the liver and mediastinal blood pool were significantly affected by glycemia, the magnitudes of these associations were small (ES = 0.24-0.59, R2 = 0.01-0.08 and negligible (R2 = 0.02, respectively. Lung, bone marrow, tumor, spleen, fat, bowel, and stomach 18F-FDG uptakes were not influenced by glycemia. Individual factors other than glycemia can also affect 18F-FDG uptake in different organs, and body mass index appears to be the most important of these factors.The impact of glycemia on SUVs in most organs is either negligible or too small to be clinically significant. The brain SUV was the only value largely affected by glycemia.

  3. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    Science.gov (United States)

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  4. Physiological FDG uptake in the palatine tonsils

    International Nuclear Information System (INIS)

    Kawabe, Joji; Okamura, Terue; Shakudo, Miyuki

    2001-01-01

    In clinical F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies of the head and neck region, remarkable symmetric tonsillar FDG uptake is sometimes observed. We determined the incidence and degree of tonsillar FDG uptake and investigated the significance of tonsillar FDG uptake. Between June 1998 and August 1998, we obtained informed consent from 17 patients who were scheduled to undergo a FDG-PET study for their own disease (11 men and 6 women; aged 22 to 77 yr) and who did not have head and neck disease to perform FDG-PET scanning of the head and neck region in addition to their target organs. The incidence and degree of tonsillar FDG uptake were determined. Remarkable tonsillar FDG uptake was found in 9 patients. The SUVs of these FDG uptakes ranged from 2.48 to 6.75, with a mean of 4.29±1.20 (SD). Tonsillar FDG uptakes in the remaining 8 patients were not remarkable, and their SUVs ranged from 1.93 to 3.31, with a mean of 2.46±0.45. Head and neck disease does not appear to have been responsible for the increase in tonsillar FDG uptake. Differences among tonsillar FDG uptake in these 17 patients without head and neck disease appear to reflect differences in activity of ''physiological'' inflammation of the palatine tonsils. (author)

  5. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  6. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models. Evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG

    International Nuclear Information System (INIS)

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke

    2017-01-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316, 243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  7. False-positive uptake on 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) in oncological imaging

    International Nuclear Information System (INIS)

    Culverwell, A.D.; Scarsbrook, A.F.; Chowdhury, F.U.

    2011-01-01

    With the increasing utilization of integrated positron-emission tomography/computed tomography (PET/CT) using the glucose analogue 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG) in oncological imaging, it is important for radiologists and nuclear medicine physicians to be aware that FDG uptake is not specific for malignancy, as many different physiological variants and benign pathological conditions can also exhibit increased glucose metabolism. Such false-positive FDG uptake often arises outside the area of primary interest and may mimic malignant disease, thereby confounding accurate interpretation of PET/CT studies. With the use of illustrative clinical cases, this article will provide a systematic overview of potential interpretative pitfalls and illustrate how such unexpected findings can be appropriately evaluated.

  8. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Thorsten eRudroff

    2014-05-01

    Full Text Available We used positron emission tomography/computed tomography (PET/CT and [18F]-FDG to test the hypothesis that glucose uptake (GU heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 yrs and six old (77 ± 6 yrs men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD for knee extensors and flexors was greater for the old (35.3 ± 3.3 % than the young (28.6 ± 2.4 % (P = 0.006. Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P= 0.004. In a multiple regression model, knee extensor muscle volume was a predictor (partial r = - 0.87; P = 0.001 of GU heterogeneity for old men (R2 = 0.78; P < 0.001, and MVC force predicted GU heterogeneity for young men (partial r = - 0.95, P < 0.001. The findings demonstrate that glucose uptake is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy.

  9. Normal cerebral FDG uptake during childhood

    International Nuclear Information System (INIS)

    London, Kevin; Howman-Giles, Robert

    2014-01-01

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV max , and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV max with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  10. Normal cerebral FDG uptake during childhood

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Disciplines of Imaging and Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia)

    2014-04-15

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV{sub max}, and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV{sub max} with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  11. Dependence of FDG uptake on tumor microenvironment

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To investigate the factors affecting the 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with 18 F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that 18 F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation

  12. Immunohistochemical biomarkers and FDG uptake on PET/CT in head and neck squamous cell carcinoma

    DEFF Research Database (Denmark)

    Rasmussen, Gregers Brünnich; Vogelius, Ivan R.; Rasmussen, Jacob H

    2015-01-01

    on the other. A number of previous studies have shown a relationship between glucose transport protein expression and 18F-Fludeoxyglucose (FDG) PET uptake. Here, FDG uptake is analyzed in relation to expression of a selected panel of IHC cancer biomarkers in head and neck squamous cell carcinomas (HNSCC...

  13. The FDG uptake and glucose transporter(GLUT-1) expression of the mediastinal nodes in the non-small cell lung cancer

    International Nuclear Information System (INIS)

    Baik, Hee Jong; Jung, Jin Haeng

    2000-12-01

    The aim of this study was to understand the mechanism of FDG uptake in the mediastinal nodes, and improve the accuracy of mediastinal staging of non-small cell lung cancer by PET. To evaluate factors determining the FDG uptake in mediastinal nodes, FDG-PET was performed preoperatively, and mediastinal dissection with pulmonary resection was done in 20 LSCLC patients. The GLUT-1 expression was studied by immunohistochemistry of paraffin-section from the mediastinal nodes(n=50, true positive 11, true negative 23, false positive 11, false negative 5) using the antiGLUT-1 antibody. The staining intensity of tumor(grade 0-4), percentage of tumor, level of follicular hyperplasia(grade 1-4), and staining intensity of follicle was also studied. The staining intensity of true positive nodes was higher than that of false negative group(Mann-Whitney test, P=0.07) in the metastased nodes. The level of follicular hyperplasia of false positive nodes was higher than that of true negative nodes in non-metastased nodes(P=0.02). This finding indicates that FN interpretation of mediastinal nodes by FDG-PET might be associated with low uptake of FDG due to low expression of GLUT-1, and that FP might be associated with high level of follicular hyperplasia as a reactive change to inflammatory and/or immune reaction

  14. F-18 FDG uptake in respiratory muscle mimicking metastasis in patients with gastric cancer

    International Nuclear Information System (INIS)

    Choi, Seung Jin; Hyun, In Young; Kim, Jeong Ho

    2006-01-01

    A 67-year-old man with a history of chronic obstructive pulmonary disease (COPD) underwent F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging of gastric cancer. The projection images of F-18 FDG PET/CT showed intensely increased F-18 FDG uptake in the anterior neck, chest wall, and upper abdomen. We suspected distant metastases of cervical lymph nodes, ribs, and peritoneum in gastric cancer. However, the transaxial images of F-18 FDG PET/CT showed abnormal F-18 FDG uptake in scalene muscles of anterior neck, intercostal muscles of chest wall, and diaphragm of upper abdomen. Patients with COPD use respiratory muscles extensively on the resting condition. These excessive physiologic use of respiratory muscles causes increased F-18 FDG uptake as a result of increased glucose metabolism. The F-18 FDG uptake in respiratory muscles of gastric cancer patient with COPD mimicked distant metastases in cervical lymph nodes, ribs, and peritoneum

  15. A prospective analysis of {sup 18}F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Maria Lucia; Mattoli, Maria Vittoria; Rufini, Vittoria; Giordano, Alessandro [Universita Cattolica del Sacro Cuore, Institute of Nuclear Medicine, Roma (Italy); Blasi, Maria Antonietta; Sammarco, Maria Grazia [Universita Cattolica del Sacro Cuore, Institute of Ophthalmology, Roma (Italy); Petrone, Gianluigi; Mule, Antonino [Universita Cattolica del Sacro Cuore, Department of Pathology, Roma (Italy); Indovina, Luca [Universita Cattolica del Sacro Cuore, Physics Unit, Roma (Italy)

    2013-10-15

    To evaluate whether standardized uptake value (SUV) and/or metabolic rate of glucose (MRglu) are different among epithelioid, mixed, and spindle cell uveal melanomas, as well as between low and high risk melanomas; to correlate ultrasonographic data and metabolic parameters with histopathological features; and to assess the role of {sup 18}F-FDG PET/CT for evaluating prognosis. Of 34 eligible patients prospectively enrolled with clinical suspicion of medium/large uveal melanoma, 26 (15 men, mean age 62.8 {+-} 11.8 years) were evaluated. All patients underwent metastatic work-up, 3-D dynamic brain and whole-body {sup 18}F-FDG PET/CT, and surgery. Of the 26 ocular lesions, 23 showed {sup 18}F-FDG uptake, with a sensitivity of 88 %. MRglu was significantly higher in the epithelioid cell melanomas than in the spindle cell melanomas, as well as in high-risk lesions than in low-risk lesions (p = 0.01, p = 0.02, respectively). SUV and MRglu were correlated with histopathological features while ultrasonographic data were not. MRglu is useful for distinguishing the different cell types in uveal melanoma, as well as high-risk from low-risk lesions, while SUV is not. MRglu provides a more accurate evaluation of glucose consumption, whereas SUV provides only an estimation. In addition, the metabolic parameters correlate with histopathological features, well also reflecting cellular behaviour in ocular malignancy. A longer follow-up is needed to assess the role of {sup 18}F-FDG in evaluating prognosis. (orig.)

  16. Hepatic steatosis is associated with increased hepatic FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia, E-mail: G.Keramida@bsms.ac.uk [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Potts, Jon [Department of Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Bush, Janice [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A. Michael [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom)

    2014-05-15

    Objective: The use of liver as a reference tissue for semi-quantification of tumour FDG uptake may not be valid in hepatic steatosis (HS). Previous studies on the relation between liver FDG uptake and HS have been contradictory probably because they ignored blood glucose (BG). Because hepatocyte and blood FDG concentrations equalize, liver FDG uptake parallels BG, which must therefore be considered when studying hepatic FDG uptake. We therefore re-examined the relation between HS and liver uptake taking BG into account. Methods: This was a retrospective study of 304 patients undergoing routine PET/CT with imaging 60 min post-FDG. Average standard uptake value (SUV{sub ave}), maximum SUV (SUV{sub max}) and CT density (index of HS) were measured in a liver ROI. Blood pool SUV was based on the left ventricular cavity (SUV{sub LV}). Correlations were assessed using least squares fitting of continuous data. Patients were also divided into BG subgroups (<4, 4–5, 5–6, 6–8, 8–10 and 10+ mmol/l). Results: SUV{sub ave}, SUV{sub max} and SUV{sub LV} displayed similar relations with BG. SUV{sub max}/SUV{sub LV}, but not SUV{sub ave}/SUV{sub LV}, correlated significantly with BG. SUV{sub max}, but not SUV{sub ave}, correlated inversely with CT density before and after adjusting for BG. SUV{sub max}/SUV{sub ave} correlated more strongly with CT density than SUV{sub max}. CT density correlated inversely with SUV{sub max}/SUV{sub LV} but positively with SUV{sub ave}/SUV{sub LV}. Conclusions: Hepatic SUV is more influenced by BG than by HS. Its relation with BG renders it unsuitable as a reference tissue. Nevertheless, hepatic fat does correlate positively with liver SUV, although this is seen only with SUV{sub max} because SUV{sub ave} is ‘diluted’ by hepatic fat.

  17. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  18. Factors affecting gastric uptake in whole body FDG-PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tomemori, Takashi; Kitagawa, Mami; Nakahara, Tadaki; Wu, Jin; Nakagawa, Keiichi; Uno, Kimiichi; Abe, Kinji; Tomiyoshi, Katsumi [Nishidai Clinic Diagnostic Imaging Center, Tokyo (Japan)

    2001-06-01

    Positron emission tomography (PET) using 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose (FDG) is very useful for the detection and staging of tumors. However, FDG is also accumulated in the normal tissues in various degrees. This physiological FDG uptake is often seen in intestine, making confusion with malignant tumor. The aim of this study was to identify factors influencing physiological FDG uptake in the stomach. A total of 136 people who underwent cancer screening or staging of tumors except for gastric cancer using FDG whole-body PET was examined (mean age: 55.6 yrs). All subjects fasted for at least 4 hours before the PET study and were administrated with FDG intravenously (mean FDG dose: 308.9 MBq). Emission images were acquired on a whole-body PET scanner and images were reconstructed without attenuation correction. The intensity of gastric uptake of FDG whole-body PET image was visually classified into 3 grades; grade 2 = the intensity of gastric uptake more than pulmonary uptake, grade 1 = the intensity of gastric uptake equal to or less than pulmonary uptake, grade 0 = no contrast between gastric uptake and background. Twenty-eight subjects (20.6%) were classified into grade 2, 42 subjects (30.9%) were grade 1 and 66 subjects (48.5%) were grade 0. Subjects' age, fasting time, FDG dose, serum glucose level, free fatty acid level and insulin level were not significantly correlated with the intensity of gastric uptake. But the subjects with higher gastric uptake tended to have anti-Helicobactor pylori (H. pylori) antibodies. The rate of having anti-H.pylori antibodies in the grade 2 group is significantly higher than the grade 1 group (85.7% vs. 72.5%, p<0.05), and that of the grade 1 group is significantly higher than the grade 0 group (72.5% vs. 42.2%, p<0.01). Gastric uptake was observed in about half of subjects. Especially, approximately 20% of all showed high gastric uptake, which was associated with H.pylori infection. Therefore, most of the subjects

  19. Factors affecting gastric uptake in whole body FDG-PET imaging

    International Nuclear Information System (INIS)

    Tomemori, Takashi; Kitagawa, Mami; Nakahara, Tadaki; Wu, Jin; Nakagawa, Keiichi; Uno, Kimiichi; Abe, Kinji; Tomiyoshi, Katsumi

    2001-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[ 18 F]-fluoro-D-glucose (FDG) is very useful for the detection and staging of tumors. However, FDG is also accumulated in the normal tissues in various degrees. This physiological FDG uptake is often seen in intestine, making confusion with malignant tumor. The aim of this study was to identify factors influencing physiological FDG uptake in the stomach. A total of 136 people who underwent cancer screening or staging of tumors except for gastric cancer using FDG whole-body PET was examined (mean age: 55.6 yrs). All subjects fasted for at least 4 hours before the PET study and were administrated with FDG intravenously (mean FDG dose: 308.9 MBq). Emission images were acquired on a whole-body PET scanner and images were reconstructed without attenuation correction. The intensity of gastric uptake of FDG whole-body PET image was visually classified into 3 grades; grade 2 = the intensity of gastric uptake more than pulmonary uptake, grade 1 = the intensity of gastric uptake equal to or less than pulmonary uptake, grade 0 = no contrast between gastric uptake and background. Twenty-eight subjects (20.6%) were classified into grade 2, 42 subjects (30.9%) were grade 1 and 66 subjects (48.5%) were grade 0. Subjects' age, fasting time, FDG dose, serum glucose level, free fatty acid level and insulin level were not significantly correlated with the intensity of gastric uptake. But the subjects with higher gastric uptake tended to have anti-Helicobactor pylori (H. pylori) antibodies. The rate of having anti-H.pylori antibodies in the grade 2 group is significantly higher than the grade 1 group (85.7% vs. 72.5%, p<0.05), and that of the grade 1 group is significantly higher than the grade 0 group (72.5% vs. 42.2%, p<0.01). Gastric uptake was observed in about half of subjects. Especially, approximately 20% of all showed high gastric uptake, which was associated with H.pylori infection. Therefore, most of the subjects with high

  20. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)

    2002-09-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  1. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    International Nuclear Information System (INIS)

    Griffiths, M.R.; Miles, K.A.; Keith, C.J.

    2002-01-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  2. Reassessment of FDG uptake in tumor cells: High FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production

    Energy Technology Data Exchange (ETDEWEB)

    Waki, A.; Fujibayashi, Y.; Yonekura, Y.; Sadato, N.; Ishii, Y.; Yokoyama, A

    1997-10-01

    To determine appropriate use of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) in the diagnosis of malignant tumors, the mechanism of enhanced FDG uptake in tumor cells was reassessed using in vitro cultured cell lines and {sup 3}H-deoxyglucose (DG), in combination with possible parameters of aerobic and anaerobic energy production. The high DG uptake in the tumor cells reflected the dependency of energy production on anaerobic glycolysis, and paradoxically on low levels of aerobic oxidative phosphorylation in mitochondria. We discuss here factors underlying anaerobic glycolysis in tumor cells.

  3. Microvessel Density But Not Neoangiogenesis Is Associated with (18)F-FDG Uptake in Human Atherosclerotic Carotid Plaques

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Græbe, Martin; Hag, Anne Mette Fisker

    2011-01-01

    Introduction: The vulnerable atherosclerotic lesion exhibits the proliferation of neovessels and inflammation. The imaging modality 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (18FDG-PET) is considered for the identification of vulnerable plaques. Purpose: The purpose of this study...... was to compare the gene expression of neoangiogenesis and vulnerability-associated genes with 18FDG uptake in patients undergoing carotid endarterectomy. Procedures: Human atherosclerotic carotid artery plaques from symptomatic patients were used for gene expression analysis by quantitative PCR of vascular...... analysis was compared with 18FDG-PET. Results: VEGF and integrin aVß3 gene expression did not correlate with 18FDG uptake, whereas CD34 gene expression exhibited an inverse correlation with 18FDG uptake. Additionally, we established that markers of vulnerability were correlated with 18FDG uptake...

  4. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement

    OpenAIRE

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Translational relevance Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unkn...

  5. FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers

    International Nuclear Information System (INIS)

    Zasadny, Kenneth R.; Tatsumi, Mitsuaki; Wahl, Richard L.

    2003-01-01

    The aim of this study was to determine the relationship between tumor blood flow and glucose utilization in women with untreated primary breast carcinomas. Noninvasive determinations of blood flow and glucose utilization with positron emission tomography (PET) were performed in 101 regions of tumor from nine women with untreated primary breast carcinoma. [ 15 O]H 2 O PET scans of tumor blood flow were compared with fluorine-18 fluoro-2-deoxy-D-glucose (FDG) PET scans of tumor glucose metabolism. Modeling of multiple parameters was undertaken and flow and glucose utilization compared. Mean whole-tumor blood flow was 14.9 ml dl -1 min -1 , but ranged from 7.6 to 29.2 ml dl -1 min -1 . Mean whole-tumor standardized uptake value corrected for lean body mass, SUV-lean (50-60 min), was 2.32±0.19 while mean K i was 1.2 ml dl -1 min -1 for FDG. SUV-lean and blood flow were strongly correlated (r=0.82, P=0.007) as were K 1 for FDG and flow (r=0.84, P=0.004). In these women with untreated breast cancers, FDG uptake (SUV-lean) and tumor blood flow are strongly correlated. The slope of FDG uptake versus blood flow appears higher at low flow rates, suggesting the possible presence of areas of tumor hypoxia. (orig.)

  6. Rabbit hindlimb glucose uptake assessed with positron-emitting fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Rowe, R.W.; Tewson, T.J.; Taegtmeyer, H.

    1989-01-01

    The feasibility of estimating skeletal muscle glucose uptake in vivo was examined by using the glucose analogue 2-[ 18 F]deoxy-2-fluoro-D-glucose (2-[ 18 F]FDG) in the rabbit hindlimb. A pair of collimated coincidence gamma photon detectors was used to monitor the accumulation of tracer in the tissue after 2-[ 18 F]FDG injection. Time-activity curves were generated on a second-by-second basis under control conditions, during increased contractile activity, or hyperinsulinemia. The arterial input of 2-[ 18 F]FDG, plasma glucose, lactate, free fatty acids, and insulin were determined. A graphical (Patlak plot) procedure was used to determine the fractional rate of tracer phosphorylation and therefore trapping in the muscle. From the graphical analysis, the estimated rate of glucose phosphorylation (R) in the unperturbed state was calculated to be 0.037 mumol.min-1.ml-1 of tissue. During perturbation by electrical stimulation, an increase in the rate of tracer phosphorylation (K) was observed. No change in the rate of tracer phosphorylation was observed during hyperinsulinemia. The results support the use of 2-[ 18 F]FDG and the graphical procedure for the noninvasive assessment of glucose uptake by skeletal muscle in vivo. The method described is sensitive to changes in the rate of tracer uptake with respect to time and physiological interventions

  7. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    International Nuclear Information System (INIS)

    Nam, Hyun Yeol; Jun, Sung Min; Pak, Kyoung June; Kim, In Joo

    2017-01-01

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without

  8. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Yeol [Dept. of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon (Korea, Republic of); Jun, Sung Min [Dept. of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of); Pak, Kyoung June; Kim, In Joo [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-04-15

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without.

  9. The influence of blood glucose level on distribution of 18F-FDG in mice with tumor

    International Nuclear Information System (INIS)

    Fu Zhanli; Lin Jinghui; Wang Rongfu; Zhu Shaoli; Zhang Chunli; Pan Zhongyun

    2003-01-01

    To explore the influence of blood glucose level on 18 F-FDG uptake in tumor and normal tissues of mice, thirty five mice carrying Ehrlich ascitic cancer (EAC) are fasted 20 h and divided into four groups. The glucose loading group (n=12) and the control group (n=11) is given a solution of 50% glucose and distilled water orally just one hour before the 18 F FDG injection. Another two groups (n=5, n=7) is given a solution of 10%, 30% glucose respectively. Before 18 F-FDG intravenous injection, blood glucose levels are measured. The mice are killed one hour after the 18 F FDG injection. The tumor and normal tissues are excised, weighed, and counted by a γ well counter. The quantity of 18 F-FDG uptake is expressed as standardized uptake value (SUV). Blood glucose levels of the mice with EAC in the glucose loading group are significantly elevated than the control group (11.98 ± 3.01 mmol/L vs. 3.95 ± 1. 11 mmol/L, P 18 F-FDG uptake ratios of tumor and muscle in the glucose-loading group (1.34, 0.86, 0.48, 0.09, 1.38 respectively) are significantly lower than those in the control group (3.02, 2.62, 0.80, 0.16, 5.38 respectively) (P 18 F-FDG uptake ratios of tumor and brain, heart and blood in the glucose loading group (8.31. 1.05, 1.58, 103.00 respectively) are significantly higher than those in the control group (1.57, 0.64, 1.20, 9.73 respectively) (P 18 F-FDG distribution in mice. suggesting the blood glucose level should be controlled during clinically 18 F-FDG imaging

  10. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    NARCIS (Netherlands)

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG

  11. Increased FDG bone marrow uptake after intracoronary progenitor cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Doebert, N.; Menzel, C.; Diehl, M.; Hamscho, N.; Zaplatnikov, K.; Gruenwald, F. [Dept. of Nuclear Medicine, Univ. of Frankfurt (Germany)

    2005-02-01

    Patients with coronary artery disease who undergo FDG PET for therapy monitoring after intracoronary progenitor cell infusion (PCT) show an increased bone marrow uptake in some cases. Aim of the study was to evaluate the systemic bone marrow glucose metabolism in this patient group after PCT. Patients, methods: FDG bone marrow uptake (BMU), measured as standardized uptake value (SUVmax) in the thoracic spine, was retrospectively evaluated in 23 control patients who did not receive PCT and in 75 patients who received PCT 3{+-}2.2 days before PET scanning. Five out of them were pretreated with granulocyte colony-stimulating factor (G-CSF) 5 days prior to PCT and 10{+-}1.2 days before PET scanning. In 39 patients who received only PCT without G-CSF and underwent PET therapy monitoring 4 months later, baseline and follow up bone marrow uptake were measured. Leucocytes, C-reactive protein (CRP) levels and the influence of nicotine consumption were compared with the BMU. Results: In patients (n=70) who received PCT without G-CSF, BMU media (1.3) was slightly, but significantly higher than in the controls (1.0) (p=0.02) regardless nicotine consumption. BMU did not change significantly 4 months later (1.2) (p=0.41, n.s.). After G-CSF pretreatment, patients showed a significantly higher bone marrow uptake (3.7) compared to patients only treated with PCT (1.3) (p=0.023). Leucocyte blood levels were significantly higher in patients with a BMU {>=}2.5 compared to patients with a bone marrow SUVmax<2.5 (p<0.001). CRP values did not correlate with the BMU (rho -0.02, p=0.38). Conclusion: Monitoring PCT patients, a slightly increased FDG BMU may be observed which remains unchanged for several months. Unspecific bone marrow reactions after PCT may be associated with increased leucocyte blood levels and play a role in the changed systemic glucose BMU. In addition, pretreatment with G-CSF shows an intense amplitifcation of BMU. (orig.)

  12. A Case of Esophageal Leiomyoma Showing High FDG Uptake on F-18 FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Hyuen [College of Medicine, Cheonan (Korea, Republic of); Ryu, Jin Sook [Asan Medical Center, University of Ulsan College of Medicine (Korea, Republic of)

    2008-08-15

    An esophageal leiomyoma is the most common benign tumor of the esophagus mainly occurred in intramural portion. Occasionally, it is difficult to discriminate esophageal malignancy from large leiomyoma. Although F-18 FDG PET has been used for differentiating malignant from benign disease, false-positive cases have been reported. Recently, uterine leiomyoma has been reported to have relatively high F-18 FDG uptake in some patients but little is known about how an esophageal leiomyoma might be showed on F-18 FDG PET. We report a case of esophageal leiomyoma that showed high FDG uptake on PET images.

  13. A Case of Esophageal Leiomyoma Showing High FDG Uptake on F-18 FDG PET

    International Nuclear Information System (INIS)

    Lee, Jai Hyuen; Ryu, Jin Sook

    2008-01-01

    An esophageal leiomyoma is the most common benign tumor of the esophagus mainly occurred in intramural portion. Occasionally, it is difficult to discriminate esophageal malignancy from large leiomyoma. Although F-18 FDG PET has been used for differentiating malignant from benign disease, false-positive cases have been reported. Recently, uterine leiomyoma has been reported to have relatively high F-18 FDG uptake in some patients but little is known about how an esophageal leiomyoma might be showed on F-18 FDG PET. We report a case of esophageal leiomyoma that showed high FDG uptake on PET images

  14. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K. [Department of Radiological Sciences, Guy' s, King' s and St. Thomas' School of Medicine, London (United Kingdom)

    1999-10-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  15. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    International Nuclear Information System (INIS)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K.

    1999-01-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  16. Incidence and characteristics of uterine leiomyomas with FDG uptake

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Kido, Aki; Miyagawa, Masao; Inoue, Takeshi; Shinohara, Katsura; Kajihara, Makoto

    2008-01-01

    Uterine leiomyomas sometimes show focal 18 F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) images that may result in a false-positive diagnosis for malignant lesions. This study was conducted to investigate the incidence and characteristics of uterine leiomyomas that showed FDG uptake. We reviewed FDG-PET and pelvic magnetic resonance (MR) images of 477 pre-menopausal (pre-MP, age 42.1±7.3 years) and 880 post-MP (age 59.9±6.8 years) healthy women who underwent these tests as parts of cancer screening. Of 1357, 323 underwent annual cancer screening four times, 97 did three times, 191 did twice, and the rest were screened once. Focal FDG uptake (maximal standardized uptake value >3.0) in the pelvis was localized and characterized on co-registered PET/MR images. Uterine leiomyomas were found in 164 pre-MP and 338 post-MP women. FDG uptake was observed in 18 leiomyomas of 17 of the 164 (10.4%) pre-MP women and in 4 leiomyomas of 4 of the 338 (1.2%) post-MP women. The incidence was significantly higher in pre-MP women than in post-MP women (chi-square, P<0.001). Of the 22, 13 showed signal intensity equal to or higher than that of the myometrium on T2-weighted MR images, which suggested abundant cellularity, whereas the majority of leiomyomas without FDG uptake showed low signal intensity. Of the 13 women, 12 examined more than twice showed substantial changes in the level of FDG uptake in leiomyomas each year with FDG uptake disappearing or newly appearing. These changes were observed frequently in relation with menopause or menstrual phases. Leiomyomas with focal FDG uptake were seen in both pre- and post-MP women with a higher incidence in pre-MP women. Abundant cellularity and hormonal dependency may explain a part of the mechanisms of FDG uptake in leiomyomas. It is important to know that the level of FDG uptake in leiomyomas can change and newly appearing FDG uptake does not necessarily mean malignant transformation. (author)

  17. Low carbohydrate diet before 18F-FDG tumor imaging contributes to reduce myocardial 18F-FDG uptake

    International Nuclear Information System (INIS)

    Miao Weibing; Chen Shaoming; Zheng Shan; Wu Jing; Peng Jiequan; Jiang Zhihong

    2014-01-01

    Objective: To evaluate whether low carbohydrate diet before 18 F-FDG tumor imaging could reduce myocardial 18 F-FDG uptake. Methods: From April 2011 to January 2012, 70 patients were enrolled in this study.They were randomly divided into control group (34 cases) and test group (36 cases). Patients in control group were on regular diet, while those in test group had low carbohydrate diet in the evening before imaging. Blood samples were taken before injection of 18 F-FDG for the measurement of serum glucose, free fatty acid,insulin and ketone body. Whole body 18 F-FDG tomography was performed with dual-head coincidence SPECT. The myocardial uptake of FDG was assessed visually and scored as 0 for no uptake, 1 for uptake lower than liver, 2 for uptake similar to liver, 3 for uptake higher than liver, and 4 for remarkable uptake.The ratio of myocardium to liver (H/L) was calculated. Two-sample t test, Wilcoxon rank sum test and linear correlation analysis were performed. Results: The myocardial uptake in test group was significantly lower than that in control group with H/L ratios of 0.94±0.57 and 1.50±1.04, respectively (t=-2.75, P<0.05). The concentrations of serum free fatty acid and ketone body in test group were significantly higher than those in control group: (0.671±0.229) mmol/L vs (0.547±0.207) mmol/L and (0.88±0.60) mmol/L vs (0.57±0.32) mmol/L, t=2.38 and 2.67, both P<0.05. The concentrations of glucose and insulin were (5.28±1.06) mmol/L and (35.16±33.70) pmol/L in test group, which showed no significant difference with those in control group ((5.19±0.78) mmol/L and (41.64±35.13) pmol/L, t=0.39 and-0.79, both P>0.05). A negative correlation was found between the myocardial uptake of 18 F-FDG and serum free fatty acid/ketone body concentration (r=-0.40, -0.33, both P<0.01), respectively. There was no correlation between the myocardial uptake of 18 F-FDG and glucose/insulin (r=-0.02, 0.13, both P>0.05), respectively. Conclusion: Low carbohydrate

  18. Physiological FDG uptake in the ovaries after hysterectomy

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Ozawa, Fukujiro; Kido, Aki; Okada, Hiroyuki

    2007-01-01

    It is known that focal 18 F-fluorodeoxyglucose (FDG) uptake is physiologically seen in the ovaries and uterus of premenopausal women in correlation with the menstrual cycle, which may cause false-positive diagnoses on the images of FDG positron emission tomography (PET). The objective of this study was to clarify whether women of reproductive age after hysterectomy whose ovaries were preserved, also showed physiological ovarian FDG uptake. We reviewed 26 women after hysterectomy (age 51.1±5.0 years), who underwent annual cancer screening, including FDG-PET and pelvic magnetic resonance (MR) imaging, three times. Seven women (age 45.9±5.8 years, range 34-52 years) had at least one ovary, showing changes in its appearance including the size and number of follicles on MR images each year, which suggested that the ovary was functioning. Four of the seven women showed focal FDG uptake (standardized uptake value 4.2±1.1) that corresponded to the normal ovaries on five PET examinations. Another group of 19 women (age 53.1±3.1 years, range 47-59 years) who had small ovaries without changes on MR images each year did not show FDG uptake in the ovaries. Physiological FDG uptake observed in the ovaries of women of reproductive age even after hysterectomy is reasonably common. As it is not easy to determine the hormonal cycle in these women, it is essential to correlate focal FDG uptake in the pelvis with anatomical and morphological findings on MR images to avoid false-positive diagnoses. (author)

  19. Utilization of CT images for the quantification of FDG uptake

    International Nuclear Information System (INIS)

    Karidioula, I.; De Freitas, D.; Cachin, F.; Geissler, B.; Jullien, Ph.; Maublant, J.

    2006-01-01

    The aim of this study was to evaluate an automatic method based on a computed tomography (CT) derived region of interest (ROI) to quantify the mean standardized uptake value (SUVm) of 18 F-fluoro-deoxy-glucose (FDG) in pulmonary lesions detected by positron emission tomography (PET). A total of 164 pairs of slices were selected in a series of PET/CT studies performed in 26 patients presenting lung tumours of various forms and complexities. On each matched CT slice, a ROI was obtained by growth-region segmentation starting from a pixel contained in the tumour. The obtained ROI was then applied to the PET image to calculate SUVm. Results were compared with the conventional manual method using a geometric ROI positioned directly on the PET lesion. The automatic delineation of the tumour from the CT image was successful in 136 sections (83%). The SUVm calculated by the manual and automatic method were respectively (mean±standard deviation) 5.05±2.39 and 6.70±3.18 (p<0.05). The ROI size (in number of pixels) was respectively 28±23 and 21±17 (p<0.05). The variability of the automatic method was 0% versus 20% for the manual method. SUV of FDG in PET/CT can be calculated with an excellent reproducibility by using the CT-derived limits of the lesion

  20. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target

    Energy Technology Data Exchange (ETDEWEB)

    Farace, Paolo; Merigo, Flavia; Galie, Mirco; Sbarbati, Andrea; Marzola, Pasquina [University of Verona, Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, Verona (Italy); D' Ambrosio, Daniela; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano [Policlinico ' S. Orsola-Malpighi' , Department of Nuclear Medicine, Bologna (Italy); Degrassi, Anna [Nerviano Medical Sciences, Milan (Italy); Rubello, Domenico [' S. Maria della Misericordia' Hospital, PET Centre, Department of Nuclear Medicine, Rovigo (Italy)

    2009-04-15

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging. (orig.)

  1. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target.

    Science.gov (United States)

    Farace, Paolo; D'Ambrosio, Daniela; Merigo, Flavia; Galiè, Mirco; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina

    2009-04-01

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging.

  2. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target

    International Nuclear Information System (INIS)

    Farace, Paolo; Merigo, Flavia; Galie, Mirco; Sbarbati, Andrea; Marzola, Pasquina; D'Ambrosio, Daniela; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano; Degrassi, Anna; Rubello, Domenico

    2009-01-01

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging. (orig.)

  3. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    International Nuclear Information System (INIS)

    Miles, K.A.; Keith, C.J.; Griffiths, M.R.; Fuentes, M.; Bunce, I.

    2002-01-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K A [Southernex Imaging Group, QLD (Australia); Queensland University of Technology, QLD (Australia); Keith, C J [Southernex Imaging Group, QLD (Australia); Wesley Research Institute, QLD (Australia); Griffiths, M R [Queensland University of Technology, QLD (Australia); Fuentes, M [Southernex Imaging Group, QLD (Australia); Bunce, I [Wesley Research Institute, QLD (Australia)

    2002-07-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc.

  5. Persistent non-specific FDG uptake on PET imaging following hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Hongming; Chacko, Thomas K.; Hickeson, Marc; Stevenson, Karen; Feng, Qi; Ponzo, Fabio; Alavi, Abass [Division of Nuclear Medicine, Department of Radiology, The Hospital of University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Garino, Jonathan P. [Department of Orthopedic Surgery, The Hospital of University of Pennsylvania, Philadelphia, PA 19802 (United States)

    2002-10-01

    Hip arthroplasty is a common surgical procedure, but the diagnosis of infection associated with hip arthroplasty remains challenging. Fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been shown to be a promising imaging modality in settings where infection is suspected. However, inflammatory reaction to surgery can result in increased FDG uptake at various anatomic locations, which may erroneously be interpreted as sites of infection. The purpose of this study was to assess the patterns and time course of FDG accumulation following total hip replacement over an extended period of time. Firstly, in a prospective study nine patients with total hip replacement were investigated to determine the patterns of FDG uptake over time. Three FDG-PET scans were performed in each patient at about 3, 6 and 12 months post arthroplasty. Secondly, in a retrospective analysis, the medical and surgical history and FDG-PET imaging results of 710 patients who had undergone whole-body scans for the evaluation of possible malignant disorders were reviewed. The history of arthroplasty and FDG-PET findings in the hip region were reviewed for this study. Patients with symptomatic arthroplasties or related complaints during FDG-PET scanning were excluded from the analysis. During the entire study period, all nine patients enrolled in the prospective study were demonstrated to have increased FDG uptake around the femoral head or neck portion of the prosthesis that extended to the soft tissues surrounding the femur. Among the patients reviewed in the retrospective study, 18 patients with a history of 21 hip arthroplasties who were asymptomatic at the time of FDG-PET scan met the criteria for inclusion. The time interval between the hip arthroplasty and the FDG-PET study ranged from 3 months to 288 months (mean{+-}SD: 80.4{+-}86.2 months). In 81% (17 of 21) of these prostheses, increased FDG uptake could be noted around the femoral head or neck portion of the

  6. The correlation between FDG uptake and biological molecular markers in pancreatic cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Hayato, E-mail: kaida@med.kindai.ac.jp [Department of Radiology, Kindai University Faculty of Medicine, Osakasayama City, Osaka, 589-8511 (Japan); Azuma, Koichi [Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, 830-0011 (Japan); Kawahara, Akihiko [Department of Diagnostic Pathology, Kurume University Hospital, Kurume City, Fukuoka, 830-0011 (Japan); Yasunaga, Masafumi; Kitasato, Yuhei [Department of Surgery, Kurume University School of Medicine, Kurume City, Fukuoka, 830-0011 (Japan); Hattori, Satoshi [Biostatic Center, Kurume University School of Medicine, Kurume City, Fukuoka, 830-0011 (Japan); Taira, Tomoki [Department of Diagnostic Pathology, Kurume University Hospital, Kurume City, Fukuoka, 830-0011 (Japan); Ureshino, Hiroki [Department of Surgery, Kurume University School of Medicine, Kurume City, Fukuoka, 830-0011 (Japan); Kage, Masayoshi [Department of Diagnostic Pathology, Kurume University Hospital, Kurume City, Fukuoka, 830-0011 (Japan); Ishii, Kazunari; Murakami, Takamichi [Department of Radiology, Kindai University Faculty of Medicine, Osakasayama City, Osaka, 589-8511 (Japan); Ishibashi, Masatoshi [Division of Nuclear Medicine, PET Center, and Department of Radiology, Fukuoka Tokushukai Hospital, Kasuga City, Fukuoka, 816-0864 (Japan)

    2016-10-15

    Purpose: We examined whether fluorine-18 fluorodeoxyglucose (FDG) uptake is related to the mammalian target of rapamycin (mTOR) signal pathway and its related proteins in pancreatic cancer patients. Methods: We retrospectively studied 53 pancreatic cancer patients who underwent FDG positron emission tomography (PET) or FDG PET/CT, and complete curative surgical resection. The SUV max, the tumor to nontumor activity of pancreas [T/N (P)] ratio and the T/N of liver [T/N (L)] ratio were calculated. The expressions of glucose transporter-1(Glut-1) and mTOR pathway proteins in pancreas cell lines were examined by immune blots. Excised tumor tissue was analyzed by immunohistochemistry using monoclonal antibodies for Glut-1, epidermal growth factor receptor (EGFR), mTOR, p70S6kinase (p70S6) and S6 ribosomal protein (S6). Results: The expressions of Glut-1, EGFR and p70S6 were significantly correlated with the SUV max, T/N (P) ratio and T/N (L) ratio. The expressions of mTOR and S6 were not correlated with all parameters. The expression of Glut-1 was positively correlated with the expressions of EGFR and p70S6, but not with mTOR or S6. S6 was positively correlated with p70S6. Conclusions: Glut-1, EGFR and p70S6 expressions are associated with the FDG uptake mechanism of pancreatic cancer. FDG uptake may predict the levels of EGFR and p70S6 expressions, and FDG uptake reflects glucose metabolism and cancer progression.

  7. 18FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases

    International Nuclear Information System (INIS)

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-01-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased 18 F-fluorodeoxy-D-glucose ( 18 FDG) uptake. Though the possible utility of 18 FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung 18 FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between 18 FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from 18 FDG PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and 18 FDG uptake between the control and ILD cases were tested. The CT density and 18 FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung 18 FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung 18 FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases. (author)

  8. Combination of Radiation and Burn Injury Alters FDG Uptake in Mice

    Science.gov (United States)

    Carter, Edward A.; Winter, David; Tolman, Crystal; Paul, Kasie; Hamrahi, Victoria; Tompkins, Ronald; Fischman, Alan J.

    2012-01-01

    Radiation exposure and burn injury have both been shown to alter glucose utilization in vivo. The present study was designed to study the effect of burn injury combined with radiation exposure, on glucose metabolism in mice using [18F] Fluorodeoxyglucose (18FDG). Groups of male mice weighing approximately 30g were studied. Group 1 was irradiated with a 137Cs source (9 Gy). Group 2 received full thickness burn injury on 25% total body surface area followed by resuscitated with saline (2mL, IP). Group 3 received radiation followed 10 minutes later by burn injury. Group 4 were sham treated controls. After treatment, the mice were fasted for 23 hours and then injected (IV) with 50 µCi of 18FDG. One hour post injection, the mice were sacrificed and biodistribution was measured. Positive blood cultures were observed in all groups of animals compared to the shams. Increased mortality was observed after 6 days in the burn plus radiated group as compared to the other groups. Radiation and burn treatments separately or in combination produced major changes in 18FDG uptake by many tissues. In the heart, brown adipose tissue (BAT) and spleen, radiation plus burn produced a much greater increase (p<0.0001) in 18FDG accumulation than either treatment separately. All three treatments produced moderate decreases in 18FDG accumulation (p<0.01) in the brain and gonads. Burn injury, but not irradiation, increased 18FDG accumulation in skeletal muscle; however the combination of burn plus radiation decreased 18FDG accumulation in skeletal muscle. This model may be useful for understanding the effects of burns + irradiation injury on glucose metabolism and in developing treatments for victims of injuries produced by the combination of burn plus irradiation. PMID:23143615

  9. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  10. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging

    DEFF Research Database (Denmark)

    Reichkendler, M. H.; Auerbach, P.; Rosenkilde, M.

    2013-01-01

    abdominal SAT compared with CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups, and the decrease was distributed equally among subcutaneous and intra-abdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose...

  11. Discussion on the alteration of FDG uptake by the breast according to the menstrual cycle in 18F-FDG PET/CT

    Science.gov (United States)

    Park, H. H.; Park, M. S.; Lee, C. H.; Cho, J. H.; Dong, K. R.; Chung, W. K.

    2012-09-01

    18F-FDG (fluorodeoxyglucose) PET (positron emission tomography)/CT (computed tomography) is a useful modality for identifying high-glucose-consuming cells, such as cancer cells, by the glucose metabolism of FDG. FDG is taken up by cancer and inflammatory cells, but occasionally there is also some FDG uptake by normal tissues as a result of their individual physiological characteristics. In particular, in fertile females, unusual FDG uptake in the breast changes according to the stages in the menstrual cycle, which can adversely affect a diagnosis. Therefore, this study examined the change in breast FDG uptake in the menstrual cycle on 18F-FDG PET/CT. One hundred and sixty females (34±3.5 years old), who had not undergone a gynecologic anamnesis and had a regular menstrual cycle over the previous 6 months, were examined from March 2010 to February 2011. The subjects were divided into the following four groups (each with 40 patients): flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator Ver. 0.14 and history taking. Discovery Ste was used as the PET/CT. The standardized uptake values (SUVs) on the accumulated region on the breast were analyzed, and three nuclear medicine specialists performed a blind test. The SUVs on the breast were the flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). A high uptake value was observed in the secretory, flow and ovulatory phases. The FDG accumulation of the breast was divided into the following three grades compared with the lung and liver by gross analysis: the breast uptake was equal to the lung (Grade I), between the lung and liver (Grade II) and equal to or greater than the liver (Grade III). These results showed a high uptake value in the secretory, flow and ovulatory phases. In fertile females, the FDG uptake of the breast showed changes according to the menstrual cycle, which can be used to improve the diagnosis

  12. Gene expression and 18FDG uptake in atherosclerotic carotid plaques

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Graebe, Martin; Fisker Hag, Anne Mette

    2010-01-01

    ) and an additional ipsilateral internal carotid artery stenosis of greater than 60% were recruited. FDG uptake in the carotids was determined by PET/computed tomography and expressed as mean and maximal standardized uptake values (SUVmean and SUVmax). The atherosclerotic plaques were subsequently recovered...... by carotid endarterectomy. The gene expression of markers of vulnerability - CD68, IL-18, matrix metalloproteinase 9, cathepsin K, GLUT-1, and hexokinase type II (HK2) - were measured in plaques by quantitative PCR. RESULTS: In a multivariate linear regression model, GLUT-1, CD68, cathepsin K, and HK2 gene...... expression remained in the final model as predictive variables of FDG accumulation calculated as SUVmean (R=0.26, PK, and HK2 gene expression as independent predictive variables of FDG accumulation calculated...

  13. Cases with focal FDG uptake in the thyroid gland detected by FDG-PET screening

    International Nuclear Information System (INIS)

    Takeda, Yutaka; Iguchi, Atsuko; Matsuo, Chikashi; Otawa, Kouichi; Nakamura, Mamoru

    2007-01-01

    We examined fifteen cases with focal fluorodeoxyglucose (FDG) uptake in the thyroid gland detected by FDG-positron emission tomography (PET) screening for cancer. Examination of the thyroid gland was carried out by using computer tomography, ultrasound sonography, laboratory test and fine needle aspiration cytology (FNAC). Surgical operation was performed to the patient who was suspected of having thyroid cancer by FNAC or clinical findings. Thyroid cancer was histologically confirmed in 4 cases. Malignancy was not ruled out by FNAC in one patient. Seven patients were suspected of having benign thyroid tumor (adenoma, adenomatous goiter). Three patients were diagnosed with thyroiditis (Hashimoto thyroiditis, subacute thyroiditis, painless thyroiditis) by laboratory tests. It was not easy to differentiate between cancer and benign diseases only by FDG-PET. However, it was useful to detect thyroid tumor especially if the tumor is hardly palpable. FDG-PET was also valuable as a diagnostic imaging technique to evaluate metastasis and the extent of cancer. (author)

  14. The effect of PPAR-γ agonist on 18F-FDG uptake in tumor and macrophages and tumor cells

    International Nuclear Information System (INIS)

    Kim, Se-Lim; Kim, Eun-Mi; Cheong, Su-Jin; Lee, Chang-Moon; Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Yim, Chang Yeol

    2009-01-01

    Purpose: The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors, and its role in adipogenesis and glucose metabolism has been well established. PPAR-γ agonists have been shown to inhibit many cytokines and to have anti-inflammatory effects. In pathologic conditions, enhanced fluoro-2-deoxy-D-glucose (FDG) uptake is observed not only in malignant tumors but also in inflammatory lesions, and this uptake occurs through the glucose transporter in these cells. Thus, the present study was undertaken to investigate the potential of using PPAR-γ's glucose uptake ability as a diagnostic tool to differentiate between macrophage and tumor cells. Materials and Methods: Cellular uptake studies were carried out on macrophage and two tumor cell lines for comparison by using 18 F-FDG. Western blot analysis was performed to determine the expression levels of both the glucose transporter and hexokinase protein. To confirm the possibility of differentiation between tumor and inflammatory lesions using rosiglitazone based on in vitro studies, 18 F-FDG (3.7x10 6 Bq) uptake in A549 and RAW 264.7 xenograft mice was compared. Results: The cellular uptake study findings were quite different for macrophages and tumor cells. 18 F-FDG uptakes by macrophages decreased by about 60% but was increased twofold in tumor cells after rosiglitazone treatment. Moreover, the expressions of proteins related to glucose uptake correlated well with cellular glucose accumulation in both cell types. Higher tumor uptake was observed after the injection of rosiglitazone in A549 xenograft mice (1.58±0.55 to 4.66±1.16), but no significant change of 18 F-FDG uptake was shown in RAW 264.7 xenograft mice (4.04±1.16 to 4.00±0.14). Conclusion: The present study demonstrates the roles of PPAR-γ agonist on FDG uptake in macrophages and tumor cells in vitro and in vivo. Our findings suggest that rosiglitazone has the

  15. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    Science.gov (United States)

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy. Assessment by F-18-FDG PET study

    International Nuclear Information System (INIS)

    Uehara, Toshiisa; Ishida, Yoshio; Hayashida, Kohei

    1998-01-01

    In an investigation of myocardial metabolic abnormalities in hypertrophic myocardium, the myocardial glucose metabolism was evaluated with F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) in 32 patients with hypertrophic cardiomyopathy, and the results were compared with those in 9 patients with hypertensive heart disease. F-18-FDG PET study was performed in the fasting and glucose-loading states. The myocardial regional %dose uptake was calculated quantitatively. The average regional %dose uptake in the fasting state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy was significantly higher than that in the patients with hypertensive heart disease (0.75±0.34%, 0.65±0.25%, and 0.43±0.22%/100 g myocardium, respectively). In contrast, the average %dose uptake in the glucose-loading state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy was not significantly different from that in patients with hypertensive heart disease (1.17±0.49%, 0.80±0.44% and 0.99±0.45%, respectively). The patients with apical hypertrophy had also low %dose uptake in the fasting state (0.38±0.21%) as in the hypertensive heart disease patients, so that the characteristics of asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy are considered to be high FDG uptake throughout the myocardium in the fasting state. Patients with apical hypertrophy are considered to belong to other disease categories metabolically. F-18-FDG PET study is useful in the evaluation of the pathophysiologic diagnosis of patients with hypertrophic cardiomyopathy. (author)

  17. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-C-11]tyrosine PET

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Paans, AMJ; Plukker, JTM; Hoekstra, HJ; Vaalburg, W; Schraffordt Koops, H.

    The aims of the study were to compare the value of L-[1-C-11]tyrosine (TYR) and [F-18]fluoro-2-deoxy-D-glucose (FDG) as tumor tracers in patients with breast cancer, to investigate the correlation between quantitative values and standardized uptake values (SUVs) and to estimate the value of SUVs for

  18. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    Directory of Open Access Journals (Sweden)

    Lonneke Bahler

    Full Text Available Physiological colonic 18F-fluorodeoxyglucose (18F-FDG uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT. Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake.In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid.The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature.Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  19. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  20. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Veli [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2007-07-15

    Uptake in brown adipose tissue (hibernating fat) is sometimes seen at FDG-PET examinations. Despite a characteristic appearance, this may hide clinically relevant uptake. Stimulation of the sympathetic nervous system increases glucose uptake of brown fat. We now re-examine patients with brown fat activity that could disguise tumour uptake after pre-treatment with propranolol (a non-selective {beta}-blocker) in order to reduce the uptake. Our first examinations of this kind are reported. Eleven patients with strong brown fat uptake were studied. There was a mean of 5 days (range 2-8) between the examinations. At the second examination, 80 mg of propranolol was given orally 2 h before FDG administration. In addition to visual evaluation of the brown fat uptake, SUV assessments of the uptake in brown fat, lung, heart, liver, spleen and bone marrow were made. All patients showed complete or almost complete disappearance of the brown fat activity at the second examination (p < 0.001) both upon visual evaluation and when comparing SUVs. In seven patients there was also uptake in a known or strongly suspected malignancy, which remained unchanged between the examinations. Beyond an insignificant decrease in the myocardial uptake, there was no redistribution to the various examined organs at the second examination. Pre-treatment with a single dose of propranolol blocks the FDG uptake in brown adipose tissue, thereby increasing the specificity of the examination. The tumour uptake seems not to be impaired. (orig.)

  1. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  2. Relationship between local cerebral glucose uptakes, serum prolactin, growth hormone and cortisol levels changes during epilepsy

    International Nuclear Information System (INIS)

    Wang Mingfang; Mao Xianghui; Tang Ganghua; Zhao Jun; Sun Aijun

    2002-01-01

    Objective: To explore the relation of local cerebral FDG uptake value of glucose to the changes of prolactin (PRL), growth hormone (GH) and cortisol levels in serum during epilepsy. Methods: 76 epileptic patients with solitary epileptic focus were examined by 2-deoxy-2-[ 18 F] fluoro-D-glucose ( 18 F-FDG) positron emission tomography (PET) imaging and the FDG uptake value of epileptic foci were measured. Serum PRL, GH and cortisol levels of the patients were determined by radioimmunoassay (RIA) before and after seizures. Results: During ictal studies, all patients showed increased FDG uptake of epileptic foci compared with that in interictal phase. The serum PRL, GH and cortisol levels were significant higher after seizures. The changes of hormone levels correlated significantly with the lengths of seizure free intervals (SFIs) and with the types of seizures. But the variations of hormone levels had no relation with the site and FDG uptake of epileptic foci. In patients with absentia seizures, no significant increase was observed in serum PRL and cortisol levels. The changes of GH were not related with the types of seizures. Also, it was found that changes of hormone levels had significant relations to the lengths of SFIs. Conclusions: Serum PRL, GH and cortisol levels were significantly different before and after seizures. This study suggests that changes of postictal hormone levels correlated significantly with the types of seizures and lengths of SFIs, but the changes of hormone levels are not related with the site and FDG uptake of epileptic foci

  3. Patterns of FDG uptake in stomach on FDG PET: correlation with endoscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Min Jeong; Cheon, Gi Jeong; Kim, Seong Eun; Choi, Chang Woon; Lim, Sang Moo [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2004-07-01

    The purpose of our study was to find out the significant findings of stomach on FDG PET. Thirty-nine patients who underwent both FDG PET and endoscopy from Jun. 2003, to Aug. 2004 were included in our study. In all of them, FDG PET and gastrofibroscopy were performed within one week. One man who had undergone subtotal gastrectomy was excluded. We reviewed 38 cases (18 for medical check up, 15 for work up of other malignancies, and 5 for the evaluation of stomach lesion). Their mean age was 56 years old (range:32{approx}79), men and women were 28 and 10, respectively. On interpretation of FDG PET scan, two nuclear physician evaluated five parameters on FDG-PET findings of stomach with a concensus : 1) visual grades 2) maximum SUV (SUVmax), 3) focality, 4) asymmetry, and 5) gross appearance. We correlated FDG PET findings of stomach with those of endoscopy. On endoscopy, six of 38 patients were proven as gastric cancer, and others had inflammatory lesion (ulcer in 3, chronic gastritis in 12, uncommon from gastritis in 5) or benign noninflammatory lesions (polyp and varix in 3, and normal limit). On the visual analysis, FDG uptake of stomach cancer had the tendency of higher uptake than the other lesions. SUVmax of gastric cancer was 7.95{+-}4.83 which was significantly higher than the other benign lesions (2.9{+-}0.69 in ulcer, 3.08{+-}1.2 in chronic gastritis 3.2{+-}1.49 in uncommon from gastritis). In the appearance of stomach on PET, gastric cancer was shown as focal lesion (5 of 6), and those of benign inflammatory lesions were asymmetric (14 of 20), and diffuse (9 of 20). Some cases of chronic inflammatory lesions, such as ulcer, and chronic gastritis, showed focal appearance and mimicked cancerous lesion (4 of 15). On FDG PET, the lesions of stomach cancer had higher FDG uptake and focal appearance comparing with the other benign inflammatory lesions. However, ulcer, and chronic gastritis showed focal appearance on PET, which could be mimicked as cancerous

  4. Patterns of FDG uptake in stomach on FDG PET: correlation with endoscopic findings

    International Nuclear Information System (INIS)

    Chae, Min Jeong; Cheon, Gi Jeong; Kim, Seong Eun; Choi, Chang Woon; Lim, Sang Moo

    2004-01-01

    The purpose of our study was to find out the significant findings of stomach on FDG PET. Thirty-nine patients who underwent both FDG PET and endoscopy from Jun. 2003, to Aug. 2004 were included in our study. In all of them, FDG PET and gastrofibroscopy were performed within one week. One man who had undergone subtotal gastrectomy was excluded. We reviewed 38 cases (18 for medical check up, 15 for work up of other malignancies, and 5 for the evaluation of stomach lesion). Their mean age was 56 years old (range:32∼79), men and women were 28 and 10, respectively. On interpretation of FDG PET scan, two nuclear physician evaluated five parameters on FDG-PET findings of stomach with a concensus : 1) visual grades 2) maximum SUV (SUVmax), 3) focality, 4) asymmetry, and 5) gross appearance. We correlated FDG PET findings of stomach with those of endoscopy. On endoscopy, six of 38 patients were proven as gastric cancer, and others had inflammatory lesion (ulcer in 3, chronic gastritis in 12, uncommon from gastritis in 5) or benign noninflammatory lesions (polyp and varix in 3, and normal limit). On the visual analysis, FDG uptake of stomach cancer had the tendency of higher uptake than the other lesions. SUVmax of gastric cancer was 7.95±4.83 which was significantly higher than the other benign lesions (2.9±0.69 in ulcer, 3.08±1.2 in chronic gastritis 3.2±1.49 in uncommon from gastritis). In the appearance of stomach on PET, gastric cancer was shown as focal lesion (5 of 6), and those of benign inflammatory lesions were asymmetric (14 of 20), and diffuse (9 of 20). Some cases of chronic inflammatory lesions, such as ulcer, and chronic gastritis, showed focal appearance and mimicked cancerous lesion (4 of 15). On FDG PET, the lesions of stomach cancer had higher FDG uptake and focal appearance comparing with the other benign inflammatory lesions. However, ulcer, and chronic gastritis showed focal appearance on PET, which could be mimicked as cancerous lesion on PET

  5. Free fatty acid has a negative correlation with myocardial uptake of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Eo, Jae Seon; Lee, Won Woo; Park, Eun Kyung; So, Young; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Free fatty acid (FFA) is a marker of insulin resistance. Myocardial uptake of FDG is influenced by insulin resistance. We investigated the correlation of FFA and myocardial uptake of FDG in whole body PET. We measured serum FFA levels in consecutive 112 patients who underwent whole body FDG PET due to malignancy work up. Twelve patients with diabetes. 13 with liver disease, 4 with suspicious ischemic heart disease. 1 with steroid therapy, and 10 with final diagnosis of benign disease were excluded. After fasting of diet or beverages for at least 6 hours, blood was aspirated at peripheral vein for measurement of FFA and glucose in serum. FDG was injected as a dose of 0.14 mCi/kg body weight. Fifty minutes later, whole body PET scan was performed from skull base to upper thigh. Maximum SUV (maxSUV) using lean body weight was obtained in heart. liver, cerebellum, muscle and malignant tissues. Finally 72 patients (M:F 45:27, age 56.9{+-}15.8 years) were enrolled. There were 27 non small cell lung cancer, 14 lymphoma, 10 esophageal cancer, 3 breast cancer, 3 colon cancer, 3 renal cell cancer, 2 melanoma, and 10 other cancers. Serum glucose level was 96.6{+-}14.3 mg/dL. Serum FFA level was 720.0{+-}315.2 uEq/L. MaxSUV of main malignant tissue ranged from 0.7 to 11.5 (mean 4.9{+-}2.6). MaxSUV of each organs were 1.0 to 14.6 (mean 4.0{+-}3.0) in heart, 2.7 to 6.4 (mean 3.9{+-}0.6) in cerebellum, 1.0 to 2.6 (mean 1.9{+-}0.3) in liver, and 0.6 to 1.1 (mean 0.8{+-}0.1) in gluteal muscle. FFA and maxSUV of heart had a negative correlation. The best fitting line was MaxSUV of Heart = -4.4583 x In(FF A) + 32.964. But FFA had no correlation with any other parameters like serum glucose level, and MaxSUV of cerebellum, muscle, liver and malignant tissues. We found a negative correlation between FFA levels and myocardial uptake of FDG. FFA modifying drugs such as nicotinic acid derivatives may have influence on myocardial uptake of FDG.

  6. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...... of glucose. At maximal insulin concentrations, the enhancing effect of exercise on glucose uptake may involve enhancement of glucose disposal, an effect that is probably less in muscle from diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)......It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise...

  7. Breast cancer with low FDG uptake: Characterization by means of dual-time point FDG-PET/CT

    International Nuclear Information System (INIS)

    Zytoon, Ashraf Anas; Murakami, Koji; El-Kholy, Mohamed Ramdan; El-Shorbagy, Emad; Ebied, Osama

    2009-01-01

    Background: Malignant breast lesions usually are differentiated by FDG-PET with a semiquantitative FDG standardized uptake value (SUV) of 2.5. However, the frequency of breast cancer with an SUV of less than or equal to 2.5 is noteworthy, and often present diagnostic challenges. This study was undertaken to evaluate the accuracy of dual-time point FDG-PET/CT with FDG standardized uptake value (SUV) calculation in the characterization of such breast tumors. Methods: Forty-nine female patients with newly diagnosed breast cancer were found to have primary breast cancer with minimally increased FDG uptake and met the criteria for inclusion in this study by having borderline levels of increased FDG uptake (SUVmax less than or equal to 2.5) in the initial FDG-PET/CT images. Consequently, they underwent further delayed phase FDG-PET/CT scan for better evaluation of the disease. Results: Of the 49 cancer lesions; the majority were found to have rising or unvarying dual-time changes in SUVmax (75.5%). The median value of SUVmax increases by 25% between the early and delayed scan. The means ± S.D. of the SUVmax1, the SUVmax2, and the ΔSUVmax% were 1.2 ± 0.6%, 1.3 ± 0.9%, and 5.1 ± 22.4%, respectively. The receiver-operating-characteristic (ROC) analysis proved that the highest accuracy for characterization of malignant breast lesions was obtained when a ΔSUVmax% cut-off value 0.0% was used as criteria for malignant FDG uptake-change over time with sensitivity 75.5%, and false-positive rate 20.4%. Conclusion: These results suggested that dual-time FDG-PET/CT imaging with standardized uptake value (SUV) estimation can improve the accuracy of the test in the evaluation of breast cancer with low FDG uptake.

  8. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2014-01-01

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [ 18 F]-FDG (1 μCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14 C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/10 6 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  9. The frequency and spectrum of thymus 2-[fluorine-18] fluoro-2-deoxy-D-glucose uptake patterns in hyperthyroidism patients.

    Science.gov (United States)

    Chen, Yen-Kung; Yeh, Chia-Lu; Chen, Yen-Ling; Wang, Su-Chen; Cheng, Ru-Hwa; Kao, Pan-Fu

    2011-10-01

    Thymic hyperplasia is associated with hyperthyroidism. Increased thymus 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) uptake in hyperthyroidism patients has been reported. The aim of this study was to analyze the FDG positron emission tomography (PET) thymus uptake spectrum in patients with active hyperthyroidism with correlation with serum hormones. The prospective study included FDG PET scans from 65 hyperthyroidism patients and 30 subjects with euthyroid status as control group. The intensity of FDG uptake in thyroid and thymus regions was graded subjectively on a five-point scale and semi-quantitatively by measuring standard uptake value (SUV). Correlation coefficient between thymus SUV and serum thyroxine, triiodothyronine, thyrotropin, thyroid peroxidase antibodies (TPO Ab), thyrotropin receptor autoantibody (TR Ab), and thymulin were analyzed. Among 65 hyperthyroidism patients, 30 (46.2%) and 39 (60%) patients showed thyroid and thymus FDG uptake, respectively. The frequency of thymus uptake FDG was high in patients younger than age 40 (28/31, 90.3%). The patterns of the thymic FDG uptake include inverted V or triangular, separated triangular, united nontriangular, unilateral right or left extension, and focal midline. Focal midline FDG uptake was the most common pattern (15/39, 38.5%). None of the control group showed thymus FDG uptake. The correlation coefficient between the FDG uptake SUV levels in thymus and serum hormones, thyrotropin, TPO Ab, TR Ab, and thymulin levels were all low (P > .05). In FDG PET scan, thymus activity was common in hyperthyroidism patients; this should not be misdiagnosed as a malignancy in patients exhibiting weight loss. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  10. Effect of glucose level on brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Seongnam (Korea, Republic of)

    2017-06-15

    In addition to tumors, normal tissues, such as the brain and myocardium can intake {sup 18}F-FDG, and the amount of {sup 18}F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting {sup 18}F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using {sup 18}F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

  11. Effect of glucose level on brain FDG-PET images

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min

    2017-01-01

    In addition to tumors, normal tissues, such as the brain and myocardium can intake 18 F-FDG, and the amount of 18 F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting 18 F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using 18 F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients

  12. 18F FDG Uptake of Human Testis on PET/CT: Correlation with Age, Sex Hormones, and Vasectomy

    International Nuclear Information System (INIS)

    Moon, Seung Hwan; Eo, Jae Sun; Lee, Jong Jin; Chung, June Key; Lee, Dong Soo; Lee, Myung Chul

    2011-01-01

    The purpose of this study was to evaluate glucose metabolism of normal human testis on 18F FDG PET/CT and to assess possible correlation among age, the serum levels of sex hormones, and vasectomy. 18F FDG PET/CT was performed in 66 normal healthy men (50.8±13.6 years, range 22-81), and mean standard uptake values (SUV) of 18F FDG in testis and adductor muscle were measured. Testis muscle SUV ratios (T/M ratios) were calculated. Serum levels of total testosterone, free testosterone, estradiol, and of sex hormone binding globulin (SHBG) were measured. We searched for correlations between T/M ratios and age and the serum concentrations of sex hormones. 18F FDG PET/CT was also performed in 32 vasectomized men (55.7±7.8 years, range 38-71) and 52 nonvasectomized men (55.4±11.6 years, range 37-72). Mean SUVs of testis and adductor muscle were measured, and T/M ratios were calculated. A significant age related decline was found in T/M ratio (r=-0.509, p 18F FDG uptake may have attributed to testicular function and testicular histology. Our findings may have important implications for the interpretation of testicular 18F FDG uptake in the normal adult population.

  13. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  14. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects.

    Directory of Open Access Journals (Sweden)

    Kenji Ishibashi

    Full Text Available Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images.Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR was calculated.Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05, and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4-5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002, and no correlation with plasma insulin levels (r = 0.156, p = 0.12 or HOMA-IR (r = 0.096, p = 0.24.This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images.

  15. Characterization of brown adipose tissue 18F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population

    International Nuclear Information System (INIS)

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    18 F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake 18 F-FDG. The purpose of this study was to determine the imaging characteristics of 18 F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of 18 F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of 18 F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had 18 F-FDG uptake in BAT. 18 F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of 18 F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUV max ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT 18 F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT 18 F-FDG uptake rate (P < 0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR < 1, P < 0.05). Based on the value of OR, the most significant factor that affects BAT 18 F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of 18 F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT 18 F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting 18 F-FDG uptake.

  16. The ratio of (18)F-FDG activity uptake between the right and left ventricle in patients with pulmonary hypertension correlates with the right ventricular function.

    Science.gov (United States)

    Yang, Tao; Wang, Lei; Xiong, Chang-Ming; He, Jian-Guo; Zhang, Yan; Gu, Qing; Zhao, Zhi-Hui; Ni, Xin-Hai; Fang, Wei; Liu, Zhi-Hong

    2014-05-01

    It is known that patients with pulmonary hypertension (PH) can have elevated F-FDG uptake in the right ventricle (RV) on PET imaging. This study was designed to assess possible relationship between FDG uptake of ventricles and the function/hemodynamics of the RV in patients with PH. Thirty-eight patients with PH underwent FDG PET imaging in both fasting and glucose-loading conditions. The standard uptake value (SUVs) corrected for partial volume effect in both RV and left ventricle (LV) were measured. The ratio of FDG uptake between RV to LV (SUVR/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within 1 week. The FDG uptake levels by the ventricles were compared with the result form the right heart catheterization and CMR. The SUV of RV (SUVR) and SUV of LV were significantly higher in glucose-loading condition than in fasting condition. In both fasting and glucose-loading conditions, SUVR and SUVR/L showed reverse correlation with right ventricular ejection fraction derived from CMR. In addition, in both fasting and glucose-loading conditions, SUVR and SUVR/L showed positive correlations with pulmonary vascular resistance. However, only SUVR/L in glucose-loading condition could independently predict right ventricular ejection fraction after adjusted for age, body mass index, sex, mean right atrial pressure, mean pulmonary arterial pressure, and pulmonary vascular resistance (P = 0.048). The FDG uptake of RV increases with decreased right ventricular function in patients with PH. Increased FDG uptake ratio between RV and LV might be useful to assess the right ventricular function.

  17. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Bansal, Aditya; DeGrado, Timothy R.

    2006-01-01

    Introduction: Choline, acetate and glucose ([2- 18 F]fluoro-2-deoxyglucose, [ 18 F]FDG) analogs are under investigation as positron emission tomography (PET) tracers for the imaging of prostate cancer; however, their response to tumor hypoxia has not been clarified. Methods: The uptake of [methyl- 3 H]choline, [1- 14 C]acetate and [ 18 F]FDG was monitored in androgen-independent PC-3 cells and androgen-sensitive LNCaP cells under aerobic or anoxic conditions. The effect of androgen depletion was also examined. Results: PC-3 cells exhibited aerobic choline and acetate uptake five to six times higher than FDG uptake, whereas LNCaP cells showed choline uptake 2.2-fold higher than acetate uptake and 10-fold higher than FDG uptake. After 4 h of anoxia, PC-3 cells showed an 85% increase in FDG uptake, a 15% decrease in choline uptake and a 36% increase in acetate uptake, whereas LNCaP cells showed a 212% increase in FDG uptake, a 28% decrease in choline uptake and no change in acetate uptake. Androgen depletion resulted in a marked decrease in the uptake of all tracers in LNCaP cells but no changes in PC-3 cells. Conclusion: In aerobic conditions, both PC-3 and LNCaP cells exhibited an order of uptake preference as follows: choline>acetate>FDG. In hypoxic cells, the order is reversed, reflecting diverse biochemical responses to hypoxia. These findings may help to explain PET imaging findings of the diverse responses of these tracers in different stages and locations of prostate cancer. Androgen depletion markedly suppressed the uptake of all three tracers in LNCaP cells, which suggests the potential for underestimation of the disease state when PET imaging is performed subsequent to antiandrogen therapy

  18. (18)F-FDG uptake predicts diagnostic yield of transbronchial biopsy in peripheral lung cancer.

    Science.gov (United States)

    Umeda, Yukihiro; Demura, Yoshiki; Anzai, Masaki; Matsuoka, Hiroki; Araya, Tomoyuki; Nishitsuji, Masaru; Nishi, Koichi; Tsuchida, Tatsuro; Sumida, Yasuyuki; Morikawa, Miwa; Ameshima, Shingo; Ishizaki, Takeshi; Kasahara, Kazuo; Ishizuka, Tamotsu

    2014-07-01

    Recent advances in endobronchial ultrasonography with a guide sheath (EBUS-GS) have enabled better visualization of distal airways, while virtual bronchoscopic navigation (VBN) has been shown useful as a guide to navigate the bronchoscope. However, indications for utilizing VBN and EBUS-GS are not always clear. To clarify indications for a bronchoscopic examination using VBN and EBUS-GS, we evaluated factors that predict the diagnostic yield of a transbronchial biopsy (TBB) procedure for peripheral lung cancer (PLC) lesions. We retrospectively reviewed the charts of 194 patients with 201 PLC lesions (≤3cm mean diameter), and analyzed the association of diagnostic yield of TBB with [(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG) positron emission tomography and chest computed tomography (CT) findings. The diagnostic yield of TBB using VBN and EBUS-GS was 66.7%. High maximum standardized uptake value (SUVmax), positive bronchus sign, and ground-glass opacity component shown on CT were all significant predictors of diagnostic yield, while multivariate analysis showed only high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign as significant predictors. Diagnostic yield was higher for PLC lesions with high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign (84.6%) than for those with SUVmax PLC lesions. (18)F-FDG uptake and bronchus sign may indicate for the accurate application of bronchoscopy with those modalities for diagnosing PLC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement.

    Science.gov (United States)

    Brooks, Frank J; Grigsby, Perry W

    2013-12-23

    Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unknown tumor quality. Therefore, the first step in demonstrating the clinical usefulness of image heterogeneity is to explore the dependence of image heterogeneity metrics upon established prognostic indicators and other clinically interesting factors. If it is shown that image heterogeneity is merely a surrogate for other important tumor properties or variations in patient populations, then the theoretical value of quantified biological heterogeneity may not yet translate into the clinic given current imaging technology. We explore the relation between pelvic lymph node status at diagnosis and the visually evident uptake heterogeneity often observed in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images of cervical carcinomas. We retrospectively studied the FDG-PET images of 47 node negative and 38 node positive patients, each having FIGO stage IIb tumors with squamous cell histology. Imaged tumors were segmented using 40% of the maximum tumor uptake as the tumor-defining threshold and then converted into sets of three-dimensional coordinates. We employed the sphericity, extent, Shannon entropy (S) and the accrued deviation from smoothest gradients (ζ) as image heterogeneity metrics. We analyze these metrics within tumor volume strata via: the Kolmogorov-Smirnov test, principal component analysis and contingency tables. We found no statistically significant difference between the positive and negative lymph node groups for any one metric or plausible combinations thereof. Additionally

  20. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement

    International Nuclear Information System (INIS)

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unknown tumor quality. Therefore, the first step in demonstrating the clinical usefulness of image heterogeneity is to explore the dependence of image heterogeneity metrics upon established prognostic indicators and other clinically interesting factors. If it is shown that image heterogeneity is merely a surrogate for other important tumor properties or variations in patient populations, then the theoretical value of quantified biological heterogeneity may not yet translate into the clinic given current imaging technology. We explore the relation between pelvic lymph node status at diagnosis and the visually evident uptake heterogeneity often observed in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images of cervical carcinomas. We retrospectively studied the FDG-PET images of 47 node negative and 38 node positive patients, each having FIGO stage IIb tumors with squamous cell histology. Imaged tumors were segmented using 40% of the maximum tumor uptake as the tumor-defining threshold and then converted into sets of three-dimensional coordinates. We employed the sphericity, extent, Shannon entropy (S) and the accrued deviation from smoothest gradients (ζ) as image heterogeneity metrics. We analyze these metrics within tumor volume strata via: the Kolmogorov-Smirnov test, principal component analysis and contingency tables. We found no statistically significant difference between the positive and negative lymph node groups for any one metric or plausible combinations thereof. Additionally

  1. FDG-PET of patients with suspected renal failure. Standardized uptake values in normal tissues

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Takahashi, Nobukazu; Inoue, Tomio

    2007-01-01

    This study aims to clarify the effect of renal function on 2-[ 18 F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) imaging and determine the clinical significance of renal function in this setting. We compared FDG distribution between normal volunteers and patients with suspected renal failure. Twenty healthy volunteers and 20 patients with suspected renal failure who underwent FDG-PET between November 2002 and May 2005 were selected for this study. We define ''patients with suspected renal failure'' as having a blood serum creatinine level in excess of 1.1 mg/dl. The serum creatinine level was examined once in 2 weeks of the FDG-PET study. Regions of interest were placed over 15 regions for semi-quantitative analysis: the white matter, cortex, both upper lung fields, both middle lung fields, both lower lung fields, mediastinum, myocardium of the left ventricle, the left atrium as a cardiac blood pool, central region of the right lobe of the liver, left kidney, and both femoris muscles. The mean standardized uptake values (SUVs) of brain cortex and white matter were higher in healthy volunteers than in renal patients. The mean SUVs of the mediastinum at the level of the aortic arch and left atrium as a cardiac blood pool were lower in healthy volunteers than in patients with suspected renal failure. These regions differed between healthy volunteers and patients with suspected renal failure (P<0.05). We found decreasing brain accumulation and increasing blood pool accumulation of FDG in patients with high plasma creatinine. Although the difference is small, this phenomenon will not have a huge effect on the assessment of FDG-PET imaging in patients with suspected renal failure. (author)

  2. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography

    International Nuclear Information System (INIS)

    Merhige, M.E.; Ekas, R.; Mossberg, K.; Taegtmeyer, H.; Gould, K.L.

    1987-01-01

    Uptake of radiolabelled deoxyglucose out of proportion to reduced coronary flow demonstrated by positron emission tomography has been used to identify reversibly ischemic, viable myocardium. For this concept to be applied reliably in the clinical setting, factors that may depress glucose availability independent of tissue viability, such as adrenergic stimulation and substrate competition, must be examined. Accordingly, we studied the effect of catecholamine stimulation by dopamine on myocardial glucose uptake in vivo using chronically instrumented, intact dogs and positron emission tomography. We measured myocardial activity of [2- 18 F]-2-deoxyglucose (FDG) and 82 Rb in glucose-loaded animals randomly studied during dopamine infusion, during insulin infusion, and then during their combined infusion. Myocardial FDG uptake was significantly decreased when animals were treated with dopamine, compared with treatment in the same animals with insulin. When insulin was added to the dopamine infusion, myocardial FDG uptake was restored. In contrast, myocardial activity of 82 Rb, which is taken up in proportion to coronary flow, was similar under all three experimental conditions. Plasma glucose, free fatty acid, and lactate concentrations were determined before and during each infusion. The depression of myocardial FDG activity seen during dopamine infusion and its reversal with addition of insulin can be explained on the basis of effects of these hormones on substrate availability and competition

  3. Normal uptake of 18F-FDG in the testis. An assessment by PET/CT

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Sugimura, Kazuro; Nakamoto, Yuji; Senda, Michio; Onishi, Yumiko; Okizuka, Hiromi

    2007-01-01

    The aim of this study was to assess the physiological uptake of 18 F-fluoro-2-deoxyglucose (FDG) by an apparently normal testis with combined positron emission tomography-computed tomography (PET/CT) and its correlation with age, blood glucose level, and testicular volume. The testicular uptake of 18 F-FDG, expressed as the standardized uptake value (SUV), was measured on PET/CT images in 203 men. The correlation between SUV and age, blood glucose level, and testicular volume was assessed. The SUV in the total of 406 testes was 2.44±0.45 (range 1.23-3.85). The SUV was 2.81±0.43 (2.28-3.85) for 30-39 years (n=12), 2.63±0.45 (1.77-3.75) for 40-49 years (n=64), 2.46±0.35 (1.44-3.15) for 50-59 years (n=82), 2.51±0.41 (1.50-3.46) for 60-69 years (n=86), 2.43±0.47 (1.42-3.29) for 70-79 years (n=86), and 2.18±0.45 (1.23-3.03) for 80-89 years (n=76). When we calculated the mean SUV of bilateral testes in each patient, there were significant statistical differences between those in the age group of 30-39 years and 80-89 years, 40-49 years and 80-89 years, and 50-60 years and 80-89 years, when using an unpaired test with Bonferroni correction. The laterality index (|L-R|/(L+R) x 2) in 203 men was 0.066±0.067 (0-0.522). There was a mild correlation between the mean SUV and age (r=-0.284, P<0.001) as well as between the mean SUV and mean volume (r=+0.368, P<0.001). There was no correlation between the mean SUV and glucose blood level (r=-0.065, P=0.358). Some uptake of FDG is observed in the normal testis and declines slightly with age. Physiological FDG uptake in the testis should not be confused with pathological accumulation. (author)

  4. Cases of diffusely increased 18F FDG uptake in bone marrow

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Matsunaga, Naofumi

    2009-01-01

    A whole body imaging of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT provides assessment of FDG uptake in bone marrow and other systemic organs. Diffuse increase of FDG uptake in bone marrow can be associated with leukocytosis, infection, anemia, administration of granulocyte-colony stimulating factor or erythropoietin. and cytokine-producing neoplasms and myeloproliferative syndromes, and etc, and this finding can be an important sign indicative of hyper-metabolism in hemopoietic tissue associated by various etiology. Diffuse increase of FDG uptake in bone marrow affect on FDG uptake in other organs or primary lesions, and must be differentiated from diffuse bone marrow involvement of malignant tumors. In this paper, we report cases of diffuse increase of FDG uptake in bone marrow experienced in our hospital, and discuss the mechanisms and diagnostic importance of this finding, by referring to the published literatures. (author)

  5. Clearance of the high intestinal 18F-FDG uptake associated with metformin after stopping the drug

    International Nuclear Information System (INIS)

    Oezuelker, Tamer; Oezuelker, Filiz; Oezpacaci, Tevfik; Mert, Meral

    2010-01-01

    This study was done to determine whether interruption of metformin before 18 F-FDG PET/CT imaging could prevent the increased 18 F-FDG uptake in the intestine caused by this drug. Included in the study were 41 patients with known type 2 diabetes mellitus who were referred to our department for evaluation of various neoplastic diseases. Patients underwent two 18 F-FDG PET/CT scans, the first while they were on metformin and the second after they had stopped metformin. They stopped metformin and did not take any other oral antidiabetic medication starting 3 days before the second study and their blood glucose level was regulated with insulin when necessary to keep it within the range 5.55-8.33 mmol/l. FDG uptake was graded visually according to a four-point scale and semiquantitatively by recording the maximum standardized uptake value (SUVmax) in different bowel segments. A paired-samples t-test method was used to determine whether there was a significant difference between SUVmax measurements and visual analysis scores of the metabolic activity of the bowel in the PET/CT scans before and after stopping metformin. Diffuse and intense 18 F-FDG uptake was observed in bowel segments of patients, and the activity in the colon was significantly decreased both visually and semiquantitatively in PET/CT scans performed after patients stopped metformin (p 0.05). Metformin causes an increase in 18 F-FDG uptake in the bowel and stopping metformin before PET/CT study significantly decreased this unwanted uptake, especially in the colon, facilitating the interpretation of images obtained from the abdomen and preventing the obliteration of lesions. (orig.)

  6. A study of the changes of breast uptake in menstrual cycle on {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Tak, Yeo Jin [Dept. of Radiological Technology, Shingu College, Sungnam (Korea, Republic of); Park, Min Soo [Dept. of Nuclear Medicine, Severance Hospital, Yonsei University Health System, Seoul (Korea, Republic of); Lee, Ju Young [Graduate School of Public Health, Yonsei University, Seoul (Korea, Republic of)

    2015-04-15

    {sup 18}F-FDG PET/CT has been known a useful modality to diagnose high-glucose-using cells such as cancer cells by glucose metabolism of FDG. Mainly, FDG takes on cancer and inflammatory cells; however, there have been FDG uptakes on normal tissues by individual physiological characteristics, occasionally. Especially, in fertile females, unusual FDG uptake of breast changes as the menstrual cycle, and disturb diagnosis. Therefore, the study aimed to evaluate the change of breast FDG uptake in menstrual cycle on {sup 18}F-FDG PET/CT. 160 females (34±3.5 years old) who do not undergo a gynecologic anamnesis and have regular menstrual cycle over the previous 6 months were examined. They were divided 4 groups (each 40 patients) as flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator 0.14. and history taking. Discovery Ste (GE Healthcare, Milwaukee, Mi, USA) was used a s PET/CT. We analyzed SUVs on a ccumulated r egion on b reast, and 3 nuclear medicine specialists did the Blind test. SUVs on the Breast were flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). It showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In gross analysis, the accumulation of breast was divided into 3 grades as comparing with lung and liver. The breast’s uptake was equal to lung (Grade Ⅰ); between lung and liver (Grade II); equal to or greater than liver (Grade III). The results showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In fertile females, FDG uptake of breast changed as menstrual cycle, and it available to diagnose breast disease. Therefore, we consider reducing false-negative finding of breast disease, by doing examination on appropriate period through history taking about individual menstrual cycle.

  7. A study of the changes of breast uptake in menstrual cycle on 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Tak, Yeo Jin; Park, Min Soo; Lee, Ju Young

    2015-01-01

    18 F-FDG PET/CT has been known a useful modality to diagnose high-glucose-using cells such as cancer cells by glucose metabolism of FDG. Mainly, FDG takes on cancer and inflammatory cells; however, there have been FDG uptakes on normal tissues by individual physiological characteristics, occasionally. Especially, in fertile females, unusual FDG uptake of breast changes as the menstrual cycle, and disturb diagnosis. Therefore, the study aimed to evaluate the change of breast FDG uptake in menstrual cycle on 18 F-FDG PET/CT. 160 females (34±3.5 years old) who do not undergo a gynecologic anamnesis and have regular menstrual cycle over the previous 6 months were examined. They were divided 4 groups (each 40 patients) as flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator 0.14. and history taking. Discovery Ste (GE Healthcare, Milwaukee, Mi, USA) was used a s PET/CT. We analyzed SUVs on a ccumulated r egion on b reast, and 3 nuclear medicine specialists did the Blind test. SUVs on the Breast were flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). It showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In gross analysis, the accumulation of breast was divided into 3 grades as comparing with lung and liver. The breast’s uptake was equal to lung (Grade Ⅰ); between lung and liver (Grade II); equal to or greater than liver (Grade III). The results showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In fertile females, FDG uptake of breast changed as menstrual cycle, and it available to diagnose breast disease. Therefore, we consider reducing false-negative finding of breast disease, by doing examination on appropriate period through history taking about individual menstrual cycle

  8. {sup 18}F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hye Ryoung [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Jeong Seon [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Nariya; Chang, Jung Min; Bae, Min Sun; Kim, Won Hwa; Lee, Su Hyun; Seo, Mirinae; Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Mi Young [Konkuk University Medical Center, Department of Radiology, Seoul (Korea, Republic of); Kim, Jin You [Pusan National University Hospital, Department of Radiology, Pusan (Korea, Republic of)

    2014-03-15

    To determine whether a correlation exists between maximum standardized uptake value (SUV{sub max}) on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) and the subtypes of breast cancer. This retrospective study involved 548 patients (mean age 51.6 years, range 21-81 years) with 552 index breast cancers (mean size 2.57 cm, range 1.0-14.5 cm). The correlation between {sup 18}F-FDG uptake in PET/CT, expressed as SUV{sub max}, and immunohistochemically defined subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and triple negative) was analyzed. The mean SUV{sub max} value of the 552 tumours was 6.07 ± 4.63 (range 0.9-32.8). The subtypes of the 552 tumours were 334 (60 %) luminal A, 66 (12 %) luminal B, 60 (11 %) HER2 positive and 92 (17 %) triple negative, for which the mean SUV{sub max} values were 4.69 ± 3.45, 6.51 ± 4.18, 7.44 ± 4.73 and 9.83 ± 6.03, respectively. In a multivariate regression analysis, triple-negative and HER2-positive tumours had 1.67-fold (P < 0.001) and 1.27-fold (P = 0.009) higher SUV{sub max} values, respectively, than luminal A tumours after adjustment for invasive tumour size, lymph node involvement status and histologic grade. FDG uptake was independently associated with subtypes of invasive breast cancer. Triple-negative and HER2-positive breast cancers showed higher SUV{sub max} values than luminal A tumours. circle {sup 18} F-FDG PET demonstrates increased tissue glucose metabolism, a hallmark of cancers. (orig.)

  9. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes

    International Nuclear Information System (INIS)

    Koo, Hye Ryoung; Park, Jeong Seon; Kang, Keon Wook; Cho, Nariya; Chang, Jung Min; Bae, Min Sun; Kim, Won Hwa; Lee, Su Hyun; Seo, Mirinae; Moon, Woo Kyung; Kim, Mi Young; Kim, Jin You

    2014-01-01

    To determine whether a correlation exists between maximum standardized uptake value (SUV max ) on 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and the subtypes of breast cancer. This retrospective study involved 548 patients (mean age 51.6 years, range 21-81 years) with 552 index breast cancers (mean size 2.57 cm, range 1.0-14.5 cm). The correlation between 18 F-FDG uptake in PET/CT, expressed as SUV max , and immunohistochemically defined subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and triple negative) was analyzed. The mean SUV max value of the 552 tumours was 6.07 ± 4.63 (range 0.9-32.8). The subtypes of the 552 tumours were 334 (60 %) luminal A, 66 (12 %) luminal B, 60 (11 %) HER2 positive and 92 (17 %) triple negative, for which the mean SUV max values were 4.69 ± 3.45, 6.51 ± 4.18, 7.44 ± 4.73 and 9.83 ± 6.03, respectively. In a multivariate regression analysis, triple-negative and HER2-positive tumours had 1.67-fold (P max values, respectively, than luminal A tumours after adjustment for invasive tumour size, lymph node involvement status and histologic grade. FDG uptake was independently associated with subtypes of invasive breast cancer. Triple-negative and HER2-positive breast cancers showed higher SUV max values than luminal A tumours. circle 18 F-FDG PET demonstrates increased tissue glucose metabolism, a hallmark of cancers. (orig.)

  10. Incidental thyroid uptake on F-18 FDG PET/CT. Correlation with ultrasonography and pathology

    International Nuclear Information System (INIS)

    Kang, Bong-Joo; Baik, Jun-Hyun; Jung, So-Lyung; Park, Young-Ha; O, Joo-Hyun; Chung, Soo-Kyo

    2009-01-01

    The purpose of this study was to evaluate the usefulness of maximum standard uptake value (max SUV) calculated from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) examination and findings from ultrasonographic (US) examination on incidentally detected thyroid FDG uptake on FDG PET/CT. We collected and reviewed FDG PET/CT images performed at our institution from March 2005 to March 2008. This study included 190 subjects with increased FDG uptake of thyroid gland who later underwent thyroid US and histological examinations. Of these subjects, the uptake pattern on FDG PET/CT was classified as either diffuse or focal. The FDG uptake pattern, max SUV, and US findings were evaluated and correlated with the histological results. In the focal FDG uptake pattern cases (n=148), the mean max SUV of malignant cases was higher than that of benign cases (5.93±5.35 vs. 3.47±2.89). Of the diffuse FDG uptake cases (n=42), nodules were detected in 25 subjects (59.5%) by US examination. Thyroid nodules were well characterized on US studies, and combined findings of suspicious US features or high max SUV of focal FDG uptake lesion increased sensitivity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Focal uptake pattern and high max SUV may be helpful in differentiating benign and malignant nodules on FDG PET/CT. However, US examination provides further information, and for lesions with increased FDG uptake of thyroid, US examination should be recommended. (author)

  11. FDG uptake on PET and enhancement on CT or MRI in hepatocellular carcinoma (HCC)

    International Nuclear Information System (INIS)

    Ko, K. H.; Yun, M.; Kim, M. J.; Ryu, Y. H.; Lee, J. D.

    2002-01-01

    To correlate between FDG PET and enhancement pattern on CT and MRI and assess the factors affecting FDG uptake in HCC. Thirty seven nontreated HCC from 34 pts (M:F=30:4, mean age 53) were enrolled. All cases were histologically diagnosed and classified according to Edmonson and Steiner's grading. Tumor FDG uptake was visually assessed on a scale of 0 to 3 compared to the adjacent liver. (0 liver and 3>>liver) and was semi-quantitatively analyzed using SUV. Enhancement pattern on CT and MRI was classified into 3 groups according to signal intensity or density in arterial and portal phase (GroupI: hyperintense-hypointense, GroupII: isointense-hypointense, GroupIII: hypointense-hypointense). Tumor FDG uptake was correlated with enhancement pattern, grade, size and serum aFP level. The tumor ranged from 1.5cm to 20cm. Of the 37 cases, 19(51%) had positive FDG uptake (2 or 3), while 18(49%) were negative (0 or 1). The correlation between FDG uptake and enhancement pattern was statistically insignificant. Lower FDG uptake was associated with lower tumor grade and/or smaller tumor size (P<0.005). FDG uptake of HCC seems to be useful in predicting the differentiation of the tumor and may be prognostic. Although the significance of dynamic enhancement pattern on CT or MRI is yet controversial, it has no specific correlation with FDG uptake and grade on the tumor in this study

  12. Changes of FDG brain uptake in patients with abnormal thyroid function

    International Nuclear Information System (INIS)

    Huang, Wen-Sheng; Chang, Chih-Yung; Cheng, Cheng Yi

    2009-01-01

    Full text: Objective: To investigate FOG brain uptake in patients with hypo- and subclinical hyperthyroidism undergoing whole-body FOG PET/CT. Methods: Sixty-four patients who had received total thyroidectomy for thyroid carcinoma underwent whole-body FDG PETI CT. Thirty-two of them received imaging in subclinical hyperthyroid status (15 males; 17 females; mean age, 55 ± 14 years) while the other 32 age-matched patients underwent the scan 4 wk after thyroid hormone withdrawal (12 males; 20 females; mean age, 56 ± 13 years). Brain images were performed I h after 370 MBq intravenous injection using a dedicated PET/CT (Siemens Biograph BGO duo). FOG-uptake was quantified by the standardized uptake value (SUY), normalized to patient's body weight. The volume of brain was determined by PET with 40% maximum SUY threshold. The brain mean SUV (SUY mean) were calculated in each patient. Data were compared between the two groups. Results: The brain mean SUYs for the hypothyroid patients ranged between 3.11 and 6.35 (averaged SUY mean 5.13 ± 0.91) while those of the subclinical hyperthyroid patients varied from 3.53 to 8.29 (mean SUY mean 5.77 ± 1.04). There was a significant global reduction of brain FDG uptake in the hypothyroid group (II.] %, P < 0.0 I) but no significant changes in the sub-clinical hyperthyroid group compared to the controls. Conclusion: FDG brain uptake in subclinical hyperthyroid patients was significantly greater than that of patients with hypothyroidism, suggesting effects of thyroid hormone on cerebral glucose metabolism.

  13. Background Intestinal 18F-FDG Uptake Is Related to Serum Lipid Profile and Obesity in Breast Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Hai-Jeon Yoon

    Full Text Available This study investigated the relationships between background intestinal uptake on 18F-FDG PET and cardio-metabolic risk (CMR factors.A total of 326 female patients that underwent 18F-FDG PET to determine the initial stage of breast cancer were enrolled. None of the patients had history of diabetes or hypertension. The background intestinal uptake on PET was visually graded (low vs. high uptake group and quantitatively measured using the maximal standardized uptake value (SUVmax. SUVmax of 7 bowel segments (duodenum, jejunum, ileum, cecum, hepatic flexure, splenic flexure, and descending colon-sigmoid junction were averaged for the total bowel (TB SUVmax. Age, body mass index (BMI, fasting blood glucose level (BST, triglyceride (TG, cholesterol, high density lipoprotein (HDL, and low density lipoprotein (LDL were the considered CMR factors. The relationships between background intestinal 18F-FDG uptake on PET and diverse CMR factors were analyzed.The visual grades based on background intestinal 18F-FDG uptake classified 100 (30.7% patients into the low uptake group, while 226 (69.3% were classified into the high uptake group. Among CMR factors, age (p = 0.004, BMI (p<0.001, and TG (p<0.001 were significantly different according to visual grade of background intestinal 18F-FDG uptake. Quantitative TB SUVmax showed significant positive correlation with age (r = 0.203, p<0.001, BMI (r = 0.373, p<0.001, TG (r = 0.338, p<0.001, cholesterol (r = 0.148, p = 0.008, and LDL (r = 0.143, p = 0.024 and significant negative correlation with HDL (r = -0.147, p = 0.022. Multivariate analysis indicated that BMI and TG were independent factors in both visually graded background intestinal 18F-FDG uptake (p = 0.027 and p = 0.023, respectively and quantitatively measured TB SUVmax (p = 0.006 and p = 0.004, respectively.Increased background intestinal 18F-FDG uptake on PET may suggest alteration of lipid metabolism and risk of cardio-metabolic disease in non

  14. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    Science.gov (United States)

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Changes of regional cerebral glucose metabolism in normal aging process : A study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Kim, Sang Eun; Lee, Kyung Han; Choi, Yong; Choe, Yearn Seong; Kim, Byung Tae [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Brain PET images were obtained in 44 healthy volunteers (age range 20-69'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROls were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak In subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the lernporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age the reafter at a rate of 35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. In the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging.

  16. Changes of regional cerebral glucose metabolism in normal aging process : A study with FDG PET

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; Kim, Sang Eun; Lee, Kyung Han; Choi, Yong; Choe, Yearn Seong; Kim, Byung Tae

    2001-01-01

    Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Brain PET images were obtained in 44 healthy volunteers (age range 20-69'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROls were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak In subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the lernporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age the reafter at a rate of 35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. In the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging

  17. 18F-FDG uptake changes in the brain functional loop in patients with refractory obsessive compulsive disorder

    International Nuclear Information System (INIS)

    Qiu Chun; Guan Yihui; Chen Limin; Sun Bomin; Li Dianyou; Huang Zhemin; Zhao Jun; Zuo Chuantao

    2011-01-01

    Objective: To investigate the glucose metabolic pattern of brain functional loop in patients with refractory obsessive compulsive disorder (OCD) using 18 F-FDG PET. Methods: Eight patients with refractory OCD and 8 age- and gender-matched healthy volunteers underwent 18 F-FDG PET brain imaging. SPM software was used for image post-processing and quantitative analysis. Correlation analysis between 18 F-FDG uptake and Yale-Brown obsessive compulsive scale(Y-BOCS) score was performed. Results: Compared with the controls, the glucose metabolism of bilateral frontal cortices (including the rectal gyrus,orbital gyrus and cingulate gyrus), left thalamus,right temporal lobe and bilateral cerebellum in refractory OCD patients increased significantly (Z max =3.45-5.80, all P<0.001). Bilateral motor cortices and bilateral parietal lobes (BA7), however, showed decreased glucose metabolism (Z max =3.44-4.46, all P<0.001). Y-BOCS score was positively correlated with the glucose metabolism of the bilateral anterior cingulate cortex (Z max =3.77, 3.48 and 2.97, all P<0.01). Conclusions: There is a characteristic metabolic pattern of increased glucose utilization in the fronto-striato-thalamic loop and decreased glucose utilization in bilateral motor cortices and parietal lobes in patients with OCD. The glucose metabolism in the anterior cingulate cortex might serve as a quantitative parameter for the assessment of the severity of OCD. (authors)

  18. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  19. Lactate, Glucose and Oxygen Uptake in Human Brain During Recovery from Maximal Exercise

    DEFF Research Database (Denmark)

    Kojiro, I.; Schmalbruch, I.K.; Quistorff, B.

    1999-01-01

    Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake......Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake...

  20. {sup 18}F-FDG uptake on PET in primary mediastinal non-thymic neoplasm: A clinicopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Kaira, Kyoichi, E-mail: kkaira1970@yahoo.co.jp [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Abe, Masato [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakagawa, Kazuo; Ohde, Yasuhisa; Okumura, Takehiro [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Takahashi, Toshiaki; Murakami, Haruyasu; Shukuya, Takehito; Kenmotsu, Hirotsugu; Naito, Tateaki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Hayashi, Isamu [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Oriuchi, Noboru [Department of Diagnostic Radiology and Nuclear medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Gunma (Japan); Endo, Masahiro [Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Kondo, Haruhiko [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakajima, Takashi [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Yamamoto, Nobuyuki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan)

    2012-09-15

    Background: The usefulness of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) has been investigated in thymic epithelial tumors. However, little is known about PET imaging of {sup 18}F-FDG in primary non-thymic mediastinal neoplasms. The aim of this study is to explore the clinicopathological significance of {sup 18}F-FDG PET in primary mediastinal (non-thymic) neoplasms. Methods: Twenty-one patients with mediastinal neoplasms who underwent {sup 18}F-FDG PET before treatment were included in this study. Tumor sections were stained by immunohistochemistry for glucose transporter 1 (Glut1); glucose transporter 3 (Glut3); hypoxia-inducible factor-1 alpha (HIF-1α); hexokinase I; vascular endothelial growth factor (VEGF); microvessels (CD34); epidermal growth factor receptor (EGFR); Akt/mTOR signaling pathway (p-Akt and p-mTOR); cell cycle control (p53). Results: Seventeen of 21 patients were imaged on PET system using {sup 18}F-FDG, but 4 patients with a histology of cyst showed nothing abnormal in PET scans. The histology of the resected tumors was as follows: 6 schwannoma, 3 teratoma, 4 cyst, 3 sarcoma, 1 undifferentiated carcinoma, 1 seminoma, 1 mediastinal goiter, 1 ganglioneuroma, and 1 Hodgkin lymphoma. {sup 18}F-FDG uptake was significantly correlated with Glut1, HIF-1α, EGFR, p-Akt and p-S6K. These biomarkers were highly expressed in schwannoma, teratoma and high grade malignancies, whereas all patients with cyst and ganglioneuroma had no positive expression of these biomarkers. High uptake of {sup 18}F-FDG was significant associated with Glut1, VEGF, EGFR, p-Akt, p-S6K and tumor maximal size. Conclusion: The amount of {sup 18}F-FDG uptake in primary mediastinal non-thymic neoplasms is determined by the presence of glucose metabolism (Glut1), hypoxia (HIF-1α) and upstream components of HIF-1α (EGFR, p-Akt and p-S6K)

  1. {sup 18F} FDG Uptake of Human Testis on PET/CT: Correlation with Age, Sex Hormones, and Vasectomy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung Hwan; Eo, Jae Sun; Lee, Jong Jin; Chung, June Key; Lee, Dong Soo; Lee, Myung Chul [Seoul National Univ. Hospital, Seoul (Korea, Republic of)

    2011-12-15

    The purpose of this study was to evaluate glucose metabolism of normal human testis on {sup 18F} FDG PET/CT and to assess possible correlation among age, the serum levels of sex hormones, and vasectomy. {sup 18F} FDG PET/CT was performed in 66 normal healthy men (50.8{+-}13.6 years, range 22-81), and mean standard uptake values (SUV) of {sup 18F} FDG in testis and adductor muscle were measured. Testis muscle SUV ratios (T/M ratios) were calculated. Serum levels of total testosterone, free testosterone, estradiol, and of sex hormone binding globulin (SHBG) were measured. We searched for correlations between T/M ratios and age and the serum concentrations of sex hormones. {sup 18F} FDG PET/CT was also performed in 32 vasectomized men (55.7{+-}7.8 years, range 38-71) and 52 nonvasectomized men (55.4{+-}11.6 years, range 37-72). Mean SUVs of testis and adductor muscle were measured, and T/M ratios were calculated. A significant age related decline was found in T/M ratio (r=-0.509, p<0.0001). Serum levels of total testosterone and free testosterone were also found to be positively correlated with T/M ratio (r=-0.427, p=0.0003; r=0.435, p=0.0003, respectively). The mean SUV and T/M ratio of vasectomized men were significantly lower than those of nonvasectomized men (p<0.0378 and p=0.0001, respectively). Glucose metabolism in the testis in an adult population was found to be correlated with age, serum sex hormone level, and vasectomy history. These results indicate that testicular {sup 18F} FDG uptake may have attributed to testicular function and testicular histology. Our findings may have important implications for the interpretation of testicular {sup 18F} FDG uptake in the normal adult population.

  2. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer's disease

    International Nuclear Information System (INIS)

    Arlt, Soenke; Jahn, Holger; Eichenlaub, Martin; Brassen, Stefanie; Wilke, Florian; Apostolova, Ivayla; Buchert, Ralph; Wenzel, Fabian; Young, Stewart; Thiele, Frank

    2009-01-01

    Brain imaging of FDG uptake and cerebrospinal fluid (CSF) concentration of amyloid-beta 1-42 (Aβ 1-42 ) or tau proteins are promising biomarkers in the diagnosis of Alzheimer's disease (AD). There is still uncertainty regarding any association between decreased FDG uptake and alterations in CSF markers. The relationship between FDG uptake, CSF Aβ 1-42 and total tau (T-tau), as well as the Mini-Mental State Examination (MMSE) score was investigated in 34 subjects with probable AD using step-wise linear regression. FDG uptake was scaled to the pons. Scaled FDG uptake was significantly reduced in the probable AD subjects compared to 17 controls bilaterally in the precuneus/posterior cingulate area, angular gyrus/inferior parietal cortex, inferior temporal/midtemporal cortex, midfrontal cortex, and left caudate. Voxel-based single-subject analysis of the probable AD subjects at p 1-42 . Scaled FDG uptake in the caudate was positively correlated with CSF T-tau. The extent and local severity of the reduction in FDG uptake in probable AD subjects are associated with cognitive impairment. In addition, there appears to be a relationship between local FDG uptake and CSF biomarkers which differs between different brain regions. (orig.)

  3. An analysis of the physiological FDG uptake pattern in the stomach

    International Nuclear Information System (INIS)

    Koga, Hirofumi; Kuwabara, Yasuo; Hiraka, Kiyohisa; Nakagawa, Makoto; Abe, Koichiro; Kaneko, Koichiro; Hayashi, Kazutaka; Honda, Hiroshi; Sasaki, Masayuki

    2003-01-01

    The purpose of this study was to clarify the normal gastric FDG uptake pattern to provide basic information to make an accurate diagnosis of gastric lesions by FDG PET. We examined 22 cases, including 9 of malignant lymphoma, 8 of lung cancer, 2 of esophageal cancer, and 3 of other malignancies. No gastric lesions were observed in any of the 22 cases on upper gastrointestinal examinations using either barium meal or endoscopic techniques. The intervals between FDG PET and the gastrointestinal examination were within one week in all cases. The stomach regions were classified into the following three areas: U (upper)-area, M (middle)-area, and L (lower)-area. The degree of FDG uptake in these three gastric regions was qualitatively evaluated by visual grading into 4 degrees, and then a semiquantitative evaluation was carried out using the standardized uptake value (SUV). Based on a visual grading evaluation, the mean FDG uptake score in the U-, M-, and L-areas was 1.14±0.96, 0.82±0.96, and 0.36±0.49 (mean±S.D.), respectively. The FDG uptake scores obtained in the three areas were significantly different (Friedman test, p M>L. In conclusion, the physiological gastric FDG uptake was significantly higher at the oral end. A stronger gastric FDG uptake at the anal end may therefore be suggestive of a pathological uptake. (author)

  4. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  5. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    International Nuclear Information System (INIS)

    Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-01-01

    The learned helplessness paradigm has been repeatedly shown to correlate with neurobiological aspects of depression in humans. In this model, rodents are exposed inescapable foot-shock in order to reveal susceptibility to escape deficit, defined as 'learned helplessness' (LH). Few methods are available to probe the neurobiological aspects underlying the differences in susceptibility in the living animal, thus far being limited to studies examining regional neurochemical changes with microdialysis. With the widespread implementation of small animal neuroimaging methods, including positron emission tomography (PET), it is now possible to explore the living brain on a systems level to define regional changes that may correlate with vulnerability to stress. In this study, 12 wild type Sprague-Dawley rats were exposed to 40 minutes of inescapable foot-shock followed by metabolic imaging using 2-deoxy-2[ 18 F]fluoro-D-glucose (18-FDG) 1 hour later. The escape test was performed on these rats 48 hours later (to accommodate radiotracer decay), where they were given the opportunity to press a lever to shut off the shock. A region of interest (ROI) analysis was used to investigate potential correlations (Pearson Regression Coefficients) between regional 18-FDG uptake following inescapable shock and subsequent learned helpless behavior (time to finish the test; number of successful lever presses within 20 seconds of shock onset). ROI analysis revealed a significant positive correlation between time to finish and 18-FDG uptake, and a negative correlation between lever presses and uptake, in the medial thalamic area (p=0.033, p=0.036). This ROI included the paraventricular thalamus, mediodorsal thalamus, and the habenula. In an effort to account for possible spillover artifact, the posterior thalamic area (including ventral medial and lateral portions) was also evaluated but did not reveal significant correlations (p=0.870, p=0.897). No other significant correlations were found

  6. The significance of alteration 2-[fluorine-18]fluoro-2-deoxy-(D)-glucose uptake in the liver and skeletal muscles of patients with hyperthyroidism.

    Science.gov (United States)

    Chen, Yen-Kung; Chen, Yen-Ling; Tsui, Chih-Cheng; Wang, Su-Chen; Cheng, Ru-Hwa

    2013-10-01

    Hyperthyroidism leads to an enhanced demand for glucose. The hypothesis of the study is that 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) can demonstrate the alteration of systemic glucose metabolism in hyperthyroidism patients by measuring the FDG standard uptake value (SUV) in liver and skeletal muscle. Forty-eight active hyperthyroidism patients and 30 control participants were recruited for the study. The intensity of FDG uptake in the liver and thigh muscles was graded subjectively, comprising three groups: group I, higher FDG uptake in the liver; group II, equal FDG uptake in the liver and muscles; and group III, higher FDG uptake in the muscles. Ten subjects with FDG PET scans at hyperthyroid and euthyroid status were analyzed. Serum levels of thyroxine (T4) and triiodothyronine (T3) correlated to the SUVs of the liver and muscles. Forty-one patients (41/48, 85.4%) showed symmetrically increased FDG uptake in the muscles (22 in group I, 9 in group II, and 17 in group III). Group I patients were significantly older than group II (P = .02) and group III (P = .001) patients. The correlation coefficient between the serum T3, T4, and SUV levels in the muscles was significant (r = 0.47-0.77, P hyperthyroid and euthyroid states. In the 30 control subjects, there was normal physiological FDG uptake in the liver and muscles. In PET scans showing a pattern of decreased liver and increased skeletal muscle FDG uptake in hyperthyroidism patients, this change of FDG distribution is correspondence to the severity of hyperthyroidism status. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Okada, Hiroyuki

    2005-01-01

    Good knowledge of physiological 18 F-fluorodeoxglucose ( 18 F-FDG) uptake in the healthy population is of great importance for the correct interpretation of 18 F-FDG positron emission tomography (PET) images of pathological processes. The purpose of this study was to investigate the physiological 18 F-FDG uptake in the ovaries and uterus of healthy female volunteers. One hundred and 33 healthy females, 78 of whom were premenopausal (age 37.2±6.9 years) and 55 postmenopausal (age 55.0±2.7 years), were examined using whole-body 18 F-FDG PET and pelvic magnetic resonance (MR) imaging. Focal 18 F-FDG uptake in the ovaries and uterus was evaluated visually and using standardised uptake value (SUVs). Anatomical and morphological information was obtained from MR images. Distinct ovarian 18 F-FDG uptake with an SUV of 3.9±0.7 was observed in 26 premenopausal women out of 32 examined during the late follicular to early luteal phase of the menstrual cycle. Eighteen of the 32 women also showed focal 18 F-FDG uptake in the endometrium, with an SUV of 3.3±0.3. On the other hand, all nine women in the first 3 days of the menstrual cycle demonstrated intense 18 F-FDG uptake in the endometrium, with an SUV of 4.6±1.0. No physiological 18 F-FDG uptake was observed in the ovaries or uterus of any postmenopausal women. In women of reproductive age, 18 F-FDG imaging should preferably be done within a week before or a few days after the menstrual flow phase to avoid any misinterpretation of pelvic 18 F-FDG PET images. (orig.)

  8. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  9. Patterns of FDG uptake in stomach on F-18 FDG positron emission tomography: correlation with endoscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Min Jeong; Cheon, Gi Jeong; Lee, Sang Woo; Byun, Byung Hyun; Kim, Sung Eun; Kim, Yu Chul; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2005-10-15

    We often find variable degrees of FDG uptake and patterns in stomach, which can make difficult to distinguish physiologic uptake from pathologic uptake on FDG PET. The purpose of this study was to find out the significant findings of stomach on FDG PET. Thirty-eight patients who underwent both FDG PET and endoscopy within one week from Jun. 2003, to Aug. 2004 were included in this study. We reviewed 38 patients (18 for medical check up, 15 for work up of other malignancies, and 5 for the evaluation of stomach lesion). Their mean age was 56 years old (range:32 {approx} 79), men and women were 28 and 10, respectively. Two nuclear physicians evaluated five parameters on FDG PET findings of stomach with a consensus: 1) visual grades 2) maximum SUV (max.SUV) 3) focal 4) diffuse and 5) asymmetric patterns. We correlated the lesions of FDG PET findings of stomach with those of endoscopy. We considered more than equivocal findings on FDG PET as positive. The six of 38 patients were proven as malignant lesions by endoscopic biopsy and others were inflammatory lesions (ulcer in 3, chronic atrophic gastritis in 12, uncommon forms of gastritis in 5), non-inflammatory lesions (n=3), and normal stomach (n=9). By the visual analysis, malignant lesions had higher FDG uptake than the others. The max.SUV of malignant lesions was 7.95 {+-} 4.83 which was significantly higher than the other benign lesions (2.9 {+-} 0.69 in ulcer, 3.08 {+-} 1.2 in chronic atrophic gastritis, 3.2 {+-} 1.49 in uncommon forms of gastritis ( {rho} =0.044). In the appearance of stomach on FDG PET, malignant lesions were shown focal (5 of 6) and benign inflammatory lesions were shown diffuse (9 of 20) and asymmetric (14 of 20). Benign lesions and normal stomach were shown variable degrees of uptake and patterns. Some cases of benign inflammatory lesions such as ulcer and gastritis were shown focal and mimicked cancerous lesions (4 of 15). Gastric malignant lesions had higher FDG uptake and focal pattern

  10. Patterns of FDG uptake in stomach on F-18 FDG positron emission tomography: correlation with endoscopic findings

    International Nuclear Information System (INIS)

    Chae, Min Jeong; Cheon, Gi Jeong; Lee, Sang Woo; Byun, Byung Hyun; Kim, Sung Eun; Kim, Yu Chul; Choi, Chang Woon; Lim, Sang Moo

    2005-01-01

    We often find variable degrees of FDG uptake and patterns in stomach, which can make difficult to distinguish physiologic uptake from pathologic uptake on FDG PET. The purpose of this study was to find out the significant findings of stomach on FDG PET. Thirty-eight patients who underwent both FDG PET and endoscopy within one week from Jun. 2003, to Aug. 2004 were included in this study. We reviewed 38 patients (18 for medical check up, 15 for work up of other malignancies, and 5 for the evaluation of stomach lesion). Their mean age was 56 years old (range:32 ∼ 79), men and women were 28 and 10, respectively. Two nuclear physicians evaluated five parameters on FDG PET findings of stomach with a consensus: 1) visual grades 2) maximum SUV (max.SUV) 3) focal 4) diffuse and 5) asymmetric patterns. We correlated the lesions of FDG PET findings of stomach with those of endoscopy. We considered more than equivocal findings on FDG PET as positive. The six of 38 patients were proven as malignant lesions by endoscopic biopsy and others were inflammatory lesions (ulcer in 3, chronic atrophic gastritis in 12, uncommon forms of gastritis in 5), non-inflammatory lesions (n=3), and normal stomach (n=9). By the visual analysis, malignant lesions had higher FDG uptake than the others. The max.SUV of malignant lesions was 7.95 ± 4.83 which was significantly higher than the other benign lesions (2.9 ± 0.69 in ulcer, 3.08 ± 1.2 in chronic atrophic gastritis, 3.2 ± 1.49 in uncommon forms of gastritis ( ρ =0.044). In the appearance of stomach on FDG PET, malignant lesions were shown focal (5 of 6) and benign inflammatory lesions were shown diffuse (9 of 20) and asymmetric (14 of 20). Benign lesions and normal stomach were shown variable degrees of uptake and patterns. Some cases of benign inflammatory lesions such as ulcer and gastritis were shown focal and mimicked cancerous lesions (4 of 15). Gastric malignant lesions had higher FDG uptake and focal pattern. However, benign

  11. FDG uptake and glut-1 expression in primary tumors and loco-regional lymph nodes in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Lee, Won Woo; Nguyen, Xuan Canh; Chung, Jin Haeng; Park, So Yeon; Kim, Sang Eun

    2007-01-01

    FDG uptake level by primary tumors in NSCLC may affect the likelihood of malignant involvement in loco-regional lymph nodes (LNs). FDG uptake in tumors has been reported to be mediated by glucose transporter type 1 (Glut-I). Here, we investigated the correlations between primary tumors and loco-regional LNs in NSCLC regarding FDG uptake and Glut-1 expression. 126 NSCLC patients (M: F=103: 23, age=659.7y) who underwent curative resection and loco-regional LN dissection within 4 week period after FDG-PET study were enrolled. Maximum standardized uptake value (maxSUV) by PET and %Glut-1 expression by immunostaining were compared between primary tumors and FDG uptake positive loco-regional LNs. Significant correlations were found between 52 malignant LNs and 37 primary tumors in terms of maxSUV (r=0.6451, p<0.0001) and %Glut-1 expression (r=0.8341, p<0.0001). Linear regression of the relation between maxSUVs of malignant LNs (Y) and maxSUVs of primary tumors (X) yielded the expression Y = 0.5938 + 0.4808 X with an r2 value of 0.4162. On the other hand, no significant correlation was observed between 144 benign LNs and 75 primary tumors in terms of maxSUVs (r= -0.0125, p 0.8831). Moreover, %Glut-1 expressions of pathologically proven benign LNs and primary tumors were found to be correlated (r=0.3863, p=0.0004), but r2 value was low at 0.1492. High correlations were found between primary tumors and loco-regional metastatic LNs in NSCLC regarding FDG uptake and Glut-1 expression. Mediastinal LN staging of NSCLC by FDG-PET may be improved by considering the linear correlation between FDG uptakes of metastatic LNs and primary tumors

  12. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-Fluoromisonidazole (FMISO) and 18F- Fluorodeoxyglucose (FDG) positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tauro, A.J.; Scott, A.M.; Hannah, A.; Pathmaraj, K.; Tochon-Danguy, H.; Sachinidis, J.I.; Chan, J.D.; Berlangieri, S.U.; Egan, G.F.; Fabinyi, G.; McKay, W.J.; Cher, L.M.; Austin and Repatriation Medical Centre, Heidelberg, VIC

    1998-01-01

    Full text: FDG-PET studies of brain tumours to measure tumour activity are well established, with regions of higher grade tumour utilising more glucose compared to lower grade tumour tissue and normal tissue. FDG uptake in tumour cells may reflect anaerobic glycolysis, but this has not been proven in- vivo. FMISO is a novel positron-emitting compound that has been shown to selectively identify hypoxic but viable tissue, which may contribute to chemoradiotherapy resistance in tumour cells. Studies correlating measurements of regional hypoxia and glucose activity within brain tumours prior to therapy may help gain further insight into the relationship between hypoxic tumour tissue and resistance to chemoradiotherapy. Three patients with newly diagnosed primary brain tumours have been prospectively studied with FMISO-PET, FDG-PET and MRI, prior to surgery. Each patient presented with a suspected primary brain glioma on MRI, which were all confirmed to be high grade glioma on subsequent histology at surgery FMISO-PET, FDG-PET and MRI images of all patients were co-registered to precisely identify the areas of metabolic activity within tumour and surrounding cortical tissue. All gliomas demonstrated areas of FMISO uptake, which corresponded to areas of maximal FDG uptake, indicating a correlation between hypoxic areas within tumour with areas of increased glucose metabolic activity. This supports the hypothesis that hypoxic areas within tumour tissue may be associated with increased FDG uptake, although whether hypoxia itself increases FDG uptake remains controversial. These correlative studies characterising areas of hypoxia and glucose activity should hopefully assist in future therapeutic manipulations to improve the outcome from treatment of primary brain tumours

  13. The relationship between histopathological findings in oral squamous cell carcinoma and FDG uptake on PET

    International Nuclear Information System (INIS)

    Izumisawa, Mitsuru; Shozushima, Masanori; Sato, Hirotaka

    2003-01-01

    It is known that, in fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of oral cancer, FDG uptake may vary even among different cases of the same squamous cell carcinoma. However, the details of this phenomenon have not yet been elucidated. In this study, we analyzed the relationship between histopathological findings in oral squamous cell cancer and PET findings on FDG uptake. We examined 45 patients with oral squamous cell carcinoma who had undergone FDG PET before treatment. FDG uptake was assessed by a standardized uptake value (SUV) calculated according to the PET-measured tissue concentration of FDG, the administered dose of radionuclide, and the body weight of the patient. The relationship between the mean SUV and each of the following parameters was examined: histological grade of malignancy, degree of cell differentiation, size and/or local extent of the primary lesion, and cell density of the tumor. The mean SUV of FDG uptake did not depend on the histological grade of malignancy or on the degree of cell differentiation, but tended to be greater the larger the primary lesion. SUV also depended on cell density, increasing with the percentage of tumor parenchyma. It is concluded that cancer cell density greatly influences the SUV of FDG, in that a tumor with fewer cellular elements in cancer tissue tends to become a false negative. (author)

  14. Localization of Epileptogenic Zones using Partical Volume Corrected FDG Uptake on FDG PET and Voxel Based Morphometry on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won Jun; Lee, Ho Young; Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul [College of Medicine, Univ. of Seoul National, Seoul (Korea, Republic of)

    2003-07-01

    Partial volume corrected (PVC) FDG uptake yields information about regional metabolic level void of volume change, and voxel based morphometry (VBM) yields objective information regarding gray matter concentration. We investigated the roles of PVC PET and VBM to localize epileptogenic zones in medial temporal lobe epilepsy (mTLE) and non-lesional neocortical epilepsy. As a control group for PVC, 40 normal volunteers without history of neurologic or psychiatric diseases underwent FDG PET and MRI. Seventeen mTLE patients (M: F=7: 10, age=309 y) and nine neocortical epilepsy patients (M: F=6: 3, age=246, lateral temporal: 5, frontal: 3, occipital: 1) confirmed by surgery or epilepsy board meeting were enrolled. Standard VBM analysis was performed using individual MRI images compared with those of age-matched controls. For PVC, FDG PET was co-registered with its own MRI. PVC PET was obtained by dividing spillover-corrected PET by smoothed gray matter image pixel by pixel. SPAM was applied as a mask of volume of interest (VOI) to calculate gyral FDG uptake on PVC-FDG PET. Hippocampus, amygdala, superior, middle, inferior temporal gyrus and parahippocampal gyrus were the gyral SPAM VOIs in mTLE. Globally normalized PVC-FDG counts were compared with those of age-matched controls in mTLE and neocortical epilepsy patients. In mTlE, PVC-FDG PET correctly localized epileptogenic zones with the accuracy of 76% (13/17) in hippocampus and 82% (14/17) in any of six regions. VBM correctly localized 59% (10/17) in mTLE. In neocortical epilepsy, PVC-FDG PET localized epileptogenic zones in 44%, and VBM in 33%, Using VBM and PVC-FDG PET altogether, epileptogenic zones were localized in 66% (6/9). In mTLE, gyral PVC FDG uptake of temporal lobes was useful in localizing epileptogenic zones by demonstrating partial volume-void FDG concentration. In non-lesional cryptogenic neocortical epilepsy, combination of PVC-FDG PET and VBM is recommended to localize epileptogenic zones.

  15. Incorporation study of 18FDG through its uptake into tumour-derived cell lines

    International Nuclear Information System (INIS)

    Costa, Flavia M.; Nascimento, Leonardo T.C.; Santos, Raquel G.

    2013-01-01

    In vitro tests of radiopharmaceuticals are an important instrument to study their mechanisms of action, binding and incorporation. 18 FDG is the most used radiopharmaceutical for diagnostics positron emission tomography (PET) on oncology, on the basis of accelerated rates of absorption of glucose in cell malignancies. This radiotracer has been routinely produced at CDTN; and therefore, it was selected for preliminary assays due to its availability. Nowadays, UPPR at CDTN produces routinely 18 FDG for the local PET Centers but others PET radiopharmaceuticals are in development such as 18 F-Fluorocholine and 18 F-Fluorothymidine. According to the Brazilian Health Regulatory Agency (ANVISA) it is necessary to validate and register these new radiopharmaceuticals in order to get the approval for their commercialization. Targeting efficacy is one of the important issues to be evaluated during radiopharmaceutical validation. The aim of this study was to develop a standard protocol to determine tumor targeting efficacy of PET radiopharmaceuticals in vitro. Therefore it was developed a protocol based on the incorporation og 18 FDG through the uptake in different tumor-derived cell lines. Three variables were investigated for the standardization of the test: the number of cells to be seeded in 96-well plates, the time of incubation with the radiopharmaceutical and the radiotracer concentration. The standardized protocol was considered suitable for 18 FDG incorporation assay and showed reproductive results. The protocol developed in this work will pave the way for the in vitro studies of incorporation of the new PET radiopharmaceuticals to be produced at UPPR-CDTN, such as: 18 F-Fluorocholine and 18 F-Fluorothymidine. (author)

  16. Factors Associated with Diffusely Increased Splenic F-18 FDG Uptake in Patients with Cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keunyoung; Kim, Seongjang; Kim, Injoo; Kim, Dong Uk; Kim, Heeyoung; Kim, Sojung; Ahn, Sang Hyun [Pusan National Univ. Hospital, Busan (Korea, Republic of)

    2014-06-15

    Although diffuse splenic {sup 18}F-fluorodeoxyglucose (F-18 FDG) uptake exceeding hepatic activity, is considered abnormal, its clinical significance is rarely discussed in the literature. The aim of this study was to determine the contributing factors causing diffusely increased splenic FDG uptake in patients with cholangiocarcinoma. From January 2010 to March 2013, 140 patients (84 men, 56 women) were enrolled in this study. All patients had been diagnosed with cholangiocarcinoma and underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) for the pretreatment staging work up. Clinical records were reviewed retrospectively. Various hematological parameters, C-reactive protein (CRP) level, CEA, CA19-9, pancreatic enzymes and liver function tests were conducted within 2 days after the F-18 FDG PET/CT study. Diffuse splenic uptake was observed in 23 patients (16.4%). Of those, 19 patients (82.6%) underwent endoscopic retrograde cholangiopancreastography (ERCP) 7 days before F-18 FDG PET/CT. The CRP level (p <0.001) and white blood cell count (p =0.023) were significantly higher in the group of patients with diffuse splenic FDG uptake. The hemoglobin (p <0.001) and the hematocrit (p <0.001) were significantly lower in patients with diffuse splenic FDG uptake. Pancreatic enzymes, liver function test results, and tumor markers were not significantly different between the patients who did or did not have diffusely increased splenic FDG uptake. The significant factors for diffuse splenic F-18 FDG uptake exceeding hepatic F-18 FDG uptake on multivariate analysis included: performing ERCP before F-18 FDG PET-CT (odds ratio [OR], 77.510; 95% CI, 7.624-132.105), and the presence of leukocytosis (OR, 12.436; 95% CI, 2.438-63.445) or anemia (OR, 1.211; 95% CI, 1.051-1.871). In conclusion, our study demonstrated that concurrent inflammation could be associated with diffusely increased splenic FDG uptake. We suggest that performing ERCP before F-18 FDG PET

  17. Factors Associated with Diffusely Increased Splenic F-18 FDG Uptake in Patients with Cholangiocarcinoma

    International Nuclear Information System (INIS)

    Kim, Keunyoung; Kim, Seongjang; Kim, Injoo; Kim, Dong Uk; Kim, Heeyoung; Kim, Sojung; Ahn, Sang Hyun

    2014-01-01

    Although diffuse splenic 18 F-fluorodeoxyglucose (F-18 FDG) uptake exceeding hepatic activity, is considered abnormal, its clinical significance is rarely discussed in the literature. The aim of this study was to determine the contributing factors causing diffusely increased splenic FDG uptake in patients with cholangiocarcinoma. From January 2010 to March 2013, 140 patients (84 men, 56 women) were enrolled in this study. All patients had been diagnosed with cholangiocarcinoma and underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) for the pretreatment staging work up. Clinical records were reviewed retrospectively. Various hematological parameters, C-reactive protein (CRP) level, CEA, CA19-9, pancreatic enzymes and liver function tests were conducted within 2 days after the F-18 FDG PET/CT study. Diffuse splenic uptake was observed in 23 patients (16.4%). Of those, 19 patients (82.6%) underwent endoscopic retrograde cholangiopancreastography (ERCP) 7 days before F-18 FDG PET/CT. The CRP level (p <0.001) and white blood cell count (p =0.023) were significantly higher in the group of patients with diffuse splenic FDG uptake. The hemoglobin (p <0.001) and the hematocrit (p <0.001) were significantly lower in patients with diffuse splenic FDG uptake. Pancreatic enzymes, liver function test results, and tumor markers were not significantly different between the patients who did or did not have diffusely increased splenic FDG uptake. The significant factors for diffuse splenic F-18 FDG uptake exceeding hepatic F-18 FDG uptake on multivariate analysis included: performing ERCP before F-18 FDG PET-CT (odds ratio [OR], 77.510; 95% CI, 7.624-132.105), and the presence of leukocytosis (OR, 12.436; 95% CI, 2.438-63.445) or anemia (OR, 1.211; 95% CI, 1.051-1.871). In conclusion, our study demonstrated that concurrent inflammation could be associated with diffusely increased splenic FDG uptake. We suggest that performing ERCP before F-18 FDG PET

  18. A PET study of 18FDG uptake in soft tissue masses

    International Nuclear Information System (INIS)

    Lodge, M.A.; Marsden, P.K.; Cronin, B.F.; O'Doherty, M.J.; Lucas, J.D.; Smith, M.A.

    1999-01-01

    A study was performed with the aim of investigating some of the methodological factors affecting the ability of quantitative 2-[ 18 F]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography to assess tumour malignancy. Twenty-nine patients with soft tissue masses were studied using a 6-hour scanning protocol and various indices of glucose metabolism were compared with histological grade. Significant differences were observed in the time-activity response of benign and high-grade tumours. High-grade sarcomas were found to reach a peak activity concentration approximately 4 h after injection whereas benign lesions reached a maximum within 30 min. This translated to improved differentiation between these two tumour types using a standard uptake value (SUV) derived from images acquired at later times. An SUV measured 4 h post-injection was found to be as useful an index of tumour malignancy as the metabolic rate of FDG determined using either Patlak or non-linear regression techniques. Each of these indices had a sensitivity and specificity of 100% and 76% respectively for the discrimination of high-grade sarcomas from benign tumours. (orig.)

  19. Comparison of simplified quantitative analyses of FDG uptake

    International Nuclear Information System (INIS)

    Graham, M.M.; Peterson, L.M.; Hayward, R.M.

    2000-01-01

    Quantitative analysis of [ 18 F]-fluoro-deoxyglucose (FDG) uptake is important in oncologic positron emission tomography (PET) studies to be able to set an objective threshold in determining if a tissue is malignant or benign, in assessing response to therapy, and in attempting to predict the aggressiveness of an individual tumor. The most common method used today for simple, clinical quantitation is standardized uptake value (SUV). SUV is normalized for body weight. Other potential normalization factors are lean body mass (LBM) or body surface area (BSA). More complex quantitation schemes include simplified kinetic analysis (SKA), Patlak graphical analysis (PGA), and parameter optimization of the complete kinetic model to determine FDG metabolic rate (FDGMR). These various methods were compared in a group of 40 patients with colon cancer metastatic to the liver. The methods were assessed by (1) correlation with FDGMR, (2) ability to predict survival using Kaplan-Meier plots, and (3) area under receiver operating characteristic (ROC) curves for distinguishing between tumor and normal liver. The best normalization scheme appears to be BSA with minor differences depending on the specific formula used to calculate BSA. Overall, PGA is the best predictor of outcome and best discriminator between normal tissue and tumor. SKA is almost as good. In conventional PET imaging it is worthwhile to normalize SUV using BSA. If a single blood sample is available, it is possible to use the SKA method, which is distinctly better. If more than one image is available, along with at least one blood sample, PGA is feasible and should produce the most accurate results

  20. The Prognostic Value of 18F-FDG Uptake Ratio Between the Right and Left Ventricles in Idiopathic Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Li, Wen; Wang, Lei; Xiong, Chang-Ming; Yang, Tao; Zhang, Yan; Gu, Qing; Yang, Yong; Ni, Xin-Hai; Liu, Zhi-Hong; Fang, Wei; He, Jian-Guo

    2015-11-01

    Metabolic changes occur in the right ventricle (RV) under increased afterload in pulmonary arterial hypertension. FDG PET imaging has potential to assess RV function. In this study, we aimed to determine the prognostic value of metabolic changes of RV using FDG PET imaging in idiopathic pulmonary arterial hypertension (IPAH). In this prospective investigation, patients newly diagnosed with IPAH were recruited. Patients underwent right heart catheterization, FDG PET imaging, and cardiac MR (CMR) within 1 week. Right ventricle hemodynamics, glucose metabolism derived from the FDG uptake levels, and functional parameters were obtained. The FDG uptake ratio between the RV and the left ventricle (LV) and its relation with the patients' survival were analyzed. A total of 45 IPAH patients were enrolled in this study, which included 13 male (28.9%) and 32 female (71.1%). The median follow-up time of this study was 1043 days. At the end of the follow-up, 36 patients survived, whereas 9 patients were deceased because of right heart failure. Multivariate Cox proportional hazard analysis showed that the ratio between the corrected RV and LV FDG uptake (cRV/LV) in both glucose-loading (cRV/LVg) and fasting (cRV/LVf) conditions independently predicted the mortality after adjusting for pulmonary vascular resistance index, mean right atrial pressure, and World Health Organization functional class. Kaplan-Meier survival analysis showed that patients with cRV/LVf greater than 143.65% in fasting condition (log rank, P = 0.030) or cRV/LVg greater than 120.55% in glucose-loading condition (log rank, P = 0.014) had worse prognosis. The FDG uptake ratio between the RV and LV can be an independent predictor for long-term prognosis of IPAH patients.

  1. Dose painting based on tumor uptake of Cu-ATSM and FDG

    DEFF Research Database (Denmark)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael

    2014-01-01

    definitions based on FDG, 64Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64Cu-ATSM at two different time-points and FDG provide different biological information that has to be taken into account when using the dose painting...

  2. The effect of dynamic knee-extension exercise on patellar tendon and quadriceps femoris muscle glucose uptake in humans studied by positron emission tomography

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine

    2005-01-01

    Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose...... that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake....... uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing...

  3. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Full text: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and LH. We carried out this study to investigate FDG uptake in SR and LH to find out the exact tissues of FDG uptake. From September 2002 to March 2003, 147 consecutive patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Of the 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations. The positive rates were 2.1% and 11.3% for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years, 3.4%) showed abnormal FDG uptake in LH, which were definitely localized in the vascular structure of the lung hilum by CT. Co-registered PET/CT imaging shows that the FDG uptake, though well known in the SR and LH regions, is not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were found in aged people. (author)

  4. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.; O'Hara, Sara M.; Curtwright, Lois A.; MacLean, Joseph R.

    2005-01-01

    Radiopharmaceutical uptake of [ 18 F]2-deoxy-2-glucose (FDG) in brown adipose tissue is noted on 15-20% of positron emission tomography (PET) scans in children and adolescents. To determine whether [ 18 F]FDG uptake in brown adipose tissue can be adequately blocked by pre-medication other than moderate-dose oral diazepam. One hundred and eighteen [ 18 F]FDG PET body imaging studies were performed in 69 pediatric patients with a variety of solid tumors. The mean age at the time of imaging was 12.9 years (range 1.2-22.6 years), and 33 studies were performed in patients younger than 10 years old. Seventy-six were performed in boys and 42 in girls. Patients were imaged using a dedicated PET camera. Pre-medication was given in 88 studies: 45 received intravenous fentanyl (0.75-1.0 μg/kg), 34 received low-dose oral diazepam (0.06 mg/kg) and 9 received moderate-dose oral diazepam (0.10 mg/kg). Thirty patients received no pre-medication, 7 of whom were known to have received opiates for pain during the 12 h before the study. Six body regions in the neck and chest were reviewed for [ 18 F]FDG uptake in brown adipose tissue. Uptake of FDG in brown fat was visually graded: 0 for no FDG uptake, 1 for low-grade uptake, 2 for moderate uptake, and 3 for intense uptake. Visual grades 2 and 3 were considered to interfere potentially with image interpretation in the neck and chest. Data were analyzed by multivariate regression using a Poisson distribution. [ 18 F]FDG uptake in brown adipose tissue was most often seen in the lateral neck region and superior and lateral to the lungs (in 36 and 39 studies, respectively). Uptake was also seen near the costovertebral junctions (15 studies), in the superior and central neck in 7 studies and in the anterior mediastinum in 2. Brown adipose tissue uptake was thought to interfere potentially with image interpretation (visual grades 2 and 3) in 19 studies - in 6 of 23 (26.1%) studies after no pre-medication and no opiates for pain, in 10 of

  5. 18F-FDG uptake in bone metastases

    International Nuclear Information System (INIS)

    Dineva, S.; Kostadinova, I.; Hadjidekov, V.

    2012-01-01

    Full text: Introduction: PET-CT is an established technique in staging cancer patients and monitoring the therapeutic response. In the literature it has been pointed out the different uptake in osteosclerotic and osteolytic metastases due to different metabolic activity. Objective: The aim of this study is to share authors initial experience in 18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) evaluation of bone metastases secondary to breast cancer with different morphological appearance and to compare the diagnostic accuracy of CT and PET alone and in combination. Patients and methods: Fifty-nine (59) patients with bone lesions secondary to breast carcinoma are included in the retrospective study. The imaging protocol included a low-dose 16-raw detector CT scan with consequent PET scanning after the administration of 5 MBq/kg 18F-FDG activity. Bone metastases were characterized morphologically as being osteolytic, osteoblastic or mixed and metabolically as active, nonactive. Standard uptake value (SUV) of the most active metastatic lesion in each patient is measured. Results: Most patients had more than one type of bone metastases. 23 patients (38.98%) had osteolytic bone metastases, 32 (54.23%) had mixed, 14 (23.72%) had osteoblastic and 8 (13.55%) patients had metabolically active bone metastases without any morphological evidence. All of the osteolytic and all of the mixed bone lesions were metabolically active (100%). Amongst the osteoblastic bone metastases metabolic activity was seen in 11 (78.57%) patients and the rest 3 (21.42%) of them had only morphological evidence of bone lesions due to good therapeutic response. SUV varies from 3.2 to 18.5 (normal uptake threshold - 2.5). The aggressiveness of bone lesions is related to high metabolic activity and the lack of the latter is usually a sign of good therapeutic response. Metabolic activity without morphological changes is a feature of early bone marrow affection and

  6. {sup 18}F-FDG uptake at the surgical margin after hepatic resection: Patterns of uptake and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Peungjesada, Silanath [University New Mexico, Department of Radiology, Albuquerque, NM (United States); Aloia, Thomas A. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Unit 444, Houston, TX (United States); Fox, Patricia [University of Texas MD Anderson Cancer Center, Department of Biostatistics, Unit 1411, Houston, TX (United States); Chasen, Beth [University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Unit 1483, Houston, TX (United States); Shin, Sooyoung; Loyer, Evelyne M. [University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Unit 1473, Houston, TX (United States); Baiomy, Ali [Cairo University, National Cancer Center, Cairo (Egypt)

    2015-08-15

    To evaluate the patterns of {sup 18}F-FDG uptake at the surgical margin after hepatectomy to identify features that may differentiate benign and malignant uptake. Patients who had undergone a PET/CT after hepatectomy were identified. Delay between resection and PET/CT, presence of uptake at the surgical margin, pattern of uptake, and maximal standardized value were recorded. The PET/CT findings were correlated with contrast-enhanced CT or MRI. There were 26 patients with increased 18F-FDG uptake; uptake was diffuse in seven and focal in 19. Diffuse uptake was due to inflammation in all cases. Focal uptake was due to recurrence in 12 and inflammation in seven cases. Defining a focal pattern only as a positive for malignancy yielded 100 % sensitivity, 87 % specificity, 37 % false positive rate. As expected, SUV{sub max} was significantly higher for recurrence than inflammation, but did overlap. Contrast-enhanced CT allowed differentiation between malignant and benign uptake in all cases. F-FDG uptake after hepatectomy does not equate to recurrence and yields a high false positive rate. Diffuse uptake did not require additional evaluation in our sample. Focal uptake, however, may be due to recurrence; differentiating benign and malignant nodular uptake relies on optimal contrast-enhanced CT or MRI. (orig.)

  7. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    Science.gov (United States)

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  8. Non-specific Inflammatory Disease Showed Abnormal FDG Uptake in Lower Extremities

    International Nuclear Information System (INIS)

    Chun, Kyung Ah; Kong, Eun Jung; Cho, Ihn Ho; Hong, Young Hoon; Lee, Choong Ki

    2008-01-01

    Including malignancy, various disease can show abnormal uptake in bone marrow. 1,2) We report a case of non-specific inflammatory FDG uptake in bone marrow mimicking malignancy. A 35-year old woman with fever of unknown origin (FUO) underwent 18 F-FDG PET/CT to find out fever focus and unknown malignancy. 18 F-FDG was injected and imaged 1hr after injection with Discovery ST (GE, USA). 18 F-FDG PET/CT whole body image showed abnormal uptake in lower extremities. MRI and biopsy was also done in the sites of abnormal uptake. PET and MRI suspect malignancy, but biopsy result was non-specific inflammatory process. The patient was improved her clinical condition after antibiotics therapy

  9. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake

    DEFF Research Database (Denmark)

    Hutchings, Martin; Loft, Annika; Hansen, Mads

    2006-01-01

    ) patients, 20.8 g/ml in 11 mixed cellularity (MC) patients, and 19.5 g/ml in four patients with unclassified classical HL (CHL-NOS), (ANOVA, p = 0.011). Out of 780 sites (600 lymph node regions plus 180 organs), 208 sites were found to be affected with HL. Mean SUV(max) was 8.3 g/ml in the 12 sites with NLP......, 11.2 g/ml in the 147 sites affected with NS, 14.6 g/ml in the 36 sites with MC, and 13.1 g/ml in the 13 sites with CHL-NOS (ANOVA, p = 0.002). There is a significant difference in FDG/glucose uptake between the different histopathological subtypes of HL....

  10. Unilateral Muscle Artifacts due to Non-compliance During Uptake Phase of 18F-FDG PET/CT in an Oncologic Patient

    Directory of Open Access Journals (Sweden)

    William Makis

    2018-02-01

    Full Text Available A 49-year-old male patient with a prior history of poor compliance with medical appointments was referred for an 18F-fluoro-2-deoxy-D-glucose (18F-FDG positron emission tomography/computed tomography (PET/CT for the staging of a rectal squamous cell carcinoma. The PET/CT showed unilateral diffuse skeletal muscle 18F-FDG uptake as well as bilateral salivary gland uptake artifacts, suggestive of non-compliance with patient preparation instructions. The PET/CT nurse noted that during the 18F-FDG uptake phase, the patient appeared intoxicated, and she found two beer cans hidden in the waste disposal beside his chair just prior to imaging. The patient only admitted to eating a cookie approximately 30 minutes after the injection of 18F-FDG PET/CT and denied consuming alcohol during the uptake phase. We present the imaging findings of non-compliance with patient instructions during the uptake phase of 18F-FDG.

  11. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  12. Investigations on the effects of ''Ecstasy'' on cerebral glucose metabolism: an 18-FDG PET study

    International Nuclear Information System (INIS)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Tuttass, T.; Schulz, G.; Kaiser, H.J.; Wagenknecht, G.; Buell, U.; Gouzoulis-Mayfrank, E.; Sass, H.

    1998-01-01

    Purpose: The aim of the present study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8±11,1 μmol/min/100 g, placebo: 50,1±18,1 μmol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p [de

  13. The Impact of Energy Substrates, Hormone Level and Subject-Related Factors on Physiologic Myocardial {sup 18}F-FDG Uptake in Normal Humans

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Juhye; Kong, Eunjung; Chun, Kyungah; Cho, Ihnho [Yeung-Nam Univ. Hoepital, Daegu (Korea, Republic of)

    2013-12-15

    In a whole-body {sup 18}F-FDG PET/CT, non-specific {sup 18}F-FDG uptake of the myocardium is a common finding and can be very variable, ranging from background activity to intense accumulation and inhomogeneity. We investigated the effect of energy substrates and plasma/serum hormones that may have an influence on myocardial {sup 18}F-FDG uptake. F-FDG PET/CT was performed on 100 normal volunteers from November 2007 to August 2008. Blood samples were taken just before {sup 18}F-FDG injection from all subjects. Myocardial {sup 18}F-FDG uptake was measured as the mean (SUVmean) and maximal (SUV{sub max}) standardized uptake value. The myocardium was delineated on the PET/CT image by a manual volume of interest (VOI).We analyzed the influence of age, sex, presence of diabetes, fasting duration, insulin, glucagon, fasting glucose, lactate, free fatty acid (FFA), epinephrine (EPi), norepinephrine (NEp), free triiodothyronine (T3), free thyroxine (T4), thyroid-stimulating hormone (TSH) and body mass index (BMI). Overall, 92 subjects (mean age 50.28±8.30, male 57) were enrolled. The average of myocardial SUVmean was 2.08 and of myocardial SUV{sub max} was 4.57, respectively and there was a strong linear correlation between SUVmean and SUV{sub max} (r =0.98). FFA and fasting duration showed significant negative correlation with myocardial {sup 18}F-FDG uptake, respectively (r =-0.40 in FFA; r =-0.41 in fasting duration). No significant relationships were observed between myocardial uptake and age, sex, presence of diabetics, insulin, glucagon, fasting glucose, lactate, EPi, NEp, free T3, free T4, TSH and BMI. Myocardial {sup 18}F-FDG uptake decreases with longer fasting duration and higher FFA level in normal humans. Modulating myocardial uptake could improve {sup 18}F-FDG PET/CT imaging for specific oncologic and cardiovascular indications.

  14. The effect of steroid on FDG uptake in experimental tumors, granulomatous and inflammatory lesions

    International Nuclear Information System (INIS)

    Zhao Songji; Yuji Kuge; Kunihiro Nakada; Masayuki Sato; Toshiki Takei; Zhao Yan; Nagara Tamaki; Masashi Kohanawa; Ken-ichi Seki

    2004-01-01

    Objectives: FDG accumulates not only in malignant tumors but also inflammatory lesions, especially in granulomatous lesions, which makes differentiate malignant tumors from benign lesions difficult. To obtain a clue for differentiating malignant lesions from benign ones by FDG-PET, we determined the effect of steroid on FDG uptake in granulomatous and inflammatory lesions, and compared them with those in malignant tumors in rats. Methods: Rats were inoculated with a suspension of allogenic hepatoma cells (KDH-8), Bacille bili e de Calmette-Guerin-(BCG) or Staphylococcus aureus (S. aureus), or with turpentine oil into the left calf muscle. Two weeks after KDH-8, 19 days after BCG, or one week after S. aureus or turpentine oil inoculations, the rats were fasted overnight and divided into two subgroups (n=5-6, in each group): Prednisolone (PRE)-pretreated (Methylprednisolone acetate, 8 mg/kg body weight, i.m. injection 20 hour before the FDG intravenous injection) and control (untreated) groups. Radioactivity in tissues was determined one hour after i.v. injection of FDG. FDG uptake in tissues were expressed as the percentage of injected dose per gram of tissue after normalization to animal's weight (%ID/g tissue/kg body weight). Results: FDG uptake in the tumor, granulomatous and inflammatory lesions were shown in Table. In the untreated animals, remarkably higher accumulations of FDG were observed in the tumor and granulomatous lesions, compared with those in the inflammatory lesions induced by S. aureus and turpentine oil. There was no significant difference in the level of FDG uptake between the tumor and granulomatous lesions, and between the two inflammatory lesions. PRE pre-treatment significantly decreased the level of FDG uptake in granulomatous lesions induced by BCG, inflammatory lesions induced by S. aureus and turpentine oil to 52%, 73% and 76% of the control value, respectively. The level of FDG uptake in the tumor was not significantly decreased by PRE

  15. Relationship Between the Elevated Muscle FDG Uptake in the Distal Upper Extremities on PET/CT Scan and Prescan Utilization of Mobile Devices in Young Patients.

    Science.gov (United States)

    Bai, Xia; Wang, Xuemei; Zhuang, Hongming

    2018-03-01

    It is common to notice increased FDG activity in the muscles of the forearms or hands on PET/CT images. The purpose of this study was to determine relationship between the prevalence of increased FDG activity in the forearms or hands and using mobile devices prior to the FDG PET/CT study. A total of 443 young patients with ages between 5 and 19 years who underwent FDG PET/CT scan were included in this retrospective analysis. All patients had FDG PET/CT with their arms within the field of views. The images were reviewed for elevated activity in the muscles of the distal upper extremities (DUEs), which include forearms and hands. The preimaging questionnaire/interview records regarding using mobile devices prior to FDG PET/CT were also reviewed and compared with the imaging findings. Most patients (72.0% [319/443]) used mobile devices more than 60 minutes in the period of 24 hours prior to the FDG PET/CT study. Elevated uptake in the muscles in the DUEs was observed in 38.6% (123/319) of these patients. In contrast, among 124 patients who did not use the mobile devices or used the mobile device minimally prior to the study, only 6.5% (8/124) of them had elevated FDG activity in the DUEs. The difference persisted following stratification analysis for sex, age, and serum glucose level in our patient population. Increased FDG uptake in the muscles of the DUEs in young patients is commonly seen in those who used mobile devices prior to PET/CT study. Recommendation should be considered to reduce using mobile devices prior to FDG PET/CT study in young patient population.

  16. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Objectives: To investigate FDG uptake on the sites of supraclavicular region (SR) and the lung hilum (LH) and find out the exact tissues of the uptake. Methods: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and EH. From September 2002 to March 2003, 147 consecutive clinical patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in the sites of SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Results: Of 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations, the positive rates were 2.1% and 11.3 % for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years,3.4%) showed abnormal LH FDG uptake, which were definitely localized in the vascular structure of the lung hilum by CT Conclusion: Co-registered PET/CT imaging shows that the FDG uptake been well known in the SR and LH regions are not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were

  17. High prevalence of thyroid FDG uptake on PET study in patients with thyroid hormone replacement

    International Nuclear Information System (INIS)

    Yu, J.-Q.; Kumar, R.; Xiu, Y.; Dadparvar, S.; Kung, J.W.; Kunjunmen, B.D.; Feng, Q.; Alavi, A.; Zhuang, H.

    2004-01-01

    Thyroid uptake is commonly seen on whole-body FDG-PET images. One well-known cause for this uptake is hyperthyroidism. The purpose of this study was to determine whether hypothyroidism also affects FDG uptake by the thyroid gland. Hospital records of 2765 patients who had undergone whole-body FDG-PET imaging for malignancies were retrospectively reviewed. Among them, those who had thyroid cancer, history of thyroid ablation for hyperthyroidism, neck lymphoma, and other types of head and neck cancer or recent neck surgery were excluded from analysis. The prevalence and level of thyroid FDG uptake in the remaining 1939 patients was compared with the state of patients' thyroid function. There were 141 hypothyroid subjects and the rest (n=1798) were euthyroid. The prevalence of thyroid tissue uptake in euthyroid subjects was 2.34% (42 of 1798), while it was 22% (31 out of 141) in hypothyroid patients. This was statistically significant. Similarly, the prevalence of hypothyroidism in patients in patients showing thyroid uptake was 42.5% (31 of 73), while it was 5.9% (110 of 1866) in patients without thyroid uptake. This was again statistically significant (p<0.001). Based on this retrospective analysis it was concluded that the prevalence of increased thyroid FDG uptake is significantly higher in patients with hypothyroidism than those who are euthyroid. (author)

  18. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  19. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  20. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of 18F-Fluorodeoxyglucose After Radiation Treatment

    International Nuclear Information System (INIS)

    Wilson, George D.; Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L.; Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John; Oliver Wong, Ching Yee; Yan, Di; Marples, Brian; Huang, Jiayi

    2014-01-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm 3 they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: 18 F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism

  1. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    Science.gov (United States)

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  2. Regional cerebral glucose metabolism associated with ataxic gait. An FDG-PET activation study in patients with olivo-pontocerebellar atrophy

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Ohyama, Masashi; Kitamura, Shin; Terashi, Akirou; Senda, Michio; Ishii, Kenji.

    1995-01-01

    In 7 patients with olivo-pontocerebellar atrophy (OPCA), regional cerebral glucose metabolism was evaluated using 18 F-FDG PET under two different conditions; 30 minutes' treadmill walking, and supine resting. The two sets of PET images were three-dimensionally registered to the MRI. Then, the PET images were normalized by the global value. Regions of interest (ROIs) were drawn on the cerebellar vermis, cerebellar hemispheres, pons, and thalamus, and FDG uptake was obtained to calculate the activation ratio (=[FDG uptake under walking]/ [FDG uptake under resting]) for each region. Normalized resting FDG uptake had no significant difference between controls and OPCA patients in any region. Activation ratio of OPCA patients was significantly decreased in the cerebellar vermis compared with the controls. In the controls, FDG uptake had little difference between resting and walking in the cerebellar hemisphere, pons and thalamus. On the other hand, the FDG uptake of OPCA patients was moderately increased by walking in these regions. The reduction of activation ratio in the cerebellar vermis reflects the dysfunction caused by degeneration. The result suggests that the PET activation study can demonstrate cerebellar dysfunction in the early phase of OPCA, in which other neuro-imaging methods cannot detect the tissue atrophy, hypometabolism or hypoperfusion in the resting state. In the cerebellar hemisphere, pons and thalamus, the activation ratio was nearly equal to one in control subjects, while it was larger in OPCA patients. The instability during the ataxic gait increases the inputs from the vestibular, somatosensory and visual systems to these regions and outputs from these regions to the other neural systems. In conclusion, PET activation study is a useful and noninvasive technique for investigating the brain function associated with human gait. (H.O.)

  3. The effect of P-glycoprotein on 18F-FDG uptake in vitro

    International Nuclear Information System (INIS)

    Yu Chunjing; Zhang Bin; Deng Shengming; Wan Weixing; Wu Yiwei

    2013-01-01

    Objective: To evaluate the effect of P-gp inhibitors of verapamil (VER) and GF120918 on 18 F-FDG uptake in Bcap37 and Bcap37/multidrug resistance (MDR)1 cell lines in vitro, and to explore the relationship between 18 F-FDG uptake and P-gp expression at cellular level. Methods: Bcap37 and Bcap37/MDR1 cells were seeded into 6-well plates at a density of 1 × 10 6 per well. Three days later,37 kBq/ml 18 F-FDG, or 37 kBq/ml 18 F-FDG + 100 μmol/L VER, or 37 kBq/ml 18 F-FDG + 50 μmol/L GF120918 were added into each well. After incubated for 10, 30, 60 and 120 min at 37 ℃ and in 5% CO 2 , the medium was removed and the cells were washed three times with 1 ml ice-cold PBS immediately. The radioactivity of 18 F-FDG was measured using a gamma counter. The uptake of 18 F-FDG was expressed as the ratio of 18 F-FDG radioactivity in Bcap37 or Bcap37/MDR1 cells and the overall radioactivity added to the cells in each well.The t test was used for statistical analysis. Results: 18 F-FDG uptake was higher in Bcap37/MDR1 cells than that in Bcap37 cells after incubated for 10 min. The uptake rate was (1.88 ±0.19) % in Bcap37/MDR1 cells and (1.37 ± 0.18) % in Bcap37 cells (t=7.832, P<0.05). On the contrary, 18 F-FDG uptake was significantly higher in Bcap37 cells than that in Bcap37/MDR1 cells after incubated for 60 and 120 min. The uptake rates were (2.29 ±0.23)% and (2.34 ±0.15)% in Bcap37 cells, (1.47 ±0.14)% and (1.53 ±0.22)% in Bcap37/MDR1 cells (t=8.437, 8.283, both P<0.05). 18 F-FDG uptake was significantly higher with VER or GF120918 in Bcap37/MDR1 cells than that without VER or GF120918 after the incubation of 60 and 120 min (t=9.032, 9.243 and 8.765, 8.803, all P<0.05). The uptake rates with VER or GF120918 were (2.45 ±0.21)% and (2.46 ±0.25)%, (2.50 ±0.24)% and (2.48 ±0.27)%. There was no significant difference of 18 F-FDG uptake in Bcap37 cells with or without VER or GF120918. Conclusions: 18 F-FDG is a substrate of P-gp at cellular level. P-gp may act as an

  4. Colonic uptake patterns of F-18-FDG PET in asymptomatic adults: comparison with colonoscopic findings

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Cho, Yoo Kyung; Jung, Sung Ae; Shim, Ki Nam; Lee, Hong Soo

    2005-01-01

    Physiologic intestinal FDG uptake is frequently observed in asymptomatic individuals for cancer screening FDG PET. Colonic FDG accumulation is a well-known confusing findings that interfere true cancer detection or cause false positive. The aim of this study was to evaluate the pattern and intensity of colonic uptake in whole body FDG PET in asymptomatic healthy adults and to correlate them with colonoscopic findings. We reviewed retrospectively 64 subjects (age: 27-87, M:F=31:33) who underwent both FDG PET and colonoscopy for cancer screening. FDG uptake patterns were classified as focal, segmental and diffuse. Maximum SUV were measured. The PET results were compared with colonoscopic and histologic findings. In 13 patients FDG bowel uptake was interpreted as focal, in 17 patients as segmental and in 34 patients as diffuse uptake. Six adenomas (17.6%, average diameter=5.0 mm) were found in diffuse pattern, 7 adenomas (41.1%, 5.6 mm) in segmental and 4 adenomas and 1 adenocarcinoma (38.5%, 16.4 mm) in focal uptake pattern. In patients with focal uptake, four were non-adenomatous pathologic lesions (30.8%, 2 intestinal tuberculosis, 2 mucosal ulcer). There is no difference of mean SUV between patients with adenoma and with negative colonoscopic results in each group of intestinal FDG pattern (Diffuse: 1.7 ± 0.1 vs 1.9 ± 0.5, Segmental: 4.8 ± 3.6 vs 4.2 ± 1.2, Focal: 6.5 ± 4.7 vs 3.5 ± 1.3). Large adenomas (>1 cm) can be detected more in the focal uptake pattern (4 out of 5) rather than in segmental (1 out of 7) or diffuse uptake (none) and had higher SUV (6.3 ± 4.8) than small adenomas (3.5 ± 3.0)(statistically insignificant). Focal FDG uptake is associated more often with large adenoma and other pathologic findings in colonoscopy. Segmental uptake cannot discriminate presence of adenoma from negative results, while diffuse pattern may have more chance to be normal

  5. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    Science.gov (United States)

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Aortic {sup 18}F-FDG uptake in patients suffering from granulomatosis with polyangiitis

    Energy Technology Data Exchange (ETDEWEB)

    Kemna, Michael J. [Maastricht University Medical Center, Department of Nephrology and Clinical Immunology, Maastricht (Netherlands); Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Bucerius, Jan [Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Drent, Marjolein [Maastricht University, Department of Pharmacology and Toxicology, Maastricht (Netherlands); Voeoe, Stefan [Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Veenman, Martine [Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Paassen, Pieter van [Maastricht University Medical Center, Department of Nephrology and Clinical Immunology, Maastricht (Netherlands); Tervaert, Jan Willem Cohen [Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Sint Franciscus Gasthuis, Noordoever Academy, Rotterdam (Netherlands); Kroonenburgh, Marinus J.P.G. van [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands)

    2015-08-15

    The objective of the study was to systematically assess aortic inflammation in patients with granulomatosis with polyangiitis (GPA) using {sup 18}F-2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) positron emission tomography (PET)/CT. Aortic inflammation was studied in PET/CT scans obtained from 21 patients with GPA; 14 patients with sarcoidosis were included as disease controls, 7 patients with stage I or II head and neck carcinoma ascertained during routine clinical practice were used as healthy controls (HC) and 5 patients with large vessel vasculitis (LVV) were used as positive controls. Aortic {sup 18}F-FDG uptake was expressed as the blood-normalized maximum standardized uptake value (SUV{sub max}), known as the target to background ratio (mean TBR{sub max}). The mean TBR{sub max} (interquartile range) of the aorta in patients with GPA, sarcoidosis, HC and LVV were 1.75 (1.32-2.05), 1.62 (1.54-1.74), 1.29 (1.22-1.52) and 2.03 (1.67-2.45), respectively. The mean TBR{sub max} was significantly higher in patients suffering from GPA or LVV compared to HC (p < 0.05 and p < 0.005, respectively) and tended to be higher in patients suffering from sarcoidosis, but this did not reach statistical significance (p = 0.098). The mean TBR{sub max} of the most diseased segment was significantly higher compared to HC [1.57 (1.39-1.81)] in LVV patients [2.55 (2.22-2.82), p < 0.005], GPA patients [2.17 (1.89-2.83), p < 0.005] and patients suffering from sarcoidosis [2.04 (1.88-2.20), p < 0.05]. In GPA patients, the mean TBR{sub max} of the aorta was significantly higher in patients with previous renal involvement [2.01 (1.69-2.53)] compared to patients without renal involvement in the past [1.60 (1.51-1.80), p < 0.05]. Interrater reproducibility with a second reader was high (all intraclass correlation coefficients >0.9). Patients suffering from GPA show marked aortic FDG uptake. (orig.)

  7. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    Energy Technology Data Exchange (ETDEWEB)

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  8. Non-invasive differentiation of pancreatic lesions: is analysis of FDG kinetics superior to semiquantitative uptake value analysis?

    International Nuclear Information System (INIS)

    Nitzsche, E.U.; Hoegerle, S.; Mix, M.; Brink, I.; Otte, A.; Moser, E.

    2002-01-01

    The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomography (FDG PET) for the non-invasive differentiation of focal pancreatic lesions originating from cancer or chronic pancreatitis by combined visual image interpretation and semiquantitative uptake value analysis has been documented. However, in clinical routine some misdiagnosis is still observed. This is because there is potential overlap between the semiquantitative uptake values obtained for active inflammatory lesions and cancer. Therefore, this prospective study was undertaken to test the hypothesis that analysis of dynamic kinetics of focal pancreatic lesions based on FDG PET may more accurately determine the benign or malignant nature of such lesions. Thirty patients (56±17 years) were studied dynamically with FDG PET for a period of 60-90 min. Patients were assigned to one of four groups: control, acute pancreatitis, chronic pancreatitis or pancreatic cancer. Two observers, blinded to the clinical data, analysed the time-activity curves of FDG kinetics based on region of interest analysis. The diagnosis predicted by FDG PET was compared with the result of histological examination of the surgical specimen. Analysis of FDG kinetics revealed significant differences in the shape of the time-activity curve for controls, pancreatic cancer and inflammatory disease. Surprisingly, there was no significant difference in the time-activity curve shape for chronic pancreatitis and acute pancreatitis; this is, however, not a clinical issue. Furthermore, acquisition time (60 min vs 90 min) did not affect interpretation of the time-activity curve, so that scanning time may be regularly shortened to 60 min. Interobserver agreement was 1. Based on these findings, non-invasive differentiation between pancreatic cancer and chronic pancreatitis was correctly predicted in all cases, as confirmed by histology. In addition, the specificity was increased compared with that obtained from standardised

  9. Incidental Focal 18F FDG Uptake in the Prostate: Clinical Significance and Differential Diagnostic Criteria

    International Nuclear Information System (INIS)

    Cho, Suk Kyong; Choi, Joon Young; Yoo, Jang; Cheon, Miju; Lee, Ji Young; Hyun, Seung Hyup; Lee, Eun Jeong; Lee, Kyung Han; Kim, Byung Tae

    2011-01-01

    The extent and intensity of 18F FDG uptake in prostate cancer patients are known to be variable, and the clinical significance of focal 18F fluorodeoxyglucose ( 18F FDG) uptake that is incidentally found on positron emission tomography (PET) has not been established. We investigated the clinical significance of incidental focal prostate uptake of 18F FDG on PET/computed tomography (CT) and analyzed differential findings on PET/CT Between malignant and benign uptake. A total of 14,854 whole body 18F FDG PET/CT scans (4,806 that were conducted during cancer screening and 10,048 that were conducted to evaluate suspected of alleged cancer outside of the prostate) were retrospectively reviewed to determine the presence, location, multiplicity reviewed to determine the presence, location, multiplicity and maximum standardized uptake value (SUVmax) of focal prostate uptake and combined calcification. The final diagnosis determined by serum prostate specific antigen (PSA) level and biopsy was compared with PET findings. Incidental focal prostate uptake was observed in 148 of 14,854 scans (1.0%). Sixty seven of these 148 subjects who had diagnostic confirmation were selected for further analysis. Prostate cancer was diagnosed in nine of 67 subjects (13.4%). The remaining 58 subjects had no malignancy in the prostate based on normal serum PSA level (n=53), or elevated serum PSA level with a negative biopsy result (n=5). While 84.6% (11/13) of malignant uptake was peripherally located in the prostate glands, 60.2% (50/83) of benign uptake was centrally located (p 18F FDG uptake un the prostate is not common, the incidence of cancer with focal uptake is not low. Therefore, these findings deserve further evaluation. The location of the focal prostate uptake may help with the selection of high risk prostate cancer patients.

  10. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  11. Correlation of primary tumor FDG uptake with histopathologic features of advanced gastric cancer

    International Nuclear Information System (INIS)

    Kim, Hae Won; Won, Kyoung Sook; Song, Bong Il; Kang, Yu Na

    2015-01-01

    Histopathologic features could affect the FDG uptake of primary gastric cancer and detection rate on FDG PET/CT. The aim of this study was to evaluate the FDG uptake of primary gastric cancer by correlating it with the histopathologic features of the tumors. Fifty patients with locally advanced gastric adenocarcinoma who were referred for preoperative FDG-PET/CT scans were enrolled in this study. The detection rate of PET/CT and maximum standardized uptake values (SUV max ) of the primary tumor were compared using the WHO, Lauren, Ming and Borrmann classifications and tumor size and location. In 45 of the 50 patients (90 %), the primary gastric tumors were detected by FDG PET/CT. On comparison using the WHO classification, the detection rate and SUV max of the tubular type were significantly higher than those of the poorly cohesive type. On comparison using the Lauren and Ming classifications, the SUV maxs of the intestinal type and expanding type were significantly higher than those of the diffuse and infiltrative type, respectively. On comparison using the Borrmann classification and tumor size and location, there was no significant difference in the detection rate and SUV max of primary gastric tumors. This study demonstrates that the poorly cohesive type according to the WHO classification, diffuse type according to the Lauren classification and infiltrative type according to the Ming classification have low FDG uptake in patients with locally advanced gastric carcinoma. Understanding the relationship between primary tumor FDG uptake and histopathologic features would be helpful in detecting the primary tumor by FDG PET/CT in patients with gastric cancer

  12. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joohee; Moon, Seung Hwan; Hyun, Seung Hyup; Cho, Young Seok; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Eun Jeong [Seoul Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Seokhwi [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-08-15

    Imaging tumor FDG uptake could complement breast cancer biomarkers of risk and treatment response. Although breast cancer FDG uptake is reputedly influenced by major biomarker states, the role of epidermal growth factor receptor (EGFR) expression remains largely unexplored. This is a retrospective study that included 499 patients with primary breast cancer at initial presentation. Tumor FDG uptake was measured on pretreatment PET/CT as maximum standardized uptake value (SUVmax), and biomarkers were assessed by immunohistochemistry of tumor tissue. Regression analysis was performed for predictors of high tumor FDG uptake (SUVmax ≥ 8.6). SUVmax was higher in ER- (36.5%; 11.2 ± 6.0 vs. 8.3 ± 5.3), PR- (42.3%; 10.9 ± 6.0 vs. 8.2 ± 5.2), and triple-negative tumors (19.8%; 12.0 ± 6.9 vs. 8.7 ± 5.2; all p < 0.0001). EGFR expression (28.5%) was more frequent in ER-, PR-, triple-negative, cytokeratin 5/6 (CK5/6) + and mutant P53 (mP53) + tumors (all p < 0.0001). EGFR+ was associated with higher SUVmax among all tumors (11.9 ± 6.0 vs. 8.3 ± 5.3), ER- tumors (p < 0.0001), PR- and + tumors (p < 0.0001 and 0.027), hormone receptor- and + tumors (p < 0.0001 and 0.004), human epidermal growth factor receptor 2 (HER2)- and + tumors (p < 0.0001 and 0.006), non-triple negative tumors (p < 0.0001), CK5/6- and + tumors (p = 0.021 and <0.0001), and mP53- and + tumors (p < 0.0001 and 0.008). Tumors had high FDG uptake in 73.2% of EGFR+ and 40.6% of EGFR- tumors. On regression analysis, significant multivariate predictors of high tumor FDG uptake were large size, EGFR+ and CK5/6+ for the entire subjects, and EGFR+ and CK5/6+ for ER- and hormone receptor negative subgroups. High FDG uptake was able to sub-stratify EGFR+ tumors that were more likely to be ER- and CK5/6+, and EGFR- tumors more likely to be mP53 +. Primary breast tumor FDG uptake is strongly influenced by EGFR status beyond that by other major biomarkers including hormone receptor and HER2 status, and EGFR

  13. Evaluation of anesthesia effects on [{sup 18}F]FDG uptake in mouse brain and heart using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi E-mail: htoyama@fujita-hu.ac.jp; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B

    2004-02-01

    This study evaluates effects of anesthesia on {sup 18}F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used.

  14. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B.

    2004-01-01

    This study evaluates effects of anesthesia on 18 F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used

  15. Non-malignant FDG uptake in infradiaphragmatic adipose tissue: a new site of physiological tracer biodistribution characterised by PET/CT

    International Nuclear Information System (INIS)

    Bar-Shalom, Rachel; Keidar, Zohar; Gaitini, Diana; Israel, Ora

    2004-01-01

    The purpose of this study was to characterise a benign pattern of infradiaphragmatic 18 F-fluorodeoxyglucose (FDG) uptake in cancer patients using PET/CT. Infradiaphragmatic foci of FDG uptake, localised by PET/CT in regions of normal fat tissues, were demonstrated, in conjunction with fatty uptake in the neck and shoulders, in 9 of 1,241 (0.7%) patients. The imaging and clinical characteristics of this pattern and its possible clinical significance were assessed. PET/CT precisely localised infradiaphragmatic fat uptake (IDFU) within normal retroperitoneal fatty tissue of the perirenal space (nine patients) and in the paracolic or parahepatic space (four patients). Perirenal uptake was bilateral in five patients and focal in six. Paracolic and parahepatic uptake was bilateral in three patients and linear in all four patients. There was no evidence of malignancy at any of the sites during a follow-up period of 9-21 months. IDFU was significantly more prevalent in young patients assessed for monitoring response to therapy, and was always associated with the benign supradiaphragmatic uptake pattern, although its prevalence was significantly lower. There were no significant differences between the clinical characteristics of these two patterns of benign fatty FDG uptake. It is concluded that PET/CT allows for precise identification of increased FDG uptake in abdominal fatty tissue and further exclusion of disease at such sites. This benign uptake may represent increased glucose consumption in activated brown adipose tissue, similar to the mechanism suggested for supradiaphragmatic uptake. Recognition of this benign IDFU pattern is important for correct interpretation of abdominal PET findings in cancer patients. (orig.)

  16. Comparison of FDG Uptake with Pathological Parameters in the Well-differentiated Thyroid Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Hee; Chung, Yong An; Kim, Ki Jun; Park, Chang Suk; Jung, Hyun Suk; Sohn, Hyung Sun; Chung, Soo Kyo; Yoo, Chang Young [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-02-15

    Differentiated thyroid cancer (DTC) has variable degree of F-18 FDG avidity. The purpose of this study was to evaluate the relationship between F-18 FDG uptake and pathological or immunohistochemical features of DTC. DTC patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included in the study. Maximum standardized uptake values (SUVmax) of primary tumor were calculated. If the primary tumor showed no perceptibly increased F-18 FDG uptake, region of interest was drawn based on finding of CT portion of the PET/CT images. Pathological and immunohistochemical markers such as presence of lymph node (LN) metastasis and underlying thyroiditis, tumor size, Ki-67 labeling index, expressions of EGFR, COX-2, and Galectin-3 were evaluated. Total of 106 patients was included (102 papillary carcinomas, 4 follicular carcinomas). The mean SUVmax of the large tumors (above 1 cm) was significantly higher than the mean SUVmax of small (equal to or less than 1 cm) ones (7.8{+-}8.5 vs. 3.6{+-}3.1, p=0.004). No significant difference in F-18 FDG uptake was found according to the presence or absence of LN metastasis and underlying thyroiditis, or the degree of Ki-67 labeling index, expression of EGFR, COX-2 and Galectin-3. In conclusion, the degree of F-18 FDG uptake in DTC was associated with the size of primary tumor. But there seem to be no relationship between F-18 FDG uptake of DTC and expression of Ki-67, EGFR, COX-2 and Galectin-3.

  17. Comparison of FDG Uptake with Pathological Parameters in the Well-differentiated Thyroid Cancer

    International Nuclear Information System (INIS)

    Choi, Woo Hee; Chung, Yong An; Kim, Ki Jun; Park, Chang Suk; Jung, Hyun Suk; Sohn, Hyung Sun; Chung, Soo Kyo; Yoo, Chang Young

    2009-01-01

    Differentiated thyroid cancer (DTC) has variable degree of F-18 FDG avidity. The purpose of this study was to evaluate the relationship between F-18 FDG uptake and pathological or immunohistochemical features of DTC. DTC patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included in the study. Maximum standardized uptake values (SUVmax) of primary tumor were calculated. If the primary tumor showed no perceptibly increased F-18 FDG uptake, region of interest was drawn based on finding of CT portion of the PET/CT images. Pathological and immunohistochemical markers such as presence of lymph node (LN) metastasis and underlying thyroiditis, tumor size, Ki-67 labeling index, expressions of EGFR, COX-2, and Galectin-3 were evaluated. Total of 106 patients was included (102 papillary carcinomas, 4 follicular carcinomas). The mean SUVmax of the large tumors (above 1 cm) was significantly higher than the mean SUVmax of small (equal to or less than 1 cm) ones (7.8±8.5 vs. 3.6±3.1, p=0.004). No significant difference in F-18 FDG uptake was found according to the presence or absence of LN metastasis and underlying thyroiditis, or the degree of Ki-67 labeling index, expression of EGFR, COX-2 and Galectin-3. In conclusion, the degree of F-18 FDG uptake in DTC was associated with the size of primary tumor. But there seem to be no relationship between F-18 FDG uptake of DTC and expression of Ki-67, EGFR, COX-2 and Galectin-3

  18. Reduced myocardial 18F-FDG uptake after calcium channel blocker administration. Initial observation for a potential new method to improve plaque detection

    International Nuclear Information System (INIS)

    Gaeta, Chiara; Flotats, Albert; Artigas, Carles; Deportos, Jordi; Geraldo, Llanos; Carrio, Ignasi; Fernandez, Yolanda; Pavia, Javier

    2011-01-01

    Physiological glucose uptake by the myocardium may hamper visualization of coronary atherosclerotic plaques in 18 F-FDG PET studies. Intracellular myocardial calcium relates to glucose influx. We assessed whether administration of a calcium channel blocker such as verapamil could decrease myocardial 18 F-FDG uptake in mice. Experiments were conducted on ten male C57BL/6JOlaHsd mice. The mice were studied by 18 F-FDG PET/CT under basal conditions and after a single administration of verapamil injected 1 h prior to 18 F-FDG administration at doses of 1 mg/kg (group A, n = 5) and 20 mg/kg (group B, n = 5). PET scanning was started 60 min after injection of 18 F-FDG employing a dedicated small-animal PET/CT system (ARGUS-CT). In each mouse, post-verapamil PET images were coregistered with the basal PET images. Volumetric regions of interest (VOI) were drawn on the basal study containing the myocardium of the whole left ventricle and quantitatively compared with the same VOI applied to the post-verapamil scan. The SUV mean was used to express the mean myocardial 18 F-FDG uptake. The relative coefficient of variation (RV) between the basal and post-verapamil conditions was calculated. Verapamil administration decreased myocardial 18 F-FDG uptake in all animals. The median (range) SUV mean values in group A were 2.6 (1.6-4.1) under basal conditions and 1.7 (1.1-2.9) after verapamil administration (p = 0.043), and in group B were 1.6 (1.3-2.0) under basal conditions and 1.0 (0.9-1.4) after verapamil administration (p = 0.043). The median (range) RV values were -31% (-5%, -50%) in group A, and -37% (-10%, -51%) in group B (p = 0.6). In this animal model there was a significant reduction in 18 F-FDG uptake in the myocardium following verapamil administration. This type of intervention could facilitate the definition of coronary atherosclerotic plaque inflammation on 18 F-FDG PET scans. (orig.)

  19. High and typical 18F-FDG bowel uptake in patients treated with metformin

    International Nuclear Information System (INIS)

    Gontier, Eric; Bonardel, Gerald; Mantzarides, Marina; Foehrenbach, Herve; Fourme, Emmanuelle; Wartski, Myriam; Pecking, Alain-Paul; Alberini, Jean-Louis; Blondet, Cyrille; Le Stanc, Elise

    2008-01-01

    This prospective and bi-centric study was conducted in order to determine the impact of antidiabetic treatments (AD) on 18 F-FDG bowel uptake in type 2 diabetic patients. Fifty-five patients with previously diagnosed and treated type 2 diabetes mellitus (group 1) were divided in two subgroups: AD treatment including metformin (n=32; group 1a) and AD treatment excluding metformin (n=23; group 1b). The 95 patients without diabetes mellitus made up controls (group 2). 18 F-FDG uptake in small intestine and colon was visually graded and semi-quantitatively measured using the maximum standardized uptake value. 18 F-FDG bowel uptake was significantly increased in AD patients (group 1) as compared to controls (group 2) (p 18 F-FDG uptake in colon and, to a lesser extent, in small intestine. It raises the question of stopping metformin treatment before an 18 F-FDG PET/CT scan is performed for intra-abdominal neoplasic lesion assessment. (orig.)

  20. Incidental colonic focal FDG uptake on PET/CT: can the maximum standardized uptake value (SUVmax) guide us in the timing of colonoscopy?

    NARCIS (Netherlands)

    van Hoeij, F. B.; Keijsers, R. G. M.; Loffeld, B. C. A. J.; Dun, G.; Stadhouders, P. H. G. M.; Weusten, B. L. A. M.

    2015-01-01

    In patients undergoing F-18-FDG PET/CT, incidental colonic focal lesions can be indicative of inflammatory, premalignant or malignant lesions. The maximum standardized uptake value (SUVmax) of these lesions, representing the FDG uptake intensity, might be helpful in differentiating malignant from

  1. Colonic uptake patterns of F-18-FDG PET in asymptomatic adults: correlation with colonoscopic findings

    International Nuclear Information System (INIS)

    Pai, M.; Cho, Y.; Shim, K

    2004-01-01

    Physiologic intestinal FDG uptake is frequently observed in asymptomatic individuals for cancer screening FDG PET. Colonic FDG accumulation is a well-known confusing findings that interfere true cancer detection or cause false positive. The aim of this study was to evaluate the pattern and intensity of colonic uptake in whole body FDG PET in asymptomatic healthy adults and to correlate those with colonoscopic findings. We reviewed retrospectively 64 subjects (age: 27-87, M:F = 31:33) who underwent both FDG PET and colonoscopy for cancer screening. FDG uptake pattern was classified as focal, segmental and diffuse. Maximum SUV were measured. The PET results were compared with colonoscopic and histologic findings. In 34 patients FDG bowel uptake was interpreted as diffuse(group I), in 17 patients as segmental(group II) and in 13 patients as focal uptake(group III). Six adenomas(17.6%, average diameter = 5 mm) were found in group I, 7 adenomas (41.1%, 5.57 mm) in group II and 4 adenomas and 1 adenocarcinoma (30.7%, 16.4 mm) in group III. There was no difference in averages of SUV between patients with adenoma and with negative colonoscopic results in each group of intestinal FDG pattern (group I: 1.675±1.15 vs 1.94±0.62, group II: 4.78±3.66 vs 4.23±1.13, group III: 6.50±4.68 vs 4.1±1.01). Large adenomas( >1 cm) were detected more frequently in group III (4 out of 5) rather than in group II (1 out of 7) or group I (none) and had higher SUV (6.30±4.84) than small adenomas (3.74±3.23). In group III, 4 patients without adenomas were non-physiologic(30.7%, 2 intestinal tuberculosis, 2 mucosal ulcer). Focal FDG uptake is associated more often with large adenoma and other pathologic findings in colonoscopy. Segmental uptake cannot discriminate presence of adenoma from negative results, while diffuse pattern may imply normal or having small adenomas

  2. Orthopedic surgery-related benign uptake on FDG-PET. Case examples and pitfalls

    International Nuclear Information System (INIS)

    Liu, Y.

    2009-01-01

    Orthopedic surgical procedures often create some special postoperative complications, which may demonstrate abnormally increased or focal uptake for an extended period of time on fluorodeoxyglucose (FDG) positron emission tomography (PET)-CT images. The distinction of normal from pathologic, benign from malignant uptake is very important to minimize the number of false positive results. To date, very little data have been published regarding surgical-related benign musculoskeletal uptake on PET-CT imaging. In this paper, we present to the readers some case examples of FDG PET-CT imaging for postoperative fracture, infection or osteomyelitis, metallic implants, aggressive bone edge, heterotopic ossification, granuloma and neuroma. We also discuss potential pitfalls to recognize these orthopedic surgery-related complications and identify benign nature of increased FDG uptake. In all cases, the patient's medical and surgical history would be of paramount importance to the radiologists/nuclear medicine physicians who interprets the scan. It is also crucial to carefully correlate FDG uptake with the anatomy on the co-registered CT images in all transaxial, coronal and sagittal views in order to identify the location and pattern of uptake. (author)

  3. An analysis of the physiological FDG uptake in the stomach with the water gastric distention method

    International Nuclear Information System (INIS)

    Kamimura, Kiyohisa; Fujita, Seigo; Yano, Tatsuhiko; Ogita, Mikio; Umemura, Yoshiro; Fujimoto, Toshiro; Nishii, Ryuichi; Wakamatsu, Hideyuki; Nagamachi, Shigeki; Nakajo, Masayuki

    2007-01-01

    Physiological FDG uptake in the stomach is a common phenomenon, especially noted at the cardia. Water intake just before scanning will result in gastric distention and thinning of the gastric wall, which in turn may lead to a reduction in the physiological uptake in the gastric wall. In the current study, we investigated whether gastric distention by water intake just before PET imaging reduces physiological FDG uptake in the stomach. The patient population comprised 60 patients who underwent whole-body FDG-PET imaging for cancer screening following gastroscopy performed within the preceding week. All patients took 400 ml of water for hydration and were administered 185 MBq of FDG intravenously. The patients were randomly divided into two groups: a group with additional water intake (AW group; n = 30) and a group without additional water intake (NW group; n = 30). In the AW group, an additional 400 ml of water was given just before PET imaging. For quantitative analysis, the stomach was classified into three areas [upper (U), middle (M) and lower (L)], and the degree of FDG uptake in each area was evaluated using standardised uptake values (SUVs). In the NW group, the mean SUVs in the U, M and L areas were 2.41 ± 0.75, 2.28 ± 0.73 and 1.61 ± 0.89, respectively, while in the AW group they were 1.82 ± 0.66, 1.73 ± 0.56 and 1.48 ± 0.49, respectively, and 2.21 ± 0.38 in the oesophago-gastric junction. The mean SUVs in the U and M areas in the AW group were significantly lower than those in the NW group (p < 0.05). Additional water intake just before PET imaging is an effective method for suppressing physiological FDG uptake in the stomach. (orig.)

  4. Esophageal Leiomyoma with intense FDG uptake on {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok Mo; Bae, Sang Kyun [Inje university Medical School, Busan (Korea, Republic of)

    2008-10-15

    A 56 years old woman referred to our hospital with dysphagia and epigastric soreness. Gastroendoscopy revealed huge submucosal tumor with ulceration extending from distal esophagus to lesser curvature of stomach. Subsequent computed tomography (CT) demonstrated soft tissue mass encircling distal esophagus, and 18F-FDG PET/CT demonstrated intense {sup 18}F-FDG accumulation in it. Finally this case was diagnosed as esophageal leiomyoma based on pathologic evaluation of the surgical specimen.

  5. In vivo quantification of {sup 18}F-Fdg uptake in human placenta during early pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, P.; Jan, S.; Trebossen, R.; Maroy, R. [CEA, DSV, I2BM, SHFJ, F-91401 Orsay (France); Champion, C. [Univ Paul Verlaine Metz, Lab Phys Mol et Collis, Inst Phys, Metz (France); Hindie, E. [Hop St Antoine, AP-HP, F-75571 Paris (France); Hindie, E. [Univ Paris 07, IMDCT, IUH, Ecole Doctorale B2T, F-75221 Paris (France)

    2008-07-01

    {sup 18}F-FDG is the most widely used PET radiopharmaceutical. Nevertheless, no data for {sup 18}F-FDG uptake in the human placenta have been reported. We recently reported on embryo dosimetry in a woman who underwent an {sup 18}F-FDG PET/CT scan during early pregnancy. In the present work we attempt an in vivo quantification of the {sup 18}F-FDG uptake by the placenta. The 27-y-old woman received 320 MBq of {sup 18}F-FDG for a follow-up study for Hodgkin's lymphoma and was later discovered to be pregnant (embryo age 8 wk). Imaging started 1 h after injection. The maximum placental tissue uptake (SUVmax) was 2.5. This value was conservatively attributed to the entire placental volume, i.e., 45 mL, a value representative of the average dimensions of a normal placenta at 8 wk. On the basis of these measurements, placenta {sup 18}F-FDG uptake in our patient was 0.19% of the injected activity. A Monte Carlo simulation was used to derive the photon dose to the embryo from the placenta (0.022 * 10{sup -2} mGy per MBq of injected {sup 18}F-FDG) and from the surrounding amniotic fluid (0.017 * 10{sup -2} mGy MBq{sup -1}). This increases our previously calculated dose (3.3 * 10{sup -2} mGy MBq{sup -1}) by only a small fraction (1.18%), which does not justify modifying the previous estimate given the overall uncertainties. (authors)

  6. Analysis of metabolism of 6FDG: a PET glucose transport tracer

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Chandramouli, Visvanathan [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Huang, Hsuan-Ming [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Wu Chunying; Wang Yanming [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-07-15

    Introduction: We are developing {sup 18}F-labeled 6-fluoro-6-deoxy-D-glucose ([{sup 18}F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous positron emission tomography (PET) tracer {sup 18}F-labeled 2-fluoro-2-deoxy-D-glucose ([{sup 18}F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon-6 in [{sup 18}F]6FDG should prevent its phosphorylation. Consequently, [{sup 18}F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [{sup 18}F]6FDG remains unchanged following intravenous injection. Methods: Biodistribution studies were performed using 6FDG labeled with {sup 18}F or with the longer-lived radionuclides {sup 3}H and {sup 14}C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. Results: At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6-h and 24-h time points, there was evidence of a minor amount of radioactive material that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. Conclusion: On the time scale typical of PET imaging studies radioactive metabolites of [{sup 18}F]6FDG are negligible.

  7. Effect of duration of fasting and diet on the myocardial uptake of F-18-2-fluoro-2-deoxyglucose (F-18 FDG) at rest

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Patel, Chetan D; Singla, Suhas; Malhotra, A

    2014-01-01

    Patterns of myocardial fluoro-2-deoxyglucose (FDG) uptake with respect to duration of fasting and dietary modifications. We observed the effect of duration of fasting and diet on the myocardial uptake pattern of F-18 FDG in patients routinely referred for oncological evaluation and no previous history of Coronary Artery Disease (CAD). Prospective study. A total of 153 patients (M: 81, F: 72; mean age: 47 ± 15 years; mean blood glucose level (mBG) 105 ± 23 mg/dl) were randomly divided in three groups. Group A: 4-6 h fasting; Group B: Overnight fasting (12–14 h); Group C: Low carbohydrate and fat rich diet for 2 days coupled with overnight fasting prior to the positron emission tomography (PET) scan. FDG uptake was classified as following: 1) homogeneous uptake, 2) heterogeneous uptake, and 3) ‘no uptake’ in the left ventricular (LV) myocardium. FDG PET study was performed as standard protocol for oncological conditions. Descriptive statistics, Chi-square test or Fisher's exact test, and Spearman's rank correlation tests were applied. We observed the ‘no uptake’ pattern in five (10%), 28 (55%), and 39 (77%), ‘heterogeneous’ pattern in 20 (39%), 14 (28%), and seven (14%), and ‘homogeneous’ pattern in 26 (51%), nine (18%), and five (10%) patients in Group A, B, and C, respectively. There was statistically significant difference of myocardial uptake pattern between group A and B (P < 0.0001), between group A and C (P < 0.0001), and between Group B and C (P = 0.023). The mBG was 102, 105, and 111 mg/dl in ‘no uptake’, heterogeneous, and homogeneous uptake pattern, respectively, (P = 0.103). Also, within each group the mBG was not related to the uptake pattern. Both restricted diet and duration of fasting play an important role in determining the pattern and suppression of myocardial F-18 FDG uptake. Overnight fasting and restricted diet together suppress myocardial FDG uptake more than overnight fasting alone, which suppresses uptake

  8. Temporal relation between temperature change and FDG uptake in brown adipose tissue

    International Nuclear Information System (INIS)

    Kim, SunHee; Krynyckyi, Borys R.; Machac, Josef; Kim, Chun K.

    2008-01-01

    It has been reported that the prevalence of 18 F fluorodeoxyglucose (FDG) uptake in brown adipose tissue (BAT) is related to outdoor temperature, i.e., more frequent during the colder periods of the year. The purpose of this study was to assess the temporal relationship between BAT FDG uptake and temperature. We correlated the prevalence of BAT with average temperatures (divided into five temperature ranges) of seven different durations. One thousand four hundred ninety-five consecutive FDG Positron emission tomography (PET) studies in 1,159 patients (566 male and 593 female, mean age = 60.4 years) were retrospectively reviewed. FDG uptake with distinct patterns compatible with BAT was identified by a consensus of two readers. The local daily average temperature from January 2000 to November 2003 (beginning 60 days before the date of first PET scan) were obtained, and 2-, 3-, 7-, 14-, 30-, and 60-day average temperatures before the date of a PET study were calculated. The prevalence of BAT FDG uptake was correlated with these various average temperatures. The daily, 2-day, 3-day, and 7-day average temperature had an inverse relation with the prevalence of BAT, i.e., the lower the temperature, the higher prevalence of BAT. When the temperature was averaged over 14 days or longer, this inverse relationship between the temperature and the prevalence of BAT was no longer preserved. Our data suggest that increased FDG uptake in BAT occurs more often as an acute response to cold weather (1-7 days) rather than to prolonged periods of average cold weather. (orig.)

  9. Normal patterns of 18F-FDG appendiceal uptake in children

    Energy Technology Data Exchange (ETDEWEB)

    Reavey, Hamilton E. [Emory University, Department of Radiology and Imaging Sciences, Division of Nuclear Medicine Molecular Imaging, Atlanta, GA (United States); Alazraki, Adina L.; Simoneaux, Stephen F. [Emory University, Department of Radiology and Imaging Sciences, Division of Pediatric Imaging, Children' s Healthcare of Atlanta at Egleston, Atlanta, GA (United States)

    2014-04-15

    Prior to interpreting PET/CT, it is crucial to understand the normal biodistribution of fluorodeoxyglucose (FDG). It is also important to realize that the normal biodistribution can vary between adults and children. Although many studies have defined normal patterns of pediatric FDG uptake in structures like the thymus, brown fat and bone marrow, patterns of normal pediatric bowel activity, specifically uptake within the appendix, have not been well described. Active lymphoid tissue has increased FDG uptake when compared with inactive tissue. Since children have more active lymphoid tissue than adults, and because the appendix contains aggregated lymphoid tissue, we postulated that appendiceal uptake may be increased in pediatric patients. To define the normal level of appendiceal FDG activity in children by evaluating a series of consecutive FDG PET/CT scans performed for other indications. After obtaining IRB approval, we retrospectively reviewed 128 consecutive whole-body pediatric FDG PET/CT examinations obtained for a variety of clinical indications. CT scans on which the appendix could not be visualized were excluded from analysis. CT scans on which the appendix could be visualized were evaluated for underlying appendiceal pathology. Studies with appendiceal or periappendiceal pathology by CT criteria were excluded. A region of interest (ROI) was placed over a portion of each appendix and appendiceal maximum standardized uptake value (SUVmax) was calculated. If an adjacent loop of bowel activity interfered with accurate measurements of the appendix SUVmax, the scan was excluded from the analysis. A chart review was performed on patients with elevated appendiceal SUVmax values to ensure that the patients did not have clinical symptomatology suggestive of acute appendicitis. When the appendix or a portion of the appendix could be visualized and accurately measured, the SUVmax was determined. SUVmax of the appendix was compared to the SUVmax of normal liver and

  10. The distribution of FDG at PET examinations constitutes a relative mechanism: significant effects at activity quantification in patients with a high muscular uptake

    International Nuclear Information System (INIS)

    Lindholm, Henry; Johansson, Ove; Jacobsson, Hans; Jonsson, Cathrine

    2012-01-01

    At 18 F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) examinations a high tracer uptake of the skeletal muscles is sometimes encountered which can lead to reduced uptake in pathological lesions. This was evaluated in retrospect in patients being recalled for a repeat examination after reducing the muscular uptake. Ten patients with increased muscular tracer uptake were examined with FDG PET/CT on two occasions with a mean of 6 days. All patients showed at least one pathological lesion with increased tracer uptake. The muscular uptake was reduced at the second examination by informing the patient to refrain from physical activity together with pretreatment with diazepam. The maximum standardized uptake value (SUV max ) of the pathological lesion and SUV mean of certain skeletal muscles, liver, spleen, lungs, blood and certain bone marrow portions were calculated. In all patients, the muscular uptake was reduced to a normal level at visual evaluation as well as at comparison of SUVs with 25 consecutive clinical patients exhibiting a normal FDG distribution (p max increased from 2.4 to 3.7 (54 %) between the examinations (p max to the activity of any of the reference tissues/organs there was no significant difference between the studies. The distribution of FDG constitutes a relative mechanism. This must be especially considered at longitudinal examinations in the same patient at therapy evaluations. In examinations with a somehow distorted general distribution of the activity, it may be more relevant to relate the lesion activity to a reference tissue/organ than relying on SUV assessments. (orig.)

  11. FDG uptake in vaginal tampons is caused by urinary contamination and related to tampon position

    International Nuclear Information System (INIS)

    Burger, Irene A.; Crook, David W.; Treyer, Valerie; Hany, Thomas F.; Schulthess, Gustav K. von; Scheiner, David A.

    2011-01-01

    The aim of the study was to determine the aetiology of FDG uptake in vaginal tampons (VT), a known artefact in premenopausal women evaluated by PET/CT. This Institutional Review Board approved study consisted of retrospective and prospective parts. The retrospective analysis included 685 women examined between January 2008 and December 2009 regarding VT presence. PET/CT images were analysed to determine the localization and the standardized uptake value (SUV) of VTs. We prospectively recruited 24 women (20-48 years old) referred for staging or follow-up in an oncology setting between February and April 2010, who were provided a commercial VT to be used during the entire examination after obtaining written informed consent. After image acquisition, VTs were individually analysed for creatinine concentration and blood traces. Statistical significance was tested with the Mann-Whitney U test. In the retrospective part, 38 of 685 women were found to have a VT of which 17 (45%) were FDG positive. A statistically significant correlation was found between FDG activity and VT position below the pubococcygeal line (PCL) (13 ± 11.2 mm). In the prospective study, 7 of 24 (29%) women had increased FDG activity in their VTs (SUV 18.8 ± 11 g/ml) but were not menstruating. FDG-positive VTs were significantly lower in position (14.6 ± 11.4 mm,below the PCL) than FDG-negative VTs (p = 0.039). The creatinine concentration was significantly increased in all seven positive VTs (931 ± 615 μmol/l). FDG uptake in VTs is caused by urine contamination, which is likely related to localization below the PCL resulting in contact with urine during voiding. (orig.)

  12. FDG uptake in cervical lymph nodes in children without head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Reza; Bakari, Alaa A.; Marie, Eman; Kousha, Mahnaz; Shammas, Amer [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON (Canada); Charron, Martin [Brampton Nuclear Services, Toronto, ON (Canada)

    2017-06-15

    Reactive cervical lymphadenopathy is common in children and may demonstrate increased {sup 18}F-fluoro-deoxyglucose ({sup 18}F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of {sup 18}F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone {sup 18}F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased {sup 18}F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). {sup 18}F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups. (orig.)

  13. FDG uptake in cervical lymph nodes in children without head and neck cancer.

    Science.gov (United States)

    Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer

    2017-06-01

    Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is cervical lymph nodes is higher in PTLD patients compared with other groups.

  14. Dose painting based on tumor uptake of Cu-ATSM and FDG

    DEFF Research Database (Denmark)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael

    2014-01-01

    Background: Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[18 F]- fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis...

  15. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Kenta, E-mail: kenta5710@gmail.com [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inubushi, Masayuki, E-mail: inubushi@med.kawasaki-m.ac.jp [Department of Nuclear Medicine, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192 (Japan); Wagatsuma, Kei, E-mail: kei1192@hotmail.co.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nagao, Michinobu, E-mail: minagao@radiol.med.kyushu-u.ac.jp [Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Murata, Taisuke, E-mail: taisuke113@gmail.com [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Koyama, Masamichi, E-mail: masamichi.koyama@jfcr.or.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Koizumi, Mitsuru, E-mail: mitsuru@jfcr.or.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Sasaki, Masayuki, E-mail: msasaki@hs.med.kyushu-u.ac.jp [Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2014-04-15

    Purpose: The present study aimed to determine whether fractal analysis of morphological complexity and intratumoral heterogeneity of FDG uptake can help to differentiate malignant from benign pulmonary nodules. Materials and methods: We retrospectively analyzed data from 54 patients with suspected non-small cell lung cancer (NSCLC) who were examined by FDG PET/CT. Pathological assessments of biopsy specimens confirmed 35 and 19 nodules as NSCLC and inflammatory lesions, respectively. The morphological fractal dimension (m-FD), maximum standardized uptake value (SUV{sub max}) and density fractal dimension (d-FD) of target nodules were calculated from CT and PET images. Fractal dimension is a quantitative index of morphological complexity and tracer uptake heterogeneity; higher values indicate increased complexity and heterogeneity. Results: The m-FD, SUV{sub max} and d-FD significantly differed between malignant and benign pulmonary nodules (p < 0.05). Although the diagnostic ability was better for d-FD than m-FD and SUV{sub max}, the difference did not reach statistical significance. Tumor size correlated significantly with SUV{sub max} (r = 0.51, p < 0.05), but not with either m-FD or d-FD. Furthermore, m-FD combined with either SUV{sub max} or d-FD improved diagnostic accuracy to 92.6% and 94.4%, respectively. Conclusion: The d-FD of intratumoral heterogeneity of FDG uptake can help to differentially diagnose malignant and benign pulmonary nodules. The SUV{sub max} and d-FD obtained from FDG-PET images provide different types of information that are equally useful for differential diagnoses. Furthermore, the morphological complexity determined by CT combined with heterogeneous FDG uptake determined by PET improved diagnostic accuracy.

  16. Intratumoral Heterogeneous F 18 Fluorodeoxyglucose Uptake Corresponds with Glucose Transporter 1 and Ki-67 Expression in a Case of Krukenberg Tumor: Localization of Intratumoral Hypermetabolic Focus by Fused PET/MR

    International Nuclear Information System (INIS)

    Im, Hyung Jun; Kim, Youg il; Kim, Woo Ho; Kim, Seung Hyup; Kang, Keon Wook

    2011-01-01

    The expression of glucose transporters (Glut 1, Glut 3), Hexokinase II, and Ki-67 has been proposed to explain intratumoral heterogeneous F-18 fluorodeoxyglucose (FDG) uptake. We report a case of Krukenberg tumor with intratumoral heterogeneous FDG uptake which corresponded well with the expression tomography (PET)/magnetic resonance (MR) imaging was helpful for localizing the metabolically active area in the tumor specimen. This report elucidates the relationship between the intratumoral heterogeneous FDG uptake and biologic heterogeneity, and shows the usefulness of PET/MR in research on intratumoral heterogeneity.

  17. Physiologic uptake of 18F-FDG in transposed ovaries may mimic metastasis on 18F-FDG PET/CT imaging.

    Science.gov (United States)

    Davidson, Tima; Komisar, Orna; Korach, Jacob; Felder, Shira; Apter, Sara; Ben-Haim, Simona; Perri, Tamar

    2018-02-01

    Ovarian transposition is aimed at preserving ovarian function before irradiation in pelvic malignancies. The extrapelvic location of the ovaries and their physiologic fluorine-18-fluorodeoxyglucose (F-FDG)-uptake is a potential source of misdiagnosis as metastasis on F-FDG PET/CT. We describe the F-FDG PET/CT characteristics of transposed ovaries and their changes over time. We reviewed F-FDG PET/CT studies of all consecutive women with pelvic malignancies who underwent ovarian transposition between 2007 and 2013. Studies were grouped according to the time period over which they were carried out. Findings were categorized by location, size, appearance (solid/mixed/cystic), presence of surgical clips, ovarian F-FDG uptake (maximum standardized uptake value), and attenuation values on CT (Hounsfield units). Group time-period differences were assessed. Seventy-nine F-FDG PET/CT studies were reviewed, 30 before and 49 after transposition. Time-period groups after transposition were up to 4 months (18 studies), 4.1-12 months (n=14), and more than 12 months (n=17). After transposition, ovaries were located mainly in the paracolic gutter (n=32) and subhepatic regions (n=18). Surgical clips were present in 67%. Both ovaries appeared more solid 1 year after surgery than preoperatively (13.7% before vs. 61.3% after surgery; P<0.001). Transient F-FDG-avidity was observed in 11 ovaries. Hounsfield unit values were higher within 4 months after surgery than preoperatively, reverting thereafter to preoperative values. After ovarian transposition, nonanatomic location, loss of cysts formation in favor of solid appearance over time, and intermittent F-FDG uptake of functioning transposed ovaries might mimic metastatic lesions. Careful interpretation of F-FDG PET/CT findings is mandatory in women with pelvic malignancies who have undergone ovarian transposition.

  18. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Soenke; Jahn, Holger; Eichenlaub, Martin [University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Hamburg (Germany); Brassen, Stefanie [University Medical Center Hamburg-Eppendorf, Institute for Systems Neuroscience, Hamburg (Germany); Wilke, Florian; Apostolova, Ivayla; Buchert, Ralph [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Wenzel, Fabian; Young, Stewart [Philips Research, Digital Imaging Department, Hamburg (Germany); Thiele, Frank [Philips Research, Molecular Imaging Department, Aachen (Germany)

    2009-07-15

    Brain imaging of FDG uptake and cerebrospinal fluid (CSF) concentration of amyloid-beta 1-42 (A{beta}{sub 1-42}) or tau proteins are promising biomarkers in the diagnosis of Alzheimer's disease (AD). There is still uncertainty regarding any association between decreased FDG uptake and alterations in CSF markers. The relationship between FDG uptake, CSF A{beta}{sub 1-42} and total tau (T-tau), as well as the Mini-Mental State Examination (MMSE) score was investigated in 34 subjects with probable AD using step-wise linear regression. FDG uptake was scaled to the pons. Scaled FDG uptake was significantly reduced in the probable AD subjects compared to 17 controls bilaterally in the precuneus/posterior cingulate area, angular gyrus/inferior parietal cortex, inferior temporal/midtemporal cortex, midfrontal cortex, and left caudate. Voxel-based single-subject analysis of the probable AD subjects at p < 0.001 (uncorrected) revealed a total volume of significant hypometabolism ranging from 0 to 452 ml (median 70 ml). The total hypometabolic volume was negatively correlated with the MMSE score, but it was not correlated with the CSF measures. VOI-based step-wise linear regression revealed that scaled FDG uptake in the precuneus/posterior cingulate was negatively correlated with CSF A{beta}{sub 1-42}. Scaled FDG uptake in the caudate was positively correlated with CSF T-tau. The extent and local severity of the reduction in FDG uptake in probable AD subjects are associated with cognitive impairment. In addition, there appears to be a relationship between local FDG uptake and CSF biomarkers which differs between different brain regions. (orig.)

  19. Skeletal muscle glucose uptake during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Saltin, Bengt

    1988-01-01

    uptake was not compensated for by increased uptake of free fatty acids but was accompanied by decreases in plasma insulin and increases in plasma epinephrine and norepinephrine. During work with large muscle masses, arterial lactate increased to approximately 6 mM, and net leg lactate release reverted......To study the role of muscle mass in glucoregulation, six subjects worked with the knee extensors of one leg on a specially constructed cycle ergometer. The knee extensors of one leg worked either alone or in combination with the knee extensors of the other leg and/or with the arms. Substrate usage...... to net lactate uptake. Decreased glucose uptake could not be explained by decreased perfusion. It is concluded that thigh muscle glucose uptake is affected by the size of the total muscle mass engaged in exercise. The decrease in thigh glucose uptake, when arm cranking was added and O2 uptake...

  20. The 18F-FDG uptake in non small cell lung carcinoma correlates with the DNA-grading of malignancy

    International Nuclear Information System (INIS)

    Wu Jinchang

    2002-01-01

    In order to evaluate correlation of glucose metabolism and DNA ploidity of tumors, the uptake of 18 F-Deoxyglucose (FDG) by PET prior to surgery and the DNA content and DNA-grading of malignancy (DNA-MG) of Schiff-stained nuclei obtained from fresh tumor fragments by means of image cytometry were studied, and thereafter the correlation between standardized uptake value (SUV) and (DNA-MG) was analysed in forty-nine patients with histologically proven non-small cell lung carcinoma (NSCLC). As a result of the DNA histograms of these 49 patients, 46(93.88%) were aneuploidy and only 3(6.12%) were tetraploid. A linear correlation of the SUV versus the (DNA-MG) (r=0.336, p=0.024) was found, demonstrating that 18 F-FDG PET as a non-invasive metabolic imaging technique, may also provide information correlated to malignant DNA patterns which may be valuable in malignant differentiation and prognostic prediction

  1. Analysis of glucose metabolism in patients with diabetes mellitus by using functional images derived from 18F-FDG PET

    International Nuclear Information System (INIS)

    Ohtake, Tohru; Yokoyama, Ikuo; Watanabe, Toshiaki; Kosaka, Noboru; Momose, Toshimitsu; Nishikawa, Jun-ichi; Serizawa, Takashi; Sasaki, Yasuhito

    1993-01-01

    Functional images of K complex (KC) and regional myocardial glucose utilization rates (rMGU), derived from F-18-fluoro-deoxy-glucose (F-18-FDG) positron emission computed tomography, were prepared. Using functional images obtained, myocardial glucose metabolism was examined in the fasting state, oral glucose loading (OG), and insulin clamp (IC) condition. The subjects were 10 patients with diabetes mellitus (DM), consisting of 8 with non-insulin dependent DM and 2 with insulin dependent DM, and 4 normal persons. Image quality, derived from both OG and IC approaches, was favorable in the normal group. In the groups of non-insulin dependent DM and insulin dependent DM patients, however, image quality was good with IC method but not with OG method. In the group of non-insulin dependent DM, rMGU derived by IC method was relatively high, but was significantly lower than that in the control group, suggesting a decreased function in glucose transporter. When using OG method, rMGU was even more decreased due to high blood sugar and low insulin. In the group of insulin dependent DM, both IC and OG approaches achieved the same rMGU as that in the control group, with the exception of KC derived by OG method that was decreased due to high blood sugar. In moderate or severe DM, myocardial viability seems to be difficult to evaluate because F-18-FDG uptake is decreased in the ischemic area associated with fasting high blood sugar. Mismatching between blood flow and metabolism is also difficult to detect due to high insulin or glucose load. Thus, myocardial viability should be evaluated in the condition of slightly loaded insulin by decreasing blood sugar. (N.K.)

  2. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    Science.gov (United States)

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, pinflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  3. Diffuse Intense {sup 18}F-FDG Uptake at PET in Unilateral Breast Related to Breastfeeding Practice

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Hee; Jung, Hye Kyoung [Department of Radiololgy, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Jeon, Tae Joo [Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of)

    2013-07-01

    We present an interesting case of incidental diffuse fluorodeoxyglucose (FDG) uptake at PET in her left breast, related to atypical breastfeeding practice. Clinically, differential diagnoses of diffuse intense FDG uptake in unilateral breast include advanced breast cancer, breast lymphoma and inflammatory condition. However, normal physiologic lactation may also show increased FDG uptake in the breasts. Therefore, if we encounter that finding in daily practice, we should question the patient regarding unilateral breastfeeding. In addition, mammography and ultrasound would be helpful to confirm the diagnosis.

  4. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    Science.gov (United States)

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  5. The influence of I-131 therapy on FDG uptake in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Hung Guanguei; Lee Kwowhei; Liao Peiyung; Yang Liheng; Yang Kwangtao

    2008-01-01

    18F-fluorodeoxyglucose positron emission tomography (FDG-PET) [or PET/computed tomography (CT)] is more likely to show false-negative results when it is performed shortly after chemotherapy and/or radiotherapy because of ''metabolic stunning''. The present study aimed to evaluate the influence of I-131 therapy on FDG uptake and the detection of recurrence or metastasis of differentiated thyroid cancer (DTC). We retrospectively enrolled 16 consecutive FDG-PET/CT studies which had been performed in patients with DTC with elevated thyroglobulin (TG) but negative I-131 whole-body scan. All studies were performed under L-thyroxine suppression. The patients were divided into groups A and B for PET/CT performed within 4 months of I-131 therapy or no such therapy, respectively. Each lesion identified on PET/CT was characterized using a 5-point scale by visual analysis: 0=definitely benign, 1=probably benign, 2=equivocal, 3=probably malignant, and 4=definitely malignant. The maximum standardized uptake value (SUV max ) in each lesion was also measured for semiquantitative analysis. We compared the visual grading and SUV max of the lesion of highest FDG uptake between groups A and B. For visual analysis, group B had significantly more patients with an uptake score of 3 or 4 than group A (80% vs. 17%, P=0.01). In addition, there were significantly more equivocal results from group A than from group B (67% vs. 10%, P=0.02). If the patients with the highest uptake scores of 2, 3, and 4 were considered to be positive for local recurrence or metastasis, there would be no significant difference between the positive rates of groups A and B (83% vs. 90%, P=0.7). However, the mean SUV max of positive results was significantly lower for group A than for group B (3.1±0.9 and 6.6±3.5 respectively, P=0.02). The preliminary results suggested that FDG uptake in DTC may be negatively influenced by I-131 therapy within 4 months, resulting in lower FDG uptake and more equivocal results

  6. Benign ovarian and endometrial uptake on FDG PET-CT. Patterns and pitfalls

    International Nuclear Information System (INIS)

    Liu, Y.

    2009-01-01

    Increased ovarian or endometrial uptake may cause a dilemma in the interpretation of whole body F18-fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging or even misdiagnosis of malignant disease. Knowledge of benign FDG uptake of the ovaries and uterus is important for daily practice of nuclear medicine radiologists. Increased uptake in the ovaries or uterus indicates a pathologic or neoplastic process in postmenopausal patients. In premenopausal women, increased ovarian or endometrial uptake can be functional or malignant. Benign functional uptake of premenopausal ovaries or uterus is related to the menstrual cycle; therefore, information about the patient's menstrual status is crucial for interpretation. In addition, correlation with computed tomography (CT), especially diagnostic CT acquired at the same time of PET/CT is very useful in clarifying the location of the uptake and the existence or disappearance of the discrete lesion. Increased ovarian uptake may also be identified in histologically different benign tumor entities. Nonmenstrual-related endometrial uptake may be present in many benign diseases as well. (author)

  7. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald [VU University Medical Center, Department of Nuclear Medicine and PET Research, PO Box 7057, Amsterdam (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonary Diseases, Amsterdam (Netherlands)

    2011-09-15

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV{sub max}), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV{sub max} alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  8. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    International Nuclear Information System (INIS)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald; Smit, Egbert F.

    2011-01-01

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [ 18 F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV max ), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV max alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  9. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease.

    Science.gov (United States)

    Willette, Auriel A; Bendlin, Barbara B; Starks, Erika J; Birdsill, Alex C; Johnson, Sterling C; Christian, Bradley T; Okonkwo, Ozioma C; La Rue, Asenath; Hermann, Bruce P; Koscik, Rebecca L; Jonaitis, Erin M; Sager, Mark A; Asthana, Sanjay

    2015-09-01

    Converging evidence suggests that Alzheimer disease (AD) involves insulin signaling impairment. Patients with AD and individuals at risk for AD show reduced glucose metabolism, as indexed by fludeoxyglucose F 18-labeled positron emission tomography (FDG-PET). To determine whether insulin resistance predicts AD-like global and regional glucose metabolism deficits in late middle-aged participants at risk for AD and to examine whether insulin resistance-predicted variation in regional glucose metabolism is associated with worse cognitive performance. This population-based, cross-sectional study included 150 cognitively normal, late middle-aged (mean [SD] age, 60.7 [5.8] years) adults from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study, a general community sample enriched for AD parental history. Participants underwent cognitive testing, fasting blood draw, and FDG-PET at baseline. We used the homeostatic model assessment of peripheral insulin resistance (HOMA-IR). Regression analysis tested the statistical effect of HOMA-IR on global glucose metabolism. We used a voxelwise analysis to determine whether HOMA-IR predicted regional glucose metabolism. Finally, predicted variation in regional glucose metabolism was regressed against cognitive factors. Covariates included age, sex, body mass index, apolipoprotein E ε4 genotype, AD parental history status, and a reference region used to normalize regional uptake. Regional glucose uptake determined using FDG-PET and neuropsychological factors. Higher HOMA-IR was associated with lower global glucose metabolism (β = -0.29; P factor scores. Our results show that insulin resistance, a prevalent and increasingly common condition in developed countries, is associated with significantly lower regional cerebral glucose metabolism, which in turn may predict worse memory performance. Midlife may be a critical period for initiating treatments to lower peripheral insulin resistance to maintain neural metabolism

  10. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  11. Central Pontine Myelinolysis and Localized Fluorodeoxyglucose Uptake Seen on 18F-FDG PET/CT

    DEFF Research Database (Denmark)

    Rønne, Frederik; Tfelt-Hansen, Peer Carsten; Rørdam, Lene

    2017-01-01

    Case report describing the finding of central pontine myelinolysis (CPM) using combined fluorine-18 ( 18F)-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). The patient was a known alcoholic who, during admission was under treatment for hyponatremia, showed...... a significant decline in both motor and cognitive function. Combined 18F-FDG PET/CT showed localized FDG uptake in the pons, consistent with the finding of CPM observed on magnetic resonance imaging (MRI). CPM is a demyelinating lesion of the pons, resulting in several neurological symptoms. The exact cause...... of CPM is not clear, but a strong relations between loss of myelin and osmotic stress exists, especially during rapid correction of hyponatremia. The osmotic stress is thought to induce disruption of the blood-brain barrier, allowing access for inflammatory mediators in extravascular brain tissue, which...

  12. Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Koolen, B.B.; Aukema, T.S. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Surgical Oncology, Amsterdam (Netherlands); Vrancken Peeters, M.J.T.F.D.; Rutgers, E.J.T. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Surgical Oncology, Amsterdam (Netherlands); Wesseling, J.; Lips, E.H. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Pathology and Experimental Therapy, Amsterdam (Netherlands); Vogel, W.V.; Valdes Olmos, R.A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Werkhoven, E. van [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Biometrics, Amsterdam (Netherlands); Gilhuijs, K.G.A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Radiology, Amsterdam (Netherlands); University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Rodenhuis, S. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Medical Oncology, Amsterdam (Netherlands)

    2012-12-15

    The aim of this study was to evaluate the association of primary tumour {sup 18}F-fluorodeoxyglucose (FDG) uptake with clinical, histopathological and molecular characteristics of breast cancer patients scheduled for neoadjuvant chemotherapy. Second, we wished to establish for which patients pretreatment positron emission tomography (PET)/CT could safely be omitted because of low FDG uptake. PET/CT was performed in 214 primary stage II or III breast cancer patients in the prone position with hanging breasts. Tumour FDG uptake was qualitatively evaluated to determine the possibility of response monitoring with PET/CT and was quantitatively assessed using maximum standardized uptake values (SUV{sub max}). FDG uptake was compared with age, TNM stage, histology, hormone and human epidermal growth factor receptor 2 status, grade, Ki-67 and molecular subtype in univariable and multivariable analyses. In 203 tumours (95 %) FDG uptake was considered sufficient for response monitoring. No subgroup of patients with consistently low tumour FDG uptake could be identified. In a univariable analysis, SUV{sub max} was significantly higher in patients with distant metastases at staging examination, non-lobular carcinomas, tumours with negative hormone receptors, triple negative tumours, grade 3 tumours, and in tumours with a high proliferation index (Ki-67 expression). After multiple linear regression analysis, triple negative and grade 3 tumours were significantly associated with a higher SUV{sub max}. Primary tumour FDG uptake in breast cancer patients scheduled for neoadjuvant chemotherapy is significantly higher in tumours with prognostically unfavourable characteristics. Based on tumour characteristics associated with low tumour FDG uptake, this study was unable to identify a subgroup of patients unlikely to benefit from pretreatment PET/CT. (orig.)

  13. Pre-medication to block [{sup 18}F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; O' Hara, Sara M.; Curtwright, Lois A.; MacLean, Joseph R. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2005-10-01

    Radiopharmaceutical uptake of [{sup 18}F]2-deoxy-2-glucose (FDG) in brown adipose tissue is noted on 15-20% of positron emission tomography (PET) scans in children and adolescents. To determine whether [{sup 18}F]FDG uptake in brown adipose tissue can be adequately blocked by pre-medication other than moderate-dose oral diazepam. One hundred and eighteen [{sup 18}F]FDG PET body imaging studies were performed in 69 pediatric patients with a variety of solid tumors. The mean age at the time of imaging was 12.9 years (range 1.2-22.6 years), and 33 studies were performed in patients younger than 10 years old. Seventy-six were performed in boys and 42 in girls. Patients were imaged using a dedicated PET camera. Pre-medication was given in 88 studies: 45 received intravenous fentanyl (0.75-1.0 {mu}g/kg), 34 received low-dose oral diazepam (0.06 mg/kg) and 9 received moderate-dose oral diazepam (0.10 mg/kg). Thirty patients received no pre-medication, 7 of whom were known to have received opiates for pain during the 12 h before the study. Six body regions in the neck and chest were reviewed for [{sup 18}F]FDG uptake in brown adipose tissue. Uptake of FDG in brown fat was visually graded: 0 for no FDG uptake, 1 for low-grade uptake, 2 for moderate uptake, and 3 for intense uptake. Visual grades 2 and 3 were considered to interfere potentially with image interpretation in the neck and chest. Data were analyzed by multivariate regression using a Poisson distribution. [{sup 18}F]FDG uptake in brown adipose tissue was most often seen in the lateral neck region and superior and lateral to the lungs (in 36 and 39 studies, respectively). Uptake was also seen near the costovertebral junctions (15 studies), in the superior and central neck in 7 studies and in the anterior mediastinum in 2. Brown adipose tissue uptake was thought to interfere potentially with image interpretation (visual grades 2 and 3) in 19 studies - in 6 of 23 (26.1%) studies after no pre-medication and no

  14. Standardized uptake value of FDG corrected by lean body mass measured by DEXA

    International Nuclear Information System (INIS)

    Guirao, M.A.; Sanchez, A.M.; Saravi, F.D.; Mosconi, S.; Frias, L.

    2002-01-01

    Evaluating the metabolic activity of tumor lesion sometimes becomes important to evaluate grading of malignancy, prognosis, or response to therapy. The most used measure of the metabolic activity of [18F]-Fluorodeoxiglucose (FDG) in clinical PET is the Standardized Uptake Value (SUV). It relates the activity measured by the PET scan to the injected dose of FDG divided by the body mass. This approach overestimates SUV in 'heavy' patients, as the proportion of the 'low avid of FDG' fat mass increases. For this reason, different approaches are being evaluated to obtain a more accurate SUV measure. Aims: to compare the measured lean body mass by Dual X-Ray Absorptiometry with the previous methods of correction, to assess the more independent to the body constitution. Material and Methods: FDG metabolism was studied to 15 patients of both sexes, age between 28 and 72 y.o., body weight 55 to 92 Kg. One hour after the IV injection of 0.0045mCi/Kg of FDG, a whole body emission and transmission scan was performed to each subject in a positron emission tomograph (QUEST 250, GE-UGM, USA) for over 1 hour. Body lean mass composition was measured the same or next day by DEXA (Lunar DPX-L, USA.) ROIs were drawn on brain, liver and muscle. SUVbw =[(corrected mCi/g of tissue) / (mCi injected / body weight in grams)] was calculated for each tissue, and then recalculated replacing body weight with the measured lean body mass (SUVlm), calculated lean mass (SUVlc), body mass index (SUVmi) and body surface area (SUVsa). Corrected SUVs were normalized to each SUVbw average for a comparable visualization of results. Results: obtained data was analyzed by linear regression and curve estimation for each case in all tissues with the SPSS statistical software. A positive correlation between SUVbw and subject weight was confirmed for the 3 tissues. In Muscle and liver there was no significant correlation. The liver scanning time was variable ( 90 to 123 minutes after injection). Relating liver

  15. Development of 18F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    International Nuclear Information System (INIS)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto

    1999-01-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of 18 F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9±3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the 18 F-FDG injection is expected to be useful for further clinical application. (author)

  16. Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET. Prevalence of thyroid cancer and Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Kurata, Seiji; Ishibashi, Masatoshi; Hiromatsu, Yuji; Kaida, Hayato; Miyake, Ikuyo; Uchida, Masafumi; Hayabuchi, Naofumi

    2007-01-01

    The objective of this study was to investigate and evaluate the prevalence of incidental thyroid diffuse and diffuse-plus-focal fluorine-18 fluorodeoxyglucose (FDG) uptake in healthy subjects who underwent cancer screening on positron emission tomography (PET) scan, and also to evaluate the prevalence of thyroid cancer and Hashimoto's thyroiditis. We carried out a retrospective review of 1626 subjects who underwent PET scanning at our institution. Diffuse uptake was defined as FDG uptake in the whole thyroid gland, whereas diffuse-plus-focal uptake was defined as a thyroid lesion with both diffuse uptake and focal FDG uptake. The maximum standardized uptake value of the thyroid lesions was recorded and reviewed. In each selected subject with positive thyroid FDG uptake, serum thyroid-stimulating hormone, thyroid hormone, and thyroid antibodies were measured. Fine needle aspiration cytology was performed on patients with a definite nodule using ultrasonography. Twenty-nine subjects (1.78%) were identified as having either diffuse FDG uptake (n=25, 1.53%) or diffuse-plus-focal FDG uptake (n=4, 0.24%). All subjects with diffuse FDG uptake were diagnosed as having Hashimoto's thyroiditis. In 1 of the 25 subjects with diffuse FDG uptake and two of the four with diffuse-plus-focal FDG uptake, histopathologic diagnosis showed papillary thyroid carcinoma associated with Hashimoto's thyroiditis. However, PET scan did not detect papillary carcinoma associated with Hashimoto's thyroiditis in one of the three subjects. Our results suggest that although diffuse FDG uptake usually indicates Hashimoto's thyroiditis, the risk of thyroid cancer must be recognized in both diffuse FDG uptake and diffuse-plus-focal FDG uptake on PET scan. (author)

  17. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of {sup 18}F-Fluorodeoxyglucose After Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, George D., E-mail: george.wilson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L. [Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Oliver Wong, Ching Yee [Department of Diagnostic Radiology and Molecular Imaging Medicine, William Beaumont Hospital, Royal Oak, Michigan (United States); Yan, Di; Marples, Brian [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Huang, Jiayi [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm{sup 3} they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: {sup 18}F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism.

  18. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in patients with epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Maria; Kim, Hee Seung; Chung, Hyun Hoon; Kim, Jae-Weon; Park, Noh-Hyun; Song, Yong Sang [Seoul National University College of Medicine, Department of Obstetrics and Gynecology, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Hyunjong; Cheon, Gi Jeong [Seoul National University College of Medicine, Department of Nuclear Medicine, Cancer Research Institute, Seoul (Korea, Republic of)

    2017-01-15

    To investigate the prognostic value of intratumoral FDG uptake heterogeneity (IFH) derived from PET/CT in patients with epithelial ovarian cancer (EOC). We retrospectively reviewed patients with pathologically proven epithelial ovarian cancer who underwent preoperative {sup 18}F-FDG PET/CT scans. PET/CT parameters such as maximum and average standardized uptake values (SUV{sub max} and SUV{sub avg}), sum of all metabolic tumour volume (MTV), cumulative total lesion glycolysis (TLG) and IFH were assessed. Regression analyses were used to identify clinicopathological and imaging variables associated with disease-free survival (DFS). Clinicopathological data were reviewed for 61 eligible patients. The median duration of DFS was 13 months (range, 6-26 months), and 18 (29.5 %) patients experienced recurrence. High IFH values were associated with tumour recurrence (P = 0.005, hazard ratio 4.504, 95 % CI 1.572-12.902). The Kaplan-Meier survival graphs showed that DFS significantly differed in groups categorized based on IFH (P = 0.002, log-rank test). Moreover, there were significant differences in DFS (P = 0.009) and IFH (P = 0.040) between patients with and without recurrence. Preoperative IFH measured by {sup 18}F-FDG PET/CT was significantly associated with EOC recurrence. FDG-based heterogeneity could be a useful and potential predicator of EOC recurrence before treatment. (orig.)

  19. The changes of 18F-FDG uptake and ADC value of the normal endometrium during the menstrual cycle

    International Nuclear Information System (INIS)

    Seko, Ayumi; Kanasaki, Shuzou; Kitahara, Sawako; Murata, Kiyoshi; Tatsumi, Mitsuaki; Hayashida, Kohei; Sakashita, Yoko; Hamanaka, Yasuyo

    2007-01-01

    We evaluated the normal endometrium of reproductive age using positron emission tomography (PET)/CT and Diffusion-weighted MR imaging. 18 F-fluorodeoxyglucose (FDG) uptake and apparent diffusion coefficient (ADC) value were classified according to the menstrual cycle. On PET/CT, FDG uptake was significant high at the menstrual and ovulatory phase. On diffusion-weighted imaging (DWI), ADC value was significant low at the menstrual phase. (author)

  20. Prediction of coronary artery calcium progression by FDG uptake of large arteries in asymptomatic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang-Geon; Park, Ki Seong; Kim, Jahae; Song, Ho-Chun [Chonnam National University Hospital, Department of Nuclear Medicine, Gwang-ju (Korea, Republic of); Kang, Sae-Ryung; Kwon, Seong Young; Jabin, Zeenat; Kim, Young Jae; Jeong, Geum-Cheol; Song, Minchul; Min, Jung-Joon; Bom, Hee-Seung [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Hwasun-gun, Jeollanam-do (Korea, Republic of); Seon, Hyun Ju [Chonnam National University Hwasun Hospital, Department of Radiology, Hwasun-gun, Jeollanam-do (Korea, Republic of)

    2017-01-15

    The purpose of this study is to evaluate whether fluorodeoxyglucose (FDG) uptake of the large arteries can predict coronary artery calcium (CAC) progression in asymptomatic individuals. Ninety-six asymptomatic individuals who underwent FDG positron emission tomography (PET) and CAC scoring on the same day for health screening and follow-up CAC scoring ≥1 year after baseline studies (mean 4.3 years) were included. Vascular FDG uptake was measured and corrected for blood pool activity to obtain peak and average target-to-blood pool ratios (TBRpeak and TBRavg, respectively) for the carotid arteries, and ascending and abdominal aorta. CAC scores at baseline and follow-up of each individual were measured and absolute CAC change (ΔCAC), annual CAC change (ΔCAC/year), and annual CAC change rate (ΔCAC%/year) were calculated. CAC progression was defined as ΔCAC >0 for individuals with negative baseline CAC; ΔCAC/year ≥10 for those with baseline CAC of 0FDG uptake and other clinical risk factors were compared between CAC-progressors and non-CAC-progressors. Multivariate analysis was performed to evaluate whether vascular FDG uptake can independently predict CAC progression. Thirty-one subjects showed CAC progression. CAC-progressors showed significantly higher TBRpeak and TBRavg as compared to non-CAC-progressors for all three arteries. TBRpeak of the abdominal aorta was significantly associated with CAC progression in multivariate analysis, with age and baseline CAC. A higher TBRpeak of the abdominal aorta (≥2.11) was associated with CAC progression among subjects with negative baseline CAC only. In subjects with positive baseline CAC, only the amount of baseline CAC was significantly associated with CAC progression. However, the positive predictive value of the TBRpeak of the abdominal aorta was <40 % when age was <58 or baseline CAC was negative. Higher FDG uptake of the large arteries is

  1. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  2. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    International Nuclear Information System (INIS)

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  3. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.

    Science.gov (United States)

    Carter, Edward A; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A; Jung, Walter; Tompkins, Ronald G; Fischman, Alan J

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the

  4. Glucose metabolic change after visual and electrical stimulation of the rabbit retina using [{sup 18}F]FDG PET: a preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin; Lee, Jae Sung; Woo, Se Joon; Seo, Jong Mo; Chung, Hum; Lee, Dong Soo; Zhou, Zing Ai; Kim, Sung June [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We studied to compare the cerebral cortical metabolic change after visual and electrical stimulation of the rabbit retina. Five PET scans were performed on five different days in an albino rabbit. One FDG PET study was done at rest state. In another two FDG PET studies, repetitive flash light stimulation (0.3 Hz, 6 min total) on each eye started 1 min prior to FDG injection and continued for 5 min into uptake. In the other two FDG studies, electrical retinal stimulation (500 {mu}A, 1 Hz, 6 min total) of each eye using a suprachoroidal electrode placed under the visual streak was performed with the same procedure. Static PET data was acquired for 10 min after injection of [{sup 18}F]FDG (37 MBq) through the catheter placed in the ear vein. All images were realigned to the rest state image. To remove the effects of global differences, each voxel value of the images was normalized versus mean value in whole brain. Change of cerebral glucose metabolism was examined with difference between rest and stimulation state. After visual and electrical stimulation of the rabbit retina, the cerebral area of increased metabolism could be determined. The hypermetabolic area of electrical stimulation overlapped with the area of visual stimulation, while electrically simulated cerebral area was focal and confined within the visually activated area. The electrical stimulation of the rabbit retina could increase the metabolism of the visual cortex which indicates electrical retinal stimulation caused visual perception of brain.

  5. Selective intra-arterial administration of {sup 18}F-FDG to the rat brain - effects on hemispheric uptake

    Energy Technology Data Exchange (ETDEWEB)

    Arnberg, Fabian; Samen, Erik; Lundberg, Johan; Grafstroem, Jonas; Soederman, Michael; Stone-Elander, Sharon; Holmin, Staffan [Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska University Hospital-Solna, Department of Neuroradiology, Stockholm (Sweden); Lu, Li [Karolinska University Hospital-Solna, KERIC, Stockholm (Sweden)

    2014-05-15

    The purpose of this study was to investigate the radioligand uptake and iodine contrast distribution in the intra- and extracranial circulation of the rat, after intra-arterial injections to the common carotid artery and different parts of the internal carotid artery. All animal experiments were carried out in accordance with Karolinska Institutet's guidelines and were approved by the local laboratory animal ethics committee. We used clinical neurointerventional systems to place microcatheters in the extra- or intracranial carotid artery of 15 Sprague-Dawley rats. Here, injection dynamics of iodine contrast was assessed using digital subtraction angiography. Maintaining the catheter position, the animals were placed in a micro PET and small-animal positron emission tomography (PET) was used to analyze injections [2-{sup 18}F]-2-fluoro-2-deoxy-d-glucose ({sup 18}F-FDG). Microcatheters had to be placed in the intracranial carotid artery (iICA) for the infusate to distribute to the brain. Selective injection via the iICA resulted in a 9-fold higher uptake of {sup 18}F-FDG in the injected hemisphere (p < 0.005) compared to both intravenous and more proximal carotid artery injections. Furthermore, selective injection gave a dramatically improved contrast between the brain and extracranial tissue. Intra-arterial injection increases the cerebral uptake of a radiotracer dramatically compared to systemic injection. This technique has potential applications for endovascular treatment of malignancies allowing intra-interventional modifications of injection strategy, based on information on tumor perfusion and risk to surrounding normal parenchyma. Furthermore the technique may increase diagnostic sensitivity and avoid problems due to peripheral pharmacological barriers and first passage metabolism of labile tracers. (orig.)

  6. Selective intra-arterial administration of 18F-FDG to the rat brain - effects on hemispheric uptake

    International Nuclear Information System (INIS)

    Arnberg, Fabian; Samen, Erik; Lundberg, Johan; Grafstroem, Jonas; Soederman, Michael; Stone-Elander, Sharon; Holmin, Staffan; Lu, Li

    2014-01-01

    The purpose of this study was to investigate the radioligand uptake and iodine contrast distribution in the intra- and extracranial circulation of the rat, after intra-arterial injections to the common carotid artery and different parts of the internal carotid artery. All animal experiments were carried out in accordance with Karolinska Institutet's guidelines and were approved by the local laboratory animal ethics committee. We used clinical neurointerventional systems to place microcatheters in the extra- or intracranial carotid artery of 15 Sprague-Dawley rats. Here, injection dynamics of iodine contrast was assessed using digital subtraction angiography. Maintaining the catheter position, the animals were placed in a micro PET and small-animal positron emission tomography (PET) was used to analyze injections [2- 18 F]-2-fluoro-2-deoxy-d-glucose ( 18 F-FDG). Microcatheters had to be placed in the intracranial carotid artery (iICA) for the infusate to distribute to the brain. Selective injection via the iICA resulted in a 9-fold higher uptake of 18 F-FDG in the injected hemisphere (p < 0.005) compared to both intravenous and more proximal carotid artery injections. Furthermore, selective injection gave a dramatically improved contrast between the brain and extracranial tissue. Intra-arterial injection increases the cerebral uptake of a radiotracer dramatically compared to systemic injection. This technique has potential applications for endovascular treatment of malignancies allowing intra-interventional modifications of injection strategy, based on information on tumor perfusion and risk to surrounding normal parenchyma. Furthermore the technique may increase diagnostic sensitivity and avoid problems due to peripheral pharmacological barriers and first passage metabolism of labile tracers. (orig.)

  7. A combined microdialysis and FDG-PET study of glucose metabolism in head injury.

    Science.gov (United States)

    Hutchinson, Peter J; O'Connell, Mark T; Seal, Alex; Nortje, Jurgens; Timofeev, Ivan; Al-Rawi, Pippa G; Coles, Jonathan P; Fryer, Timothy D; Menon, David K; Pickard, John D; Carpenter, Keri L H

    2009-01-01

    Microdialysis continuously monitors the chemistry of a small focal volume of the cerebral extracellular space. Positron emission tomography (PET) establishes metabolism of the whole brain but only for the scan's duration. This study's objective was to apply these techniques together, in patients with traumatic brain injury, to assess the relationship between microdialysis (extracellular glucose, lactate, pyruvate, and the lactate/pyruvate (L/P) ratio as a marker of anaerobic metabolism) and PET parameters of glucose metabolism using the glucose analogue [(18)F]-fluorodeoxyglucose (FDG). In particular, we aimed to determine the fate of glucose in terms of differential metabolism to pyruvate and lactate. Microdialysis catheters (CMA70 or CMA71) were inserted into the cerebral cortex of 17 patients with major head injury. Microdialysis was performed during FDG-PET scans with regions of interest for PET analysis defined by the location of the gold-tipped microdialysis catheter. Microdialysate analysis was performed on a CMA600 analyser. There was significant linear relationship between the PET-derived parameter of glucose metabolism (regional cerebral metabolic rate of glucose; CMRglc) and levels of lactate (r = 0.778, p glucose was metabolised to both lactate and pyruvate, but was not associated with an increase in the L/P ratio. This suggests an increase in glucose metabolism to both lactate and pyruvate, as opposed to a shift towards anaerobic metabolism.

  8. Difference in F-18 FDG uptake after esophago gastroduodenoscopy and colonoscopy in healthy sedated subjects

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Ryool; Chang, Woo Jin; Bae, Seung Il; Song, In Wook; Bong, Jin Gu; Jeong, Hye Yeon; Park, So Young; Bae, Jeong Yup; Yoon, Hyun Dae [Raphael Hospital, Daegu (Korea, Republic of); Seo, Ji Hyoung [Dept. of Nuclear MedicineFatima Hospital, Daegu (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the difference in fluorodeoxyglucose (FDG) uptake in sedated healthy subjects after they underwent esophagogastroduodenoscopy (EGD) and colonoscopy procedures. The endoscopy group (n = 29) included healthy subjects who underwent screening via F-18 FDG positron emission tomography/computed tomography (PET/CT) after an EGD and/or colonoscopy under sedation on the same day. The control group (n = 35) included healthy subjects who underwent screening via PET/CT only. FDG uptake in the tongue, uvula, epiglottis, vocal cords, esophagus, stomach, duodenum, liver, cecum, colon, anus, and muscle were compared between the two groups. Maximum standardized uptake value (SUVmax) in the tongue, pharynx, larynx, and esophagus did not significantly differ between the endoscopy and control groups. In contrast, mean SUVmax in the whole stomach was 18 % higher in the endoscopy group than in the control group (SUVmax: 2.96 vs. 2.51, P = 0.010). In the lower gastrointestinal track, SUVmax from the cecum to the rectum was not significantly different between the two groups, whereas SUVmax in the anus was 20 % higher in the endoscopy group than in the control group (SUVmax: 4.21 vs. 3.50, P = 0.002). SUVmax in the liver and muscle was not significantly different between the two groups. Mean volume of the stomach and mean cross section of the colon was significantly higher in the endoscopy group than in the control group (stomach: 313.28 cm{sup 3} vs. 209.93 cm{sup 3}, P < 0.001, colon: 8.82 cm{sup 2} vs. 5.98 cm{sup 2}, P = 0.001). EGD and colonoscopy under sedation does not lead to significant differences in SUVmax in most parts of the body. Only gastric FDG uptake in the EGD subjects and anal FDG uptake in the colonoscopy subjects was higher than uptake in those regions in the control subjects.

  9. Glucose uptake and its effect on gene expression in prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Guadalupe Gómez-Baena

    Full Text Available The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon

  10. Effect of MRI Acoustic Noise on Cerebral FDG Uptake in Simultaneous MR-PET Imaging

    Science.gov (United States)

    Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R.; Catana, Ciprian

    2013-01-01

    Integrated scanners capable of simultaneous PET and MRI data acquisition are now available for human use. Although the scanners’ manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the two modalities, the potential physiological inference has not been evaluated. In this work, we have studied the influence of the acoustic noise produced by the MR gradients on brain FDG uptake in the Siemens MR-BrainPET prototype. While particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. Methods The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, ten healthy volunteers underwent two simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a “quiet” (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a “noisy” (test) case in which MR sequences were run for the entire time. Cortical and subcortical regions of interest (ROIs) were derived from the high-resolution morphological MR data using FreeSurfer. The changes in FDG uptake in the FreeSurfer-derived ROIs between the two conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. Results Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The ROI-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13±4.73%) and static (4.18±2.87%) images. SPM8 analysis showed no statistically significant clusters in any images when a p<0.05 (corrected) was used; however, a p<0.001 (uncorrected) resolved bilateral

  11. An observational study of circulating tumor cells and (18F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Viswam S Nair

    Full Text Available We investigated the relationship of circulating tumor cells (CTCs in non-small cell lung cancer (NSCLC with tumor glucose metabolism as defined by (18F-fluorodeoxyglucose (FDG uptake since both have been associated with patient prognosis.We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs". We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6 and median maximum standardized uptake value (SUVmax was 7.2 (IQR 3.7-15.5. More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71 or in stage I disease (27 of 43. HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03 and not correlated with tumor diameter (r = 0.07; p-value = 0.60. For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.

  12. Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Yong, Yue; Yap, Jeffrey T.; Killoran, Joseph H.; Allen, Aaron M.; Berbeco, Ross I.; Chen, Aileen B.

    2012-01-01

    Purpose: Whole body (3D) and respiratory gated (4D) FDG-PET/CT scans performed pre-radiotherapy (pre-RT) and post-radiotherapy (post-RT) were analyzed to investigate the impact of 4D PET in evaluating 18F-fluorodeoxyglucose (FDG) uptake changes due to therapy, relative to traditional 3D PET. Methods and materials: 3D and 4D sequential FDG-PET/CT scans were acquired pre-RT and approximately one month post-RT for patients with non-small cell lung cancer (NSCLC). The lesions of high uptake targeted with radiotherapy were identified on the pre-RT scan of each patient. Each lesion on the 3D and each of the five phases of the 4D scan were analyzed using a region of interest (ROI). For each patient the ROIs of the pre-RT scans were used to locate the areas of initial FDG uptake on the post-RT scans following rigid registration. Post-RT ROIs were drawn and the FDG uptake was compared with that of the pre-RT scans. Results: Sixteen distinct lesions from 12 patients were identified and analyzed. Standardized uptake value (SUV) maxima were significantly higher (p-value <0.005) for the lesions as measured on the 4D compared to 3D PET. Comparison of serial pre and post-RT scans showed a mean 62% decrease in SUV with the 3D PET scan (range 36–89%), and a 67% decrease with the 4D PET scan (range 30–89%). The mean absolute difference in SUV change on 3D versus 4D scans was 4.9%, with a range 0–15% (p-value = 0.07). Conclusions: Signal recovery with 4D PET results in higher SUVs when compared to standard 3D PET. Consequently, differences in the evaluation of SUV changes between pre and post-RT plans were observed. Such difference can have a significant impact in PET-based response assessment.

  13. Diagnostic value of 18F-FDG uptake by spleen in acute radiation disease

    Directory of Open Access Journals (Sweden)

    Shao-jie WU

    2015-07-01

    Full Text Available Objective To investigate whether 18F-FDG uptake can be applied in dosimetry to facilitate a rapid and accurate evaluation of individual radiation dosage after a nuclear accident. Methods Forty-eight Tibetan minipigs were randomly assigned into 6 groups, i.e., 0, 1, 2, 5, 8 and 11Gy groups. Animals in all except 0Gy group received total body irradiation (TBI with a 8MV X centrifugal linear accelerator, and 18F-FDG combined positron-emission tomography and computed tomography (PET/CT were carried out before TBI, and also at 6, 24 and 72h after receiving TBI in different doses ranging from 1 to 11Gy. Spleen tissues and blood samples were collected for histological examination, apoptosis, and routine blood analysis. Results Mean standardized uptake values (SUVs of the spleen showed significant differences between experimental groups and control group. The spleen SUVs at 6h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.95(P<0.01. Histopathological observations showed that the degree of splenic damage was proportional to the radiation dose. Moreover, flow cytometry revealed that apoptosis was one of the major forms of splenic lymphocyte death. Conclusion In the Tibetan minipig model, it was shown that radiation doses bear a close relationship with the 18F-FDG uptake of spleen. This finding suggests that 18F-FDG PET/CT may be useful for the rapid detection of individual radiation dosage after acute radiation disease (ARD. DOI: 10.11855/j.issn.0577-7402.2015.07.08

  14. 2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions

    DEFF Research Database (Denmark)

    Bachner, M; Loriot, Y; Gross-Goupil, M

    2012-01-01

    2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients.......2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients....

  15. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.

    Science.gov (United States)

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Modell, Kendra J; Vines, Douglass C; Esaki, Takanori; Cook, Michelle; Seidel, Jurgen; Sokoloff, Louis; Green, Michael V; Innis, Robert B

    2004-08-01

    The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under isoflurane, ketamine and xylazine anesthesia, and awake states. Immediately after injection of (18)F-FDG and 2-(14)C-DG into mice, timed arterial samples were drawn over 45 min to determine the time courses of (18)F-FDG and 2-(14)C-DG. Animals were euthanized at 45 min and their brain was imaged with the PET scanner. The brains were then processed for 2-(14)C-DG autoradiography. Regions of interest were manually placed over cortical regions on corresponding coronal (18)F-FDG PET and 2-(14)C-DG autoradiographic images. rCMR(glc) values were calculated for both tracers by the autoradiographic 2-(14)C-DG method with modifications for the different rate and lumped constants for the 2 tracers. Average rCMR(glc) values in cerebral cortex with (18)F-FDG PET under normoglycemic conditions (isoflurane and awake) were generally lower (by 8.3%) but strongly correlated with those of 2-(14)C-DG (r(2) = 0.95). On the other hand, under hyperglycemic conditions (ketamine/xylazine) average cortical rCMR(glc) values with (18)F-FDG PET were higher (by 17.3%) than those with 2-(14)C-DG. Values for rCMR(glc) and uptake (percentage injected dose per gram [%ID/g]) with (18)F-FDG PET were significantly lower under both isoflurane and ketamine/xylazine anesthesia than in the awake mice. However, the reductions of rCMR(glc) were markedly greater under isoflurane (by 57%) than under ketamine and xylazine (by 19%), whereas more marked reductions of %ID/g were observed with ketamine/xylazine (by 54%) than with isoflurane (by 37%). These reverse differences between isoflurane and ketamine/xylazine may be due to

  16. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  17. Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Ide, Michiru; Yasuda, Seiei; Takahashi, Wakoh; Shohtsu, Akira; Kubo, Atsushi

    1999-01-01

    The purpose of this study was to evaluate the characteristics of patients who showed increased FDG uptake in the wall of the right atrium. We have encountered 10 patients with increased activity in the wall of the right atrium among a total of 2,367 examinees who participated in our cancer screening program with whole-body PET. The mean age of these examinees was 62.9 yr, higher than that of the total population. All suffered from cardiac disorders, especially atrial fibrillation. FDG accumulated almost exclusively in the wall of the right atrium, whereas only slight activity was seen in the wall of the left atrium. Although the average size of the right atria was significantly enlarged, left atria were more severely dilated than right ones. Therefore overload does not seem to account for the FDG accumulation in the wall of the right atrium. In conclusion, the increased activity in the wall of the right atrium was a rare finding that was made in older people who suffered from cardiac disease. Although the mechanism of induction of the high metabolic state of glucose in the wall of the right atrium remains unclear, this unusual activity would be another false positive finding in cancer screening with whole-body FDG PET. (author)

  18. The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor.

    Directory of Open Access Journals (Sweden)

    Juliana Maynard

    Full Text Available The phosphatidyl inositol 3 kinase (PI3K, AKT and mammalian target of rapamycin (mTOR signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed.Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835.Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake for AZD8835 with a decrease in 18

  19. {sup 18}F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size

    Energy Technology Data Exchange (ETDEWEB)

    Ciarmiello, Andrea; Giovacchini, Giampiero; Bruselli, Laura [Nuclear Medicine Department, S. Andrea Hospital, La Spezia (Italy); Orobello, Sara; Elifani, Francesca; Squitieri, Ferdinando [Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, Pozzilli, IS (Italy)

    2012-06-15

    To test in a longitudinal follow-up study whether basal glucose metabolism in subjects with a genetic risk of Huntington disease (HD) may influence the onset of manifest symptoms. The study group comprised 43 presymptomatic (preHD) subjects carrying the HD mutation. They underwent a {sup 18}F-FDG PET scan and were prospectively followed-up for at least 5 years using the unified HD rating scale to detect clinical changes. Multiple regression analysis included subject's age, CAG mutation size and glucose uptake as variables in a model to predict age at onset. Of the 43 preHD subjects who manifested motor symptoms, suggestive of HD, after 5 years from the PET scan, 26 showed a mean brain glucose uptake below the cut-off of 1.0493 in the caudate, significantly lower than the 17 preHD subjects who remained symptom-free (P < 0.0001). This difference was independent of mutation size. Measurement of brain glucose uptake improved the CAG repeat number and age-based model for predicting age at onset by 37 %. A reduced level of glucose metabolism in the brain caudate may represent a predisposing factor that contributes to the age at onset of HD in preHD subjects, in addition to the mutation size. (orig.)

  20. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size

    International Nuclear Information System (INIS)

    Ciarmiello, Andrea; Giovacchini, Giampiero; Bruselli, Laura; Orobello, Sara; Elifani, Francesca; Squitieri, Ferdinando

    2012-01-01

    To test in a longitudinal follow-up study whether basal glucose metabolism in subjects with a genetic risk of Huntington disease (HD) may influence the onset of manifest symptoms. The study group comprised 43 presymptomatic (preHD) subjects carrying the HD mutation. They underwent a 18 F-FDG PET scan and were prospectively followed-up for at least 5 years using the unified HD rating scale to detect clinical changes. Multiple regression analysis included subject's age, CAG mutation size and glucose uptake as variables in a model to predict age at onset. Of the 43 preHD subjects who manifested motor symptoms, suggestive of HD, after 5 years from the PET scan, 26 showed a mean brain glucose uptake below the cut-off of 1.0493 in the caudate, significantly lower than the 17 preHD subjects who remained symptom-free (P < 0.0001). This difference was independent of mutation size. Measurement of brain glucose uptake improved the CAG repeat number and age-based model for predicting age at onset by 37 %. A reduced level of glucose metabolism in the brain caudate may represent a predisposing factor that contributes to the age at onset of HD in preHD subjects, in addition to the mutation size. (orig.)

  1. Prognostic significance of mediastinal {sup 18}F-FDG uptake in PET/CT in advanced ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bats, Anne-Sophie; Lecuru, Fabrice [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France); Hopital Europeen Georges-Pompidou, Assistance Publique-Hopitaux de Paris, Service de Chirurgie Gynecologique et Cancerologique, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, INSERM UMR-S 747, Paris (France); Hugonnet, Florent; Faraggi, Marc [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France); Hopital Europeen Georges-Pompidou, Assistance Publique-Hopitaux de Paris, Service de Medecine Nucleaire, Paris (France); Huchon, Cyrille [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France); Hopital Europeen Georges-Pompidou, Assistance Publique-Hopitaux de Paris, Service de Chirurgie Gynecologique et Cancerologique, Paris (France); Bensaid, Cherazade [Hopital Europeen Georges-Pompidou, Assistance Publique-Hopitaux de Paris, Service de Chirurgie Gynecologique et Cancerologique, Paris (France); Pierquet-Ghazzar, Nadia [Hopital Europeen Georges-Pompidou, Assistance Publique-Hopitaux de Paris, Service de Medecine Nucleaire, Paris (France)

    2012-03-15

    To evaluate the prognostic significance of increased mediastinal {sup 18}F-FDG uptake in PET/CT for the staging of advanced ovarian cancer. We retrospectively evaluated patients managed for FIGO stage III/IV ovarian cancer between 1 January 2006 and 1 June 2009. Patients were included if they had undergone {sup 18}F-FDG PET/CT and surgery for initial staging. Exclusion criteria were age younger than 18 years, inability to undergo general anaesthesia, recurrent ovarian cancer, and borderline or nonepithelial malignancy. Whole-body PET/CT was performed after intravenous {sup 18}F-FDG injection. The location of abnormal hot spots and {sup 18}F-FDG maximal standard uptake values (SUV{sub max}) were recorded. We compared the complete cytoreduction and survival rates in groups defined based on mediastinal {sup 18}F-FDG uptake and SUV{sub max} values. Kaplan-Meier curves of overall survival and disease-free survival were compared using the log-rank test. Hazard ratios with their 95% confidence intervals were computed. Adjusted hazard ratios were obtained using a multivariate Cox model. We included 53 patients, of whom 17 (32%) had increased mediastinal {sup 18}F-FDG uptake. Complete cytoreduction was achieved in 14 (87.5%) of the 16 patients managed with primary surgery and in 21 (75%) of the 28 patients managed with interval surgery. Complete cytoreduction was achieved significantly more often among patients without increased mediastinal {sup 18}F-FDG uptake (80.6% vs. 35.3%; p = 0.001). Disease-free survival was comparable between the two groups. By univariate analysis, overall mortality was significantly higher among patients with increased mediastinal {sup 18}F-FDG uptake (hazard ratio 5.70, 95% confidence interval 1.74-18.6). The only factor significantly associated with overall survival by multivariate analysis was complete cytoreduction (adjusted hazard ratio 0.24, 95% confidence interval 0.07-0.89). Increased mediastinal {sup 18}F-FDG uptake was common in patients

  2. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells. Is FDG a substrate of multidrug resistance (MDR)?

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Engelhardt, R.

    2005-01-01

    In order to specify the influence of multidrug-resistance (MDR) on the accumulation of the PET tracer, F-18 FDG ([Fluorine-18]2-fluoro-2-deoxy-D-glucose, in melanoma cells, both the MDR function and expression of two human melanoma cell lines SK-MEL 23 and 24, were evaluated. The effects of MDR modulators on FDG accumulation and efflux were also investigated. A functional analysis using representative MDR fluorescent substrates and inhibitors clarified the following characteristics: SK-MEL 23 possesses a highly active function of multidrug resistance-associated protein (MRP), but not P-gp. SK-MEL 24 possesses weak functions of both MRP and P-gp. Western blot analysis using monoclonal antibodies for MDR expression demonstrated an exceedingly high MRP expression of SK-MEL 23 and only slight P-gp and MRP expression of SK-MEL 24, corresponding to the functional data. The efflux inhibition assay using F-18 FDG revealed a considerable retention of FDG in SK-MEL 23 in the presence of the MRP inhibitor probenecid. It was also found that the P-gp inhibitor verapamil depressed the FDG efflux of SK-MEL 24. Our present in vitro study suggests that FDG may be a substrate of MDR in some melanoma cells and further MDR may be one of the important factors affecting FDG-PET melanoma imaging. (author)

  3. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET.

    Science.gov (United States)

    Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris

    2012-05-01

    (18)F-FDG PET measurement of standardized uptake value (SUV) is increasingly used for monitoring therapy response and predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the heterogeneity of tracer uptake by tumors as a significant predictor of response. The primary objective of this study was to evaluate the reproducibility of these heterogeneity measurements. Double baseline (18)F-FDG PET scans were acquired within 4 d of each other for 16 patients before any treatment was considered. A Bland-Altman analysis was performed on 8 parameters based on histogram measurements and 17 parameters based on textural heterogeneity features after discretization with values between 8 and 128. The reproducibility of maximum and mean SUV was similar to that in previously reported studies, with a mean percentage difference of 4.7% ± 19.5% and 5.5% ± 21.2%, respectively. By comparison, better reproducibility was measured for some textural features describing local heterogeneity of tracer uptake, such as entropy and homogeneity, with a mean percentage difference of -2% ± 5.4% and 1.8% ± 11.5%, respectively. Several regional heterogeneity parameters such as variability in the intensity and size of regions of homogeneous activity distribution had reproducibility similar to that of SUV measurements, with 95% confidence intervals of -22.5% to 3.1% and -1.1% to 23.5%, respectively. These parameters were largely insensitive to the discretization range. Several parameters derived from textural analysis describing heterogeneity of tracer uptake by tumors on local and regional scales had reproducibility similar to or better than that of simple SUV measurements. These reproducibility results suggest that these (18)F-FDG PET-derived parameters, which have already been shown to have predictive and prognostic value in certain cancer models, may be used to monitor therapy response and predict patient outcome.

  4. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  5. FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Michael C. [School of Medicine, Duke University Medical Center, Duke University, Durham, NC (United States); Turkington, Timothy G. [Department of Radiology, Duke University Medical Center, Duke University, Durham, NC (United States); Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC (United States); Higgins, Kristin A. [Department of Radiation Oncology, Duke University Medical Center, Duke University, Durham, NC (United States); Hawk, Thomas C. [Department of Radiology, Duke University Medical Center, Duke University, Durham, NC (United States); Hoang, Jenny K. [Department of Radiology, Duke University Medical Center, Duke University, Durham, NC (United States); Department of Radiation Oncology, Duke University Medical Center, Duke University, Durham, NC (United States); Brizel, David M., E-mail: david.brizel@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Duke University, Durham, NC (United States); Department of Surgery, Duke University Medical Center, Duke University, Durham, NC (United States)

    2012-01-01

    Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded to paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.

  6. High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Calais, Jeremie; Lemarignier, Charles; Vera, Pierre [Henri Becquerel Cancer Center and Rouen University Hospital, Nuclear Medicine Department, Rouen (France); University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Dubray, Bernard [University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Centre Henri Becquerel and Rouen University Hospital, Department of Radiotherapy and Medical Physics, Rouen (France); Nkhali, Lamyaa; Thureau, Sebastien; Modzelewski, Romain; Gardin, Isabelle [Henri Becquerel Cancer Center and Rouen University Hospital, Nuclear Medicine Department, Rouen (France); University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Centre Henri Becquerel and Rouen University Hospital, Department of Radiotherapy and Medical Physics, Rouen (France); Di Fiore, Frederic [Rouen University Hospital, Department of Gastroenterology, Rouen (France); Rouen University Hospital, Department of Oncology, Henri Becquerel Cancer Center, IRON, Rouen (France); Michel, Pierre [Rouen University Hospital, Department of Gastroenterology, Rouen (France)

    2015-05-01

    The high failure rates in the radiotherapy (RT) target volume suggest that patients with locally advanced oesophageal cancer (LAOC) would benefit from increased total RT doses. High 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) uptake (hotspot) on pre-RT FDG positron emission tomography (PET)/CT has been reported to identify intra-tumour sites at increased risk of relapse after RT in non-small cell lung cancer and in rectal cancer. Our aim was to confirm these observations in patients with LAOC and to determine the optimal maximum standardized uptake value (SUV{sub max}) threshold to delineate smaller RT target volumes that would facilitate RT dose escalation without impaired tolerance. The study included 98 consecutive patients with LAOC treated by chemoradiotherapy (CRT). All patients underwent FDG PET/CT at initial staging and during systematic follow-up in a single institution. FDG PET/CT acquisitions were coregistered on the initial CT scan. Various subvolumes within the initial tumour (30, 40, 50, 60, 70, 80 and 90 % SUV{sub max} thresholds) and in the subsequent local recurrence (LR, 40 and 90 % SUV{sub max} thresholds) were pasted on the initial CT scan and compared[Dice, Jaccard, overlap fraction (OF), common volume/baseline volume, common volume/recurrent volume]. Thirty-five patients had LR. The initial metabolic tumour volume was significantly higher in LR tumours than in the locally controlled tumours (mean 25.4 vs 14.2 cc; p = 0.002). The subvolumes delineated on initial PET/CT with a 30-60 % SUV{sub max} threshold were in good agreement with the recurrent volume at 40 % SUV{sub max} (OF = 0.60-0.80). The subvolumes delineated on initial PET/CT with a 30-60 % SUV{sub max} threshold were in good to excellent agreement with the core volume (90 % SUV{sub max}) of the relapse (common volume/recurrent volume and OF indices 0.61-0.89). High FDG uptake on pretreatment PET/CT identifies tumour subvolumes that are at greater risk of recurrence after CRT in

  7. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  8. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study

    International Nuclear Information System (INIS)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael; Hollensen, Christian; Pommer, Tobias; Munck af Rosenschöld, Per; Kristensen, Annemarie Thuri; Kjær, Andreas; McEvoy, Fintan J; Engelholm, Svend Aage

    2014-01-01

    Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The purpose of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[ 18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis(N 4 )-methylsemithiocarbazone (Cu-ATSM) using spontaneous clinical canine tumor models. Positron emission tomography/computed tomography scans of five spontaneous canine sarcomas and carcinomas were obtained; FDG on day 1 and 64 Cu-ATSM on day 2 and 3 (approx. 3 and 24 hours pi.). Sub-volumes for dose escalation were defined by a threshold-based method for both tracers and five dose escalation levels were formed in each sub-volume. Volumetric modulated arc therapy plans were optimized based on the dose escalation regions for each scan for a total of three dose plans for each dog. The prescription dose for the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with construction of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients. Comparison of dose plans revealed varying degree of correlation between cases. Some cases displayed a separation of high-dose regions in the comparison of FDG vs. 64 Cu-ATSM dose plans at both time points. Among the Dice correlation coefficients, the high dose regions showed the lowest degree of agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Radiotherapy plans optimized with the current approach for cut-off values and dose region definitions based on FDG, 64 Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64 Cu-ATSM at two

  9. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Li

    2016-10-01

    Full Text Available Alzheimer’s disease (AD is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1 transgenic (Tg mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr. Morris water maze (MWM was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD. By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD. Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals.

  10. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET.

    Science.gov (United States)

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  11. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Clinical Significance of Diffuse {sup 18F} FDG Uptake in Residual Thyroid Gland after Unilateral Thyroid Lobectomy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Sung; Lee, Su Jin; Yoon, Seok Ho; Lee, Jandee; Soh, Euy Young; An, Young Sil; Yoon, Joon Kee [Ajou Univ. School of Medicine, Suwon (Korea, Republic of)

    2011-09-15

    We investigated the clinical significance of diffuse uptake in remaining thyroid after unilateral lobectomy for thyroid cancer. A total of 144 thyroid cancer patients who underwent {sup 18F} FDG PET/CT after lobectomy were evaluated for the presence of diffuse {sup 18F} FDG uptake with maximum SUV (SUVmax)>2.0 in the residual thyroid and placed into one of two groups: with diffuse uptake and without diffuse uptake group. Clinical, laboratory, and PET/CT parameters in both groups were compared. Correlations between SUVmax of thyroid and available parameters were analyzed. Forty two of 144 patients (29.2%) had diffuse thyroid uptake (mean SUVmax: 3.2{+-}1.1). All patients with diffuse uptake and 96 (94.1%) without diffuse uptake were receiving thyroxine therapy (P=0.09). Thyroid function tests showed that most patients were euthyroid status (78.6 vs. 85.3%, P=0.36). TgAb levels were significantly higher in patients with diffuse uptake (338.0{+-}664.6 vs. 57.3{+-}46.4, P<0.0001). Mean attenuation values in the diffuse uptake group were significantly lower (72.2{+-}15. vs. 97.0{+-}16.0, P<0.0001). An inverse correlation was found between SUVmax and mean attenuation values of residual thyroid in all patients (r=-0.57, P<0.0001) and subgroup with diffuse uptake (r=-0.31, P<0.05). In this study, diffuse {sup 18F} FDG uptake in the residual thyroid after unilateral lobectomy was a relatively frequent finding and may be associated with chronic thyroiditis. This uptake is not influenced by thyroid status or thyroxine therapy. The {sup 18F} FDG uptake is inversely correlated with mean attenuation value of thyroid.

  13. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  14. 2-[18 F]fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) findings of chronic expanding intrapericardial hematoma: a potential interpretive pitfall that mimics a malignant tumor

    Science.gov (United States)

    2013-01-01

    A 77-year-old man who had undergone mitral valve replacement 5 years previously presented with an intrapericardial mass. Computed tomography and magnetic resonance imaging showed that the mass lesion contained hematoma components. Positron-emission tomography (PET) with 2-[18 F] fluoro-2-deoxy-d-glucose (FDG) revealed uptake in the peripheral rim of the mass. These findings suggested the presence of hematoma associated with a malignant lesion. Surgical resection was performed, and the histological diagnosis was chronic expanding intrapericardial hematoma without neoplastic changes. Chronic expanding intrapericardial hematoma is a rare disease but should be considered when an expanding mass is found in a patient after cardiac surgery. The FDG-PET findings of chronic expanding hematomas, including FDG uptake in the peripheral rim of the mass as a result of inflammation, should be recognized as a potential interpretive pitfall that mimics a malignant tumor. PMID:23324446

  15. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  16. The effects of bone erosion from aortic aneurysm on the regional uptake of FDG

    DEFF Research Database (Denmark)

    Louring-Andersen, J.; Law, I.

    2008-01-01

    aorta just below the carina. An abnormal crescent-shaped uptake was identified at the margin between the aneurysm and the adjacent thoracic vertebral bodies. At this site a correspondingly shaped bone erosion on CT was proof of the chronic effects of the aneurysm. There were no signs of regional......A 71-year-old white man with a known right-sided apical nonsmall cell lung carcinoma was referred for a F-18 FDG whole body PET-CT examination after chemotherapy before radiotherapy. A staging CT scan had revealed an asymptomatic fusiform 65 mm in diameter nondissecting aneurysm of the thoracic...

  17. FDG uptake in axillary lymph nodes after vaccination against pandemic (H1N1)

    International Nuclear Information System (INIS)

    Panagiotidis, Emmanouil; Exarhos, Demetrios; Housianakou, Irene; Bournazos, Apostolos; Datseris, Ioannis

    2010-01-01

    To alert the imaging community to potential false positive findings related to current immunization programmes against H1N1 influenza virus. We reviewed 10 patients referred for positron emission tomography/computed tomography (PET/CT) who had undergone recent vaccination. All studies showed 18 F-fluorodeoxyglucose (FDG) uptake in the draining axillary lymph nodes close to the vaccination site, while low-dose CT revealed lymph nodes ranged between 0.5 cm and 1.2 cm at the same site. This potential pitfall in PET/CT should be borne in mind during current vaccination programmes. (orig.)

  18. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Terroir, Marie; Dercle, Laurent; Lumbroso, Jean; Baudin, Eric; Berdelou, Amandine; Deandreis, Desiree; Schlumberger, Martin; Leboulleux, Sophie [Gustave Roussy and Universite Paris Saclay, Department of Nuclear Medicine and Endocrine Oncology, Villejuif (France); Borget, Isabelle [University Paris Sud, Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif (France); Bidault, Francois [Gustave Roussy, Department of Radiology, Villejuif (France); Ricard, Marcel [Gustave Roussy, Department of Physic, Villejuif (France); Deschamps, Frederic; Tselikas, Lambros [Department of Interventional Radiology, Villejuif (France); Hartl, Dana [Gustave Roussy, Department of Surgery, Villejuif (France)

    2017-04-15

    In patients with metastatic differentiated thyroid carcinoma (DTC), fluorodeoxyglucose (FDG) uptake as well as age, tumor size and radioactive iodine (RAI) uptake are prognostic factors for survival. High FDG uptake is a poor prognostic factor and lesions with high FDG uptake are often considered aggressive, but the predictive value of FDG uptake for morphological progression is unknown. The principal aim of this retrospective single center study was to determine whether the intensity of FDG uptake was correlated on a per lesion analysis with tumor growth rate (TGR) expressed as the percentage of increase in tumor size during 1 year (1-year TGR). Fifty five patients with DTC were included between July 2012 and May 2014 with the following criteria: (i) at least one distant metastasis measuring ≥ 1 cm in diameter on CT scan (ii) evaluation by FDG-positron emission tomography/computed tomography (PET/CT) performed at our center (iii) at least one CT or another FDG-PET/CT performed 3 to 12 months after the reference FDG-PET/CT in the absence of systemic or local treatment between the two imaging procedures. One hundred and fifty-six metastatic lesions located in lungs (63), neck lymph nodes (28), chest lymph nodes (42), bone (11), liver (2) and other sites (12) were studied. The median size was 16 mm, median SUVmax/lesion: 8.7; median metabolic tumor volume/lesion (Metab.TV/lesion): 3.7 cm{sup 3}. The median 1-year TGR was 40.68 %. SUVmax and Metab.TV/lesion were not correlated to their 1-year TGR (p = 0.38 and p = 0.74 respectively). Among single patients with multiple lesions, the lesions with the highest SUVmax/lesion or the highest Metab.TV/lesion did not disclose the higher 1-year TGR. The intensity of FDG uptake on a per lesion analysis is not correlated to its 1-year TGR and cannot be used as a surrogate marker of tumour progression. (orig.)

  20. Extensive FDG uptake and its modification with corticosteroid in a granuloma rat model: an experimental study for differentiating granuloma from tumors

    International Nuclear Information System (INIS)

    Zhao, Songji; Takei, Toshiki; Zhao, Yan; Tamaki, Nagara; Kuge, Yuji; Kohanawa, Masashi; Takahashi, Toshiyuki; Kawashima, Hidekazu; Temma, Takashi; Seki, Koh-ichi

    2007-01-01

    Increased 18 F-fluorodeoxyglucose (FDG) uptake in inflammatory lesions, particularly in granulomatous inflammation (e.g., sarcoidosis), makes it difficult to differentiate malignant tumors from benign lesions and is the main source of false-positive FDG-PET findings in oncology. Here, we developed a rat granuloma model and examined FDG uptake in the granuloma. The effects of corticosteroid on FDG uptake in the granuloma were compared with those in a malignant tumor. Rats were inoculated with Mycobacterium bovis bacillus Calmette-Guerin (BCG) or allogenic hepatoma cells, and subdivided into control and pretreated (methylprednisolone acetate, 8 mg/kg i.m.) groups. Radioactivity in tissues was determined 1 h after the FDG injection. FDG-PET was performed in rats bearing BCG granulomas or tumors before and after prednisolone treatment. Mature epithelioid cell granuloma-formation and massive lymphocyte-infiltration were observed in the control group of granuloma, histologically similar to sarcoidosis. The mean FDG uptake in the granuloma was comparable to that in the hepatoma. Prednisolone reduced epithelioid cell granuloma-formation and lymphocyte-infiltration. Prednisolone significantly decreased the level of FDG uptake in the granuloma (52% of control), but not in the hepatoma. The FDG uptake levels in the granulomas and tumors were clearly imaged with PET. We developed an intramuscular granuloma rat model that showed a high FDG uptake comparable to that of the tumor. The effect of prednisolone pretreatment on FDG uptake was greater in the granuloma than in the tumor. These results suggest that BCG-induced granuloma may be a valuable model and may provide a biological basis for FDG studies. (orig.)

  1. Correlation of primary tumor FDG uptake with clinicopathologic prognostic factors in invasive ductal carcinoma of the breast

    International Nuclear Information System (INIS)

    Jo, I; Kim, Sung Hoon; Kim, Hae Won; Kang, Sung Hee; Zeon, Seok Kil; Kim, Su Jin

    2015-01-01

    The purpose of this study was to investigate the correlation of primary tumor FDG uptake to clinicopathological prognostic factors in invasive ductal carcinoma of the breast. We retrospectively reviewed 136 of 215 female patients with pathologically proven invasive ductal breast cancer from January 2008 to December 2011 who underwent F-18 FDG PET/CT for initial staging and follow-up after curative treatment with analysis of estrogen receptor (ER), progesterone receptor (PR) and human epithelial growth factor receptor 2 (HER2). The maximum standardized uptake value (SUV max ) of the primary breast tumor was measured and compared with hormonal receptor and HER2 overexpression status. The high SUV max of primary breast tumors is significantly correlated with the clinicopathological factors: tumor size, histologic grade, TNM stage, negativity of ER, negativity of PR, HER2 overexpression and triple negativity. The recurrent group with non-triple negative cancer had a higher SUV max compared with the non-recurrent group, though no significant difference in FDG uptake was noted between the recurrence and non-recurrent groups in subjects with triple-negative cancer. Lymph node involvement was the independent risk factor for cancer recurrence in the multivariate analysis. In conclusion, high FDG uptake in primary breast tumors is significantly correlated with clinicopathological factors, such as tumor size, histologic grade, TNM stage, negativity of the hormonal receptor, HER2 overexpression and triple negativity. Therefore, FDG PET/CT is a helpful prognostic tool to direct the further management of patients with breast cancer

  2. Incidental focal FDG uptake in the parotid glands on PET/CT in patients with head and neck malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Yoon, Dae Young; Lim, Kyoung Ja; Yun, Eun Joo; Cho, Young Kwon [Hallym University College of Medicine, Department of Radiology, Kangdong Seong-Sim Hospital, Seoul (Korea, Republic of); Baek, Sora [Hallym University College of Medicine, Department of Nuclear Medicine, Kangdong Seong-Sim Hospital, Seoul (Korea, Republic of); Bae, Woo Jin; Chung, Eun Jae; Kwon, Kee Hwan [Hallym University College of Medicine, Department of Otorhinolaryngology, Ilsong Memorial Institute of Head and Neck Cancer, Kangdong Seong-Sim Hospital, Seoul (Korea, Republic of)

    2015-01-15

    To evaluate the prevalence and clinical significance of focal parotid lesions identified by {sup 18} F- FDG PET/CT in patients with nonparotid head and neck malignancies. From 3,638 PET/CT examinations using {sup 18} F-FDG conducted on 1,342 patients with nonparotid head and neck malignancies, we retrospectively identified patients showing incidental focal FDG uptake in the parotid glands. The diagnosis of parotid lesions was confirmed histopathologically or on imaging follow-up. Patient demographics, clinical features, maximum standardized uptake value (SUV{sub max}) on PET images, size and attenuation on corresponding contrast-enhanced CT images were assessed and correlated with the final diagnosis. The prevalence of incidental focal parotid FDG uptake on PET/CT was 2.1 % (95 % CI 1.4 - 3.0 %). Among 21 patients with focal parotid lesions confirmed histologically or on imaging follow-up, 7 (33.3 %) had malignant lesions (all metastases) and 14 (66.7 %) had benign lesions (four pleomorphic adenomas, two Warthin's tumours, one benign lymph node, one granulomatous lesion, six lesions without histopathological confirmation). There were no significant differences in age, sex, SUV{sub max} or CT findings between patients with benign and those with malignant lesions. Focal parotid FDG uptake on PET/CT in patients with head and neck malignancy warrants further investigations to ensure adequate therapy for incidental parotid lesions. (orig.)

  3. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    Science.gov (United States)

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important

  4. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    Mongillo, Marco; Leccisotti, Lucia; John, Anna S.; Pennell, Dudley J.; Camici, Paolo G.

    2007-01-01

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [ 11 C]meta-hydroxy-ephedrine (HED) volume of distribution (V d ) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1 .g -1 ) and dysfunctional (0.49 ± 0.14 μmol.min -1 .g -1 ) segments compared with controls (0.61 ± 0.7 μmol.min -1 .g -1 ; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g -1 ) compared with normal segments (52.2 ± 19.6 ml.g -1 ) and compared with controls (62.7 ± 11.3 ml.g -1 ). In patients, regional MGU was correlated with HED V d . The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  5. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...

  6. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Hyun, Seung Hyup; Kim, Ho Seong; Lee, Kyung-Han; Kim, Byung-Tae; Choi, Joon Young; Choi, Seong Ho; Choi, Dong Wook; Lee, Jong Kyun; Lee, Kwang Hyuck; Park, Joon Oh

    2016-01-01

    To assess whether intratumoral heterogeneity measured by 18 F-FDG PET texture analysis has potential as a prognostic imaging biomarker in patients with pancreatic ductal adenocarcinoma (PDAC). We evaluated a cohort of 137 patients with newly diagnosed PDAC who underwent pretreatment 18 F-FDG PET/CT from January 2008 to December 2010. First-order (histogram indices) and higher-order (grey-level run length, difference, size zone matrices) textural features of primary tumours were extracted by PET texture analysis. Conventional PET parameters including metabolic tumour volume (MTV), total lesion glycolysis (TLG), and standardized uptake value (SUV) were also measured. To assess and compare the predictive performance of imaging biomarkers, time-dependent receiver operating characteristic (ROC) curves for censored survival data and areas under the ROC curve (AUC) at 2 years after diagnosis were used. Associations between imaging biomarkers and overall survival were assessed using Cox proportional hazards regression models. The best imaging biomarker for overall survival prediction was first-order entropy (AUC = 0.720), followed by TLG (AUC = 0.697), MTV (AUC = 0.692), and maximum SUV (AUC = 0.625). After adjusting for age, sex, clinical stage, tumour size and serum CA19-9 level, multivariable Cox analysis demonstrated that higher entropy (hazard ratio, HR, 5.59; P = 0.028) was independently associated with worse survival, whereas TLG (HR 0.98; P = 0.875) was not an independent prognostic factor. Intratumoral heterogeneity of 18 F-FDG uptake measured by PET texture analysis is an independent predictor of survival along with tumour stage and serum CA19-9 level in patients with PDAC. In addition, first-order entropy as a measure of intratumoral metabolic heterogeneity is a better quantitative imaging biomarker of prognosis than conventional PET parameters. (orig.)

  7. Implications of Resveratrol on Glucose Uptake and Metabolism

    Directory of Open Access Journals (Sweden)

    David León

    2017-03-01

    Full Text Available Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  8. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  9. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro

    DEFF Research Database (Denmark)

    Pedersen, M W; Holm, S; Lund, E L

    2001-01-01

    We examined the relationship between (18)F- labeled 2-fluro-2-deoxy-d-glucose (FDG) uptake, and expression of glucose transporters (GLUTs) in two human small-cell lung cancer (SCLC) lines CPH 54A and CPH 54B. Changes in the expression of GLUTs and vascular endothelial growth factor (VEGF) during 12......-, 18-, and 24 hours of severe hypoxia in vivo (xenografts) and in vitro (cell cultures) were recorded for both tumor lines. The two SCLC lines are subpopulations of the same patient tumor. In spite of their common genomic origin they represent consistently different metabolic and microenvironmental...... phenotypes as well as treatment sensitivities. There were higher levels of Glut-1 protein in 54B and a correspondingly higher FDG uptake in this tumor line (P

  10. A significant discrepancy of uptake between I-131 MIBG and F-18 FDG in a patient with malignant paraganglioma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Su; Kim, Hyun Keun; Choi, Kyu Young; Park, Hyung Ki; Kim, Eun Sil; Kim, Yun Kwon; Kim, So Yon [National Police Hospital, Seoul (Korea, Republic of)

    2007-06-15

    A 38-year-old man who was diagnosed with malignant paraganglioma underwent computed tomography (CT) and I-131 metaiodobenzylguanidine (MIBG) scan. CT showed extensive lymph node enlargement in right iliac area and retroperitoneum with severe hydronephrosis and mass on posterior bladder wall. However, I-131 MIBG scan didn't showed abnormal uptake. He also underwent F-18 fluorodeoxyglucose (FDG) positron emission tomography/CT for localizing accurate tumor site. F-18 FDG PET/CT showed multiple metastases of left supraclavicular, hilar, mediastinal para-aortic, inguinal, right iliac lymph nodes, lung, vertebrae, and pelvis. There are a few reports showing that the F-18 FDG PET/CT is helpful for staging and localizing tumor site of patients who are diagnosed with negative on the MIBG scans. Thus, we report a case with paraganglioma which showed negative I-131 MIBG scan, but revealed multiple intense hypermetabolic foci in F-18 FDG PET/CT.

  11. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer.

    Science.gov (United States)

    Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-valueheterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.

  12. [Increased glucose uptake by seborrheic keratosis on PET scan].

    Science.gov (United States)

    Merklen-Djafri, C; Truntzer, P; Hassler, S; Cribier, B

    2017-05-01

    Positron emission tomography (PET) is an examination based upon the uptake of a radioactive tracer by hypermetabolic cells. It is primarily used in tandem with tomodensitometry (PET-TDM) for cancer staging because of its high sensitivity and specificity for the detection of metastases. However, unusually high uptake may occur with benign tumours, including skin tumours. Herein, we report an extremely rare case of pathological uptake levels resulting from seborrhoeic keratosis. A 55-year-old male patient with oesophageal squamous-cell carcinoma was referred to us following the discovery of an area of high marker uptake following PET-TDM and corresponding to a pigmented skin lesion. No other areas of suspect high uptake were seen. The lesion was surgically excised and histological examination indicated seborrhoeic keratosis. The histological appearance was that of standard seborrhoeic keratosis without any notable mitotic activity. PET-TDM is an examination that enables diagnosis of malignancy. However, rare cases have been described of increased marker uptake by benign cutaneous tumours such as histiocytofibroma, pilomatricoma and condyloma. To date, there have only been only very few cases of increased uptake due to seborrhoeic keratosis. This extremely unusual case of increased glucose uptake in PET-TDM due to seborrhoeic keratosis confirms that the hypermetabolic activity detected by this examination is not necessarily synonymous with malignancy and that confirmation by clinical and histological findings is essential. The reasons for increased metabolic activity within such benign tumours are not known. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Low baseline and subsequent higher aortic abdominal aneurysm FDG uptake are associated with poor sac shrinkage post endovascular repair

    Energy Technology Data Exchange (ETDEWEB)

    Marie, Pierre-Yves [CHRU-Nancy, Universite de Lorraine, Nuclear Medecine and Nancyclotep Platform, Nancy (France); INSERM, University of Lorraine, UMR 1116, Nancy (France); CHRU-Nancy, Hopitaux de BRABOIS, Service de Medecine Nucleaire, Vandoeuvre (France); Plissonnier, Didier; Rouer, Martin [CHU-Rouen, Department of Vascular Surgery, Rouen (France); Bravetti, Stephanie [CHRU-Nancy, Universite de Lorraine, Department of Radiology, Nancy (France); Coscas, Raphael [Hopital Ambroise Pare, APHP, Chirurgie Vasculaire, Boulogne-Billancourt (France); Haulon, Stephan [CHU-Lille, Department of Vascular Surgery, Lille (France); Mandry, Damien [CHRU-Nancy, Universite de Lorraine, Department of Radiology, Nancy (France); INSERM, University of Lorraine, UMR 947, Nancy (France); Alsac, Jean-Marc [grid.414093.b, APHP, HEGP, Department of Vascular Surgery, Paris (France); Malikov, Serguei; Settembre, Nicla [CHRU-Nancy, Universite de Lorraine, Vascular Surgery, Nancy (France); Goueffic, Yann [CHU-Nantes, Department of Vascular Surgery, Nantes (France); Morel, Olivier [CHU-Besancon, Department of Nuclear Medecine, Besancon (France); Roch, Veronique [CHRU-Nancy, Universite de Lorraine, Nuclear Medecine and Nancyclotep Platform, Nancy (France); Micard, Emilien [INSERM, University of Lorraine, UMR 947, Nancy (France); INSERM, CHRU-Nancy, Universite de Lorraine, CIC-1433, FCRIN INI-CRCT, Nancy (France); Lamiral, Zohra [INSERM, CHRU-Nancy, Universite de Lorraine, CIC-1433, FCRIN INI-CRCT, Nancy (France); Michel, Jean-Baptiste [INSERM, Bichat, UMR 698, Paris (France); Rossignol, Patrick [INSERM, University of Lorraine, UMR 1116, Nancy (France); INSERM, CHRU-Nancy, Universite de Lorraine, CIC-1433, FCRIN INI-CRCT, Nancy (France)

    2018-04-15

    The growth phases of medically treated abdominal aortic aneurysms (AAA) are frequently associated with an {sup 18}F-fluorodesoxyglucose positron emission tomography (FDG-PET) pattern involving low baseline and subsequent higher FDG uptake. However, the FDG-PET patterns associated with the endovascular aneurysm repair (EVAR) of larger AAA are presently unknown. This study aimed to investigate the relationship between serial AAA FDG uptake measurements, obtained before EVAR and 1 and 6 months post-intervention and subsequent sac shrinkage at 6 months, a well-recognized indicator of successful repair. Thirty-three AAA patients referred for EVAR (maximal diameter: 55.4 ± 6.0 mm, total volume: 205.7 ± 63.0 mL) underwent FDG-PET/computed tomography (CT) before EVAR and at 1 and 6 months thereafter, with the monitoring of AAA volume and of a maximal standardized FDG uptake [SUVmax] averaged between the axial slices encompassing the AAA. Sac shrinkage was highly variable and could be stratified into three terciles: a first tercile in which shrinkage was absent or very limited (0-29 mL) and a third tercile with pronounced shrinkage (56-165 mL). SUVmax values were relatively low at baseline in the 1st tercile (SUVmax: 1.69 ± 0.33), but markedly increased at 6 months (2.42 ± 0.69, p = 0.02 vs. baseline). These SUV max values were by contrast much higher at baseline in the 3rd tercile (SUVmax: 2.53 ± 0.83 p = 0.009 vs. 1st tercile) and stable at 6 months (2.49 ± 0.80), while intermediate results were documented in the 2nd tercile. Lastly, the amount of sac shrinkage, expressed in absolute values or in percentages of baseline AAA volumes, was positively correlated with baseline SUVmax (p = 0.001 for both). A low pre-EVAR FDG uptake and increased AAA FDG uptake at 6 months are associated with reduced sac shrinkage. This sequential FDG-PET pattern is similar to that already shown to accompany growth phases of medically treated AAA. (orig.)

  14. Low baseline and subsequent higher aortic abdominal aneurysm FDG uptake are associated with poor sac shrinkage post endovascular repair

    International Nuclear Information System (INIS)

    Marie, Pierre-Yves; Plissonnier, Didier; Rouer, Martin; Bravetti, Stephanie; Coscas, Raphael; Haulon, Stephan; Mandry, Damien; Alsac, Jean-Marc; Malikov, Serguei; Settembre, Nicla; Goueffic, Yann; Morel, Olivier; Roch, Veronique; Micard, Emilien; Lamiral, Zohra; Michel, Jean-Baptiste; Rossignol, Patrick

    2018-01-01

    The growth phases of medically treated abdominal aortic aneurysms (AAA) are frequently associated with an 18 F-fluorodesoxyglucose positron emission tomography (FDG-PET) pattern involving low baseline and subsequent higher FDG uptake. However, the FDG-PET patterns associated with the endovascular aneurysm repair (EVAR) of larger AAA are presently unknown. This study aimed to investigate the relationship between serial AAA FDG uptake measurements, obtained before EVAR and 1 and 6 months post-intervention and subsequent sac shrinkage at 6 months, a well-recognized indicator of successful repair. Thirty-three AAA patients referred for EVAR (maximal diameter: 55.4 ± 6.0 mm, total volume: 205.7 ± 63.0 mL) underwent FDG-PET/computed tomography (CT) before EVAR and at 1 and 6 months thereafter, with the monitoring of AAA volume and of a maximal standardized FDG uptake [SUVmax] averaged between the axial slices encompassing the AAA. Sac shrinkage was highly variable and could be stratified into three terciles: a first tercile in which shrinkage was absent or very limited (0-29 mL) and a third tercile with pronounced shrinkage (56-165 mL). SUVmax values were relatively low at baseline in the 1st tercile (SUVmax: 1.69 ± 0.33), but markedly increased at 6 months (2.42 ± 0.69, p = 0.02 vs. baseline). These SUV max values were by contrast much higher at baseline in the 3rd tercile (SUVmax: 2.53 ± 0.83 p = 0.009 vs. 1st tercile) and stable at 6 months (2.49 ± 0.80), while intermediate results were documented in the 2nd tercile. Lastly, the amount of sac shrinkage, expressed in absolute values or in percentages of baseline AAA volumes, was positively correlated with baseline SUVmax (p = 0.001 for both). A low pre-EVAR FDG uptake and increased AAA FDG uptake at 6 months are associated with reduced sac shrinkage. This sequential FDG-PET pattern is similar to that already shown to accompany growth phases of medically treated AAA. (orig.)

  15. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    International Nuclear Information System (INIS)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol

    2008-01-01

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy

  16. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2008-06-15

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy.

  17. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size

    Energy Technology Data Exchange (ETDEWEB)

    Barwick, Tara D. [Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Radiology/Nuclear Medicine, London (United Kingdom); Hammersmith Hospital, Department of Surgery and Cancer, Imperial College London, London (United Kingdom); Lyons, O.T.A.; Waltham, M. [King' s College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at King' s Health Partners, Academic Department of Surgery, London (United Kingdom); Mikhaeel, N.G. [Guy' s and St Thomas' Foundation NHS Trust, Department of Oncology, London (United Kingdom); O' Doherty, M.J. [King' s Health Partners, Clinical PET Centre, St Thomas' Hospital, London (United Kingdom)

    2014-12-15

    Aortic metabolic activity is suggested to correlate with presence and progression of aneurysmal disease, but has been inadequately studied. This study investigates the 2-[{sup 18}F] fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) uptake in a population of infra-renal abdominal aortic aneurysms (AAA), compared to a matched non-aneurysmal control group. The Positron Emission Tomography - Computed Tomography (PET/CT) database was searched for infra-renal AAA. Exclusion criteria were prior repair, vasculitis, and saccular/mycotic thoracic or thoraco-abdominal aneurysms. Matching of 159 non-aneurysmal (<3 cm diameter) controls from the same population was assessed. Infra-renal aortic wall FDG uptake was assessed using visual analysis; maximum standardized uptake value (SUV{sub max}) and target to background mediastinal blood pool ratio (TBR) were documented. Predictors of FDG uptake (age, sex, aortic diameter, hypertension, statin use, and diabetes) were assessed using univariate analysis. Follow-up questionnaires were sent to referring clinicians. Aneurysms (n = 151) and controls (n = 159) were matched (p > 0.05) for age, sex, diabetes, hypertension, smoking status, statin use, and indication for PET/CT. Median aneurysm diameter was 5.0 cm (range 3.2-10.4). On visual analysis there was no significant difference in the overall numbers with increased visual uptake 24 % (36/151) in the aneurysm group vs. 19 % (30/159) in the controls, p = ns. SUV{sub max} was slightly lower in the aneurysm group vs. controls (mean (2 SD) 1.75(0.79) vs. 1.84(0.58), p = 0.02). However there was no difference in TBR between the AAA group and controls (mean (2 SD) 1.03 (0.46) vs. 1.05(0.31), p = 0.36). During a median 18 (interquartile range 8-35) months' follow-up 20 were repaired and four were confirmed ruptured. The level of metabolic activity as assessed by {sup 18}F-FDG PET/CT in infra-renal AAA does not correlate with aortic size and does not differ between aneurysms and matched controls

  18. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size

    International Nuclear Information System (INIS)

    Barwick, Tara D.; Lyons, O.T.A.; Waltham, M.; Mikhaeel, N.G.; O'Doherty, M.J.

    2014-01-01

    Aortic metabolic activity is suggested to correlate with presence and progression of aneurysmal disease, but has been inadequately studied. This study investigates the 2-[ 18 F] fluoro-2-deoxy-D-glucose ( 18 F-FDG) uptake in a population of infra-renal abdominal aortic aneurysms (AAA), compared to a matched non-aneurysmal control group. The Positron Emission Tomography - Computed Tomography (PET/CT) database was searched for infra-renal AAA. Exclusion criteria were prior repair, vasculitis, and saccular/mycotic thoracic or thoraco-abdominal aneurysms. Matching of 159 non-aneurysmal ( max ) and target to background mediastinal blood pool ratio (TBR) were documented. Predictors of FDG uptake (age, sex, aortic diameter, hypertension, statin use, and diabetes) were assessed using univariate analysis. Follow-up questionnaires were sent to referring clinicians. Aneurysms (n = 151) and controls (n = 159) were matched (p > 0.05) for age, sex, diabetes, hypertension, smoking status, statin use, and indication for PET/CT. Median aneurysm diameter was 5.0 cm (range 3.2-10.4). On visual analysis there was no significant difference in the overall numbers with increased visual uptake 24 % (36/151) in the aneurysm group vs. 19 % (30/159) in the controls, p = ns. SUV max was slightly lower in the aneurysm group vs. controls (mean (2 SD) 1.75(0.79) vs. 1.84(0.58), p = 0.02). However there was no difference in TBR between the AAA group and controls (mean (2 SD) 1.03 (0.46) vs. 1.05(0.31), p = 0.36). During a median 18 (interquartile range 8-35) months' follow-up 20 were repaired and four were confirmed ruptured. The level of metabolic activity as assessed by 18 F-FDG PET/CT in infra-renal AAA does not correlate with aortic size and does not differ between aneurysms and matched controls. (orig.)

  19. Correlation of high {sup 18}F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groheux, David; Moretti, Jean-Luc; Hindie, Elif [Department of Nuclear Medicine, Saint-Louis Hospital,Assistance publique Hopitaux de Paris, Paris Cedex 10 (France); IUH, Doctoral School, University of Paris VII, Paris (France); Giacchetti, Sylvie; Espie, Marc; Hamy, Anne-Sophie; Cuvier, Caroline [Breast Diseases Unit, Saint-Louis Hospital, Department of Medical Oncology, Paris (France); Porcher, Raphael [Saint-Louis Hospital, Department of Biostatistics and Medical Information, Paris (France); Lehmann-Che, Jacqueline [Saint-Louis Hospital, Department of Biochemistry, Paris (France); Roquancourt, Anne de [Saint-Louis Hospital, Department of Pathology, Paris (France); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Assistance publique Hopitaux de Paris, Paris Cedex 10 (France)

    2011-03-15

    The aim of this study was to determine the impact of the main clinicopathological and biological prognostic factors of breast cancer on {sup 18}F-fluorodeoxyglucose (FDG) uptake. Only women with tumours larger than 20 mm (T2-T4) were included in order to minimize bias of partial volume effect. In this prospective study, 132 consecutive women received FDG PET/CT imaging before starting neoadjuvant chemotherapy. Maximum standardized uptake values (SUV{sub max}) were compared to tumour characteristics as assessed on core biopsy. There was no influence of T and N stage on SUV. Invasive ductal carcinoma showed higher SUV than lobular carcinoma. However, the highest uptake was found for metaplastic tumours, representing 5% of patients in this series. Several biological features usually considered as bad prognostic factors were associated with an increase in FDG uptake: the median of SUV{sub max} was 9.7 for grade 3 tumours vs 4.8 for the lower grades (p < 0.0001); negativity for oestrogen receptors (ER) was associated with higher SUV (ER+ SUV = 5.5; ER- SUV = 7.6; p = 0.003); triple-negative tumours (oestrogen and progesterone receptor negative, no overexpression of c-erbB-2) had an SUV of 9.2 vs 5.8 for all others (p = 0005); p53 mutated tumours also had significantly higher SUV (7.8 vs 5.0; p < 0.0001). Overexpression of c-erbB-2 had no effect on the SUV value. Knowledge of the factors influencing uptake is important when interpreting FDG PET/CT scans. Also, findings that FDG uptake is highest in those patients with poor prognostic features (high grade, hormone receptor negativity, triple negativity, metaplastic tumours) is helpful to determine who are the best candidates for baseline staging. (orig.)

  20. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer

    International Nuclear Information System (INIS)

    Groheux, David; Moretti, Jean-Luc; Hindie, Elif; Giacchetti, Sylvie; Espie, Marc; Hamy, Anne-Sophie; Cuvier, Caroline; Porcher, Raphael; Lehmann-Che, Jacqueline; Roquancourt, Anne de; Vercellino, Laetitia

    2011-01-01

    The aim of this study was to determine the impact of the main clinicopathological and biological prognostic factors of breast cancer on 18 F-fluorodeoxyglucose (FDG) uptake. Only women with tumours larger than 20 mm (T2-T4) were included in order to minimize bias of partial volume effect. In this prospective study, 132 consecutive women received FDG PET/CT imaging before starting neoadjuvant chemotherapy. Maximum standardized uptake values (SUV max ) were compared to tumour characteristics as assessed on core biopsy. There was no influence of T and N stage on SUV. Invasive ductal carcinoma showed higher SUV than lobular carcinoma. However, the highest uptake was found for metaplastic tumours, representing 5% of patients in this series. Several biological features usually considered as bad prognostic factors were associated with an increase in FDG uptake: the median of SUV max was 9.7 for grade 3 tumours vs 4.8 for the lower grades (p < 0.0001); negativity for oestrogen receptors (ER) was associated with higher SUV (ER+ SUV = 5.5; ER- SUV = 7.6; p = 0.003); triple-negative tumours (oestrogen and progesterone receptor negative, no overexpression of c-erbB-2) had an SUV of 9.2 vs 5.8 for all others (p = 0005); p53 mutated tumours also had significantly higher SUV (7.8 vs 5.0; p < 0.0001). Overexpression of c-erbB-2 had no effect on the SUV value. Knowledge of the factors influencing uptake is important when interpreting FDG PET/CT scans. Also, findings that FDG uptake is highest in those patients with poor prognostic features (high grade, hormone receptor negativity, triple negativity, metaplastic tumours) is helpful to determine who are the best candidates for baseline staging. (orig.)

  1. Residual {sup 18}F-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    Energy Technology Data Exchange (ETDEWEB)

    Bollineni, Vikram Rao, E-mail: v.r.bollineni@umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Widder, Joachim [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Pruim, Jan [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A.; Wiegman, Erwin M. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-07-15

    Purpose: To investigate the prognostic value of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically inoperable patients with proven Stage I NSCLC or FDG-PET-positive primary lung tumors were analyzed retrospectively. SABR consisted of 60 Gy delivered in 3 to 8 fractions. Maximum standardized uptake value (SUV{sub max}) of the treated lesion was assessed 12 weeks after SABR, using FDG-PET. Patients were subsequently followed at regular intervals using computed tomography (CT) scans. Association between post-SABR SUV{sub max} and local control (LC), mediastinal failure, distant failure, overall survival (OS), and disease-specific survival (DSS) was examined. Results: Median follow-up time was 17 months (range, 3-40 months). Median lesion size was 25 mm (range, 9-70 mm). There were 6 local failures: 15 mediastinal failures, 15 distant failures, 13 disease-related deaths, and 16 deaths from intercurrent diseases. Glucose corrected post-SABR median SUV{sub max} was 3.0 (range, 0.55-14.50). Using SUV{sub max} 5.0 as a cutoff, the 2-year LC was 80% versus 97.7% for high versus low SUV{sub max}, yielding an adjusted subhazard ratio (SHR) for high post-SABR SUV{sub max} of 7.3 (95% confidence interval [CI], 1.4-38.5; p = 0.019). Two-year DSS rates were 74% versus 91%, respectively, for high and low SUV{sub max} values (SHR, 2.2; 95% CI, 0.8-6.3; p = 0.113). Two-year OS was 62% versus 81% (hazard ratio [HR], 1.6; 95% CI, 0.7-3.7; p = 0.268). Conclusions: Residual FDG uptake (SUV{sub max} {>=}5.0) 12 weeks after SABR signifies increased risk of local failure. A single FDG-PET scan at 12 weeks could be used to tailor further follow-up according to the risk of failure, especially in patients potentially eligible for salvage surgery.

  2. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects

    NARCIS (Netherlands)

    Boon, Mariëtte R.; Bakker, Leontine E. H.; van der Linden, Rianne A. D.; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J.; van Marken Lichtenbelt, Wouter D.; Jazet, Ingrid M.; Rensen, Patrick C. N.

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use

  3. 18 F-FDG uptake in focal organising pneumonia mimicking bronchial carcinoma.

    Science.gov (United States)

    Baha, Ayse; Yildirim, Fatma; Kokturk, Nurdan; Akdemir, Umit Ozgur; Demircan, Sedat; Turktas, Haluk

    2016-11-01

    Organising pneumonia (OP) is not a well-known cause of increased 18 F-FDG uptake, and the relationship of the increased 18 F-FDG uptake to clinical parameters has not been clearly identified. This study aims to assess the role of positron emission tomography-computed tomography (PET-CT) for the diagnosis of focal organised pneumonia that may mimic malignity because of mass-like lesions on the radiological images it causes. Among 40 patients of whom histopathological exams were consistent with OP, medical records of 14 focal OP patients diagnosed with surgical biopsy were evaluated retrospectively. There were 10 male (71.4%) and 4 female (28.6%) patients. The mean age at the time of diagnosis was 57.2 ± 11.7 years, ranging from 38 to 85 years. Nine subjects (64.3%) were smokers. Eleven patients (78.5%) had symptoms, the remaining 3 patients (21.5%) were asymptomatic. Three patients (21.3%) had a history of malignancy. Focal lung lesion was initially detected by chest radiography in 10 patients (71.4%) and by computed tomography (CT) scan in all patients. CT scan showed a single lesion in 12 (85.7%) patients. The lesions were located in the right lung of the half of patients (50%) and in the left lung of the other half. The median diameter of the lesions was 3.4 cm (range, 1.8-6.0 cm). PET with 18 F-FDG was performed in all patients, and hypermetabolic activity of the focal lung lesion was demonstrated in all cases. The median values of maximum standardized uptake value was 3.5 ± 2.7 (min 2.1-max 13.1). Focal OP is a discrete form of OP that is associated with unifocal lesions on radiological images, and it can easily mimic lung cancer because of positivity on PET scans. There are no specific findings of PET scan for the diagnosis of OP. © 2015 John Wiley & Sons Ltd.

  4. Colon cancer mimicking physiologic FDG uptake: with using of negative oral contrast

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young

    2006-01-01

    A 64-year-old female with glioblastoma multiforme (GBM) was assigned to our department for whole body PET/CT scan. She ingested 1 liter of pure water as negative oral contrast just before PET/CT examination. FDG-PET/CT images showed a very intense hypermetabolic, focal lesion in the abdominal cavity around descending colon. The SUVmax of the lesion was 17.2. But there was no abnormal lesion corresponded to the area of PET scan in the combined contrast enhanced CT scan. We suggested considering a malignant lesion due to very intense glycolytic activity. Conventional abdominal CT scan and colonoscopy were accomplished within one week after PET/CT evaluation. There was no abnormality in both examinations. We executed follow-up PET/CT evaluation after 1 month and couldn't find any abnormality around the corresponding area. So we concluded the hypermetabolism was colonic physiologic uptake. A colonic physiologic uptake is a well known cause of false positive finding. Nuclear physicians should be considered the possibility of malignancy when interpret focal colonic uptake, especially incidental finding. 1-3) There are a few reports that using of negative oral contrast is able to reduce gastrointestinal physiologic uptakes. 4,5) But as we can see in this case, although we used negative oral contrast, intense physiologic uptake is detected and maxSUV is able to up to 17.2. So, it is important to keep a fact in mind. Even though there is a colonic physiologic uptake in PET/CT image, it may be able to show very intense hypermetabolism regardless of using negative oral contrast

  5. Glucose Metabolic Changes in the Brain and Muscles of Patients with Nonspecific Neck Pain Treated by Spinal Manipulation Therapy: A [18F]FDG PET Study

    Directory of Open Access Journals (Sweden)

    Akie Inami

    2017-01-01

    Full Text Available Objective. The aim of this study was to investigate changes in brain and muscle glucose metabolism that are not yet known, using positron emission tomography with [18F]fluorodeoxyglucose ([18F]FDG PET. Methods. Twenty-one male volunteers were recruited for the present study. [18F]FDG PET scanning was performed twice on each subject: once after the spinal manipulation therapy (SMT intervention (treatment condition and once after resting (control condition. We performed the SMT intervention using an adjustment device. Glucose metabolism of the brain and skeletal muscles was measured and compared between the two conditions. In addition, we measured salivary amylase level as an index of autonomic nervous system (ANS activity, as well as muscle tension and subjective pain intensity in each subject. Results. Changes in brain activity after SMT included activation of the dorsal anterior cingulate cortex, cerebellar vermis, and somatosensory association cortex and deactivation of the prefrontal cortex and temporal sites. Glucose uptake in skeletal muscles showed a trend toward decreased metabolism after SMT, although the difference was not significant. Other measurements indicated relaxation of cervical muscle tension, decrease in salivary amylase level (suppression of sympathetic nerve activity, and pain relief after SMT. Conclusion. Brain processing after SMT may lead to physiological relaxation via a decrease in sympathetic nerve activity.

  6. Fluoro-2-deoxy-D-glucose (FDG)-PET in APOEepsilon4 carriers in the Australian population.

    Science.gov (United States)

    Rimajova, Mira; Lenzo, Nat P; Wu, Jing-Shan; Bates, Kristyn A; Campbell, Andrew; Dhaliwal, Satvinder S; McCarthy, Michael; Rodrigues, Mark; Paton, Athena; Rowe, Christopher; Foster, Jonathan K; Martins, Ralph N

    2008-03-01

    Apolipoprotein E-epsilon4 (APOEepsilon4) has been associated with increased risk of developing Alzheimer's disease (AD) and regional cerebral glucose hypometabolism, as measured by fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET). We report here preliminary data from studies that aim to determine whether cerebral glucose hypometabolism is observed in APOEepsilon4 positive, cognitively intact individuals between the ages of 50 and 80, and whether there is an additional impact of subjective memory complainer (SMC) status on glucose metabolism determined by NeuroStat analysis. FDG-PET was conducted in 30 community dwelling, APOE-epsilon4 carriers without clinical evidence of dementia and objective cognitive impairment as assessed using a neuropsychological battery. Neurological soft-signs (NSS) were also assessed. Glucose hypometabolism was demonstrated in the anterior and posterior cingulate cortex and in the temporal association cortices in APOEepsilon4 carriers compared to the normative NeuroStat database. This pattern was particularly evident in APOEepsilon4 heterozygous individuals. SMC showed hypometabolism in the aforementioned brain regions, whereas non-SMC showed no significant pattern of glucose hypometabolism. FDG-PET with NeuroStat analysis showed that APOEepsilon4 carriers have mild glucose hypometabolism in areas associated with AD. SMC may be associated with AD-related differences in regional cerebral glucose metabolism. These findings are currently being investigated in a larger group of APOEepsilon4 carriers.

  7. Comparison between FDG Uptake and Pathologic or Immunohistochemical Parametersin Pre-operative PET/CT Scan of Patient with Primary Colorectal Cancer

    International Nuclear Information System (INIS)

    Na, Sae Jung; Chung, Yong An; Maeng, Lee So; Kim, Ki Jun; Sohn, Kyung Myung; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo

    2009-01-01

    To evaluate the relationship between F-18 FDG uptake of tumor in PET/CT scan and pathological or immunohistochemial parameters of colorectal cancer. 147 colorectal cancer patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included. In cases with perceptible FDG uptake in primary tumor, the maximum standardized uptake value (SUVmax) was calculated. The pathologic results such as site, size, depth of invasion (T stage), growth pattern, differentiation of primary tumor, lymph node metastasis and Dukes-Astler and Coller stage and immunohistochemical markers such as expression of EGFR, MLH1, MSH2 and Ki-67 index were reviewed. 146 out of 147 PET/CT scans with colorectal cancer showed perceptible focal FDG uptake. SUVmax showed mild positive linear correlation with size of primary tumor (r=0.277, p=0.001) and Ki-67 index (r=0.226, p=0.019). No significant difference in F-18 FDG uptake was found according to site, depth of invasion (T stage), growth pattern, differentiation of primary tumor, presence of lymph node metastasis, Dukes-Astler and Coller stage and expression of EGFR. The degree of F-18 FDG uptake in colorectal cancer was associated with the size and the degree of Ki-67 index of primary tumor. It could be thought that FDG uptake of primary tumor has a correlation with macroscopic and microscopic tumor growth

  8. effects of caffeine and ethanolic extract of kolanut on glucose uptake

    African Journals Online (AJOL)

    Daniel Owu

    calculated as the product of (A-V) glucose and blood flow. ... Key words: Caffeine, kolanut, dog, glucose uptake, hindlimb ...... free fatty acids, and amino acids. ... involved in glucose homeostasis. ... independent of obesity and type 2 diabetes.

  9. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian P; Sacchetti, Massimo

    2003-01-01

    adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake......The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three...... the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P

  10. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  11. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    Science.gov (United States)

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  12. Clinical values for abnormal {sup 18}F-FDG uptake in the head and neck region of patients with head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwan Seo [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Jae Seung [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Roh, Jong-Lyel, E-mail: rohjl@amc.seoul.kr [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Seung-Ho; Nam, Soon Yuhl [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Yoon [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-08-15

    Highlights: • Abnormal {sup 18}F-FDG uptakes in the head and neck (HN) region can be carefully interpreted as being index primary, second primary cancer (SP) or benign. • {sup 18}F-FDG PET/CT identified 91.9% primary HN squamous cell carcinomas (HNSCC). • The specificity and negative predictive value of {sup 18}F-FDG PET/CT for identification of SP were as high as 98.7% and 99.3%, respectively. • Proper detection of primary tumors and SP in the HN region may promote appropriate therapeutic planning of HNSCC patients. - Abstract: Purpose: Fluorine 18-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET)/computed tomography (CT) is used to identify index or second primary cancer (SP) of the head and neck (HN) through changes in {sup 18}F-FDG uptake. However, both physiologic and abnormal lesions increase {sup 18}F-FDG uptake. Therefore, we evaluated {sup 18}F-FDG uptake in the HN region to determine clinical values of abnormal tracer uptake. Methods: A prospective study approved by the institutional review board was conducted in 314 patients with newly diagnosed HN squamous cell carcinoma (HNSCC) and informed consent was obtained from all enrolled patients. The patients received initial staging workups including {sup 18}F-FDG PET/CT and biopsies. All lesions with abnormal HN {sup 18}F-FDG uptake were recorded and most of those were confirmed by biopsies. Diagnostic values for abnormal {sup 18}F-FDG uptake were calculated. Results: Abnormal {sup 18}F-FDG uptake was identified in primary tumors from 285 (91.9%) patients. False-negative results were obtained for 22.3% (23/103) T1 tumors and 2.2% (2/93) T2 tumors (P < 0.001). Thirty-eight regions of abnormal {sup 18}F-FDG uptake were identified in 36 (11.5%) patients: the thyroid (n = 13), maxillary sinus (n = 7), palatine tonsil (n = 6), nasopharynx (n = 5), parotid gland (n = 2) and others (n = 5). Synchronous SP of the HN was identified in eight (2.5%) patients: the thyroid (n = 5), palatine

  13. Clinical values for abnormal 18F-FDG uptake in the head and neck region of patients with head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Lee, Hwan Seo; Kim, Jae Seung; Roh, Jong-Lyel; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-01-01

    Highlights: • Abnormal 18 F-FDG uptakes in the head and neck (HN) region can be carefully interpreted as being index primary, second primary cancer (SP) or benign. • 18 F-FDG PET/CT identified 91.9% primary HN squamous cell carcinomas (HNSCC). • The specificity and negative predictive value of 18 F-FDG PET/CT for identification of SP were as high as 98.7% and 99.3%, respectively. • Proper detection of primary tumors and SP in the HN region may promote appropriate therapeutic planning of HNSCC patients. - Abstract: Purpose: Fluorine 18-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT) is used to identify index or second primary cancer (SP) of the head and neck (HN) through changes in 18 F-FDG uptake. However, both physiologic and abnormal lesions increase 18 F-FDG uptake. Therefore, we evaluated 18 F-FDG uptake in the HN region to determine clinical values of abnormal tracer uptake. Methods: A prospective study approved by the institutional review board was conducted in 314 patients with newly diagnosed HN squamous cell carcinoma (HNSCC) and informed consent was obtained from all enrolled patients. The patients received initial staging workups including 18 F-FDG PET/CT and biopsies. All lesions with abnormal HN 18 F-FDG uptake were recorded and most of those were confirmed by biopsies. Diagnostic values for abnormal 18 F-FDG uptake were calculated. Results: Abnormal 18 F-FDG uptake was identified in primary tumors from 285 (91.9%) patients. False-negative results were obtained for 22.3% (23/103) T1 tumors and 2.2% (2/93) T2 tumors (P < 0.001). Thirty-eight regions of abnormal 18 F-FDG uptake were identified in 36 (11.5%) patients: the thyroid (n = 13), maxillary sinus (n = 7), palatine tonsil (n = 6), nasopharynx (n = 5), parotid gland (n = 2) and others (n = 5). Synchronous SP of the HN was identified in eight (2.5%) patients: the thyroid (n = 5), palatine tonsil (n = 2), and epiglottis (n = 1). The sensitivity and

  14. Clinical Significance of Incidental Focal 18F-FDG Uptake in the Spinal Cord of Patients with Cancer.

    Science.gov (United States)

    Lim, Chae Hong; Hyun, Seung Hyup; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae; Choi, Joon Young

    2017-09-01

    We investigated the incidence, location, and clinical significance of focal 18 F-FDG uptake of the spinal cord in patients with cancer. We reviewed the medical records of 22,937 consecutive adult patients with known or suspicious malignancy who underwent 18 F-FDG PET/CT. PET/CT scans with incidental focal spinal cord uptake were selected and retrospectively reviewed to determine the presence, location, number, and maximum standardized uptake value (SUV max ) of any focal hypermetabolic lesions of the spinal cord. In subjects with focal spinal uptake, clinical characteristics and clinical follow-up results, including follow-up PET/CT, were reviewed. Incidental focal spinal cord uptake was observed in 69 of 22,937 adult patients (incidence = 0.3%; M:F = 31:38; age, 55.8 ± 14.7 years). Seventy-eight focal hypermetabolic lesions on spinal cord in the PET/CT scans of the 69 study subjects were analyzed. The most common sites of focal spinal cord uptake were the T12 vertebra (47/78; 60.3%) and L1 vertebra (20/78; 25.6%). Multifocal cord uptake was found in 8 of 69 patients (11.6%). The average SUV max for cord uptake was 2.5 ± 0.5 (range, 1.4∼3.9). There was no clinical or imaging evidence of abnormalities in the spinal cord, both at the time of PET/CT and during clinical follow-up. Although incidental focal 18 F-FDG uptake of the spinal cord is rare in patients with cancer, it may be physiological or benign, but it should not be considered as malignant involvement. Common sites for the uptake were in the T12 and L1 spine levels.

  15. Clinical significance of incidental focal {sup 18}F-FDG uptake in the spinal cord of patients with cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chae Hong; Hyun, Seung Hyup; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young [Dept. of Nuclear Medicine, Samsung Medical CenterSungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-09-15

    We investigated the incidence, location, and clinical significance of focal {sup 18}F-FDG uptake of the spinal cord in patients with cancer. We reviewed the medical records of 22,937 consecutive adult patients with known or suspicious malignancy who underwent {sup 18}F-FDG PET/CT. PET/CT scans with incidental focal spinal cord uptake were selected and retrospectively reviewed to determine the presence, location, number, and maximum standardized uptake value (SUV{sub max}) of any focal hypermetabolic lesions of the spinal cord. In subjects with focal spinal uptake, clinical characteristics and clinical follow-up results, including follow-up PET/CT, were reviewed. Incidental focal spinal cord uptake was observed in 69 of 22,937 adult patients (incidence = 0.3%; M:F = 31:38; age, 55.8 ± 14.7 years). Seventy-eight focal hypermetabolic lesions on spinal cord in the PET/CT scans of the 69 study subjects were analyzed. The most common sites of focal spinal cord uptake were the T12 vertebra (47/78; 60.3%) and L1 vertebra (20/78; 25.6%). Multifocal cord uptake was found in 8 of 69 patients (11.6%). The average SUVmax for cord uptake was 2.5 ± 0.5 (range, 1.4∼3.9). There was no clinical or imaging evidence of abnormalities in the spinal cord, both at the time of PET/CT and during clinical follow-up. Although incidental focal {sup 18}F-FDG uptake of the spinal cord is rare in patients with cancer, it may be physiological or benign, but it should not be considered as malignant involvement. Common sites for the uptake were in the T12 and L1 spine levels.

  16. Clinical significance of incidental focal "1"8F-FDG uptake in the spinal cord of patients with cancer

    International Nuclear Information System (INIS)

    Lim, Chae Hong; Hyun, Seung Hyup; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young

    2017-01-01

    We investigated the incidence, location, and clinical significance of focal "1"8F-FDG uptake of the spinal cord in patients with cancer. We reviewed the medical records of 22,937 consecutive adult patients with known or suspicious malignancy who underwent "1"8F-FDG PET/CT. PET/CT scans with incidental focal spinal cord uptake were selected and retrospectively reviewed to determine the presence, location, number, and maximum standardized uptake value (SUV_m_a_x) of any focal hypermetabolic lesions of the spinal cord. In subjects with focal spinal uptake, clinical characteristics and clinical follow-up results, including follow-up PET/CT, were reviewed. Incidental focal spinal cord uptake was observed in 69 of 22,937 adult patients (incidence = 0.3%; M:F = 31:38; age, 55.8 ± 14.7 years). Seventy-eight focal hypermetabolic lesions on spinal cord in the PET/CT scans of the 69 study subjects were analyzed. The most common sites of focal spinal cord uptake were the T12 vertebra (47/78; 60.3%) and L1 vertebra (20/78; 25.6%). Multifocal cord uptake was found in 8 of 69 patients (11.6%). The average SUVmax for cord uptake was 2.5 ± 0.5 (range, 1.4∼3.9). There was no clinical or imaging evidence of abnormalities in the spinal cord, both at the time of PET/CT and during clinical follow-up. Although incidental focal "1"8F-FDG uptake of the spinal cord is rare in patients with cancer, it may be physiological or benign, but it should not be considered as malignant involvement. Common sites for the uptake were in the T12 and L1 spine levels

  17. Consideration of myocardial FDG uptake in differentiation of mediastinal lymph node of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Won Woo; Chung, Jin Haeng; So, Young; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    The whole body FDG PET suffers from poor diagnostic competency in differentiation of mediastinal lymph node (LN) in non-small cell lung cancer. In addition to LN FDG uptake. We considered myocardial FDG uptake in mediastinal lymph node staging. Thirty-nine non-small cell lung cancer patients (male: female = 32: 7, age = 63±11 years) who underwent preoperative whole body FDG PET were enrolled. There were 18 squamous cell cancer, 13 adenocarcinoma, and 8 others. Maximum standard uptake values (maxSUVs) of myocardium and LNs using lean body weight were measured and compared with pathological results. Among 187 LNs which were confirmed postoperatively, 31 were malignant, and 156 benign. Of 31 malignant LNs, only 11 were visible on FDG PET (sensitivity : 35.5% = 11/31) but majority of 20 nonvisible metastatic LNs had relevant cause of false negative (11 peribroncheal, 3 mucine producing adenocarcinoma, or 6 low amount of tumor cells). Of 156 benign LNs, 137 were nonvisible (specificity : 87.8% 137/156) and 19 visible. Under subgroup analysis of 30 visible LNs on whole body FDG PET (11 malignant, and 19 benign), maxSUV of myocardium (p = 0.020) as well as maxSUV of LN (p = 0.002) were significant predictor of malignant LN in multivariate analysis. Using the ROC curve, a cut-off value of LN maxSUV > 2.4 provided sensitivity of 81.8% and specificity of 63.2% (AUC 0.775, 95% confidence interval = 0.586 to 0.906). Meanwhile, the composite criterion of LN maxSUV plus square root of myocardial maxSUV > 4.65 provided slightly improved diagnostic competencies (sensitivity 90.9%, specificity 84.2%, AUC 0.876, 95% confidence interval 0.704 to 0.966) (p = 0.08). Taking into consideration myocardial FDG uptake may improve the diagnostic competency of whole body FDG PET in differentiation of mediastinal LNs of non-small cell lung cancer

  18. Study on kinetics of glucose uptake by some species of plankton

    Science.gov (United States)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  19. Impact of muscular uptake and statistical noise on tumor quantification based on simulated FDG-PET studies

    International Nuclear Information System (INIS)

    Silva-Rodríguez, Jesús; Domínguez-Prado, Inés; Pardo-Montero, Juan; Ruibal, Álvaro

    2017-01-01

    Purpose: The aim of this work is to study the effect of physiological muscular uptake variations and statistical noise on tumor quantification in FDG-PET studies. Methods: We designed a realistic framework based on simulated FDG-PET acquisitions from an anthropomorphic phantom that included different muscular uptake levels and three spherical lung lesions with diameters of 31, 21 and 9 mm. A distribution of muscular uptake levels was obtained from 136 patients remitted to our center for whole-body FDG-PET. Simulated FDG-PET acquisitions were obtained by using the Simulation System for Emission Tomography package (SimSET) Monte Carlo package. Simulated data was reconstructed by using an iterative Ordered Subset Expectation Maximization (OSEM) algorithm implemented in the Software for Tomographic Image Reconstruction (STIR) library. Tumor quantification was carried out by using estimations of SUV max , SUV 50 and SUV mean from different noise realizations, lung lesions and multiple muscular uptakes. Results: Our analysis provided quantification variability values of 17–22% (SUV max ), 11–19% (SUV 50 ) and 8–10% (SUV mean ) when muscular uptake variations and statistical noise were included. Meanwhile, quantification variability due only to statistical noise was 7–8% (SUV max ), 3–7% (SUV 50 ) and 1–2% (SUV mean ) for large tumors (>20 mm) and 13% (SUV max ), 16% (SUV 50 ) and 8% (SUV mean ) for small tumors (<10 mm), thus showing that the variability in tumor quantification is mainly affected by muscular uptake variations when large enough tumors are considered. In addition, our results showed that quantification variability is strongly dominated by statistical noise when the injected dose decreases below 222 MBq. Conclusions: Our study revealed that muscular uptake variations between patients who are totally relaxed should be considered as an uncertainty source of tumor quantification values. - Highlights: • Distribution of muscular uptake from 136 PET

  20. Contraction-mediated glucose uptake is increased in men with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Skov-Jensen, Camilla; Skovbro, Mette; Flint, Anne

    2007-01-01

    stimulation alone and with superimposed exercise. Patients with type 2 diabetes, subjects with impaired glucose tolerance (IGT), healthy controls, and endurance-trained subjects were studied. The groups were matched for age and lean body mass (LBM), and differed in peak oxygen uptake (VO2 peak), body fat...

  1. An Unusual Case of Metastatic Malignant Melanoma Presenting as Pseudomesothelioma with Intense Diffuse Pleural FDG Uptake Demonstrated on FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Rosamma Bency

    2015-06-01

    Full Text Available A 75-year-old male, non-smoker with history of asbestos exposure, and excision of 2 mm Clark IV cutaneous malignant melanoma 15 months earlier, presented with rapidly progressive dyspnea, left pleuritic chest pain, and weight loss. CT Pulmonary Angiography (CTPA demonstrated bilateral pulmonary emboli and findings suspicious of mesothelioma. There was no evidence of infection or malignancy in the hemorrhagic pleural fluid aspirate. FDG PET-CT revealed extensive intense FDG uptake throughout the pleura of left hemi-thorax, bilateral hilar and mediastinal lymph nodes, bilateral adrenals and left gluteal musculature. Subsequent pleural biopsy was consistent with metastatic melanoma. The patient was referred for palliative therapy but died 10 days later

  2. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  3. Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET)

    NARCIS (Netherlands)

    Khan, N; Leenders, KL; Hajek, M; Maguire, P; Missimer, J; Wieser, HG

    1997-01-01

    Thalamic glucose metabolism has been studied in 24 patients suffering from temporal lobe epilepsy (TLE) using interictal F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET). A total of 17 patients had a unilateral TL seizure onset, 11 of these patients had a mesial temporal lobe

  4. Evaluation of solitary pulmonary nodules by integrated PET/CT: improved accuracy by FDG uptake pattern and CT findings

    International Nuclear Information System (INIS)

    Joon Young Choi; Kyung Soo Lee; O Jung Kwon; Young Mog Shim; Kyung-Han Lee; Yong Choi; Yearn Seong Choe; Byung-Tae Kim

    2004-01-01

    Objective: FDG PET is useful to differentiate malignancy from benign lesions in the evaluation of solitary pulmonary nodules (SPNs). However, FDG PET showed false positive results in benign inflammatory lesions such as tuberculosis and organizing pneumonia. Furthermore, malignant tumors such as adenocarcinoma (AC) with bronchioloalveolar carcinoma (BAC) type had lower FDG uptake than other cell types of non-small cell lung cancer. We investigated whether FDG uptake pattern and image findings of CT for attenuation correction could improve accuracy for evaluating SPNs over SUV in integrated PET/CT imaging using FDG. Methods: Forty patients (M:F = 23:17, mean age 58.2±9.4 yrs) with non-calcified SPNs (diameter on CT 30 mm, no significant mediastinal node enlargement, no atelectasis) were included. All subjects underwent integrated PET/CT imaging using FDG. One nuclear medicine physician and 1 chest radiologist interpreted the PET and non-contrast CT images for attenuation correction, respectively. On PET images, maximum SUV of SPN was acquired, and FDG uptake pattern was categorized as diffusely increased or heterogeneously increased with upper threshold of window setting adjusted to maximum SUV of each nodule. A radiologist interpreted SPNs as benign or malignant based on CT images with lung and mediastinai window settings blinded to PET findings. Results: On pathological exam, 30 SPNs were confirmed to be malignant (11 AC with non-BAC type, 8 AC with BAC type, 8 squamous cell carcinoma, 1 adenosquamous cell carcinoma, 1 neuroendocrine carcinoma, 1 large cell carcinoma), and 10 were benign (4 tuberculosis, 3 organizing pneumonia, 2 sclerosing pneumocytoma, 1 non-specific inflammation). All 5 nodules with max SUV 7.0 except one with tuberculoma had malignancy. When only nodules with diffusely increased uptake were considered malignant in indeterminate group with max SUV of 4.0 to 7.0, PET could diagnose 5 of 9 malignant nodules with one false positive nodule. In 6 of

  5. Tumour and lymph node uptakes on dual-phased 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography correlate with prognostic parameters in breast cancer.

    Science.gov (United States)

    Chang, Chin-Chuan; Tu, Hung-Pin; Chen, Yu-Wen; Lin, Chia-Yang; Hou, Ming-Feng

    2014-12-01

    To examine correlations between the uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) by primary tumours and axillary lymph nodes, and clinical and biological tumour prognostic parameters, in patients with newly diagnosed breast cancer. Newly diagnosed breast cancer patients who had received a dual-phased FDG positron emission tomography/computed tomography scan for pretreatment staging were enrolled retrospectively. Maximal standardized uptake values at 1 h (SUV1), 2 h (SUV2), and retention indices (RI) of the tumours and ipsilateral axillary lymph nodes were measured. SUV and RI were compared with clinical and biological prognostic parameters. A total of 32 patients participated in the study. Tumour FDG uptake correlated with histological grade and tumour size. FDG uptake in axillary lymph nodes correlated positively with lymph node status, metastasis status and clinical stage. RI values for the tumour and lymph nodes were significantly positively correlated with human epidermal growth factor receptor-2 positivity. FDG uptake in tumours and lymph nodes showed correlations with some clinical and biological parameters, and may serve as a predictive marker of tumour biological behaviour in breast cancer. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake.

    Directory of Open Access Journals (Sweden)

    Ramachandran Rashmi

    Full Text Available PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233* were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206 with or without the glucose analogue 2-deoxyglucose (2-DG. Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG. Cell migration was assessed by scratch assay.Activating PIK3CA (E545K, E542K and inactivating PTEN (R233* mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56% and MK-2206 (30 µM-49% treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.

  7. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. S.; Jeong, J.; Kang, S. J.; Na, D. L.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T.; Kim, S. E. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD.

  8. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    International Nuclear Information System (INIS)

    Cho, S. S.; Jeong, J.; Kang, S. J.; Na, D. L.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T.; Kim, S. E.

    2002-01-01

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD

  9. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Swanston, Nancy; Podoloff, Donald A.; Macapinlac, Homer A.

    2005-01-01

    Granulocyte or granulocyte-macrophage colony stimulating factor (CSF), usually used in conjunction with chemotherapy, may interfere with the 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) reading. The purpose of this study is to evaluate the effects of CSF, conventional-or high-dose chemotherapy on bone marrow FDG uptake. Two hundred and forty-one FDG PET scans obtained in 163 patients with lymphoma and no pathologically and radiologically proven bone marrow involvement were analyzed. The standardized uptake value (SUV) of each patient's spine was measured. Among patients with no recent history of CSF use, the average SUV in 36 patients with no history of chemotherapy was 1.60±0.34, that in 49 patients with a history of conventional-dose chemotherapy was 1.37±0.32, and that in 12 patients with a history of high-dose chemotherapy was 1.26±0.25 (P=0.008 and 0.002, respectively by Mann-Whitney U test). In 80 patients treated with conventional-dose chemotherapy and CSF, the average SUV after discontinuation of CSF was as follows: 0-7 days, 2.37±1.19; 8-14 days: 2.04±0.67; 15-21 days: 1.87±0.52; 22-30 days: 1.59±0.18; 31-90 days: 1.54±0.36. In 45 patients treated with high-dose chemotherapy and CSF, no significant increase in bone marrow uptake was seen in most of them. Bone marrow FDG uptake may be increased by CSF treatment and may be decreased by chemotherapy. In patients treated with conventional-dose chemotherapy and CSF, increased marrow uptake will return to the pretreatment value approximately 1 month after discontinuation of CSF. (orig.)

  10. Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice: an 18F-FDG PET study.

    Science.gov (United States)

    Alf, Malte F; Duarte, João M N; Schibli, Roger; Gruetter, Rolf; Krämer, Stefanie D

    2013-12-01

    We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

  11. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  12. Factors affecting intrapatient liver and mediastinal blood pool 18F-FDG standardized uptake value changes during ABVD chemotherapy in Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Chiaravalloti, Agostino; Danieli, Roberta; Abbatiello, Paolo; Di Pietro, Barbara; Travascio, Laura; Cantonetti, Maria; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-01-01

    The aim of our study was to assess the intrapatient variability of 2-deoxy-2-( 18 F)-fluoro-D-glucose ( 18 F-FDG) uptake in the liver and in the mediastinum among patients with Hodgkin's lymphoma (HL) treated with doxorubicin (Adriamycin), bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy (CHT). The study included 68 patients (30 men, 38 women; mean age 32 ± 11 years) with biopsy-proven HL. According to Ann Arbor criteria, 6 were stage I, 34 were stage II, 12 were stage 3 and 16 were stage 4. All of them underwent a baseline (PET0) and an interim (PET2) 18 F-FDG whole-body positron emission tomography (PET)/CT. All patients were treated after PET0 with two ABVD cycles for 2 months that ended 15 ± 5 days prior to the PET2 examination. All patients were further evaluated 15 ± 6 days after four additional ABVD cycles (PET6). None of the patients presented a serum glucose level higher than 107 mg/dl. The mean and maximum standardized uptake values (SUV) of the liver and mediastinum were calculated using the same standard protocol for PET0, PET2 and PET6, respectively. Data were examined by means of the Wilcoxon matched pairs test and linear regression analysis. The main results of our study were an increased liver SUV mean in PET2 (1.76 ± 0.35) as compared with that of PET0 (1.57 ± 0.31; p max in PET2 (3.13 ± 0.67) as compared with that of PET0 (2.82 ± 0.64; p mean and SUV max in PET0, PET2 and PET6 (p > 0.05). Another finding is a relationship in PET0 between liver SUV mean and SUV max with the stage, which was lower in those patients with advanced disease (r 2 = 0.1456 and p = 0.0013 for SUV mean and r 2 = 0.1277 and p = 0.0028 for SUV max ). The results of our study suggest that liver 18 F-FDG uptake is variable in patients with HL during the CHT treatment and the disease course and should be considered carefully when used to define the response to therapy in the interim PET in HL. (orig.)

  13. Factors affecting intrapatient liver and mediastinal blood pool ¹⁸F-FDG standardized uptake value changes during ABVD chemotherapy in Hodgkin's lymphoma.

    Science.gov (United States)

    Chiaravalloti, Agostino; Danieli, Roberta; Abbatiello, Paolo; Di Pietro, Barbara; Travascio, Laura; Cantonetti, Maria; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-06-01

    The aim of our study was to assess the intrapatient variability of 2-deoxy-2-((18)F)-fluoro-D-glucose ((18)F-FDG) uptake in the liver and in the mediastinum among patients with Hodgkin's lymphoma (HL) treated with doxorubicin (Adriamycin), bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy (CHT). The study included 68 patients (30 men, 38 women; mean age 32 ± 11 years) with biopsy-proven HL. According to Ann Arbor criteria, 6 were stage I, 34 were stage II, 12 were stage 3 and 16 were stage 4. All of them underwent a baseline (PET0) and an interim (PET2) (18)F-FDG whole-body positron emission tomography (PET)/CT. All patients were treated after PET0 with two ABVD cycles for 2 months that ended 15 ± 5 days prior to the PET2 examination. All patients were further evaluated 15 ± 6 days after four additional ABVD cycles (PET6). None of the patients presented a serum glucose level higher than 107 mg/dl. The mean and maximum standardized uptake values (SUV) of the liver and mediastinum were calculated using the same standard protocol for PET0, PET2 and PET6, respectively. Data were examined by means of the Wilcoxon matched pairs test and linear regression analysis. The main results of our study were an increased liver SUVmean in PET2 (1.76 ± 0.35) as compared with that of PET0 (1.57 ± 0.31; p  0.05). Another finding is a relationship in PET0 between liver SUVmean and SUVmax with the stage, which was lower in those patients with advanced disease (r (2) = 0.1456 and p = 0.0013 for SUVmean and r (2) = 0.1277 and p = 0.0028 for SUVmax). The results of our study suggest that liver (18)F-FDG uptake is variable in patients with HL during the CHT treatment and the disease course and should be considered carefully when used to define the response to therapy in the interim PET in HL.

  14. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  15. effect of adrenaline on glucose uptake by the canine large bowel

    African Journals Online (AJOL)

    lower metabolic activity in the colon. From the results we concluded that the colon is involved in glucose homeostasis and that the colonic increase in glucose uptake in response to adrenaline is mediated by alpha and beta adrenergic receptors. KEYWORDS: :Adrenaline, glucose uptake, colon, dog, adrenergic receptors.

  16. Is cerebral glucose metabolism related to blood-brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?: A 18F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Fiorentini, Alessandro; Ursini, Francesco; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Toniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio

    2016-09-01

    The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects.

  17. Altered biodistribution of FDG in patients with type-2 diabetes mellitus

    International Nuclear Information System (INIS)

    Ozguven, M.A.; Karacalioglu, A.O.; Ince, S.; Emer, M.O.

    2014-01-01

    Positron emission tomography-computed tomography (PET-CT) imaging of patients with diabetes can be problematic because elevated glucose levels may cause competitive inhibition of [F-18]-2-deoxy-2-fluoro-D-glucose (FDG) uptake in different tissues. Therefore, the aim of the study was to evaluate the biodistribution of FDG in patients with type-2 diabetes mellitus. Two hundred forty patients were retrospectively enrolled to the study. Study population was divided into three subgroups, named as the normal (group 1), the insulin (group 2) and the oral anti-diabetic (group 3). Unenhanced low-dose CT and PET emission data were acquired from the mid-thigh to the vertex of the skull. FDG uptakes in different organs were evaluated qualitatively or semi-quantitatively. In the diabetic groups, diffuse FDG uptake of the colon was increased (p > 0.001) but segmental FDG uptake was decreased (p > 0.001). Intestinal FDG uptake was detected in 20% of the study population and only 3% of these uptakes were in diffuse pattern. Segmental FDG uptake in the bowel was increased significantly in the groups of patients with diabetes (p = 0.002). Maximum standardized uptake values of the liver in the groups 1, 2, and 3 were 2.66 ± 0.6, 3.25 ± 0.9 and 3.16 ± 0.8, respectively, and the difference between the groups was not statistically significant (p = 0.083). Cardiac FDG uptake was decreased significantly in the groups of patients with diabetes (p < 0.001). According to our results, whole body bio-distribution of FDG uptake seems to be changed in patients with type-2 diabetes who were using insulin or oral anti-diabetic drugs. Although the use of oral antidiabetic drugs was known to change the biodistribution of FDG, insulin use also seems to change FDG uptake in different organs of diabetic patients. (author)

  18. Late pancreatic metastasis of renal cell carcinoma with absence of FDG-uptake in PET-CT

    Directory of Open Access Journals (Sweden)

    Elif Karadeli

    2016-03-01

    Full Text Available The primary tumors, which raise isolated pancreas metastases are frequently of renal origin, where colorectal cancer, melanoma, breast and lung cancers and sarcoma are the following causes of metastatic pancreas cancer . In this article, we present a case of pancreas-metastatic renal cell carcinoma with its radiological features, which did not exert anF-18 FDG-uptake in the whole-body positron emission tomography (PET. [Cukurova Med J 2016; 41(0.100: 92-94

  19. FDG-PET/CT in Skeletal Muscle: Pitfalls and Pathologies.

    Science.gov (United States)

    Parida, Girish Kumar; Roy, Shambo Guha; Kumar, Rakesh

    2017-07-01

    FDG-PET/CT is an integral part of modern-day practice of medicine. By detecting increased cellular metabolism, FDG-PET/CT can help us detect infection, inflammatory disorders, or tumors, and also help us in prognostication of patients. However, one of the most important challenges is to correctly differentiate the abnormal uptake that is potentially pathologic from the physiological uptake. So while interpreting a PET/CT, one must be aware of normal biodistribution and different physiological variants of FDG uptake. Skeletal muscles constitute a large part of our body mass and one of the major users of glucose. Naturally, they are often the site of increased FDG uptake in a PET study. We as a nuclear medicine physician must be aware of all the pitfalls of increased skeletal muscle uptake to differentiate between physiological and pathologic causes. In this review, we have discussed the different causes and patterns of physiological FDG uptake in skeletal muscles. This knowledge of normal physiological variants of FDG uptake in the skeletal muscles is essential for differentiating pathologic uptake from the physiological ones. Also, we reviewed the role of FDG-PET/CT in various benign and malignant diseases involving skeletal muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bilateral renal metastasis of 261-265huerthle cell thyroid cancer with discordant uptake between I-131 sodium iodide and F-18 FDG

    Energy Technology Data Exchange (ETDEWEB)

    Claimon, Apichaya; Suh, Min Seok; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June Key [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, E. Edmund [Dept. of Radiological Sciences, University of California, Irvine (United States)

    2017-09-15

    Renal metastasis of thyroid cancer is extremely rare. We report the case of a 62-year-old woman with Hürthle cell thyroid cancer (HCTC) with lungs, bones, and bilateral kidneys metastases. The renal metastatic lesions were clearly demonstrated by {sup 131}I whole body scan (WBS) with SPECT/CT. However, they exhibited false-negative results in {sup 18}F-FDG PET/CT, kidney ultrasonography, and contrast-enhanced CT scan. The findings imply that tumors have low glucose metabolism and are able to accumulate radioiodine, which is not commonly found in the relatively aggressive nature of HCTC. The patient received two sessions of 200 mCi {sup 131}I therapy within 6 months duration. There was complete treatment response as evaluated by the second post-therapeutic {sup 131}I SPECT/CT and serum thyroglobulin. To our knowledge, renal metastasis from HCTC with positive {sup 131}I but negative {sup 18}F-FDG uptake has not been reported in the literature. This case suggests that {sup 131}I SPECT/CT is useful for lesion localization and prediction of {sup 131}I therapy response.

  1. Normal uptake of F-18 FDG in the testis as assessed by PET/CT in a pediatric study population

    International Nuclear Information System (INIS)

    Goethals, I.; Vriendt, C.D.; Hoste, P.; Smeets, P.; Ham, H.

    2009-01-01

    The objective of this study was to investigate the correlation between the F-18 fluorodeoxyglucose (FDG) uptake in the normal testis as assessed by positron emission tomography (PET)-CT and patient age in a pediatric study population. The study population consisted of 22 subjects aged between 9 and 17 years. For these subjects 42 PET-CT scans were available for analysis. The testis was identified on the CT images. Mean standard uptake values and testicular volume were calculated based on manually drawn regions-of-interest over the organ. The correlation between mean standardized uptake value (SUV) and age as well as between testicular volume and age was calculated using Pearson's correlation coefficient. A strong and statistically significant positive correlation between F-18 FDG uptake in the testis and age was documented. The correlation coefficient was 0.406 in the analysis based on 42 PET-CT studies (p=0.005). The correlation between tracer uptake and age was reassessed based on 22 PET-CT studies including the last recorded PET-CT scan per patient. The correlation coefficient was 0.409 (p=0.05). In addition, based on 22 PET-CT scans, a strong and statistically significant positive correlation between testicular volume and age was documented (r=0.67, p<0.001). Whereas it was previously shown that in adult men there was a weak but statistically significant negative correlation between F-18 FDG uptake in the normal testis and age, we found a strong and statistically significant positive correlation in children and teenage boys. (author)

  2. Development of {sup 18}F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto [Nihon Medi-Physics Co., Ltd., Sodegaura, Chiba (Japan). Research Center

    1999-07-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of {sup 18}F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9{+-}3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the {sup 18}F-FDG injection is expected to be useful for further clinical application. (author)

  3. Prognostic significance of standardized uptake value on preoperative 18F-FDG PET/CT in patients with ampullary adenocarcinoma

    International Nuclear Information System (INIS)

    Choi, Hye Jin; Kang, Chang Moo; Lee, Woo Jung; Jo, Kwanhyeong; Lee, Jong Doo; Lee, Jae-Hoon; Ryu, Young Hoon

    2015-01-01

    The purpose of this study was to investigate the prognostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with ampullary adenocarcinoma (AAC) after curative surgical resection. Fifty-two patients with AAC who had undergone 18 F-FDG PET/CT and subsequent curative resections were retrospectively enrolled. The maximum standardized uptake value (SUV max ) and tumor to background ratio (TBR) were measured on 18 F-FDG PET/CT in all patients. The prognostic significances of PET/CT parameters and clinicopathologic factors for recurrence-free survival (RFS) and overall survival (OS) were evaluated by univariate and multivariate analyses. Of the 52 patients, 19 (36.5 %) experienced tumor recurrence during the follow-up period and 18 (35.8 %) died. The 3-year RFS and OS were 62.3 and 61.5 %, respectively. Preoperative CA19-9 level, tumor differentiation, presence of lymph node metastasis, SUV max , and TBR were significant prognostic factors for both RFS and OS (p < 0.05) on univariate analyses, and patient age showed significance only for predicting RFS (p < 0.05). On multivariate analyses, SUV max and TBR were independent prognostic factors for RFS, and tumor differentiation, SUV max , and TBR were independent prognostic factors for OS. SUV max and TBR on preoperative 18 F-FDG PET/CT are independent prognostic factors for predicting RFS and OS in patients with AAC; patients with high SUV max (>4.80) or TBR (>1.75) had poor survival outcomes. The role of and indications for adjuvant therapy after curative resection of AAC are still unclear. 18 F-FDG uptake in the primary tumor could provide additive prognostic information for the decision-making process regarding adjuvant therapy. (orig.)

  4. Rac1- a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2014-01-01

    -stimulated glucose uptake in skeletal muscle, since muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake in skeletal muscle. The molecular mechanisms by which Rac1 regulate glucose uptake is presently unknown. However, recent studies link Rac1......Muscle contraction stimulates muscle glucose uptake by facilitating translocation of the glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibers. However, the intracellular mechanisms regulating this process are not well...... understood. The GTPase, Rac1 has, until recently, only been investigated with regards to its involvement in insulin-stimulated glucose uptake. However, we recently found that Rac1 is activated during muscle contraction and exercise in mice and humans. Remarkably, Rac1 seems to be necessary for exercise/contraction...

  5. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise

    Directory of Open Access Journals (Sweden)

    Rodrigo Martins Pereira

    2017-05-01

    Full Text Available Abstract Glucose uptake is an important phenomenon for cell homeostasis and for organism health. Under resting conditions, skeletal muscle is dependent on insulin to promote glucose uptake.Insulin, after binding to its membrane receptor, triggers a cascade of intracellular reactions culminating in activation of the glucose transporter 4, GLUT4, among other outcomes.This transporter migrates to the plasma membrane and assists in glucose internalization.However, under special conditions such as physical exercise, alterations in the levels of intracellular molecules such as ATP and calcium actto regulate GLUT4 translocation and glucose uptake in skeletal muscle, regardless of insulinlevels.Regular physical exercise, due to stimulating pathways related to glucose uptake, is an important non-pharmacological intervention for improving glycemic control in obese and diabetic patients. In this mini-review the main mechanisms involved in glucose uptake in skeletal muscle in response to muscle contraction will be investigated.

  6. Hepatic FDG Uptake is not associated with hepatic steatosis but with visceral fat volume in cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Kyoung June; Kim, Seong Jang; Kim, In Joo; Kin, Keun Young; Kim, Hee Young; Kim, So Jung [Pusan National Univ. Hospital, Busan (Korea, Republic of)

    2012-09-15

    We aimed to evaluate the relation between visceral fat volume and fluorodeoxyglucose (FDG)uptake of the liver measured by maximum or mean standardized uptake value. We retrospectively analyzed 96 consecutive records of positron emission tomography/computed tomography (PET/CT)performed for cancer screening between May 2011 and December 2011. Subjects were divided into 2 groups according to Hounsfield unit (HU)of the liver comparing with that of the spleen. The control group (20 women, 56 men)demonstrating HU of the liver equal or greater than that of the spleen included 76 patients, while the fatty liver group (2 Women, 18 men)showing HU of the liver less than that of the spleen included 20 patients. We compared FDG uptake of the liver and visceral fat volume between two groups. We evaluated correlation of hepatic FDG uptake measured by maximum or mean standardized uptake value (SUV)with visceral fat volume and attenuation. The fatty liver disease group showed higher aspartate aminotransferase (AST)of (24.42{+-}7.22, p=0.012), alanine aminotransferase (ALT)of (25.16{+-}11.68, p=0.011), body mass index (BMI)of (24.58{+-}3.29, p=0.021), and visceral fat volume (3063.53{+-}1561.42, p=0.011)than the control group. There were no statistically significant differences of mean standardized uptake value of the liver (liver SUV{sup mean})(2.73{+-}0.19, p=0.723), maximum standardized uptake value of the liver (liver SUV{sup max})(3.39{+-}0.53, p=0.8248)and liver SUV{sup mean}/spleen SUV{sup mean}(1.13{+-}0.10, p=0.081)between the two groups. Strong correlations were shown between liver SUV{sup mean} and BMI (r=0.609, p<0.001)and between liver SUV{sup mean} and visceral fat volume (r=0.457, p<0.001). Liver SUV{sup max} was also strongly correlated with BMI (r=0.622, p=0.001)and visceral fat volume (r=0.547, p<0.001). There was no significant association of mean attenuation value of the liver (liver HU{sup mean})with liver SUV{sup mean} (r=0.003, p=0.979)or liver SUV{sup max} (r

  7. Hepatic FDG Uptake is not associated with hepatic steatosis but with visceral fat volume in cancer screening

    International Nuclear Information System (INIS)

    Pak, Kyoung June; Kim, Seong Jang; Kim, In Joo; Kin, Keun Young; Kim, Hee Young; Kim, So Jung

    2012-01-01

    We aimed to evaluate the relation between visceral fat volume and fluorodeoxyglucose (FDG)uptake of the liver measured by maximum or mean standardized uptake value. We retrospectively analyzed 96 consecutive records of positron emission tomography/computed tomography (PET/CT)performed for cancer screening between May 2011 and December 2011. Subjects were divided into 2 groups according to Hounsfield unit (HU)of the liver comparing with that of the spleen. The control group (20 women, 56 men)demonstrating HU of the liver equal or greater than that of the spleen included 76 patients, while the fatty liver group (2 Women, 18 men)showing HU of the liver less than that of the spleen included 20 patients. We compared FDG uptake of the liver and visceral fat volume between two groups. We evaluated correlation of hepatic FDG uptake measured by maximum or mean standardized uptake value (SUV)with visceral fat volume and attenuation. The fatty liver disease group showed higher aspartate aminotransferase (AST)of (24.42±7.22, p=0.012), alanine aminotransferase (ALT)of (25.16±11.68, p=0.011), body mass index (BMI)of (24.58±3.29, p=0.021), and visceral fat volume (3063.53±1561.42, p=0.011)than the control group. There were no statistically significant differences of mean standardized uptake value of the liver (liver SUV mean )(2.73±0.19, p=0.723), maximum standardized uptake value of the liver (liver SUV max )(3.39±0.53, p=0.8248)and liver SUV mean /spleen SUV mean (1.13±0.10, p=0.081)between the two groups. Strong correlations were shown between liver SUV mean and BMI (r=0.609, p mean and visceral fat volume (r=0.457, p max was also strongly correlated with BMI (r=0.622, p=0.001)and visceral fat volume (r=0.547, p mean )with liver SUV mean (r=0.003, p=0.979)or liver SUV max (r=-0.120, p=0.244). Hepatic FDG uptake quantified as SUV mean of SUV max is not correlated with hepatic steatosis but with visceral fat volume in cancer screening

  8. False positive {sup 18}F-FDG PET in an ischial chondroblastoma; an analysis of glucose transporter 1 and hexokinase II expression

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Kenichiro [Osaka University Graduate School of Medicine, Department of Nuclear Medicine and Tracer Kinetics, Osaka (Japan); Osaka University Graduate School of Medicine, Department of Orthopaedics, Osaka (Japan); Ueda, Takafumi; Tamai, Noriyuki; Myoui, Akira; Yoshikawa, Hideki [Osaka University Graduate School of Medicine, Department of Orthopaedics, Osaka (Japan); Tomita, Yasuhiko; Aozasa, Katsuyuki [Osaka University Graduate School of Medicine, Pathology, Osaka (Japan); Higuchi, Ichiro; Hatazawa, Jun [Osaka University Graduate School of Medicine, Department of Nuclear Medicine and Tracer Kinetics, Osaka (Japan); Inoue, Atsuo [Osaka University Graduate School of Medicine, Radiology, Osaka (Japan)

    2006-05-15

    We report a rare case of chondroblastoma arising from the ischium which showed an increased {sup 18}F-FDG uptake. Chondroblastoma is an uncommon lesion and usually involves the epiphysis of long bones. However, in this case, the tumor appeared as a well-defined osteolytic lesion in the ischium on radiographs. MR imaging demonstrated two components in the tumor: a solid one and a multilobular cystic component. {sup 18}F-FDG PET imaging revealed an increased uptake in the ischium. The {sup 18}F-FDG uptake resembled the results observed in malignant bone tumors. A histological diagnosis of chondroblastoma was obtained from tissue of an open biopsy. An immunohistochemical analysis demonstrated weak expression of both Glut-1 and HK-II. These findings suggest that Glut-1 and HK-II expression are not strongly related to FDG uptake in chondroblastoma. (orig.)

  9. Influence of ceftriaxone treatment on fdg uptake - an in vivo [18f]-fluorodeoxyglucose imaging study in soft tissue infections in rats

    International Nuclear Information System (INIS)

    Wyss, Matthias T.; Honer, Michael; Spaeth, Nicolas; Gottschalk, Jochen; Ametamey, Simon M.; Weber, Bruno; Schulthess, Gustav K. von; Buck, Alfred; Kaim, Achim H.

    2004-01-01

    Our aim was to determine the influence of antibiotic treatment using ceftriaxone on [ 18 F]-fluorodeoxyglucose (FDG) uptake in experimental soft tissue infections. PET scans were performed in two groups (treated n=4; non-treated n=4) at days 3, 5, and 6 after inoculation of the infection. Additional autoradiography was performed in four animals at day 7 and in three animals at day 11. The difference of FDG uptake on day 5 (after three days of antibiotic treatment) between both groups proved to be significant (df=6; T=2.52; p=0.045). FDG uptake determined at the other days did not reveal significant difference between the two groups. It seems to be possible that the effect of antibiotic treatment on FDG uptake is less evident than reported for therapy monitoring of cancer treatment. The change of FDG uptake over time in treated and untreated infections is complex and further in vivo experiments have to be initiated to investigate the potential value of clinical FDG PET in therapy monitoring of infection

  10. Usefulness of 18F-FDG uptake with clinicopathologic and immunohistochemical prognostic factors in breast cancer

    International Nuclear Information System (INIS)

    Kim, Bom Sahn; Sung, Sun Hee

    2012-01-01

    The aim of this study was to analyze the clinical significance of max standardized uptake value (maxSUV) with clinicopathologic and immunohistochemical prognostic factors in patients with primary breast cancer. Ninety-one women (48.5±11.2 years of age) with breast cancer who underwent 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) (PET) before surgery were recruited. All of the breast cancers were invasive ductal carcinomas and ≥1 cm in size to exclude a partial volume effect. The maxSUV of breast cancers was compared with histopathologic and immunohistochemical findings. Additionally, the ability of PET to discriminate axillary nodal status (ANS) and correlation between ANS and tumor characteristics were evaluated. A high maxSUV of breast cancer was significantly correlated with the following poor prognosis factors: tumor invasiveness >2 cm (2.9 vs. 5.4; p 2 cm (p=0.046), LVIs (all of variables; p 2 cm, higher tumor grade, higher MIB-1, hormonal receptor negativity, and triple negativity. However, PET has a limited value in discriminating axillary lymph nodes. Pre-operative PET is a useful modality to predict biologic poor prognosis factors which could affect adjunctive therapy of breast cancer. (author)

  11. Factors Affecting 18F-Fluorodeoxyglucose (FDG) Uptake in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sun Hye; Lee, Eun Hye; Park, Jung Mi; Lee, Hae Kyung; Yi, Boem Ha [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Choi, Na Mi [Konkuk University Medical Center, Seoul (Korea, Republic of)

    2010-06-15

    To evaluate factors affecting 18F-Fluorodeoxyglucose (FDG) uptake in breast cancer. For 3 years from 2006, 180 patients (mean age 48-years-old) with 187 breast cancers underwent positron emission tomography-computed tomography (PET/CT; biograph2, Siemens) at our institute and were enrolled in this study. We evaluated whether there was a correlation between the peak standardized uptake value (pSUV) of PET/CT and the histologic type of the breast cancers (n=187), grade of the invasive ductal cancers (n=142), and tumor size (n=153). The different histologic types of breast cancers include IDCs (n=156), in situ ductal carcinoma (n=10), papillary cancer (n=6), mucinous cancer (n=6), invasive lobular cancer (n=4), medullary cancer (n=3), metaplastic cancer (n=1), and neuroendocrine cancer (n=1). pSUV showed significant differences according to histologic type (p<0.005). For the available cases (n=142), IDCs were classified as grade 1 (n=25), grade 2 (n=66), and grade 3 (n=51) and correlated with the histologic grade of IDCs (rho=0.41, p<0.001). pSUV was correlated with tumor size regardless of histologic type (rho=0.525, p<0.001). In low grade IDCs, pSUV was correlated with tumor size (rho=0.48-0.86, p<0.001), but not in high grade IDCs (p>0.001). Regardless of histologic type, the larger the breast cancer, the higher the pSUV; in addition, the higher the grade of IDCs, the higher the pSUV. For the low grade IDCs, pSUV is correlated with tumor size; however, this is not the case in high grade IDCs

  12. Predicting pathologic tumor response to chemoradiotherapy with histogram distances characterizing longitudinal changes in 18F-FDG uptake patterns

    Science.gov (United States)

    Tan, Shan; Zhang, Hao; Zhang, Yongxue; Chen, Wengen; D’Souza, Warren D.; Lu, Wei

    2013-01-01

    Purpose: A family of fluorine-18 (18F)-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) features based on histogram distances is proposed for predicting pathologic tumor response to neoadjuvant chemoradiotherapy (CRT). These features describe the longitudinal change of FDG uptake distribution within a tumor. Methods: Twenty patients with esophageal cancer treated with CRT plus surgery were included in this study. All patients underwent PET/CT scans before (pre-) and after (post-) CRT. The two scans were first rigidly registered, and the original tumor sites were then manually delineated on the pre-PET/CT by an experienced nuclear medicine physician. Two histograms representing the FDG uptake distribution were extracted from the pre- and the registered post-PET images, respectively, both within the delineated tumor. Distances between the two histograms quantify longitudinal changes in FDG uptake distribution resulting from CRT, and thus are potential predictors of tumor response. A total of 19 histogram distances were examined and compared to both traditional PET response measures and Haralick texture features. Receiver operating characteristic analyses and Mann-Whitney U test were performed to assess their predictive ability. Results: Among all tested histogram distances, seven bin-to-bin and seven crossbin distances outperformed traditional PET response measures using maximum standardized uptake value (AUC = 0.70) or total lesion glycolysis (AUC = 0.80). The seven bin-to-bin distances were: L2 distance (AUC = 0.84), χ2 distance (AUC = 0.83), intersection distance (AUC = 0.82), cosine distance (AUC = 0.83), squared Euclidean distance (AUC = 0.83), L1 distance (AUC = 0.82), and Jeffrey distance (AUC = 0.82). The seven crossbin distances were: quadratic-chi distance (AUC = 0.89), earth mover distance (AUC = 0.86), fast earth mover distance (AUC = 0.86), diffusion distance (AUC = 0.88), Kolmogorov-Smirnov distance (AUC = 0.88), quadratic form distance

  13. Seasonal variation in the effect of constant ambient temperature of 24 C in reducing FDG uptake by brown adipose tissue in children

    International Nuclear Information System (INIS)

    Zukotynski, Katherine A.; Fahey, Frederic H.; Laffin, Stephen; Davis, Royal; Treves, S. Ted; Grant, Frederick D.; Drubach, Laura A.

    2010-01-01

    It has been shown that warming patients prior to and during 18 F-FDG uptake by controlling the room temperature can decrease uptake by brown adipose tissue (BAT). The aim of this study is to determine if this effect is subject to seasonal variation. A retrospective review was conducted of all patients referred for whole-body 18 F-FDG PET between December 2006 and December 2008. After December 2007, all patients were kept in the PET injection room at a constant 24 C for 30 min before and until 1 h following FDG administration. Patients over 22 years of age and those who received pre-medication known to reduce FDG uptake by BAT were excluded. One hundred and three patients were warmed to 24 C prior to scanning. The number of patients showing uptake by BAT in this group was compared to a control group of 99 patients who underwent PET prior to December 2007 when the injection room temperature was 21 C. Uptake by BAT occurred in 9% of studies performed after patient warming (24 C), compared to 27% of studies performed on the control group (21 C) (p 0.05). Maintaining room temperature at a constant 24 C for 30 min prior to and 1 h after IV tracer administration significantly decreases FDG uptake by BAT in children. This effect is greatest in the summer and winter. (orig.)

  14. PET/CT imaging in polymyalgia rheumatica: praepubic 18F-FDG uptake correlates with pectineus and adductor longus muscles enthesitis and with tenosynovitis

    Directory of Open Access Journals (Sweden)

    Rehak Zdenek

    2017-01-01

    Full Text Available The role of 18F-fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT is increasing in the diagnosis of polymyalgia rheumatica (PMR, one of the most common inflammatory rheumatic diseases. In addition to other locations, increased 18F-FDG accumulation has been detected in the praepubic region in some patients. However, a deeper description and pathophysiological explanation of this increased praepubic accumulation has been lacking. The aim of the presented study is to confirm a decrease in praepubic 18F-FDG accumulation in response to therapy and to describe potential correlations to other 18F-FDG PET/CT scan characteristics during the course of disease. As a secondary objective, we describe the pathological aspects of the observed praepubic 18F-FDG uptake.

  15. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Nobuyuki; Kim, Joonyoung; Jones, Lynne A.; Mercer, Nicole M.; Engelbach, John A.; Sharp, Terry L.; Welch, Michael J. E-mail: welchm@mir.wustl.edu

    2002-11-01

    PET has been used to monitor changes in tumor metabolism in breast cancer following hormonal therapy. This study was undertaken to determine whether PET imaging could evaluate early metabolic changes in prostate tumor following androgen ablation therapy. Studies were performed comparing two positron-emitting tracers, {sup 18}F-FDG and {sup 11}C-acetate, in Sprague-Dawley male rats to monitor metabolic changes in normal prostate tissue. Additional studies were performed in nude mice bearing the CWR22 androgen-dependent human prostate tumor to evaluate metabolic changes in prostate tumor. In rats, for the androgen ablation pretreatment, 1 mg diethylstilbestrol (DES) was injected subcutaneously 3 and 24 hours before tracer injection. For androgen pretreatment, 500 {mu}g dihydrotestosterone (DHT) was injected intraperitoneally 2 and 6 hours before tracer injection. The rats were divided into three groups, Group A (no-DES, no-DHT, n = 18), Group B (DES, no-DHT, n = 18) and Group C (DES, DHT, n = 18). In each group, 10 animals received {sup 18}F-FDG, whereas the remaining eight animals were administered {sup 11}C-acetate. Rats were sacrificed at 120 min post-injection of {sup 18}F-FDG or 30 min post-injection of {sup 11}C-acetate. Pretreatment of the mouse model using DHT (200 {mu}g of DHT in 0.1 mL of sunflower seed oil) or DES (200 {mu}g of DES in 0.1 mL of sunflower seed oil) was conducted every 2 days for one week. Mice were imaged with both tracers in the microPET scanner (Concorde Microsystems Inc.). DES treatment caused a decrease in acetate and glucose metabolism in the rat prostate. Co-treatment with DHT maintained the glucose metabolism levels at baseline values. In the tumor bearing mice, similar effects were seen in {sup 18}F-FDG study, while there was no significant difference in {sup 11}C-acetate uptake. These results indicate that changes in serum testosterone levels influence {sup 18}F-FDG uptake in the prostate gland, which is closely tied to glucose

  16. Clinical significance of incidental focal bowel uptake on 18F-FDG PET/CT as related to colorectal cancer

    DEFF Research Database (Denmark)

    Soltau, Sofus Rønne; Hess, Søren; Nguyen, Tram

    2016-01-01

    OBJECTIVE: Increased focal colorectal uptake of fluorine-18-fluorodeoxyglucose ((18)F-FDG) is reported to occur in 1%-3% of patients undergoing (18)F-FDG positron emission tomography/computed tomography (PET/CT) for disease outside the bowel. However, there is no consensus on how to deal with thi......OBJECTIVE: Increased focal colorectal uptake of fluorine-18-fluorodeoxyglucose ((18)F-FDG) is reported to occur in 1%-3% of patients undergoing (18)F-FDG positron emission tomography/computed tomography (PET/CT) for disease outside the bowel. However, there is no consensus on how to deal...... with this finding in the clinic. Due to the non-specific appearance of such lesions and a certain rate of false positive findings, patients may by subjected to unnecessary invasive procedures or, conversely, cancers may be overlooked if the risk of malignancy is downplayed. The purpose of this study was to examine...

  17. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Science.gov (United States)

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  18. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  19. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS: PA increased glucose uptake by approximately 35...

  20. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise-induc...

  1. Rac1--a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2014-12-01

    Muscle contraction stimulates muscle glucose uptake by facilitating translocation of glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibres. The intracellular mechanisms regulating this process are not well understood. The GTPase Rac1 has, until recently, been investigated only with regard to its involvement in insulin-stimulated glucose uptake. However, we recently found that Rac1 is activated during muscle contraction and exercise in mice and humans. Remarkably, Rac1 seems to be necessary for exercise and contraction-stimulated glucose uptake in skeletal muscle, because muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake. The molecular mechanism by which Rac1 regulates glucose uptake is presently unknown. However, recent studies link Rac1 to the actin cytoskeleton, the small GTPase RalA and/or free radical production, which have previously been shown to be regulators of glucose uptake in muscle. We propose a model in which Rac1 is activated by contraction- and exercise-induced mechanical stress signals and that Rac1 in conjunction with other signalling regulates glucose uptake during muscle contraction and exercise. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  2. Is enteral administration of fluorine-18-fluorodeoxyglucose (F-18 FDG) a palatable alternative to IV injection? Pre-clinical evaluation in normal rodents

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, T. E-mail: higashi@kuhp.kyoto-u.ac.jp; Fisher, S.J.; Nakada, K.; Romain, D.J.; Wahl, R.L

    2002-04-01

    To establish effective methods of enteral 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) administration, the efficiency of FDG absorption in the gastrointestinal tracts following enteral administrations was evaluated using the FDG biodistribution in normal rodents, in combination with various fasting conditions and FDG diluents. The blood FDG curve using hypotonic solution showed a rapid increase, while that in iso- and hypertonic groups showed slow rises. Brain FDG uptake had a close positive correlation with blood AUC (area under curve) and an inverse relationship with the stomach contents.

  3. Is enteral administration of fluorine-18-fluorodeoxyglucose (F-18 FDG) a palatable alternative to IV injection? Pre-clinical evaluation in normal rodents

    International Nuclear Information System (INIS)

    Higashi, T.; Fisher, S.J.; Nakada, K.; Romain, D.J.; Wahl, R.L.

    2002-01-01

    To establish effective methods of enteral 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) administration, the efficiency of FDG absorption in the gastrointestinal tracts following enteral administrations was evaluated using the FDG biodistribution in normal rodents, in combination with various fasting conditions and FDG diluents. The blood FDG curve using hypotonic solution showed a rapid increase, while that in iso- and hypertonic groups showed slow rises. Brain FDG uptake had a close positive correlation with blood AUC (area under curve) and an inverse relationship with the stomach contents

  4. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C-glucose

  5. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    International Nuclear Information System (INIS)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel; Haioun, Corinne; Dupuis, Jehan; Gaulard, Philippe

    2009-01-01

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  6. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  7. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.

    Science.gov (United States)

    Merry, Troy L; Lynch, Gordon S; McConell, Glenn K

    2010-12-01

    There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P contraction by ∼50% (P contraction; however, DTT attenuated (P contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.

  8. Age and sex differences in cerebral glucose consumption measured by pet using [18-F] fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    Duara, R.; Barker, W.; Chang, J.; Apicella, A.; Finn, R.; Gilson, A.

    1985-01-01

    Resting cerebral glucose metabolic rates (CMRglc) were measured in 23 subjects by PET using FDG. Subjects were divided into several groups (mean age +- S.D.) 5 young males (YM) (27 +- 6); 6 young females (YF)(33 +9); 5 elderly males (EM)(73 +- 5); 7 elderly females (EF)(69 +- 7). Additionally, from these groups 4 YM, 3YF, 5EM and 4EF were studied again within 6 weeks under identical conditions. CMRglc in the YF group again was significantly hider than YM (p 0.05). No obvious relationships of CMRglc to the phase of the menstrual cycle was found in this small group. There was a trend (p=0.06) toward a higher CMRglc in YF than EF. These results support the findings of higher CBF in YF versus YM. The differences between the results of Kuhl et al (J. Cereb. and a reduction of CMRglc with age was found in a mixed group of males and females (58and female), and where no age effect was found the males, are also resolved by these findings. The authors suggest that the apparent age effect, in females in this study, is principally a hormonal one

  9. ''Ecstasy''-induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. A 18-FDG PET study

    International Nuclear Information System (INIS)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Zimny, M.; Zeggel, T.; Wagenknecht, G.; Kaiser, H.J.; Buell, U.; Gouzoulis-Mayfrank, E.; Sass, H.

    1999-01-01

    The aim of this study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a radomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose ( 18 FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n=7) or placebo (n=8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using T1-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMR-Glu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P<0.05) and right prefrontal superior (-4.6%, P<0.05). On the other hand, rMR-Glu was significantly increased in the bilateral cerebellum (right: +10.1%, P<0.05; left: +7.6%, P<0.05) and in the right putamen (+6.2%, P<0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r=0.87; P<0.05), both the right amygadala (r=0.90, P<0.01) and the left posterior cingulate (r=0.90, P<0.01) to difficulties in abstract thinking, and the right frontal inferior (r=0.85, P<0.05), right anterior cingulate (r=0.93, P<0.01), and left anterior cingulate (r=0.85, P<0.05) to attentional deficits. A negative

  10. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  11. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging

    International Nuclear Information System (INIS)

    Dong, Xinzhe; Wu, Peipei; Yu, Jinming; Xing, Ligang; Sun, Xiaorong; Li, Wenwu; Wan, Honglin

    2015-01-01

    This study aims to explore whether the intra-tumour 18 F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received 18 F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV) ) were delineated on the CT images (GTV CT ), the fused PET/CT images (GTV PET-CT ) and the PET images, using a threshold at 40% SUV max (GTV PET40% ) or the SUV cut-off value of 2.5 (GTV PET2.5 ). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV CT , GTV PET-CT , GTV PET40% and GTV PET2.5 was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system.

  12. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  13. Effects of anesthesia upon 18F-FDG uptake in rhesus monkey brains

    International Nuclear Information System (INIS)

    Itoh, Takashi; Wakahara, Shunichi; Nakano, Takayuki; Suzuki, Kazutoshi; Kobayashi, Kaoru; Inoue, Osamu

    2005-01-01

    The kinetics of 18 F-fluorodeoxyglucose ( 18 F-FDG) in the monkey brain were monitored, and comparisons were made between the conscious state and when under ketamine and pentobarbital anesthesia. Rhesus monkeys were intravenously injected with 18 F-FDG and followed by 60 min of PET scanning. In the conscious state, the 18 F-FDG concentration reached a plateau 5 min after intravenous injection. Under ketamine anesthesia, the 18 F-FDG concentration gradually increased with time in all monitored regions. At 60 min after injection, the concentration in the striatum was about 3.2 times greater than that in the conscious state, and about 4.5 times greater in the cerebral cortex. Under pentobarbital anesthesia, the 18 F-FDG concentration in the occipital cortex was slightly lower. These findings demonstrate that 18 F-FDG concentration in the monkey brain is significantly affected by anesthesia. The results also imply the existence of a short-term regulation mechanism for hexokinase activity in intact monkey brain. (author)

  14. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Casati, R.; Fowler, J.S.; Wolf, A.P.; Shea, C.; Schlyer, D.J.; Chyng-Yann Shiue

    1992-01-01

    Because of the widespread use of 2-deoxy-2-[ 18 F]fluoro-D-glucose(FDG) prepared by the ''Julich'' method or its variants it was decided necessary to determine the major chemical impurities present in the final product. An analytical system for quantifying FDG was developed using pulsed amperometry after separation by high-performance anion exchange chromotography. With this system a heretofore unidentified impurity, 2-deoxy-2-chloro-D-glucose(C1DG) was found in our preparation and in those from other laboratories using the ''Julich'' method. C1DG arises from C1 - ion displacement during the labeling procedure where C1 - ion comes from several sources, and C1 - ion displacement from the HC1 used in the hydrolysis step. FDG mass was present in the same preparations at a level of ca 1-40 μg. Other major chemical constituents were glucose (ca 1-6 mg) and mannose (ca 10-18 μg). Glycerol, arising from sterilizing filters, was also detected in most preparations. Although C1DG is a chemical impurity which has not been detected previously in nca FDG preparations, its biochemical and pharmacological properties are similar to FDG and 2-deoxy-D-glucose. Thus it is unlikely that the presence of small quantities of C1DG found in typical FDG preparations (ca 100 μg) would have adverse pharmacological or toxicological consequences that would limit continued application of this radiopharmaceutical in basic and clinical studies. (Author)

  15. Higher fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) uptake in tuberculous compared to bacterial spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Bassetti, Matteo; Merelli, Maria; Della Siega, Paola; Righi, Elda [Santa Maria della Misericordia University Hospital, Infectious Diseases Division, Udine (Italy); Di Gregorio, Fernando [Santa Maria della Misericordia University Hospital, Microbiology Unit, Udine (Italy); Screm, Maria; Scarparo, Claudio [Santa Maria della Misericordia University Hospital, Radiology Unit, Udine (Italy)

    2017-06-15

    Tuberculous spondylodiscitis can be difficult to diagnose because of its nonspecific symptoms and the similarities with non-tubercular forms of spinal infection. Fluorine-18-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG PET-CT) is increasingly used for the diagnosis and monitoring of tubercular diseases. Retrospective, case-control study comparing tuberculous spondylodiscitis with biopsy-confirmed pyogenic spondylodiscitis in the period 2010-2012. Ten cases of tuberculous spondylodiscitis and 20 controls were included. Compared to pyogenic, tuberculous spondylodiscitis was more frequent in younger patients (P = 0.01) and was more often associated with thoraco-lumbar tract lesions (P = 0.01) and multiple vertebral involvement (P = 0.01). Significantly higher maximum standardized uptake values (SUV) at FDG-PET were displayed by tuberculous spondylodiscitis compared to controls (12.4 vs. 7.3, P = 0.003). SUV levels above 8 showed the highest value of specificity (0.80). Mean SUV reduction of 48% was detected for tuberculous spondylodiscitis at 1-month follow-up. Higher SUV levels at FDG-PET were detected in tuberculous compared with pyogenic spondylodiscitis. PET-CT use appeared useful in the disease follow-up after treatment initiation. (orig.)

  16. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  17. Difference in F-18 FDG Uptake According to the Patterns of CT-Based Diagnosed Pulmonary Lymphangitic Carcinomatosis in Patients with Lung Cancer

    International Nuclear Information System (INIS)

    Jun, Sung Min; Kim, Yong Ki; Kim, In Ju; Kim, Seong Jang; Nam, Hyun Yeol; Kim, Bum Soo

    2008-01-01

    Our purpose was to evaluate F-18 FDG uptake in pulmonary lymphangitic carcinomatosis (PLC) according to CT findings and histology of lung cancer. Thirty-three lung cancer patients with PLC were enrolled in this retrospective study. All the patients had a CT-based diagnosis of PLC. Chest CT findings of PLC were classified on the basis of involvement of axial interstitium. We categorized the involvement of axial interstitium as group 1, and the involvement of peripheral interstitium only as group 2. Visual and semiquantitative analyses by F-18 FDG PET/CT were performed in the PLC lesions. At first, we analyzed the F-18 FDG uptake in the PLC by visual assessment. If abnormal uptake was seen in the PLC, we drew regions of interest in the PLC lesions to obtain the maximum SUVs (maxSUVs). Of the 33 patients, 22 had abnormal F-18 FDG uptake in the visual assessment. There was no significant difference in the frequency of abnormal F-18 FDG uptake between group 1 and group 2 (p=0.17), although the frequency of group 1 tended to be higher than group 2 (15/19 (78.9%) in group 1, 7/14 (50.0%) in group 2). However, group 1 had a higher maxSUV than group 2 (p<0.01, group 1: 2.9±1.4, group 2: 1.5±0.6). There was no significant difference in the frequency of abnormal F-18 FDG uptake and maxSUV among the histology of the lung cancers. The involvement of axial interstitium in the PLC by lung cancer has a higher maxSUV than the involvement of only peripheral interstitium

  18. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  19. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  20. Stability study of 2-[18F]Fluoro-2-Deoxy-D-Glucose (18FDG) stored at room temperature by physicochemical and microbiological assays

    International Nuclear Information System (INIS)

    Ferreira, Soraya Z.; Silva, Juliana B. da; Waquil, Samira S.; Correia, Ricardo F.

    2009-01-01

    The most widely used radiopharmaceutical in the expanding medical imaging technology of Positron Emission Tomography (PET) is 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG). The increasing demand for 18 FDG requires reliable production in large amounts. The synthesis of 18 FDG is based on a nucleophilic substitution of the triflate-leaving group from the precursor, mannose triflate, in the presence of Crypt and 2.2.2, as a phase-transfer agent. After labeling, the removal of the acetyl protecting groups from resulting 2-[ 18 F]fluoro-1,3,4,6-tetra-Oacetyl- D-glucose is performed by alkaline hydrolysis, followed by purification and final filtration (0.22 μm). It was reported that 18 FDG decomposes in vitro, resulting in the degradation of the radiochemical purity with time. The aim of this study was to evaluate physicochemical and microbiological stability of 18 FDG, stored at room temperature (15-30 deg C), at different time intervals. It was investigated how the quality of this radiopharmaceutical varies with time under the influence of environmental factors. 18 FDG pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins and sterility were evaluated according to the United States Pharmacopeia 31 th edition analytical methods and acceptance criteria. The results suggest that 18 FDG has physicochemical and microbiological stability up to 10 hours after the end of synthesis, under experimental conditions. (author)

  1. Radiolysis of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG) and the role of ethanol and radioactive concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Mark S. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States)], E-mail: jacobson.mark17@mayo.edu; Dankwart, Heather R. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Mahoney, Douglas W. [Division of Biostatistics, Mayo Clinic, Rochester, MN (United States)

    2009-06-15

    Radiolysis is the process by which radioactively labeled compounds degrade. Many positron emission tomography (PET) radiopharmaceuticals produced with high radioactive concentrations and specific activities exhibit low radiochemical purity because of radiolysis. Little data exist that describe the radiolytic decomposition of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG). The objective of our study was to profile the degradation of [{sup 18}F]FDG at various radioactive concentrations by measuring radiochemical purity at different time intervals and to study the effects of ethanol, a well-known reductant stabilizer of [{sup 18}F]FDG preparations.

  2. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ. Copyright © 2015 the American Physiological Society.

  3. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat.

    Science.gov (United States)

    Southworth, Richard; Parry, Craig R; Parkes, Harold G; Medina, Rodolfo A; Garlick, Pamela B

    2003-12-01

    2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer. Copyright 2003 John Wiley & Sons, Ltd.

  4. Comparison between FDG Uptake and Clinicopathologic and Immunohistochemical Parameters in Pre-operative PET/CT Scan of Primary Gastric Carcinoma

    International Nuclear Information System (INIS)

    Han, Eun Ji; Choi, Woo Hee; Chung, Yong An; Kim, Ki Jun; Maeng, Lee So; Sohn, Kyung Myung; Jung, Hyun Suk; Sohn, Hyung Sun; Chung, Soo Kyo

    2009-01-01

    The purpose of this study was to find out what clinicopathologic or immunohistochemical parameter that may affect FDG uptake of primary tumor in PET/CT scan of the gastric carcinoma patient. Eighty-nine patients with stomach cancer who underwent pre-operative FDG PET/CT scans were included. In cases with perceptible FDG uptake in primary tumor, the maximum standardized uptake value (SUVmax) was calculated. The clinicopathologic results such as depth of invasion (T stage), tumor size, lymph node metastasis, tumor differentiation and Lauren's classification and immunohistochemical markers such as Ki-67 index, expression of p53, EGFR, Cathepsin D, c-erb-B2 and COX-2 were reviewed. Nineteen out of 89 gastric carcinomas showed imperceptible FDG uptake on PET/CT images. In cases with perceptible FDG uptake in primary tumor, SUVmax was significantly higher in T2, T3 and T4 tumors than T1 tumors (5.8±3.1 vs. 3.7±2.1, p=0.002). SUVmax of large tumors (above or equal to 3 cm) was also significantly higher than SUVmax of small ones (less than 3 cm) (5.7±3.2 vs. 3.7±2.0, p=0.002). The intestinal types of gastric carcinomas according to Lauren showed higher FDG uptake compared to the non-intestinal types (5.4±2.8 vs. 3.7±1.3, p=0.003). SUVmax between p53 positive group and negative group was significantly different (6.0±2.8 vs. 4.4±3.0, p=0.035). No significant difference was found in presence of LN metastasis, tumor differentiation, Ki-67 index, and expression of EGFR, Cathepsin D, c-erb-B2 and COX-2. T stage of gastric carcinoma influenced the detectability of gastric cancer on FDG PET/CT scan. When gastric carcinoma was perceptible on PET/CT scan, T stage, size of primary tumor, Lauren's classification and p53 expression were related to degree of FDG uptake in primary tumor

  5. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  6. Factors affecting intrapatient liver and mediastinal blood pool {sup 18}F-FDG standardized uptake value changes during ABVD chemotherapy in Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Chiaravalloti, Agostino; Danieli, Roberta; Abbatiello, Paolo; Di Pietro, Barbara; Travascio, Laura; Cantonetti, Maria; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); Schillaci, Orazio [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); IRCCS Neuromed, Pozzilli (Italy)

    2014-06-15

    The aim of our study was to assess the intrapatient variability of 2-deoxy-2-({sup 18}F)-fluoro-D-glucose ({sup 18}F-FDG) uptake in the liver and in the mediastinum among patients with Hodgkin's lymphoma (HL) treated with doxorubicin (Adriamycin), bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy (CHT). The study included 68 patients (30 men, 38 women; mean age 32 ± 11 years) with biopsy-proven HL. According to Ann Arbor criteria, 6 were stage I, 34 were stage II, 12 were stage 3 and 16 were stage 4. All of them underwent a baseline (PET0) and an interim (PET2) {sup 18}F-FDG whole-body positron emission tomography (PET)/CT. All patients were treated after PET0 with two ABVD cycles for 2 months that ended 15 ± 5 days prior to the PET2 examination. All patients were further evaluated 15 ± 6 days after four additional ABVD cycles (PET6). None of the patients presented a serum glucose level higher than 107 mg/dl. The mean and maximum standardized uptake values (SUV) of the liver and mediastinum were calculated using the same standard protocol for PET0, PET2 and PET6, respectively. Data were examined by means of the Wilcoxon matched pairs test and linear regression analysis. The main results of our study were an increased liver SUV{sub mean} in PET2 (1.76 ± 0.35) as compared with that of PET0 (1.57 ± 0.31; p < 0.0001) and PET6 (1.69 ± 0.28; p = 0.0407). The same results were obtained when considering liver SUV{sub max} in PET2 (3.13 ± 0.67) as compared with that of PET0 (2.82 ± 0.64; p < 0.0001) and PET6 (2.96 ± 0.52; p = 0.0105). No significant differences were obtained when comparing mediastinum SUV{sub mean} and SUV{sub max} in PET0, PET2 and PET6 (p > 0.05). Another finding is a relationship in PET0 between liver SUV{sub mean} and SUV{sub max} with the stage, which was lower in those patients with advanced disease (r{sup 2} = 0.1456 and p = 0.0013 for SUV{sub mean} and r{sup 2} = 0.1277 and p = 0.0028 for SUV{sub max}). The results of our

  7. Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET.

    Science.gov (United States)

    Hofheinz, Frank; Hoff, Jörg van den; Steffen, Ingo G; Lougovski, Alexandr; Ego, Kilian; Amthauer, Holger; Apostolova, Ivayla

    2016-12-01

    We have demonstrated recently that the tumor-to-blood standard uptake ratio (SUR) is superior to tumor standardized uptake value (SUV) as a surrogate of the metabolic uptake rate K m of fluorodeoxyglucose (FDG), overcoming several of the known shortcomings of the SUV approach: excellent linear correlation of SUR and K m from Patlak analysis was found using dynamic imaging of liver metastases. However, due to the perfectly standardized uptake period used for SUR determination and the comparatively short uptake period, these results are not automatically valid and applicable for clinical whole-body examinations in which the uptake periods (T) are distinctly longer and can vary considerably. Therefore, the aim of this work was to investigate the correlation between SUR derived from clinical static whole-body scans and K m-surrogate derived from dual time point (DTP) measurements. DTP (18)F-FDG PET/CT was performed in 90 consecutive patients with histologically proven non-small cell lung cancer (NSCLC). In the PET images, the primary tumor was delineated with an adaptive threshold method. For determination of the blood SUV, an aorta region of interest (ROI) was delineated manually in the attenuation CT and transferred to the PET image. Blood SUV was computed as the mean value of the aorta ROI. SUR values were computed as ratio of tumor SUV and blood SUV. SUR values from the early time point of each DTP measurement were scan time corrected to 75 min postinjection (SURtc). As surrogate of K m, we used the SUR(T) slope, K slope, derived from DTP measurements since it is proportional to the latter under the given circumstances. The correlation of SUV and SURtc with K slope was investigated. The prognostic value of SUV, SURtc, and K slope for overall survival (OS) and progression-free survival (PFS) was investigated with univariate Cox regression in a homogeneous subgroup (N=31) treated with primary chemoradiation. Correlation analysis revealed for both, SUV and SURtc, a

  8. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  9. Investigations on the effects of ``Ecstasy`` on cerebral glucose metabolism: an 18-FDG PET study; Untersuchungen zum Einfluss von ``Ecstasy`` auf den zerebralen Glukosemetabolismus: eine 18-FDG-PET-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Tuttass, T.; Schulz, G.; Kaiser, H.J.; Wagenknecht, G.; Buell, U. [Klinik fuer Nuklearmedizin, Universitaetsklinik, RWTH Aachen (Germany); Gouzoulis-Mayfrank, E.; Sass, H. [Klinik fuer Psychiatrie, Universitaetsklinikum, RWTH Aachen (Germany)

    1998-12-31

    Purpose: The aim of the present study was to determine the acute effects of the `Ecstasy` analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8{+-}11,1 {mu}mol/min/100 g, placebo: 50,1{+-}18,1 {mu}mol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p<0.05) and right prefrontal superior (-4.6%, p<0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, p<0.05; left: +7.6%, p<0.05) and in the right putamen (+6.2%, p<0.05). Conclusions: The present study revealed acute neurometabolic changes under the `Ecstasy` analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively. (orig.) [Deutsch] Ziel: In der vorliegenden Studie sollte die Akutwirkung des `Ecstasy`-Analogons MDE (3,4-Methylendioxyethamphetamin) auf den zentralen Glukosemetabolismus (rMRGlu) gesunder Probanden untersucht werden. Methode: In einer randomisierten

  10. Gender differences in the cerebral uptake of [18F]FDG

    NARCIS (Netherlands)

    Sijbesma, Jurgen; van Waarde, Aren; Vállez García, David; Boersma, Hendrikus; Slart, Riemer; Dierckx, Rudi; Doorduin, Janine

    2017-01-01

    An important issue in rodent imaging is the question whether it is possible to use both female and male animals in tracer development and evaluation, rather than animals from a single sex. For this reason, we have made repeated 18F-FDG scans of the brain of adult rats (either males, or females at

  11. Variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Hove, Jens D; Freiberg, Jacob

    2002-01-01

    The aim of this study was to assess regional and global variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects and to evaluate potentially responsible factors. Twenty men with a mean age of 64 years, no history of cardiovascular disease, and normal blood pressure...... rest and hyperaemic blood flow during dipyridamole infusion were measured with nitrogen-13 ammonia and positron emission tomography in 16 left ventricular myocardial segments. Intra-individual and inter-individual variability of insulin-stimulated myocardial glucose uptake [relative dispersion...... = (standard deviation/mean)] was 13% and 29% respectively. Although inter-individual variability of glucose uptake and blood flow at rest was of the same magnitude, no correlation was found between these measures. Regional and global insulin-stimulated myocardial glucose uptake correlated linearly with whole...

  12. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij; Kotowska, Dorota Ewa; C. B. Olsen, Louise

    2014-01-01

    while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes...

  13. Clinical impact of abnormal FDG uptake in pulmonary nodules detected by CT in patients with only history of non-lung cancers

    International Nuclear Information System (INIS)

    Wong, C.O.; Nunez, R.; Welsh, R.J.; Chmielewski, G.W.; Hill, E.A.; Hill, J.C.; Ravikrishnan, K.P.; Darlene Fink-Bennett; Dworkin, H.J.

    2001-01-01

    Objective: The aim is to assess the clinical impact of positive FDG uptake in single (SPN) or multiple (MPN) pulmonary nodules detected by CT in patients with known past history of non-lung cancers (but no known lung cancers). Materials and Methods: Twenty-eight sequential patients with non-lung cancers (15 breast, 8 colon, 5 prostate) referred for evaluation of SPN or MPN by PET over a period of two years were included. F-18 FDG PET images, covering chest and upper abdomen, were interpreted blindly and then correlated with CT findings for the precise location of abnormal FDG uptake in the chest. Results: There was a significant number of abnormal FDG uptake in both SPN or MPN. Positive abnormal uptake suggestive of malignancy was found in 25% of patients in the form of SPN and 39% of patients in the form of MPN (p<0.03). Positive cases in the pattern of multiple foci of pulmonary uptake were attributed to metastatic disease. Otherwise positive cases were followed by tissue diagnosis and/or surgical attention. The negative cases were followed clinically. Of the 11 positive cases of MPN, 2 patients (18%) showed only abnormal FDG uptake in just one of the nodules, which was later confirmed at surgery to be a primary cancer of lung in both patients. Conclusion: These results suggest that PET scan would be just as useful in patients with SPN and known non-lung cancers as other patients with no history of any cancers. Not all patients with non-lung cancer and MPN have pulmonary metastasis by PET criteria. PET may single out a primary lung malignancy in patients with non-lung cancer and MPN. PET has thus great clinical impact in these patients with pulmonary nodules and known non-lung cancers as the management would otherwise be completely different in situations revealed by the study

  14. Brain glucose metabolism in diffuse large B-cell lymphoma patients as assessed with FDG-PET: impact on outcome and chemotherapy effects.

    Science.gov (United States)

    Adams, Hugo Ja; de Klerk, John Mh; Fijnheer, Rob; Heggelman, Ben Gf; Dubois, Stefan V; Nievelstein, Rutger Aj; Kwee, Thomas C

    2016-06-01

    There is a lack of data on the effect of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy on brain glucose metabolism of diffuse large B-cell lymphoma (DLBCL) patients, as measured by 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, the prognostic value of brain glucose metabolism measurements is currently unknown. To investigate the use of FDG-PET for measurement of brain glucose metabolism in R-CHOP-treated DLBCL patients, and to assess its prognostic value. This retrospective study included DLBCL patients who underwent FDG-PET including the brain. FDG-PET metabolic volume products (MVPs) of the entire brain, cerebral cortex, basal ganglia, and cerebellum were measured, before and after R-CHOP therapy. Whole-body total lesion glycolysis (TLG) was also measured. Thirty-eight patients were included, of whom 18 had an appropriate end-of-treatment FDG-PET scan. There were no significant differences (P > 0.199) between pre- and post-treatment brain glucose metabolism metrics. Low basal ganglia MVP was associated with a significantly worse progression-free survival (PFS) and overall survival (OS) (P = 0.020 and P = 0.032), and low cerebellar MVP was associated with a significantly worse OS (P = 0.034). There were non-significant very weak correlations between pretreatment brain glucose metabolism metrics and TLG. In the multivariate Cox regression, only the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) remained an independent predictor of PFS (hazard ratio 3.787, P = 0.007) and OS (hazard ratio 2.903, P = 0.0345). Brain glucose metabolism was not affected by R-CHOP therapy. Low pretreatment brain glucose metabolism was associated with a worse outcome, but did not surpass the predictive value of the NCCN-IPI. © The Foundation Acta Radiologica 2015.

  15. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  16. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  17. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  18. Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.

    Science.gov (United States)

    Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R

    2012-06-01

    The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that

  19. Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas

    DEFF Research Database (Denmark)

    Zornhagen, Kamilla Westarp; Hansen, Anders Elias; Oxboel, Jytte

    2015-01-01

    investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. METHODS: Exploiting...

  20. Residual F-18-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    NARCIS (Netherlands)

    Bollineni, Vikram Rao; Widder, Joachim; Pruim, Jan; Langendijk, Johannes A.; Wiegman, Erwin M.

    2012-01-01

    Purpose: To investigate the prognostic value of [F-18]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically

  1. Predictive significance of standardized uptake value parameters of FDG-PET in patients with non-small cell lung carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X-Y.; Wang, W.; Li, M.; Li, Y.; Guo, Y-M. [PET-CT Center, The First Affiliated Hospital of Xi' an, Jiaotong University, Xi' an, Shaanxi (China)

    2015-02-03

    {sup 18}F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is widely used to diagnose and stage non-small cell lung cancer (NSCLC). The aim of this retrospective study was to evaluate the predictive ability of different FDG standardized uptake values (SUVs) in 74 patients with newly diagnosed NSCLC. {sup 18}F-FDG PET/CT scans were performed and different SUV parameters (SUV{sub max}, SUV{sub avg}, SUV{sub T/L}, and SUV{sub T/A}) obtained, and their relationship with clinical characteristics were investigated. Meanwhile, correlation and multiple stepwise regression analyses were performed to determine the primary predictor of SUVs for NSCLC. Age, gender, and tumor size significantly affected SUV parameters. The mean SUVs of squamous cell carcinoma were higher than those of adenocarcinoma. Poorly differentiated tumors exhibited higher SUVs than well-differentiated ones. Further analyses based on the pathologic type revealed that the SUV{sub max}, SUV{sub avg}, and SUV{sub T/L} of poorly differentiated adenocarcinoma tumors were higher than those of moderately or well-differentiated tumors. Among these four SUV parameters, SUV{sub T/L} was the primary predictor for tumor differentiation. However, in adenocarcinoma, SUV{sub max} was the determining factor for tumor differentiation. Our results showed that these four SUV parameters had predictive significance related to NSCLC tumor differentiation; SUV{sub T/L} appeared to be most useful overall, but SUV{sub max} was the best index for adenocarcinoma tumor differentiation.

  2. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...